Computational challenges and opportunities in spatially resolved transcriptomic data analysis
Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innov...
Uloženo v:
| Vydáno v: | Nature communications Ročník 12; číslo 1; s. 5283 - 5 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
06.09.2021
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innovation moving forward. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-021-25557-9 |