A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture

Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform se...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 23; no. 1; pp. 251 - 21
Main Authors: Shaukat, Zeeshan, Farooq, Qurat ul Ain, Tu, Shanshan, Xiao, Chuangbai, Ali, Saqib
Format: Journal Article
Language:English
Published: London BioMed Central 24.06.2022
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.
AbstractList Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.
Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.
Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.
Abstract Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.
ArticleNumber 251
Author Farooq, Qurat ul Ain
Tu, Shanshan
Shaukat, Zeeshan
Xiao, Chuangbai
Ali, Saqib
Author_xml – sequence: 1
  givenname: Zeeshan
  surname: Shaukat
  fullname: Shaukat, Zeeshan
  email: zee@emails.bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Faculty of Computer Science, University of South Asia
– sequence: 2
  givenname: Qurat ul Ain
  surname: Farooq
  fullname: Farooq, Qurat ul Ain
  organization: Faculty of Environmental and Life Sciences, Beijing University of Technology
– sequence: 3
  givenname: Shanshan
  surname: Tu
  fullname: Tu, Shanshan
  organization: Faculty of Information Technology, Beijing University of Technology
– sequence: 4
  givenname: Chuangbai
  surname: Xiao
  fullname: Xiao, Chuangbai
  email: cbxiao@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology
– sequence: 5
  givenname: Saqib
  surname: Ali
  fullname: Ali, Saqib
  organization: Faculty of Information Technology, Beijing University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35751030$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhiemxn7oH3BhJnHjBoUBBtiYNPWrSaMbuyZcONxLMwNXYEz899JOq20XXXGA931yvo67g5gidN1rgt8TIscPhQySK4SHAWEmFEPqWXdEmCBoIJgf3IsPu-NSrjAmQmL-ojukXHCCKT7qymlfqqmAkkd1B8jk2lewuxh-LdDX1O8h-5Tn3k5pcWhjCri-wGxiDbYF2xli84cU-6WEuO0dwL6fwOR4faOf-kv0HWpvst2FBq5Lhpfdc2-mAq9uz5Pu8svnn2ff0MWPr-dnpxfIcoYrYlRIbgWRZARGqWXSCT5svAJgnDM5Dk6MnjMvmQBPpBXKc8cNdwTANMdJd75yXTJXep_DbPIfnUzQNw8pb3UrN9gJtHcK280osLXAfIMYb5QbhbVMOctlY31cWftlM4OzrepspgfQhz8x7PQ2_dZqGBQnrAHe3QJyaq0tVc-hWJgmEyEtRQ-jJJhRKXCTvn0kvUpLjq1VTaUIpZKqsane3M_oXyp3s20CuQpsTqVk8NqGdVQtwTBpgvX1Gul1jXRbI32zRlo16_DIekd_0kRXU2niuIX8P-0nXH8B777bew
CitedBy_id crossref_primary_10_1038_s41598_023_36298_8
crossref_primary_10_1007_s11042_024_19261_1
crossref_primary_10_1109_ACCESS_2025_3597130
crossref_primary_10_1016_j_simpat_2023_102769
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_1007_s00066_025_02403_1
crossref_primary_10_3390_agriculture12091467
crossref_primary_10_4103_jmp_jmp_12_25
crossref_primary_10_3389_fmed_2024_1394262
crossref_primary_10_1109_ACCESS_2023_3242666
crossref_primary_10_1097_ALN_0000000000004841
Cites_doi 10.1007/978-3-319-75238-9_16
10.3322/caac.20069
10.1016/j.media.2016.10.004
10.1007/s11548-020-02186-z
10.1001/jama.2016.17216
10.1016/j.media.2016.05.004
10.1155/2021/6695108
10.1053/j.semnuclmed.2012.06.001
10.1016/j.mri.2013.05.002
10.1188/16.CJON.S1.2-8
10.1109/ISBI.2018.8363654
10.1007/s11042-020-09494-1
10.1109/IJCNN.2019.8852210
10.1007/978-3-030-46640-4_22
10.18383/j.tom.2019.00026
10.1016/j.patcog.2017.10.013
10.1093/neuonc/nou087
10.1109/ACCESS.2019.2948120
10.1007/978-3-030-20476-1_12
10.1007/978-981-10-8890-2_34
10.1145/3194452.3194479
10.1109/TMI.2014.2377694
10.1038/s41598-021-90428-8
10.1007/978-3-319-46723-8_49
10.1007/978-3-030-46640-4_20
10.3389/fradi.2021.704888
10.1109/RDCAPE47089.2019.8979076
10.1007/s13369-019-03967-8
10.1007/978-3-030-11726-9_8
10.1038/nature21056
10.1016/j.patrec.2018.01.021
10.1109/TMI.2018.2835303
10.1016/j.procs.2016.09.407
10.1016/j.media.2017.10.002
10.1007/s12652-017-0561-x
10.1007/s10278-013-9622-7
10.1109/ICECCPCE46549.2019.203771
10.3390/jimaging7020019
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-022-04794-9
DatabaseName SpringerLink Journals Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 21
ExternalDocumentID oai_doaj_org_article_fd90cb670cce4fd5aafa9d67cc49dc58
PMC9229514
35751030
10_1186_s12859_022_04794_9
Genre Journal Article
Review
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-43785c71816e433c48d752bf9ee4554862d76f54f847ef18c79f5d5a5d1eea433
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815498000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:42:02 EDT 2025
Tue Nov 04 01:37:17 EST 2025
Thu Sep 04 17:05:10 EDT 2025
Tue Oct 07 05:15:28 EDT 2025
Mon Jul 21 05:58:23 EDT 2025
Sat Nov 29 05:40:12 EST 2025
Tue Nov 18 21:00:24 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Brain tumor
Cloud computing
Semantic segmentation
3D U-Net
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-43785c71816e433c48d752bf9ee4554862d76f54f847ef18c79f5d5a5d1eea433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/fd90cb670cce4fd5aafa9d67cc49dc58
PMID 35751030
PQID 2691338396
PQPubID 44065
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_fd90cb670cce4fd5aafa9d67cc49dc58
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9229514
proquest_miscellaneous_2681043870
proquest_journals_2691338396
pubmed_primary_35751030
crossref_citationtrail_10_1186_s12859_022_04794_9
crossref_primary_10_1186_s12859_022_04794_9
springer_journals_10_1186_s12859_022_04794_9
PublicationCentury 2000
PublicationDate 2022-06-24
PublicationDateYYYYMMDD 2022-06-24
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References K Kamnitsas (4794_CR10) 2017; 36
L Chen (4794_CR36) 2018; 37
T Magadza (4794_CR22) 2021; 7
R Chauhan (4794_CR23) 2017
M Sharif (4794_CR24) 2020; 139
K Herholz (4794_CR4) 2012; 42
MG Linguraru (4794_CR38) 2007; 1
CGB Yogananda (4794_CR20) 2020; 6
A Esteva (4794_CR26) 2017; 542
4794_CR41
X Zhao (4794_CR8) 2018; 43
N Gordillo (4794_CR35) 2013; 31
Y Ding (4794_CR14) 2019; 7
M Havaei (4794_CR9) 2017; 35
RA Zeineldin (4794_CR11) 2020; 15
4794_CR28
4794_CR29
SR Gunasekara (4794_CR7) 2021; 2021
BH Menze (4794_CR37) 2015; 34
Y Zhang (4794_CR21) 2021
A Işın (4794_CR6) 2016; 102
4794_CR30
V Gulshan (4794_CR27) 2016; 316
4794_CR31
4794_CR32
Z Shaukat (4794_CR34) 2020; 79
K Clark (4794_CR40) 2013; 26
S Sajid (4794_CR16) 2019; 44
Y-X Zhao (4794_CR19) 2020
4794_CR33
4794_CR12
4794_CR13
R Ranjbarzadeh (4794_CR1) 2021; 11
4794_CR15
ME Davis (4794_CR2) 2016; 20
4794_CR17
4794_CR39
4794_CR18
EG Van Meir (4794_CR3) 2010; 60
QT Ostrom (4794_CR5) 2014; 16
J Gu (4794_CR25) 2018; 77
References_xml – ident: 4794_CR29
  doi: 10.1007/978-3-319-75238-9_16
– volume: 60
  start-page: 166
  issue: 3
  year: 2010
  ident: 4794_CR3
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.20069
– volume: 36
  start-page: 61
  year: 2017
  ident: 4794_CR10
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
– volume: 15
  start-page: 909
  issue: 6
  year: 2020
  ident: 4794_CR11
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02186-z
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 4794_CR27
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 1
  start-page: 269
  year: 2007
  ident: 4794_CR38
  publication-title: Brain Res J.
– volume: 35
  start-page: 18
  year: 2017
  ident: 4794_CR9
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– ident: 4794_CR41
– volume: 2021
  start-page: 6695108
  year: 2021
  ident: 4794_CR7
  publication-title: J Healthc Eng
  doi: 10.1155/2021/6695108
– volume: 42
  start-page: 356
  issue: 6
  year: 2012
  ident: 4794_CR4
  publication-title: Semin Nucl Med
  doi: 10.1053/j.semnuclmed.2012.06.001
– volume: 31
  start-page: 1426
  issue: 8
  year: 2013
  ident: 4794_CR35
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2013.05.002
– volume: 20
  start-page: S2
  issue: 5 Suppl
  year: 2016
  ident: 4794_CR2
  publication-title: Clin J Oncol Nurs
  doi: 10.1188/16.CJON.S1.2-8
– ident: 4794_CR15
  doi: 10.1109/ISBI.2018.8363654
– volume: 79
  start-page: 29537
  issue: 39
  year: 2020
  ident: 4794_CR34
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09494-1
– ident: 4794_CR17
  doi: 10.1109/IJCNN.2019.8852210
– ident: 4794_CR18
  doi: 10.1007/978-3-030-46640-4_22
– volume: 6
  start-page: 186
  issue: 2
  year: 2020
  ident: 4794_CR20
  publication-title: Tomography
  doi: 10.18383/j.tom.2019.00026
– volume: 77
  start-page: 354
  year: 2018
  ident: 4794_CR25
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.013
– volume: 16
  start-page: 896
  issue: 7
  year: 2014
  ident: 4794_CR5
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nou087
– volume: 7
  start-page: 152821
  year: 2019
  ident: 4794_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948120
– ident: 4794_CR32
  doi: 10.1007/978-3-030-20476-1_12
– ident: 4794_CR31
  doi: 10.1007/978-981-10-8890-2_34
– ident: 4794_CR33
  doi: 10.1145/3194452.3194479
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 4794_CR37
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 11
  start-page: 10930
  issue: 1
  year: 2021
  ident: 4794_CR1
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90428-8
– ident: 4794_CR28
  doi: 10.1007/978-3-319-46723-8_49
– start-page: 210
  volume-title: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries
  year: 2020
  ident: 4794_CR19
  doi: 10.1007/978-3-030-46640-4_20
– year: 2021
  ident: 4794_CR21
  publication-title: Front Radiol
  doi: 10.3389/fradi.2021.704888
– ident: 4794_CR13
  doi: 10.1109/RDCAPE47089.2019.8979076
– volume: 44
  start-page: 9249
  issue: 11
  year: 2019
  ident: 4794_CR16
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-03967-8
– ident: 4794_CR30
  doi: 10.1007/978-3-030-11726-9_8
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 4794_CR26
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 139
  start-page: 50
  year: 2020
  ident: 4794_CR24
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.01.021
– volume: 37
  start-page: 2453
  issue: 11
  year: 2018
  ident: 4794_CR36
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2835303
– volume: 102
  start-page: 317
  year: 2016
  ident: 4794_CR6
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.09.407
– ident: 4794_CR39
– volume: 43
  start-page: 98
  year: 2018
  ident: 4794_CR8
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.10.002
– year: 2017
  ident: 4794_CR23
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-017-0561-x
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: 4794_CR40
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– ident: 4794_CR12
  doi: 10.1109/ICECCPCE46549.2019.203771
– volume: 7
  start-page: 19
  issue: 2
  year: 2021
  ident: 4794_CR22
  publication-title: J Imaging
  doi: 10.3390/jimaging7020019
SSID ssj0017805
Score 2.4954753
SecondaryResourceType review_article
Snippet Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the...
Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the...
Abstract Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 251
SubjectTerms 3D U-Net
Accuracy
Algorithms
Bioinformatics
Biomedical and Life Sciences
Brain
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Brain tumor
Brain tumors
Cloud Computing
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Deep Learning
Experiments
Glioma
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Life Sciences
Literature reviews
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Medical diagnosis
Methods
Microarrays
Neural networks
Optimization
Semantic segmentation
Semantics
Tomography
Traumatic brain injury
Tumors
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNzRQkJG4gdU48fOEyqNCAq04UKm3KB2Ptyu1ybLJVuLfYzvZlOXRC7cosSU7M-OZ8cx8Q8grw70SGnLmJAITKB0zzjjGleeoDAc0qVD4i57NzPGx_TpeuHVjWuXmTEwHtWsh3pHvF8omd8qqt8vvLHaNitHVsYXGdXKDFwWPfP5ZsymKEPH6N4UyRu13PKK1sZi_noDVmd1SRgmz_2-G5p_5kr8FTZMuOrz7v7u4R-6MVig9GNjmPrmGzQNya-hL-eMh6Q5oKjRirWfBQIzZc3QCe6V9S5dDuQGFs3btWNSEjnZ4Hqi0gPAwPx8rmhoa8-rn1CEu6digYk7LD_SIzbCnv0YxHpGjw4_f3n9iY3cGBsHK65kotZEQVBtXKMoShHFaFifeIopgowRPyWnlpfBB_6HnBrT10slaOo5YhxmPyU7TNrhLKHLMvS-DKxkmQpnX3oAHG5x-BC8NzwjfkKmCEbo8dtA4q5ILY1Q1kLYKpK0SaSubkdfTnOUA3HHl6HeR-tPICLqdXrSreTXKcOWdzeFE6RwAhQ9bqX1tndIAwjqQJiN7G6JX40nQVZcUz8jL6XOQ4RiYqRts13GM4TEiq_OMPBlYbVpJGQNj4STOiN5iwq2lbn9pFqcJJ9zGVu1cZOTNhl0vl_XvX_H06l08I7eLJEGKFWKP7PSrNT4nN-GiX3SrF0n-fgKy8Tmq
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDI5gAYkL70dhQUHiBhHNNM_j8lhxQCMELNpb1HWcYaTddjSdQeLfk6QPGFiQ4Fa1seQmdmzL9mdCnhoelNBQMi8RmEDpmfHGM64CR2U4oMmNwu_0fG6Oj-37oSmsG6vdx5RkvqmzWhv1ouMJa42l6vMMi87sRXIpmjuT1PHDx89T7iCh9I_tMefS7ZigjNR_nnv5e5XkL6nSbIEOr_8f7zfItcHjpAe9iNwkF7C5Ra70Myi_3SbdAc1NRawNLDqDqVKOTsCudNPSVd9aQOG03XqWrJ6nHZ7FE1lCfFicDd1LDU019AvqEVd0GEaxoNVresTmuKE_ZyzukKPDN59evWXDJAYG0aPbMFFpIyGaMa5QVBUI47WcnQSLKKI_EqMir1WQIkRbh4Eb0DZIL2vpOWIdKe6SvaZt8D6hyLEMoYphYySEqqyDgQA2BvgIQRpeED4ejoMBpjxNyzh1OVwxyvWb6eJmuryZzhbk2USz6kE6_rr6ZTrzaWUC2M4v2vXCDfrqgrclnChdAqAI8VfqUFuvNICwHqQpyP4oMW7Q-s7NlM0hv1UFeTJ9jvqakjB1g-02rTE8ZV91WZB7vYBNnFQpCRZv3YLoHdHbYXX3S7P8kjHBbRrLzkVBno8C-IOtP2_Fg39b_pBcnWUZVmwm9sneZr3FR-QyfN0su_XjrIXfAXHPMCg
  priority: 102
  providerName: Springer Nature
Title A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture
URI https://link.springer.com/article/10.1186/s12859-022-04794-9
https://www.ncbi.nlm.nih.gov/pubmed/35751030
https://www.proquest.com/docview/2691338396
https://www.proquest.com/docview/2681043870
https://pubmed.ncbi.nlm.nih.gov/PMC9229514
https://doaj.org/article/fd90cb670cce4fd5aafa9d67cc49dc58
Volume 23
WOSCitedRecordID wos000815498000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (Proquest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMTLxDcZozISb2Atbvz5uMEmEFBFg6HCS5TZ51JpS6q1ReK_5-ykZeXzhRcriW3Jujvn7nR3vyPkqeFBCe1y5iU4JkB6ZrzxjKvAQRnuwKRC4bd6NDLjsS0vtfqKOWEdPHBHuL3gbe5Olc6dAxG8rOtQW6-0c8J6J1OZL1o9K2eqjx9EpP5ViYxRe3MecdpYzFxPkOrMbqihhNb_OxPz10zJn8KlSQsd3SLbvflI97tj3yZXoLlDbnQNJb_dJfN9miqEWBsYWnYx7Y2uUVrpoqWzrk6AurN26VlUYZ7O4RzJO3X4MDnvS5EaGhPiJ9QDzGjfWWJCi5f0hI1gQS-HH-6Rk6PDDy9esb6tAnNoni2YKLSRDnUSVyCKwgnjtRyeBgsg0LhAF8drFaQIqLggcOO0DRIJLz0HqHHHfbLVtA08JBQ45CEU6APiRlfkdTAuOIveOrggDc8IX1G5cj3meGx9cVYl38OoquNMhZypEmcqm5Fn6z2zDnHjr6sPIvPWKyNadvqAMlT1MlT9S4YysrtifdVf4Xk1VDb571Zl5Ml6Gi9fjKjUDbTLuMbwGErVeUYedJKyPkkRI1r4C82I3pChjaNuzjTTLwng28Ye61xk5PlK2n4c68-k2PkfpHhEbg7TNVFsKHbJ1uJiCY_Jdfd1MZ1fDMhVPdZpNANy7eBwVB4P0sXD8Y1mg5g5W-JYys84X75-V37Ct-P3H78DtnY3MA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqAqIX9tJAASPBCazGiePlgFChVK1mGHFopd5Cxn4eRmqTYTID6p_iN2I7SxmW3nrgFiW2ZDvfW-zn9z6EXkhqORM6JiYDTRhkhkgjDaHcUuCSapAhUXgoRiN5cqI-raEfXS6Mv1bZ6cSgqE2l_Rn5TsJV2E4p_nb2lXjWKB9d7Sg0GlgM4Py727LVbw733P99mST7H47eH5CWVYBo550sCEuFzLRTyZQDS1PNpBFZMrYKgDnb6jx8I7jNmHV6GyyVWiibmazIDAUomD8AdSr_Gkul8LX6B4L0UQvPD9Al5ki-U1NfHY74-_KhkDtRK8YvcAT8zbH9837mb0HaYPv2b_9vq3YH3Wq9bLzbiMVdtAblPXSj4d08v4_qXRwSqUhliXOA_e1A3BezxYsKz5p0CqxPq6Uh3tIbXMOZQ-FUu4fJWZuxVWKfNzDBBmCGWwKOCU738DEZwQL_GqV5gI6vZMabaL2sSthCGCjE1qZuq-w66jQurNRWKxgnoG0maYRoB4tct6XZPUPIaR62aJLnDZRyB6U8QClXEXrV95k1hUkubf3Oo61v6YuKhxfVfJK3Oiq3RsV6zEWsNTDrplLYQhkutGbK6ExGaLsDWd5qujq_QFiEnvefnY7ygaeihGrp20jqI84ijtDDBtr9SFIf-HOWJkJiBfQrQ139Uk6_hDroylPRUxah1514XAzr30vx6PJZPEM3D44-DvPh4WjwGG0kQXo5Sdg2Wl_Ml_AEXdffFtN6_jTIPkafr1psfgKGC5Ul
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9gfIgXvtkKA4LEG0RrrmmaPA7GCcR0mgRDe4s6xzlO2trTtYfEf0-SfrCDgYR4q9pYyocd27X9MyEvFXdSFJAymyMwgbllyirLuHQcpeKAKhYKHxazmTo50UcXqvhjtvsQkuxqGgJKU9XuLa3rRFzJvYYH3DUWMtEjRDrTV8k1EZoGBX_905cxjhAQ-4dSmUvpNtRRRO2_zNT8PWPyl7Bp1EbTO_-_jrvkdm-J0v2Ode6RK1jdJze63pTfH5Bmn8ZiI1Y75o3EkEFHR8BX2tZ02ZUcUDir15YFbWhpg-f-pBbgH-bnfVVTRUNu_ZxaxCXtm1TMaXZAj9kMW3oxkvGQHE_ffX77nvUdGhh4S69lIitUDl69cYkiy0AoW-STU6cRhbdTvLdkC-ly4bwORMcVFNrlNi9zyxFLT_GIbFV1hTuEIsfUucy7k54QsrR0Chxo7_gjuFzxhPDhoAz08OWhi8aZiW6MkqbbTOM308TNNDohr0aaZQfe8dfRb8L5jyMD8HZ8Ua_mppdj46xO4VQWKQAK55dSulJbWQAIbSFXCdkduMf0t0FjJlLHXwFaJuTF-NnLcQjOlBXW6zBG8RCVLdKEbHfMNs4kC8ExfxsnpNhgw42pbn6pFl8jVrgO7dq5SMjrgRl_TuvPW_H434Y_JzePDqbm8MPs4xNyaxLZWbKJ2CVb7WqNT8l1-NYumtWzKJw_AFslO_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+state-of-the-art+technique+to+perform+cloud-based+semantic+segmentation+using+deep+learning+3D+U-Net+architecture&rft.jtitle=BMC+bioinformatics&rft.au=Shaukat%2C+Zeeshan&rft.au=Farooq%2C+Qurat+ul+Ain&rft.au=Tu%2C+Shanshan&rft.au=Xiao%2C+Chuangbai&rft.date=2022-06-24&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-04794-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_022_04794_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon