Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality
The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine ( Pinus ponderosa ) mortality, largely attributable to the western pine beetle ( Dendroctonus brevicomis ; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates res...
Uložené v:
| Vydané v: | Nature communications Ročník 12; číslo 1; s. 129 - 13 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
08.01.2021
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine (
Pinus ponderosa
) mortality, largely attributable to the western pine beetle (
Dendroctonus brevicomis
; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km
2
, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality.
The 2012–2016 drought and western pine beetle outbreaks caused unprecedented mortality of ponderosa pine in the Sierra Nevada, California. Here, the authors analyse drone-based data from almost half a million trees and find an interaction between host size and climatic water deficit, with higher mortality for large trees in dry, warm conditions but not in cooler or wetter conditions. |
|---|---|
| AbstractList | The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine (
Pinus ponderosa
) mortality, largely attributable to the western pine beetle (
Dendroctonus brevicomis
; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km
2
, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality.
The 2012–2016 drought and western pine beetle outbreaks caused unprecedented mortality of ponderosa pine in the Sierra Nevada, California. Here, the authors analyse drone-based data from almost half a million trees and find an interaction between host size and climatic water deficit, with higher mortality for large trees in dry, warm conditions but not in cooler or wetter conditions. The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality.The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality. The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality. The 2012–2016 drought and western pine beetle outbreaks caused unprecedented mortality of ponderosa pine in the Sierra Nevada, California. Here, the authors analyse drone-based data from almost half a million trees and find an interaction between host size and climatic water deficit, with higher mortality for large trees in dry, warm conditions but not in cooler or wetter conditions. The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km , validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality. The 2012–2016 drought and western pine beetle outbreaks caused unprecedented mortality of ponderosa pine in the Sierra Nevada, California. Here, the authors analyse drone-based data from almost half a million trees and find an interaction between host size and climatic water deficit, with higher mortality for large trees in dry, warm conditions but not in cooler or wetter conditions. The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine ( Pinus ponderosa ) mortality, largely attributable to the western pine beetle ( Dendroctonus brevicomis ; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km 2 , validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality. |
| ArticleNumber | 129 |
| Author | Mortenson, Leif A. Latimer, Andrew M. North, Malcolm P. Koontz, Michael J. Fettig, Christopher J. |
| Author_xml | – sequence: 1 givenname: Michael J. orcidid: 0000-0002-8276-210X surname: Koontz fullname: Koontz, Michael J. email: michael.koontz@colorado.edu organization: Graduate Group in Ecology, University of California, Department of Plant Sciences, University of California, Earth Lab, University of Colorado-Boulder – sequence: 2 givenname: Andrew M. orcidid: 0000-0001-8098-0448 surname: Latimer fullname: Latimer, Andrew M. organization: Graduate Group in Ecology, University of California, Department of Plant Sciences, University of California – sequence: 3 givenname: Leif A. surname: Mortenson fullname: Mortenson, Leif A. organization: USDA Forest Service, Pacific Southwest Research Station – sequence: 4 givenname: Christopher J. surname: Fettig fullname: Fettig, Christopher J. organization: USDA Forest Service, Pacific Southwest Research Station – sequence: 5 givenname: Malcolm P. surname: North fullname: North, Malcolm P. organization: Graduate Group in Ecology, University of California, Department of Plant Sciences, University of California, USDA Forest Service, Pacific Southwest Research Station |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33420082$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kjtvFDEUhUcoiISQP0CBLNHQDPj9aJBQxCNSJBqoLY_nzsbLrB1sL2j59Xh3EkhSxI0t-5xPx_fe591RTBG67iXBbwlm-l3hhEvVY4p7irkQ_e5Jd9JOpCeKsqM75-PurJQ1bosZojl_1h0zxinGmp506TynUvri3QwoxArZ-RpSRGlCV6lUVDMAKuEPIBdH5OewcTV49Ns1KRphCj5UtEq_IMeCBpd_oAGgztCHOG49jAtgk3J1c6i7F93Tyc0Fzm720-77p4_fzr_0l18_X5x_uOy94Lj2jPsBNNeUSgA8mEnqQTJMuBiZbnfYGc-YkWKSimsMzEzaADZawuidJOy0u1i4Y3Jre51b7LyzyQV7uEh5ZV1uH5nBaqGIZxQrTRU3gzHgRAML4yUwoqbGer-wrrfDpvEh1uzme9D7LzFc2VYSq5ThguzDvLkB5PRzC6XaTSge5tlFSNtiKVdSSIKpatLXD6TrtM2xleqgooK0MjTVq7uJ_kW57WsT6EXg9-3NMNnWJrdvbAsYZkuw3U-RXabItimyhymyu2alD6y39EdNbDGVJo4ryP9jP-L6CyUm2hE |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_127431 crossref_primary_10_3390_f14102074 crossref_primary_10_1371_journal_pone_0288067 crossref_primary_10_1093_forestry_cpaf043 crossref_primary_10_3390_rs14133205 crossref_primary_10_1016_j_plantsci_2022_111319 crossref_primary_10_1002_eap_2514 crossref_primary_10_1016_j_jag_2024_104257 crossref_primary_10_1038_s41467_023_43083_8 crossref_primary_10_3390_s23249907 crossref_primary_10_1002_ecs2_4478 crossref_primary_10_1016_j_foreco_2023_121478 crossref_primary_10_3389_ffgc_2021_679104 crossref_primary_10_1016_j_foreco_2022_120183 crossref_primary_10_1016_j_foreco_2024_122184 crossref_primary_10_1016_j_foreco_2024_122382 crossref_primary_10_3389_ffgc_2025_1498430 crossref_primary_10_1038_s41598_022_08825_6 crossref_primary_10_1111_nph_18144 crossref_primary_10_1093_jofore_fvab026 crossref_primary_10_1007_s11104_022_05315_6 crossref_primary_10_1016_j_scitotenv_2023_164223 crossref_primary_10_1016_j_foreco_2022_120099 crossref_primary_10_3390_microorganisms10030503 crossref_primary_10_1016_j_agrformet_2025_110533 crossref_primary_10_3389_ffgc_2024_1513721 crossref_primary_10_24072_pcjournal_223 crossref_primary_10_3390_fire6110428 crossref_primary_10_1002_eap_2854 crossref_primary_10_1186_s42408_023_00175_6 crossref_primary_10_1016_j_jhydrol_2023_130387 crossref_primary_10_1038_s41467_024_44991_z crossref_primary_10_1016_j_ecolmodel_2024_110814 crossref_primary_10_3389_ffgc_2023_1130721 crossref_primary_10_1038_s41598_025_04370_0 crossref_primary_10_3390_rs13061089 crossref_primary_10_1016_j_foreco_2024_121814 crossref_primary_10_1016_j_compag_2024_108785 crossref_primary_10_1016_j_foreco_2023_121135 crossref_primary_10_1016_j_rse_2023_113842 crossref_primary_10_1016_j_foreco_2022_120480 crossref_primary_10_1145_3625387 crossref_primary_10_1002_ecs2_4454 crossref_primary_10_1016_j_ecolind_2025_113326 crossref_primary_10_1111_afe_12586 crossref_primary_10_1016_j_cois_2022_101003 crossref_primary_10_1016_j_agrformet_2022_109025 crossref_primary_10_1016_j_foreco_2025_122549 crossref_primary_10_1007_s11056_023_09991_9 crossref_primary_10_1111_1365_2745_13830 crossref_primary_10_3389_ffgc_2025_1566459 crossref_primary_10_1093_treephys_tpad151 crossref_primary_10_3390_pathogens10111390 crossref_primary_10_1016_j_foreco_2023_121307 crossref_primary_10_1111_plb_13469 crossref_primary_10_1016_j_agrformet_2025_110592 crossref_primary_10_3390_rs14225861 crossref_primary_10_1002_ecs2_4206 crossref_primary_10_1007_s10340_022_01510_7 crossref_primary_10_1002_ecs2_4400 crossref_primary_10_1016_j_foreco_2024_122010 |
| Cites_doi | 10.1525/bio.2010.60.8.6 10.1146/annurev-ento-020117-043339 10.17605/OSF.IO/3CWF9 10.1088/1748-9326/aa8f55 10.1002/ecy.1963 10.1002/eap.1902 10.4039/Ent114797-9 10.1641/B580607 10.1111/1365-2664.12782 10.32614/CRAN.package.ForestTools 10.1146/annurev.ecolsys.31.1.343 10.1016/S0176-1617(11)81633-0 10.18637/jss.v028.i05 10.1111/j.1469-8137.2008.02436.x 10.1016/j.foreco.2006.10.011 10.1038/s41467-019-12380-6 10.1890/02-4004 10.1016/j.foreco.2011.11.038 10.1186/2192-1709-2-25 10.1093/jee/98.6.2041 10.1002/eco.1286 10.3390/rs11111309 10.4039/tce.2012.38 10.18637/jss.v076.i01 10.18637/jss.v080.i01 10.1029/2005RG000183 10.1007/s10980-016-0460-0 10.1002/fee.2031 10.1111/1365-2745.13176 10.1111/2041-210X.13132 10.1139/x11-041 10.1016/j.ecolmodel.2009.01.039 10.1126/science.164.3885.1284 10.1603/EC12184 10.1111/ele.12711 10.1139/x2012-102 10.1016/j.isprsjprs.2018.11.008 10.1890/06-1715.1 10.1016/B978-0-12-417156-5.00001-0 10.1016/j.foreco.2018.09.006 10.1093/ee/7.5.732 10.1002/2015GL064593 10.1016/j.rse.2013.07.041 10.1007/s00049-007-0378-8 10.1038/s41467-020-17213-5 10.1111/j.1461-0248.2007.01073.x 10.3390/rs10060912 10.1046/j.1365-2699.1998.00233.x 10.1111/ecog.02769 10.3390/s19163595 10.3390/rs5094163 10.1007/978-3-319-24744-1_18 10.2307/1942586 10.7930/NCA4.2018.CH6 10.1016/j.foreco.2016.04.051 10.3390/f5010153 10.1006/tpbi.1997.1350 10.3390/rs8060501 10.1111/1365-2664.12540 10.1016/j.foreco.2019.01.033 10.1093/bioinformatics/btq046 10.2307/1940551 10.1002/esp.3609 10.1038/s41467-020-17214-4 10.1007/BF00987534 10.3390/rs11151797 10.1111/nph.13477 10.1002/2014GL062433 10.1111/j.1469-8137.2005.01436.x 10.1603/EN13244 10.1111/rssa.12378 10.3389/ffgc.2019.00039 10.1073/pnas.1523397113 10.14358/PERS.78.1.75 10.1016/j.foreco.2009.11.030 10.3390/rs10081266 10.1080/10618600.1998.10474787 10.1016/B978-0-12-417156-5.00014-9 10.1139/x2012-031 10.1016/j.foreco.2018.12.006 10.1016/j.rse.2006.03.012 10.1016/j.foreco.2019.02.011 10.1603/029.102.0621 10.3390/f10030237 10.1007/BF00988635 10.3732/ajb.1600326 10.3390/f6051721 10.3390/f5010088 10.6078/D16K5W 10.1016/1047-3203(90)90014-M 10.17605/OSF.IO/WPK5Z 10.2307/2986328 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-020-20455-y |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection Proquest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_8571c320782749b99ea565f59c6e317f PMC7794511 33420082 10_1038_s41467_020_20455_y |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GeographicLocations | California |
| GeographicLocations_xml | – name: California |
| GrantInformation_xml | – fundername: USDA Forest Service Western Wildland Environmental Threat Assessment Center Pacific Southwest Research Station Climate Change Competitive Grant Program CU Boulder’s Grand Challenge Initiative University of Colorado Boulder Grand Challenge – fundername: ; |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-34cbe848226ee0b9f68b630145d3826e0a9c33965f67480e39f89e0986edca613 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626604400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:35:15 EDT 2025 Tue Nov 04 01:53:46 EST 2025 Thu Sep 04 15:51:05 EDT 2025 Sat Nov 29 15:09:52 EST 2025 Wed Feb 19 02:23:43 EST 2025 Sat Nov 29 06:29:05 EST 2025 Tue Nov 18 22:43:10 EST 2025 Fri Feb 21 02:39:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-34cbe848226ee0b9f68b630145d3826e0a9c33965f67480e39f89e0986edca613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8098-0448 0000-0002-8276-210X |
| OpenAccessLink | https://doaj.org/article/8571c320782749b99ea565f59c6e317f |
| PMID | 33420082 |
| PQID | 2476251630 |
| PQPubID | 546298 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8571c320782749b99ea565f59c6e317f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7794511 proquest_miscellaneous_2476561027 proquest_journals_2476251630 pubmed_primary_33420082 crossref_citationtrail_10_1038_s41467_020_20455_y crossref_primary_10_1038_s41467_020_20455_y springer_journals_10_1038_s41467_020_20455_y |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-08 |
| PublicationDateYYYYMMDD | 2021-01-08 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Baldwin, B. G. et al. Master spatial file for native California vascular plants used by Baldwin et al. (2017 Amer. J. Bot.), Dryad, Dataset, 2017. https://doi.org/10.6078/D16K5W. Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Local-structure-wpb-severity. https://doi.org/10.17605/OSF.IO/WPK5Z (2019). HoffmanMDGelmanAThe no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte CarloJ. Mach. Learn. Res.2014153132147791319.60150 LoganJAWhitePBentzBJPowellJAModel analysis of spatial patterns in mountain pine beetle outbreaksTheor. Popul. Biol.1998532362551:STN:280:DC%2BC2sjnvFeluw%3D%3D96820260941.9203010.1006/tpbi.1997.1350 ShinPSankeyTMooreMThodeAEvaluating unmanned aerial vehicle images for estimating forest canopy fuels in a ponderosa pine standRemote Sens.20181012662018RemS...10.1266S10.3390/rs10081266 Netherer, S., Panassiti, B., Pennerstorfer, J. & Matthews, B. Acute drought Is an important driver of bark beetle infestation in Austrian Norway spruce stands. Front. For. Glob. Change2, 39 (2019). ZhangWAn easy-to-use airborne LiDAR data filtering method based on cloth simulationRemote Sens.201685012016RemS....8..501Z10.3390/rs8060501 FettigCJMortensonLABulaonBMFoulkPBTree mortality following drought in the central and southern Sierra Nevada, California, U.SFor. Ecol. Manag.201943216417810.1016/j.foreco.2018.09.006 Raffa, K. F., Grégoire, J.-C. & Staffan Lindgren, B. Natural History and Ecology of Bark Beetles 1–40 (Elsevier, 2015). KaiserKEMcGlynnBLEmanuelREEcohydrology of an outbreak: mountain pine beetle impacts trees in drier landscape positions firstEcohydrology2013644445410.1002/eco.1286 Shiklomanov, A. N. et al. Enhancing global change experiments through integration of remote-sensing techniques. Front. Ecol. Environ. 17, 215–224 (2019). JamesMRRobsonSMitigating systematic error in topographic models derived from UAV and ground-based image networksEarth Surf. Process. Landf.201439141314202014ESPL...39.1413J10.1002/esp.3609 VegaCPTrees: a point-based approach to forest tree extraction from LiDAR dataInt. J. Appl. Earth Observ. Geoinf.201433981082014IJAEO..33...98V Thistle, H. W. et al. Surrogate pheromone plumes in three forest trunk spaces: composite statistics and case studies. For. Sci.50, 610–625 (2004). GriffinDAnchukaitisKJHow unusual is the 2012-2014 California drought?Geophys. Res. Lett.201441901790232014GeoRL..41.9017G10.1002/2014GL062433 RestainoCForest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USAEcol. Appl.20190e0190210.1002/eap.1902 GabryJSimpsonDVehtariABetancourtMGelmanAVisualization in Bayesian workflowJ. R. Stat. Soc. Ser. A2019182389402390266510.1111/rssa.12378 R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). KleinWHParkerDLJensenCEAttack, emergence, and stand depletion trends of the mountain pine beetle in a lodgepole pine stand during an outbreakEnviron. Entomol.1978773273710.1093/ee/7.5.732 SeyboldSJManagement of western North American bark beetles with semiochemicalsAnnu. Rev. Entomol.2018634074321:CAS:528:DC%2BC2sXhs12rtbrL2905897710.1146/annurev-ento-020117-043339 Fettig, C. J. & Hilszczański, J. Bark Beetles 555–584. https://doi.org/10.1016/B978-0-12-417156-5.00014-9 (Elsevier, 2015). StephensonNLDasAJHeight-related changes in forest composition explain increasing tree mortality with height during an extreme droughtNat. Commun.2020112020NatCo..11.3402S1:CAS:528:DC%2BB3cXhtlKgur3P32636488734176410.1038/s41467-020-17213-5 WeinsteinBGMarconiSBohlmanSZareAWhiteEIndividual tree-crown detection in RGB imagery using semi-supervised deep learning neural networksRemote Sens.20191113092019RemS...11.1309W10.3390/rs11111309 dos Santos, A. A. et al. Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors (Basel)19, 3595 (2019). Fettig, C. J. in Insects and Diseases of Mediterranean Forest Systems (eds Lieutier, F. & Paine, T. D.) 499–528 (Springer International Publishing, 2016). BedardWDWestern pine beetle: field response to its sex pheromone and a synergistic host terpene, myrceneScience1969164128412851969Sci...164.1284B1:CAS:528:DyaF1MXksVOjtbg%3D1777256910.1126/science.164.3885.1284 LarsonAJChurchillDTree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatmentsFor. Ecol. Manag.2012267749210.1016/j.foreco.2011.11.038 ChubatyAMRoitbergBDLiCA dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae HopkinsEcol. Model.20092201241125010.1016/j.ecolmodel.2009.01.039 HartSJVeblenTTSchneiderDMolotchNPSummer and winter drought drive the initiation and spread of spruce beetle outbreakEcology201798269827072875262310.1002/ecy.1963 Hunziker, P. Velox: Fast Raster Manipulation and Extraction (2017). MitchellRGPreislerHKAnalysis of spatial patterns of lodgepole pine attacked by outbreak populations of the mountain pine beetleFor. Sci.19913713901408 GrayPCA convolutional neural network for detecting sea turtles in drone imageryMethods Ecol. Evol.20191034535510.1111/2041-210X.13132 Rouse, W., Haas, R. H., Deering, W. & Schell, J. A. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (Remote Sensing Center, Texas A&M Univ., 1973). WyngaardJEmergent challenges for science sUAS data management: fairness through community engagement and best practices developmentRemote Sens.20191117972019RemS...11.1797W10.3390/rs11151797 Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Drone-derived data supporting “Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality”. https://doi.org/10.17605/OSF.IO/3CWF9 (2020). Berryman, A. A. in Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology 264–314 (University of Texas Press, 1982). HayesCJFettigCJMerrillLDEvaluation of multiple funnel traps and stand characteristics for estimating western pine beetle-caused tree mortalityJ. Econ. Entomol.2009102217021822006984610.1603/029.102.0621 WaringRHPitmanGBModifying lodgepole pine stands to change susceptibility to mountain pine beetle attackEcology19856688989710.2307/1940551 FlintLEFlintALThorneJHBoyntonRFine-scale hydrologic modeling for regional landscape applications: The California Basin Characterization Model development and performanceEcol. Process.2013210.1186/2192-1709-2-25 DronesMadeEasy. Map Pilot for DJI on iOS. App Storehttps://itunes.apple.com/us/app/map-pilot-for-dji/id1014765000?mt=8 (2018). FettigCJEfficacy of ‘Verbenone Plus’ for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and CaliforniaJ. Econ. Entomol.2012105166816802315616310.1603/EC12184 BürknerP-Cbrms: an R package for bayesian multilevel models using StanJ. Stat. Softw.20178012810.18637/jss.v080.i01 Fettig, C. J. in Managing Sierra Nevada Forests. PSW-GTR-237 Ch. 2 (USDA Forest Service, 2012). JeronimoSMAForest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra NevadaFor. Ecol. Manag.2019437708610.1016/j.foreco.2019.01.033 ByersJAWoodDLInterspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the fieldJ. Chem. Ecol.198061491641:CAS:528:DyaL3cXitFSitrk%3D10.1007/BF00987534 BrodrickPGAsnerGPRemotely sensed predictors of conifer tree mortality during severe droughtEnviron. Res. Lett.2017121150132017ERL....12k5013B10.1088/1748-9326/aa8f55 WallinKFRaffaKFFeedback between individual host selection behavior and population dynamics in an eruptive herbivoreEcol. Monogr.20047410111610.1890/02-4004 DJI. Zenmuse X3 - Creativity Unleashed. DJI Officialhttps://www.dji.com/zenmuse-x3/info (2015). RaffaKFBerrymanAAThe role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae)Ecol. Monogr.198353274910.2307/1942586 JactelHBrockerhoffEGTree diversity reduces herbivory by forest insectsEcol. Lett.2007108358481766371710.1111/j.1461-0248.2007.01073.x DeRoseRJLongJNDrought-driven disturbance history characterizes a southern Rocky Mountain subalpine forestCan. J. Res.2012421649166010.1139/x2012-102 StephensonNActual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scalesJ. Biogeogr.19982585587010.1046/j.1365-2699.1998.00233.x McDowellNMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?N. Phytol.200817871973910.1111/j.1469-8137.2008.02436.x MaSConcilioAOakleyBNorthMChenJSpatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatmentsFor. Ecol. Manag.201025990491510.1016/j.foreco.2009.11.030 WangYIs field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forestISPRS J. Photogramm. Remote Sens.20191471321452019JPRS..147..132W10.1016/j.isprsjprs.2018.11.008 ShepherdWPHuberDPWSeyboldSJFettigCJAntennal responses of the western pine beetle, Dendroctonus brevicomis (Coleoptera: Curculionidae), to stem volatiles of its primary host, Pinus ponderosa, and nine sympatric nonhost angiosperms and conifersChemoecology2007172092211:CAS:528:DC%2BD1cXhtVOrtbc%3D10.1007/s00049-007-0378-8 BaldwinBGSpecies richness and endemism in the native flora of CaliforniaAm. J. Bot.20171044875012834162810.3732/ajb.1600326 BrooksSPGelmanAGeneral methods for monitoring convergence of iterative simulationsJ. Comput. Graph. Stat.199874341665662 SambarajuKRCarrollALAukemaBHMultiyear weather anomalies associated with range shifts by the mountain pine beetle preceding large epidemicsFor. Ecol AM Chubaty (20455_CR34) 2009; 220 KF Raffa (20455_CR19) 1983; 53 20455_CR79 Y Wang (20455_CR102) 2019; 147 20455_CR75 20455_CR115 20455_CR114 20455_CR117 20455_CR116 RJ DeRose (20455_CR25) 2012; 42 WD Bedard (20455_CR76) 1969; 164 ML Evenden (20455_CR45) 2014; 43 CJ Fettig (20455_CR57) 2008; 23 BJ Bentz (20455_CR24) 2010; 60 P Shin (20455_CR93) 2018; 10 J Gabry (20455_CR113) 2019; 182 20455_CR87 HL Person (20455_CR68) 1928; 26 20455_CR85 20455_CR84 20455_CR83 20455_CR81 F Meyer (20455_CR99) 1990; 1 CJ Fettig (20455_CR58) 2012; 105 20455_CR80 C Senf (20455_CR16) 2017; 32 KR Sambaraju (20455_CR30) 2019; 438 GA Fricker (20455_CR63) 2019; 434 CJ Fettig (20455_CR14) 2019; 432 KF Wallin (20455_CR21) 2004; 74 SM Robeson (20455_CR3) 2015; 42 NC Coops (20455_CR89) 2006; 103 JGPW Clevers (20455_CR90) 2013; 23 M Graf (20455_CR35) 2012; 144 HL Person (20455_CR69) 1931; 29 20455_CR59 CJ Fettig (20455_CR56) 2005; 98 PC Gray (20455_CR73) 2019; 10 KF Raffa (20455_CR46) 1982; 114 20455_CR53 20455_CR51 KF Raffa (20455_CR12) 2008; 58 NL Stephenson (20455_CR15) 2019; 75 MK Jakubowski (20455_CR92) 2013; 5 MD Hoffman (20455_CR110) 2014; 15 20455_CR1 20455_CR6 AJ Larson (20455_CR49) 2012; 267 KE Kaiser (20455_CR28) 2013; 6 C Restaino (20455_CR9) 2019; 0 JA Byers (20455_CR77) 1980; 6 20455_CR61 PG Brodrick (20455_CR5) 2017; 12 RH Waring (20455_CR8) 1985; 66 P Chesson (20455_CR62) 2000; 31 VR Kane (20455_CR48) 2014; 151 CI Millar (20455_CR74) 2007; 17 AEL Stovall (20455_CR67) 2020; 11 P-C Bürkner (20455_CR109) 2017; 80 JL Morris (20455_CR50) 2017; 54 G Pau (20455_CR98) 2010; 26 20455_CR36 20455_CR33 20455_CR32 GP Asner (20455_CR4) 2016; 113 CJ Hayes (20455_CR31) 2009; 102 M Kuhn (20455_CR101) 2008; 28 VR Franceschi (20455_CR22) 2005; 167 RG Mitchell (20455_CR38) 1991; 37 M Faccoli (20455_CR41) 2014; 5 TE Kolb (20455_CR7) 2016; 380 JA Logan (20455_CR20) 1998; 53 C Vega (20455_CR96) 2014; 33 N Stephenson (20455_CR105) 1998; 25 WH Klein (20455_CR37) 1978; 7 20455_CR42 HK Preisler (20455_CR39) 1993; 42 SMA Jeronimo (20455_CR52) 2019; 437 BG Weinstein (20455_CR103) 2019; 11 N McDowell (20455_CR54) 2008; 178 CI Millar (20455_CR107) 2012; 42 20455_CR18 SJ Seybold (20455_CR55) 2018; 63 MR James (20455_CR72) 2014; 39 C Fettig (20455_CR60) 2014; 5 20455_CR10 LS Pile (20455_CR70) 2019; 10 WP Shepherd (20455_CR78) 2007; 17 20455_CR97 R Seidl (20455_CR17) 2016; 53 20455_CR94 DJN Young (20455_CR11) 2017; 20 NL Stephenson (20455_CR66) 2020; 11 SP Brooks (20455_CR112) 1998; 7 A Gitelson (20455_CR88) 1994; 143 D Griffin (20455_CR2) 2014; 41 L Marini (20455_CR29) 2017; 40 20455_CR27 WRL Anderegg (20455_CR47) 2015; 208 B Carpenter (20455_CR111) 2017; 76 HA Moeck (20455_CR44) 1981; 7 S Ma (20455_CR64) 2010; 259 W Zhang (20455_CR86) 2016; 8 BG Baldwin (20455_CR108) 2017; 104 20455_CR23 J Wyngaard (20455_CR82) 2019; 11 SJ Hart (20455_CR26) 2017; 98 20455_CR100 W Li (20455_CR91) 2012; 78 20455_CR104 CK Boone (20455_CR13) 2011; 41 AEL Stovall (20455_CR65) 2019; 10 J Frey (20455_CR71) 2018; 10 CJ Fettig (20455_CR43) 2007; 238 L Eysn (20455_CR95) 2015; 6 LE Flint (20455_CR106) 2013; 2 H Jactel (20455_CR40) 2007; 10 |
| References_xml | – reference: FrickerGAMore than climate? Predictors of tree canopy height vary with scale in complex terrain, Sierra Nevada, CA (USA)For. Ecol. Manag.201943414215310.1016/j.foreco.2018.12.006 – reference: MaSConcilioAOakleyBNorthMChenJSpatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatmentsFor. Ecol. Manag.201025990491510.1016/j.foreco.2009.11.030 – reference: RaffaKFBerrymanAAThe role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae)Ecol. Monogr.198353274910.2307/1942586 – reference: SambarajuKRCarrollALAukemaBHMultiyear weather anomalies associated with range shifts by the mountain pine beetle preceding large epidemicsFor. Ecol. Manag.2019438869510.1016/j.foreco.2019.02.011 – reference: MoeckHAWoodDLLindahlKQHost selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomisJ. Chem. Ecol.1981749831:STN:280:DC%2BC2czltVSnuw%3D%3D2442042710.1007/BF00988635 – reference: GitelsonAMerzlyakMNSpectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimationJ. Plant Physiol.19941432862921:CAS:528:DyaK2cXisVSgs7g%3D10.1016/S0176-1617(11)81633-0 – reference: Berryman, A. A. in Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology 264–314 (University of Texas Press, 1982). – reference: JeronimoSMAForest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra NevadaFor. Ecol. Manag.2019437708610.1016/j.foreco.2019.01.033 – reference: Roussel, J.-R. lidRplugins: Extra Functions and Algorithms for lidR Package (2019). – reference: HartSJVeblenTTSchneiderDMolotchNPSummer and winter drought drive the initiation and spread of spruce beetle outbreakEcology201798269827072875262310.1002/ecy.1963 – reference: KaneVRAssessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National ParkRemote Sens. Environ.2014151891012014RSEnv.151...89K10.1016/j.rse.2013.07.041 – reference: Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys.45, RG2004 (2007). – reference: Micasense. MicaSense. https://support.micasense.com/hc/en-us/articles/215261448-RedEdge-User-Manual-PDF-Download- (2015). – reference: WaringRHPitmanGBModifying lodgepole pine stands to change susceptibility to mountain pine beetle attackEcology19856688989710.2307/1940551 – reference: StephensonNLDasAJHeight-related changes in forest composition explain increasing tree mortality with height during an extreme droughtNat. Commun.2020112020NatCo..11.3402S1:CAS:528:DC%2BB3cXhtlKgur3P32636488734176410.1038/s41467-020-17213-5 – reference: FettigCJMcKelveySRHuberDPWNonhost angiosperm volatiles and verbenone disrupt response of western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae), to attractant-baited trapsJ. Econ. Entomol.200598204120481:CAS:528:DC%2BD2sXpslyit7k%3D1653913110.1093/jee/98.6.2041 – reference: Miller, J. M. & Keen, F. P. Biology and Control of the Western Pine Beetle: A Summary of The First Fifty Years of Research (US Department of Agriculture, 1960). – reference: BrooksSPGelmanAGeneral methods for monitoring convergence of iterative simulationsJ. Comput. Graph. Stat.199874341665662 – reference: StephensonNActual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scalesJ. Biogeogr.19982585587010.1046/j.1365-2699.1998.00233.x – reference: Fettig, C. J. in Managing Sierra Nevada Forests. PSW-GTR-237 Ch. 2 (USDA Forest Service, 2012). – reference: Vose, J. M. et al. in Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment Vol II (eds Reidmiller, D. R., et al.) 232–267. https://nca2018.globalchange.gov/chapter/6/https://doi.org/10.7930/NCA4.2018.CH6 (2018). – reference: JakubowskiMKLiWGuoQKellyMDelineating individual trees from LiDAR data: a comparison of vector- and raster-based segmentation approachesRemote Sens.20135416341862013RemS....5.4163J10.3390/rs5094163 – reference: dos Santos, A. A. et al. Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors (Basel)19, 3595 (2019). – reference: USDAFS. Press Release: Survey Finds 18 Million Trees Died in California in 2018. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/FSEPRD609321.pdf (USDAFS, 2019). – reference: YoungDJNLong-term climate and competition explain forest mortality patterns under extreme droughtEcol. Lett.20172078862800043210.1111/ele.12711 – reference: FaccoliMBernardinelliIComposition and elevation of spruce forests affect susceptibility to bark beetle attacks: implications for forest managementForests201458810210.3390/f5010088 – reference: PileLSMeyerMDRojasRRoeOSmithMTDrought impacts and compounding mortality on forest trees in the southern Sierra NevadaForests20191023710.3390/f10030237 – reference: Fettig, C. J. & Hilszczański, J. Bark Beetles 555–584. https://doi.org/10.1016/B978-0-12-417156-5.00014-9 (Elsevier, 2015). – reference: GriffinDAnchukaitisKJHow unusual is the 2012-2014 California drought?Geophys. Res. Lett.201441901790232014GeoRL..41.9017G10.1002/2014GL062433 – reference: FettigCJDabneyCPMcKelveySRHuberDPWNonhost angiosperm volatiles and verbenone protect individual ponderosa pines from attack by western pine beetle and red turpentine beetle (Coleoptera: Curculionidae, Scolytinae)West J. Appl.2008234045 – reference: DJI. DJI - The World Leader in Camera Drones/Quadcopters for Aerial Photography. DJI Officialhttps://www.dji.com/matrice100/info (2015). – reference: WangYIs field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forestISPRS J. Photogramm. Remote Sens.20191471321452019JPRS..147..132W10.1016/j.isprsjprs.2018.11.008 – reference: PersonHLTheory in explanation of the selection of certain trees by the western pine beetleJ. For.1931296966991:CAS:528:DyaA38XktVam – reference: WyngaardJEmergent challenges for science sUAS data management: fairness through community engagement and best practices developmentRemote Sens.20191117972019RemS...11.1797W10.3390/rs11151797 – reference: Hijmans, R. J. et al. Raster: Geographic Data Analysis and Modeling (2019). – reference: BentzBJClimate change and bark beetles of the western United States and Canada: direct and indirect effectsBioScience20106060261310.1525/bio.2010.60.8.6 – reference: CarpenterBStan: a probabilistic programming languageJ. Stat. Softw.20177613210.18637/jss.v076.i01 – reference: LarsonAJChurchillDTree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatmentsFor. Ecol. Manag.2012267749210.1016/j.foreco.2011.11.038 – reference: USDAFS. Press Release: Record 129 million dead trees in California. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd566303.pdf (USDAFS, 2017). – reference: Plowright, A. ForestTools: Analyzing Remotely Sensed Forest Data (2018). – reference: Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Local-structure-wpb-severity. https://doi.org/10.17605/OSF.IO/WPK5Z (2019). – reference: Fettig, C. J. in Insects and Diseases of Mediterranean Forest Systems (eds Lieutier, F. & Paine, T. D.) 499–528 (Springer International Publishing, 2016). – reference: AsnerGPProgressive forest canopy water loss during the 2012-2015 California droughtProc. Natl Acad. Sci. USA2016113E249E2551:CAS:528:DC%2BC2MXitV2isLzI2671202010.1073/pnas.1523397113 – reference: Hunziker, P. Velox: Fast Raster Manipulation and Extraction (2017). – reference: EysnLA benchmark of LiDAR-based single tree detection methods using heterogeneous forest data from the alpine spaceForests201561721174710.3390/f6051721 – reference: DeRoseRJLongJNDrought-driven disturbance history characterizes a southern Rocky Mountain subalpine forestCan. J. Res.2012421649166010.1139/x2012-102 – reference: StovallAELShugartHHYangXReply to ‘Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought’Nat. Commun.2020112020NatCo..11.3401S1:CAS:528:DC%2BB3cXhtlKgurzN32636374734079010.1038/s41467-020-17214-4 – reference: RestainoCForest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USAEcol. Appl.20190e0190210.1002/eap.1902 – reference: KolbTEObserved and anticipated impacts of drought on forest insects and diseases in the United StatesFor. Ecol. Manag.201638032133410.1016/j.foreco.2016.04.051 – reference: AndereggWRLTree mortality from drought, insects, and their interactions in a changing climateN. Phytol.201520867468310.1111/nph.13477 – reference: RobesonSMRevisiting the recent California drought as an extreme valueGeophys. Res. Lett.201542677167792015GeoRL..42.6771R10.1002/2015GL064593 – reference: MorrisJLManaging bark beetle impacts on ecosystems and society: Priority questions to motivate future researchJ. Appl. Ecol.20175475076010.1111/1365-2664.12782 – reference: KaiserKEMcGlynnBLEmanuelREEcohydrology of an outbreak: mountain pine beetle impacts trees in drier landscape positions firstEcohydrology2013644445410.1002/eco.1286 – reference: SenfCCampbellEMPflugmacherDWulderMAHostertPA multi-scale analysis of western spruce budworm outbreak dynamicsLandsc. Ecol.20173250151410.1007/s10980-016-0460-0 – reference: ShepherdWPHuberDPWSeyboldSJFettigCJAntennal responses of the western pine beetle, Dendroctonus brevicomis (Coleoptera: Curculionidae), to stem volatiles of its primary host, Pinus ponderosa, and nine sympatric nonhost angiosperms and conifersChemoecology2007172092211:CAS:528:DC%2BD1cXhtVOrtbc%3D10.1007/s00049-007-0378-8 – reference: CleversJGPWGitelsonAARemote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3Int. J. Appl. Earth Observ. Geoinf.2013233443512013IJAEO..23..344C – reference: FettigCJThe effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United StatesFor. Ecol. Manag.2007238245310.1016/j.foreco.2006.10.011 – reference: Rouse, W., Haas, R. H., Deering, W. & Schell, J. A. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (Remote Sensing Center, Texas A&M Univ., 1973). – reference: Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Drone-derived data supporting “Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality”. https://doi.org/10.17605/OSF.IO/3CWF9 (2020). – reference: WallinKFRaffaKFFeedback between individual host selection behavior and population dynamics in an eruptive herbivoreEcol. Monogr.20047410111610.1890/02-4004 – reference: FranceschiVRKrokenePChristiansenEKreklingTAnatomical and chemical defenses of conifer bark against bark beetles and other pestsN. Phytol.20051673533761:CAS:528:DC%2BD2MXpt1ersL8%3D10.1111/j.1469-8137.2005.01436.x – reference: BedardWDWestern pine beetle: field response to its sex pheromone and a synergistic host terpene, myrceneScience1969164128412851969Sci...164.1284B1:CAS:528:DyaF1MXksVOjtbg%3D1777256910.1126/science.164.3885.1284 – reference: StovallAELShugartHYangXTree height explains mortality risk during an intense droughtNat. Commun.2019101610.1038/s41467-019-12380-61:CAS:528:DC%2BC1MXhvVOltrfP – reference: Roussel, J.-R., Auty, D., De Boissieu, F. & Meador, A. S. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications (2019). – reference: BooneCKAukemaBHBohlmannJCarrollALRaffaKFEfficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive speciesCan. J. Res.2011411174118810.1139/x11-041 – reference: Oliver, W. W. Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles? In Forest Health Through Silviculture: Proceedings of the 1995 National Silviculture Workshop 6 (1995). – reference: VegaCPTrees: a point-based approach to forest tree extraction from LiDAR dataInt. J. Appl. Earth Observ. Geoinf.201433981082014IJAEO..33...98V – reference: KuhnMBuilding predictive models in R using the caret packageJ. Stat. Softw.20082812610.18637/jss.v028.i05 – reference: WeinsteinBGMarconiSBohlmanSZareAWhiteEIndividual tree-crown detection in RGB imagery using semi-supervised deep learning neural networksRemote Sens.20191113092019RemS...11.1309W10.3390/rs11111309 – reference: McDowellNMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?N. Phytol.200817871973910.1111/j.1469-8137.2008.02436.x – reference: MeyerFBeucherSMorphological segmentationJ. Vis. Commun. Image Represent.19901214610.1016/1047-3203(90)90014-M – reference: Baldwin, B. G. et al. Master spatial file for native California vascular plants used by Baldwin et al. (2017 Amer. J. Bot.), Dryad, Dataset, 2017. https://doi.org/10.6078/D16K5W. – reference: Netherer, S., Panassiti, B., Pennerstorfer, J. & Matthews, B. Acute drought Is an important driver of bark beetle infestation in Austrian Norway spruce stands. Front. For. Glob. Change2, 39 (2019). – reference: GrafMReidMLAukemaBHLindgrenBSAssociation of tree diameter with body size and lipid content of mountain pine beetlesCan. Entomol.201214446747710.4039/tce.2012.38 – reference: ChubatyAMRoitbergBDLiCA dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae HopkinsEcol. Model.20092201241125010.1016/j.ecolmodel.2009.01.039 – reference: FettigCJMortensonLABulaonBMFoulkPBTree mortality following drought in the central and southern Sierra Nevada, California, U.SFor. Ecol. Manag.201943216417810.1016/j.foreco.2018.09.006 – reference: RaffaKFBerrymanAAAccumulation of monoterpenes and associated volatiles following inoculation of grand fir with a fungus transmitted by the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae)Can. Entomol.19821147978101:CAS:528:DyaL38XlsF2ks7g%3D10.4039/Ent114797-9 – reference: JamesMRRobsonSMitigating systematic error in topographic models derived from UAV and ground-based image networksEarth Surf. Process. Landf.201439141314202014ESPL...39.1413J10.1002/esp.3609 – reference: FettigCMcKelveySResiliency of an interior ponderosa pine forest to bark beetle infestations following fuel-reduction and forest-restoration treatmentsForests2014515317610.3390/f5010153 – reference: MillarCIStephensonNLStephensSLClimate change and forests of the future: Managing in the face of uncertaintyEcol. Appl.200717214521511821395810.1890/06-1715.1 – reference: FettigCJEfficacy of ‘Verbenone Plus’ for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and CaliforniaJ. Econ. Entomol.2012105166816802315616310.1603/EC12184 – reference: DJI. Zenmuse X3 - Creativity Unleashed. DJI Officialhttps://www.dji.com/zenmuse-x3/info (2015). – reference: GrayPCA convolutional neural network for detecting sea turtles in drone imageryMethods Ecol. Evol.20191034535510.1111/2041-210X.13132 – reference: GabryJSimpsonDVehtariABetancourtMGelmanAVisualization in Bayesian workflowJ. R. Stat. Soc. Ser. A2019182389402390266510.1111/rssa.12378 – reference: FlintLEFlintALThorneJHBoyntonRFine-scale hydrologic modeling for regional landscape applications: The California Basin Characterization Model development and performanceEcol. Process.2013210.1186/2192-1709-2-25 – reference: CoopsNCJohnsonMWulderMAWhiteJCAssessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestationRemote Sens. Environ.200610367802006RSEnv.103...67C10.1016/j.rse.2006.03.012 – reference: BürknerP-Cbrms: an R package for bayesian multilevel models using StanJ. Stat. Softw.20178012810.18637/jss.v080.i01 – reference: ShinPSankeyTMooreMThodeAEvaluating unmanned aerial vehicle images for estimating forest canopy fuels in a ponderosa pine standRemote Sens.20181012662018RemS...10.1266S10.3390/rs10081266 – reference: KleinWHParkerDLJensenCEAttack, emergence, and stand depletion trends of the mountain pine beetle in a lodgepole pine stand during an outbreakEnviron. Entomol.1978773273710.1093/ee/7.5.732 – reference: BaldwinBGSpecies richness and endemism in the native flora of CaliforniaAm. J. Bot.20171044875012834162810.3732/ajb.1600326 – reference: MariniLClimate drivers of bark beetle outbreak dynamics in Norway spruce forestsEcography2017401426143510.1111/ecog.02769 – reference: DronesMadeEasy. Map Pilot for DJI on iOS. App Storehttps://itunes.apple.com/us/app/map-pilot-for-dji/id1014765000?mt=8 (2018). – reference: LiWGuoQJakubowskiMKKellyMA new method for segmenting individual trees from the LiDAR point cloudPhotogramm. Eng. Remote Sens.201278758410.14358/PERS.78.1.75 – reference: LoganJAWhitePBentzBJPowellJAModel analysis of spatial patterns in mountain pine beetle outbreaksTheor. Popul. Biol.1998532362551:STN:280:DC%2BC2sjnvFeluw%3D%3D96820260941.9203010.1006/tpbi.1997.1350 – reference: MitchellRGPreislerHKAnalysis of spatial patterns of lodgepole pine attacked by outbreak populations of the mountain pine beetleFor. Sci.19913713901408 – reference: ZhangWAn easy-to-use airborne LiDAR data filtering method based on cloth simulationRemote Sens.201685012016RemS....8..501Z10.3390/rs8060501 – reference: JactelHBrockerhoffEGTree diversity reduces herbivory by forest insectsEcol. Lett.2007108358481766371710.1111/j.1461-0248.2007.01073.x – reference: Raffa, K. F., Grégoire, J.-C. & Staffan Lindgren, B. Natural History and Ecology of Bark Beetles 1–40 (Elsevier, 2015). – reference: SeyboldSJManagement of western North American bark beetles with semiochemicalsAnnu. Rev. Entomol.2018634074321:CAS:528:DC%2BC2sXhs12rtbrL2905897710.1146/annurev-ento-020117-043339 – reference: RaffaKFCross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptionsBioScience20085850151710.1641/B580607 – reference: HoffmanMDGelmanAThe no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte CarloJ. Mach. Learn. Res.2014153132147791319.60150 – reference: Geiszler, D. R. & Gara, R. I. in Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests: Symposium Proceedings (eds Berryman, A. A., Amman, G. D. & Stark, R. W.) (1978). – reference: EvendenMLWhitehouseCMSykesJFactors influencing flight capacity of the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae)Environ. Entomol.2014431871961:STN:280:DC%2BC2c3pvFGhtg%3D%3D2436793010.1603/EN13244 – reference: SeidlRSmall beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetleJ. Appl Ecol.20165353054010.1111/1365-2664.12540 – reference: ByersJAWoodDLInterspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the fieldJ. Chem. Ecol.198061491641:CAS:528:DyaL3cXitFSitrk%3D10.1007/BF00987534 – reference: StephensonNLDasAJAmperseeNJBulaonBMWhich trees die during drought? The key role of insect host-tree selectionJ. Ecol.2019752383240110.1111/1365-2745.13176 – reference: ChessonPMechanisms of maintenance of species diversityAnnu. Rev. Ecol. Syst.20003134336610.1146/annurev.ecolsys.31.1.343 – reference: FreyJKovachKStemmlerSKochBUAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipelineRemote Sens.2018109122018RemS...10..912F10.3390/rs10060912 – reference: MillarCIForest mortality in high-elevation whitebark pine (Pinus albicaulis) forests of eastern California, USA: influence of environmental context, bark beetles, climatic water deficit, and warmingCan. J. For. Res.20124274976510.1139/x2012-031 – reference: Thistle, H. W. et al. Surrogate pheromone plumes in three forest trunk spaces: composite statistics and case studies. For. Sci.50, 610–625 (2004). – reference: PreislerHKModelling spatial patterns of trees attacked by bark-beetlesAppl. Stat.1993425010825.6288810.2307/2986328 – reference: Shiklomanov, A. N. et al. Enhancing global change experiments through integration of remote-sensing techniques. Front. Ecol. Environ. 17, 215–224 (2019). – reference: PersonHLTree selection by the western pine beetleJ. For.192826564578 – reference: PauGFuchsFSklyarOBoutrosMHuberWEBImage: An R package for image processing with applications to cellular phenotypesBioinformatics2010269799811:CAS:528:DC%2BC3cXjvFykur0%3D20338898284498810.1093/bioinformatics/btq046 – reference: BrodrickPGAsnerGPRemotely sensed predictors of conifer tree mortality during severe droughtEnviron. Res. Lett.2017121150132017ERL....12k5013B10.1088/1748-9326/aa8f55 – reference: HayesCJFettigCJMerrillLDEvaluation of multiple funnel traps and stand characteristics for estimating western pine beetle-caused tree mortalityJ. Econ. Entomol.2009102217021822006984610.1603/029.102.0621 – reference: R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). – volume: 60 start-page: 602 year: 2010 ident: 20455_CR24 publication-title: BioScience doi: 10.1525/bio.2010.60.8.6 – ident: 20455_CR59 – volume: 33 start-page: 98 year: 2014 ident: 20455_CR96 publication-title: Int. J. Appl. Earth Observ. Geoinf. – ident: 20455_CR36 – volume: 63 start-page: 407 year: 2018 ident: 20455_CR55 publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev-ento-020117-043339 – ident: 20455_CR114 doi: 10.17605/OSF.IO/3CWF9 – volume: 12 start-page: 115013 year: 2017 ident: 20455_CR5 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa8f55 – volume: 98 start-page: 2698 year: 2017 ident: 20455_CR26 publication-title: Ecology doi: 10.1002/ecy.1963 – ident: 20455_CR83 – volume: 0 start-page: e01902 year: 2019 ident: 20455_CR9 publication-title: Ecol. Appl. doi: 10.1002/eap.1902 – volume: 114 start-page: 797 year: 1982 ident: 20455_CR46 publication-title: Can. Entomol. doi: 10.4039/Ent114797-9 – volume: 58 start-page: 501 year: 2008 ident: 20455_CR12 publication-title: BioScience doi: 10.1641/B580607 – ident: 20455_CR79 – volume: 54 start-page: 750 year: 2017 ident: 20455_CR50 publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.12782 – ident: 20455_CR97 doi: 10.32614/CRAN.package.ForestTools – volume: 31 start-page: 343 year: 2000 ident: 20455_CR62 publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.ecolsys.31.1.343 – volume: 143 start-page: 286 year: 1994 ident: 20455_CR88 publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)81633-0 – ident: 20455_CR33 – volume: 28 start-page: 1 year: 2008 ident: 20455_CR101 publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – volume: 178 start-page: 719 year: 2008 ident: 20455_CR54 publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2008.02436.x – ident: 20455_CR1 – volume: 238 start-page: 24 year: 2007 ident: 20455_CR43 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2006.10.011 – volume: 10 start-page: 1 year: 2019 ident: 20455_CR65 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12380-6 – volume: 74 start-page: 101 year: 2004 ident: 20455_CR21 publication-title: Ecol. Monogr. doi: 10.1890/02-4004 – volume: 267 start-page: 74 year: 2012 ident: 20455_CR49 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2011.11.038 – volume: 2 year: 2013 ident: 20455_CR106 publication-title: Ecol. Process. doi: 10.1186/2192-1709-2-25 – volume: 98 start-page: 2041 year: 2005 ident: 20455_CR56 publication-title: J. Econ. Entomol. doi: 10.1093/jee/98.6.2041 – volume: 6 start-page: 444 year: 2013 ident: 20455_CR28 publication-title: Ecohydrology doi: 10.1002/eco.1286 – volume: 15 start-page: 31 year: 2014 ident: 20455_CR110 publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 1309 year: 2019 ident: 20455_CR103 publication-title: Remote Sens. doi: 10.3390/rs11111309 – volume: 144 start-page: 467 year: 2012 ident: 20455_CR35 publication-title: Can. Entomol. doi: 10.4039/tce.2012.38 – volume: 76 start-page: 1 year: 2017 ident: 20455_CR111 publication-title: J. Stat. Softw. doi: 10.18637/jss.v076.i01 – volume: 80 start-page: 1 year: 2017 ident: 20455_CR109 publication-title: J. Stat. Softw. doi: 10.18637/jss.v080.i01 – ident: 20455_CR85 doi: 10.1029/2005RG000183 – volume: 32 start-page: 501 year: 2017 ident: 20455_CR16 publication-title: Landsc. Ecol. doi: 10.1007/s10980-016-0460-0 – ident: 20455_CR51 doi: 10.1002/fee.2031 – volume: 75 start-page: 2383 year: 2019 ident: 20455_CR15 publication-title: J. Ecol. doi: 10.1111/1365-2745.13176 – volume: 10 start-page: 345 year: 2019 ident: 20455_CR73 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13132 – volume: 41 start-page: 1174 year: 2011 ident: 20455_CR13 publication-title: Can. J. Res. doi: 10.1139/x11-041 – volume: 220 start-page: 1241 year: 2009 ident: 20455_CR34 publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.01.039 – volume: 164 start-page: 1284 year: 1969 ident: 20455_CR76 publication-title: Science doi: 10.1126/science.164.3885.1284 – volume: 105 start-page: 1668 year: 2012 ident: 20455_CR58 publication-title: J. Econ. Entomol. doi: 10.1603/EC12184 – volume: 37 start-page: 1390 year: 1991 ident: 20455_CR38 publication-title: For. Sci. – volume: 23 start-page: 344 year: 2013 ident: 20455_CR90 publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 20 start-page: 78 year: 2017 ident: 20455_CR11 publication-title: Ecol. Lett. doi: 10.1111/ele.12711 – volume: 42 start-page: 1649 year: 2012 ident: 20455_CR25 publication-title: Can. J. Res. doi: 10.1139/x2012-102 – volume: 147 start-page: 132 year: 2019 ident: 20455_CR102 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – ident: 20455_CR10 – volume: 17 start-page: 2145 year: 2007 ident: 20455_CR74 publication-title: Ecol. Appl. doi: 10.1890/06-1715.1 – ident: 20455_CR94 – ident: 20455_CR23 doi: 10.1016/B978-0-12-417156-5.00001-0 – volume: 432 start-page: 164 year: 2019 ident: 20455_CR14 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.09.006 – volume: 7 start-page: 732 year: 1978 ident: 20455_CR37 publication-title: Environ. Entomol. doi: 10.1093/ee/7.5.732 – volume: 42 start-page: 6771 year: 2015 ident: 20455_CR3 publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL064593 – volume: 151 start-page: 89 year: 2014 ident: 20455_CR48 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.041 – volume: 17 start-page: 209 year: 2007 ident: 20455_CR78 publication-title: Chemoecology doi: 10.1007/s00049-007-0378-8 – volume: 11 year: 2020 ident: 20455_CR66 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17213-5 – ident: 20455_CR80 – volume: 10 start-page: 835 year: 2007 ident: 20455_CR40 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01073.x – volume: 10 start-page: 912 year: 2018 ident: 20455_CR71 publication-title: Remote Sens. doi: 10.3390/rs10060912 – volume: 25 start-page: 855 year: 1998 ident: 20455_CR105 publication-title: J. Biogeogr. doi: 10.1046/j.1365-2699.1998.00233.x – volume: 40 start-page: 1426 year: 2017 ident: 20455_CR29 publication-title: Ecography doi: 10.1111/ecog.02769 – volume: 26 start-page: 564 year: 1928 ident: 20455_CR68 publication-title: J. For. – ident: 20455_CR32 – ident: 20455_CR104 doi: 10.3390/s19163595 – ident: 20455_CR116 – volume: 5 start-page: 4163 year: 2013 ident: 20455_CR92 publication-title: Remote Sens. doi: 10.3390/rs5094163 – ident: 20455_CR18 doi: 10.1007/978-3-319-24744-1_18 – ident: 20455_CR87 – volume: 53 start-page: 27 year: 1983 ident: 20455_CR19 publication-title: Ecol. Monogr. doi: 10.2307/1942586 – ident: 20455_CR75 doi: 10.7930/NCA4.2018.CH6 – volume: 380 start-page: 321 year: 2016 ident: 20455_CR7 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.04.051 – volume: 5 start-page: 153 year: 2014 ident: 20455_CR60 publication-title: Forests doi: 10.3390/f5010153 – volume: 53 start-page: 236 year: 1998 ident: 20455_CR20 publication-title: Theor. Popul. Biol. doi: 10.1006/tpbi.1997.1350 – volume: 8 start-page: 501 year: 2016 ident: 20455_CR86 publication-title: Remote Sens. doi: 10.3390/rs8060501 – volume: 53 start-page: 530 year: 2016 ident: 20455_CR17 publication-title: J. Appl Ecol. doi: 10.1111/1365-2664.12540 – volume: 437 start-page: 70 year: 2019 ident: 20455_CR52 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.01.033 – volume: 26 start-page: 979 year: 2010 ident: 20455_CR98 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq046 – volume: 66 start-page: 889 year: 1985 ident: 20455_CR8 publication-title: Ecology doi: 10.2307/1940551 – volume: 39 start-page: 1413 year: 2014 ident: 20455_CR72 publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3609 – volume: 11 year: 2020 ident: 20455_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17214-4 – volume: 6 start-page: 149 year: 1980 ident: 20455_CR77 publication-title: J. Chem. Ecol. doi: 10.1007/BF00987534 – volume: 11 start-page: 1797 year: 2019 ident: 20455_CR82 publication-title: Remote Sens. doi: 10.3390/rs11151797 – volume: 208 start-page: 674 year: 2015 ident: 20455_CR47 publication-title: N. Phytol. doi: 10.1111/nph.13477 – volume: 41 start-page: 9017 year: 2014 ident: 20455_CR2 publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL062433 – volume: 167 start-page: 353 year: 2005 ident: 20455_CR22 publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2005.01436.x – volume: 43 start-page: 187 year: 2014 ident: 20455_CR45 publication-title: Environ. Entomol. doi: 10.1603/EN13244 – ident: 20455_CR53 – volume: 182 start-page: 389 year: 2019 ident: 20455_CR113 publication-title: J. R. Stat. Soc. Ser. A doi: 10.1111/rssa.12378 – ident: 20455_CR27 doi: 10.3389/ffgc.2019.00039 – volume: 113 start-page: E249 year: 2016 ident: 20455_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1523397113 – volume: 78 start-page: 75 year: 2012 ident: 20455_CR91 publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.1.75 – volume: 259 start-page: 904 year: 2010 ident: 20455_CR64 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2009.11.030 – volume: 10 start-page: 1266 year: 2018 ident: 20455_CR93 publication-title: Remote Sens. doi: 10.3390/rs10081266 – ident: 20455_CR100 – volume: 7 start-page: 434 year: 1998 ident: 20455_CR112 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1998.10474787 – ident: 20455_CR6 – ident: 20455_CR61 doi: 10.1016/B978-0-12-417156-5.00014-9 – ident: 20455_CR81 – volume: 42 start-page: 749 year: 2012 ident: 20455_CR107 publication-title: Can. J. For. Res. doi: 10.1139/x2012-031 – volume: 23 start-page: 40 year: 2008 ident: 20455_CR57 publication-title: West J. Appl. – volume: 434 start-page: 142 year: 2019 ident: 20455_CR63 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.12.006 – volume: 103 start-page: 67 year: 2006 ident: 20455_CR89 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.012 – volume: 438 start-page: 86 year: 2019 ident: 20455_CR30 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.02.011 – volume: 29 start-page: 696 year: 1931 ident: 20455_CR69 publication-title: J. For. – volume: 102 start-page: 2170 year: 2009 ident: 20455_CR31 publication-title: J. Econ. Entomol. doi: 10.1603/029.102.0621 – volume: 10 start-page: 237 year: 2019 ident: 20455_CR70 publication-title: Forests doi: 10.3390/f10030237 – volume: 7 start-page: 49 year: 1981 ident: 20455_CR44 publication-title: J. Chem. Ecol. doi: 10.1007/BF00988635 – volume: 104 start-page: 487 year: 2017 ident: 20455_CR108 publication-title: Am. J. Bot. doi: 10.3732/ajb.1600326 – ident: 20455_CR84 – volume: 6 start-page: 1721 year: 2015 ident: 20455_CR95 publication-title: Forests doi: 10.3390/f6051721 – volume: 5 start-page: 88 year: 2014 ident: 20455_CR41 publication-title: Forests doi: 10.3390/f5010088 – ident: 20455_CR115 doi: 10.6078/D16K5W – volume: 1 start-page: 21 year: 1990 ident: 20455_CR99 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/1047-3203(90)90014-M – ident: 20455_CR42 – ident: 20455_CR117 doi: 10.17605/OSF.IO/WPK5Z – volume: 42 start-page: 501 year: 1993 ident: 20455_CR39 publication-title: Appl. Stat. doi: 10.2307/2986328 |
| SSID | ssj0000391844 |
| Score | 2.587406 |
| Snippet | The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine (
Pinus ponderosa
) mortality, largely attributable to the western... The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine... The recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine... The 2012–2016 drought and western pine beetle outbreaks caused unprecedented mortality of ponderosa pine in the Sierra Nevada, California. Here, the authors... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 129 |
| SubjectTerms | 631/158/2165 704/158/2454 704/158/851 Aerial surveys Animals Bark Beetles California Climate adaptation Climate change Climatic conditions Dendroctonus brevicomis Drone aircraft Drought Droughts Ecological Parameter Monitoring - statistics & numerical data Evergreen trees Host-Parasite Interactions - physiology Humanities and Social Sciences Mortality Mortality patterns multidisciplinary open climate campaign Pest outbreaks Pheromones - metabolism Pine Pine trees Pinus ponderosa Pinus ponderosa - parasitology Pinus ponderosa - physiology Plant Bark - parasitology Plant Diseases - parasitology Plant Dispersal Science Science (multidisciplinary) Trees Trees - parasitology Trees - physiology Water Water deficit Weevils - pathogenicity Weevils - physiology |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLdggMSFb1hhoCBxg2h9TdomJwQTEwc07QBot6hN3VEx2q19Az3-euy0r9PjYxeubVq5seP-HDs_A7xQtaGAa1FJVJhJXeVWlsZ4uaiR4HKC2odq988f8oMDc3RkD6cNt2Eqq1z7xOCoq87zHvluomnZpoQe4tenZ5K7RnF2dWqhcRWuMUtCEkr3Duc9FmY_N1pPZ2ViZXYHHTwDx0zMw57K1cb_KND2_w1r_lky-VveNPyO9m__74fcgVsTEBVvRsu5C1ewvQc3xtaUq_vQ7bG4ciAVomBOiX48ASG6WvDBEMHZbDE0P1EUbSX8SRO4X8UPwq69qJCJKZbiOHTyHURZ9F9FiUiGKZu2InOqxhd8C-ifIoEH8Gn_3ce993JqziA9gbylVNqXaDThiwwxLm2dmTLj-CytFIUsGBfWK2WztOZ2JjEqWxuLsTUZTWJBIOIhbLVdi9sg6tTrLCnKhfGcaC1MnKYqN74msBmjthEs1ipyfmIu5wYaJy5k0JVxo1odqdUFtbpVBC_nZ05H3o5LR79lzc8jmXM7XOj6YzctYWfSfOFVwpgq17a0FgsSsE6tz5BQWB3BzlrhbnIEg7vQdgTP59u0hDkvU7TYnY9jGMYmeQSPRjObJVFKc4VKEkG-YYAbom7eaZsvgSY8J1dLcDqCV2tTvRDr31Px-PKveAI3E67q4U0oswNby_4cn8J1_33ZDP2zsPx-AYxnNrc priority: 102 providerName: ProQuest |
| Title | Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality |
| URI | https://link.springer.com/article/10.1038/s41467-020-20455-y https://www.ncbi.nlm.nih.gov/pubmed/33420082 https://www.proquest.com/docview/2476251630 https://www.proquest.com/docview/2476561027 https://pubmed.ncbi.nlm.nih.gov/PMC7794511 https://doaj.org/article/8571c320782749b99ea565f59c6e317f |
| Volume | 12 |
| WOSCitedRecordID | wos000626604400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BAhIXxJvAUhmJG0SbxE5sH9nVrkCCKkKACpcocSZQsaQo6YK6v35nnLRseV645FC7rTUz9nyTGX8D8Fg2hgKuuA5RYhaqWtuwMsaFcYMElxNUzle7v3upp1Mzm9n8XKsvrgkb6IEHwe2ZVMdOJuzJtLKVtVgSBmlS6zIk39fw6Rtpey6Y8mewtBS6qPGWTCTNXq_8mcDREjOwp-FqyxN5wv7focxfiyV_yph6R3R0Ha6NCFI8G1Z-Ay5gexOuDD0lV7dgccD_FvYkexRMBtENVxfEohF8o0NwGlr081MUZVsLdzz3pK3iO4HOTtTIjBJL8dG34O1FVXafRYVIFhVS9E52UA8_8MXDdoLwt-Ht0eGbg-fh2FUhdITOlqFUrkKjCBhkiFFlm8xUGQdWaS0p1sCotE5KSzLmPiQRStsYi5E1GcmgJO9_B3baRYv3QDSpU1lSVrFxnCEtTZSmUhvXkIYiVDaAeC3hwo2U49z54rjwqW9pikErBWml8FopVgE82Xzn60C48dfZ-6y4zUwmy_YfkAkVowkV_zKhAHbXai_GHdwXiSI3kRJajQJ4tBmmvccJlbLFxckwh_FnogO4O1jJZiVSKi4tSQLQW_aztdTtkXb-yfN7azojCQcH8HRtaT-W9WdR3P8fongAVxMu2uF3TGYXdpbdCT6Ey-7bct53E7ioZ9o_zQQu7R9O89cTv-8mXDKb0zNPP9BI_uJV_v4MC8kumw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0TNxk5iHxCCQtVVt6seCionkziTsqIkJdlSLT-K34jHSbZaHr31wDVxIsf5ZuYbz3gG4CkvpHW4hrmPHGNf5InyMymNPyzQ0uUQhXHZ7h_GyWQi9_fV7gr87M_CUFplrxOdos4rQ3vk66GwYhtZ9hC8OvrmU9coiq72LTRaWGzj_MS6bM3L0Vv7f5-F4ea7vY0tv-sq4BvLTmY-FyZDKaxhjBGDTBWxzGJyLKKcW66NQaoM5yqOCurDESBXhVQYKBljblJr_ex7L8CqILAPYHV3tLP7cbGrQ_XWpRDd6ZyAy_VGOF1EXhpVfo_8-ZIFdI0C_sZu_0zS_C1S6wzg5rX_bemuw9WOarPXrWzcgBUsb8Kltvnm_BZUG7Q8fmNBioyqZtTtGQ9WFYyOvjCK17Nm-gNZWubMHE5ddVt2Ytl5zXKk0hszduB6FTcsS-svLEO0oudPy9wKTN6-4Kvzb6yvcxven8vX3oFBWZV4D1gRGRGHaTaUhkLJqQyiiCfSFJZOByiUB8MeEtp0tdmpRcihdjkCXOoWRtrCSDsY6bkHzxfPHLWVSc4c_YaQthhJVcXdhao-0J2S0jJKhoaHxBoToTKlMLUTLCJlYrQ8s_BgrQeY7lRdo0_R5cGTxW2rpCjylJZYHbdjiKiHiQd3W1gvZsK5oByc0INkCfBLU12-U04_u0LoiTUm1mHw4EUvGqfT-vdS3D_7Kx7D5a29nbEejybbD-BKSDlMtOUm12Awq4_xIVw032fTpn7UCT-DT-ctNL8Ak62S8g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaLNxk5iHxCClhVVq9UeAFVcQuJMyoqSlGRLtfw0fh0zTnar5dFbD1wTJ3Kcb2a-8YxnAJ7IUpPDNSx8lBj7qkiMn2tt_WGJRJdDVNZlu3_YTcZjvbdnJmvwc3EWhtMqFzrRKeqitrxHPggViW1E7CEYlH1axGRr9PLwm88dpDjSumin0UFkB-fH5L61L7a36F8_DcPRm3ebb_2-w4BvianMfKlsjlqRkYwRg9yUsc5jdjKiQhLvxiAzVkoTRyX35AhQmlIbDIyOsbAZWUJ67zk4n5CPyemEk-jjcn-HK69rpfpzOoHUg1Y5rcT-GteAj_z5ii10LQP-xnP_TNf8LWbrTOHo6v-8iNfgSk_AxatOYq7DGlY34GLXknN-E-pNXiq_Jeii4FoaTXfyQ9Sl4AMxgqP4op3-QJFVhbAHU1fzVhwTZ29EgVyQYyb2XQfjVuRZ80XkiCSQ_rQqSIyK7gVfnddDHtAteH8mX3sb1qu6wrsgysiqOMzyobYcYM50EEUy0bYkkh2gMh4MF_BIbV-xnRuHHKQuc0DqtINUSpBKHaTSuQfPls8cdvVKTh39mlG3HMm1xt2FutlPe9WV6igZWhkyl0yUyY3BjCZYRsbGSOyz9GBjAba0V4BteoI0Dx4vb5Pq4nhUVmF91I1h-h4mHtzpIL6ciZSKM3NCD5IV8K9MdfVONf3syqMnZGLIjfDg-UJMTqb176W4d_pXPIJLJCnp7vZ45z5cDjmxiffh9Aasz5ojfAAX7PfZtG0eOi0g4NNZS8wvuHiaVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-scale+interaction+of+host+tree+size+and+climatic+water+deficit+governs+bark+beetle-induced+tree+mortality&rft.jtitle=Nature+communications&rft.au=Koontz%2C+Michael+J.&rft.au=Latimer%2C+Andrew+M.&rft.au=Mortenson%2C+Leif+A.&rft.au=Fettig%2C+Christopher+J.&rft.date=2021-01-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft_id=info:doi/10.1038%2Fs41467-020-20455-y&rft_id=info%3Apmid%2F33420082&rft.externalDocID=PMC7794511 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |