VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses

Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Virus...

Full description

Saved in:
Bibliographic Details
Published in:Viruses Vol. 12; no. 11; p. 1268
Main Authors: Moraru, Cristina, Varsani, Arvind, Kropinski, Andrew M.
Format: Journal Article
Language:English
Published: Switzerland MDPI 06.11.2020
MDPI AG
Subjects:
ISSN:1999-4915, 1999-4915
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user’s own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.
AbstractList Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user's own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of and in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.
Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user’s own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.
Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user's own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user's own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.
Author Kropinski, Andrew M.
Moraru, Cristina
Varsani, Arvind
AuthorAffiliation 4 Departments of Food Science, and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; phage.canada@gmail.com
2 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Arvind.Varsani@asu.edu
1 Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky-Str. 9–11, D-26111 Oldenburg, Germany
3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa
AuthorAffiliation_xml – name: 1 Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky-Str. 9–11, D-26111 Oldenburg, Germany
– name: 2 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Arvind.Varsani@asu.edu
– name: 4 Departments of Food Science, and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; phage.canada@gmail.com
– name: 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa
Author_xml – sequence: 1
  givenname: Cristina
  surname: Moraru
  fullname: Moraru, Cristina
– sequence: 2
  givenname: Arvind
  orcidid: 0000-0003-4111-2415
  surname: Varsani
  fullname: Varsani, Arvind
– sequence: 3
  givenname: Andrew M.
  orcidid: 0000-0002-6871-6799
  surname: Kropinski
  fullname: Kropinski, Andrew M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33172115$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi3Uil5gwQugLGEx1I5jO94gVcMtUgUISreWLydTFydubWckdjwET8iTkOm0VQsbVj6y__87v3XOAdoZ4wgIPSP4FaUSH61JTQipefsI7RMp5aKRhO3cq_fQQc4XGHMusXiM9iglYrawfaTPui_dm275--ev4-pjXEOoTmMMVYnVUgc7BV2gKudQdWOBtIIxDt5WX_3gg06-eMhV7KvPKX7X6UcssOjGHmzx46o682nKkJ-g3V6HDE9vzkP07d3b0-WHxcmn993y-GRhWYPLojYNZ73AxlFrGJfMzRlNjUlDG-GI7rnrW8YMlbaWQoDlmjpnQBJhMYCgh6jbcl3UF-oy-WFOpKL26voippXSqXgbQHFq6oa3BtdzV9qDcc62fT2zCJFEupn1esu6nMwAzsJYkg4PoA9fRn-uVnGtBJdNi9kMeHEDSPFqglzU4LOFEPQIccqqbmRLMZX0f6RM8lo0YvPF5_dj3eW5HecsONoKbIo5J-iV9UUXHzcpfVAEq83CqLuFmR0v_3LcQv_V_gEL08B6
CitedBy_id crossref_primary_10_1186_s12864_024_10906_x
crossref_primary_10_1089_phage_2024_0054
crossref_primary_10_1016_j_chom_2025_07_016
crossref_primary_10_1016_j_micpath_2022_105767
crossref_primary_10_1038_s41598_023_37176_z
crossref_primary_10_1089_phage_2024_0050
crossref_primary_10_1128_msystems_00200_25
crossref_primary_10_1371_journal_pone_0313947
crossref_primary_10_1016_j_resmic_2024_104202
crossref_primary_10_1038_s41467_023_44370_0
crossref_primary_10_1186_s12985_025_02691_0
crossref_primary_10_1186_s12985_025_02917_1
crossref_primary_10_1016_j_coviro_2021_11_003
crossref_primary_10_1038_s43705_021_00083_3
crossref_primary_10_1186_s12864_024_10461_5
crossref_primary_10_1186_s12866_025_04254_3
crossref_primary_10_1089_phage_2022_0037
crossref_primary_10_1093_femsml_uqae027
crossref_primary_10_1128_mra_00109_24
crossref_primary_10_1038_s41467_024_52595_w
crossref_primary_10_1007_s00203_022_03143_x
crossref_primary_10_1016_j_micpath_2023_106452
crossref_primary_10_1016_j_virusres_2021_198569
crossref_primary_10_3389_fmicb_2021_668319
crossref_primary_10_1128_mra_01098_24
crossref_primary_10_1128_spectrum_03367_23
crossref_primary_10_1128_aac_00728_23
crossref_primary_10_1016_j_isci_2024_109790
crossref_primary_10_1089_phage_2020_0039
crossref_primary_10_3389_fmicb_2022_853593
crossref_primary_10_1089_phage_2020_0038
crossref_primary_10_1186_s40168_024_01902_0
crossref_primary_10_1128_spectrum_03332_24
crossref_primary_10_1186_s13568_025_01846_0
crossref_primary_10_1186_s40168_023_01607_w
crossref_primary_10_1007_s00705_022_05477_9
crossref_primary_10_1038_s41598_022_22784_y
crossref_primary_10_3389_fcimb_2023_1178248
crossref_primary_10_1016_j_virol_2023_05_006
crossref_primary_10_1038_s41598_023_48788_w
crossref_primary_10_1128_spectrum_00037_24
crossref_primary_10_3389_fmicb_2024_1396213
crossref_primary_10_1089_phage_2020_0040
crossref_primary_10_1093_nargab_lqae183
crossref_primary_10_1016_j_watres_2024_122330
crossref_primary_10_1038_s41598_022_26198_8
crossref_primary_10_1093_femsml_uqae011
crossref_primary_10_1186_s12941_025_00783_x
crossref_primary_10_1093_femsml_uqad044
crossref_primary_10_1002_fft2_425
crossref_primary_10_1007_s00705_022_05650_0
crossref_primary_10_1093_jambio_lxaf028
crossref_primary_10_1007_s00705_025_06331_4
crossref_primary_10_1128_spectrum_04298_22
crossref_primary_10_1007_s00203_024_04106_0
crossref_primary_10_1016_j_virusres_2022_198973
crossref_primary_10_1038_s41564_023_01439_2
crossref_primary_10_1007_s00705_023_05862_y
crossref_primary_10_1016_j_fm_2024_104710
crossref_primary_10_1038_s41467_023_42125_5
crossref_primary_10_3389_fmicb_2023_1210319
crossref_primary_10_3389_fcimb_2023_1077995
crossref_primary_10_1016_j_ijfoodmicro_2023_110097
crossref_primary_10_1186_s12866_023_02907_9
crossref_primary_10_1099_jmm_0_001829
crossref_primary_10_1128_spectrum_00663_24
crossref_primary_10_1128_mra_00581_25
crossref_primary_10_1128_mra_01471_20
crossref_primary_10_1080_19490976_2023_2298254
crossref_primary_10_3389_fcimb_2024_1421724
crossref_primary_10_1038_s41467_023_41699_4
crossref_primary_10_3389_fmicb_2025_1584694
crossref_primary_10_1093_jambio_lxaf131
crossref_primary_10_1186_s12866_025_03854_3
crossref_primary_10_1111_1462_2920_16366
crossref_primary_10_1128_spectrum_01912_23
crossref_primary_10_1093_jambio_lxad079
crossref_primary_10_1016_j_fm_2023_104401
crossref_primary_10_1093_ismejo_wrae208
crossref_primary_10_1007_s00705_022_05663_9
crossref_primary_10_1007_s13205_023_03485_3
crossref_primary_10_1128_aac_01162_24
crossref_primary_10_1007_s00705_024_06047_x
crossref_primary_10_1139_cjm_2023_0188
crossref_primary_10_1038_s41467_024_44965_1
crossref_primary_10_1186_s40168_025_02053_6
crossref_primary_10_1007_s11262_022_01954_0
crossref_primary_10_1007_s00705_025_06282_w
crossref_primary_10_1007_s00705_025_06271_z
crossref_primary_10_1016_j_virusres_2022_198719
crossref_primary_10_1038_s43705_023_00307_8
crossref_primary_10_1093_ve_veab001
crossref_primary_10_1128_jvi_00667_24
crossref_primary_10_1016_j_fsi_2025_110506
crossref_primary_10_1089_phage_2022_0003
crossref_primary_10_1089_phage_2025_0009
crossref_primary_10_1038_s41598_023_37307_6
crossref_primary_10_1186_s12866_024_03736_0
crossref_primary_10_1080_17460794_2024_2357918
crossref_primary_10_3389_fmicb_2024_1400700
crossref_primary_10_1038_s41598_024_64999_1
crossref_primary_10_1128_spectrum_01301_24
crossref_primary_10_3389_fmicb_2024_1401479
crossref_primary_10_1016_j_virol_2024_110322
crossref_primary_10_1089_phage_2024_0037
crossref_primary_10_1093_ismejo_wrae202
crossref_primary_10_1128_spectrum_04296_22
crossref_primary_10_1111_1462_2920_15651
crossref_primary_10_1371_journal_pone_0301247
crossref_primary_10_1007_s00343_024_3252_4
crossref_primary_10_1128_mra_01345_24
crossref_primary_10_1007_s00284_022_03092_0
crossref_primary_10_1007_s00294_022_01242_2
crossref_primary_10_1016_j_virol_2025_110619
crossref_primary_10_1371_journal_pbio_3002787
crossref_primary_10_1128_aem_00315_22
crossref_primary_10_1099_mgen_0_001065
crossref_primary_10_1007_s00705_024_06063_x
crossref_primary_10_1007_s00705_024_05986_9
crossref_primary_10_2147_IDR_S466101
crossref_primary_10_1093_jambio_lxaf118
crossref_primary_10_1186_s12864_022_09023_4
crossref_primary_10_3389_fmicb_2025_1480411
crossref_primary_10_1007_s11802_024_5816_5
crossref_primary_10_1007_s00705_022_05418_6
crossref_primary_10_1016_j_micpath_2025_107517
crossref_primary_10_1128_MRA_00489_21
crossref_primary_10_1007_s00705_022_05542_3
crossref_primary_10_1007_s11262_023_02027_6
crossref_primary_10_1007_s10532_025_10181_x
crossref_primary_10_1016_j_heliyon_2024_e27932
crossref_primary_10_1007_s11262_024_02064_9
crossref_primary_10_1007_s00705_025_06281_x
crossref_primary_10_1016_j_aquaculture_2025_743219
crossref_primary_10_1038_s41598_023_47634_3
crossref_primary_10_1128_spectrum_05335_22
crossref_primary_10_1007_s00705_023_05700_1
crossref_primary_10_1128_aem_00215_23
crossref_primary_10_1016_j_aquaculture_2025_743215
crossref_primary_10_1186_s12985_025_02848_x
crossref_primary_10_1038_s41598_025_96561_y
crossref_primary_10_3389_fmicb_2023_1191157
crossref_primary_10_1038_s43705_023_00295_9
crossref_primary_10_1128_jvi_01821_23
crossref_primary_10_1093_gpbjnl_qzae082
crossref_primary_10_1016_j_virusres_2024_199524
crossref_primary_10_1002_mbo3_1347
crossref_primary_10_1007_s10123_025_00669_0
crossref_primary_10_1111_mmi_15374
crossref_primary_10_1016_j_heliyon_2024_e28813
crossref_primary_10_1007_s00705_023_05845_z
crossref_primary_10_1016_j_virs_2025_06_003
crossref_primary_10_1099_jgv_0_001997
crossref_primary_10_1186_s12985_025_02739_1
crossref_primary_10_1093_bib_bbad408
crossref_primary_10_1186_s12985_023_02034_x
crossref_primary_10_1007_s13205_024_04172_7
crossref_primary_10_1016_j_foodres_2024_115544
crossref_primary_10_1128_mra_00306_25
crossref_primary_10_1128_mra_01300_23
crossref_primary_10_1007_s42770_025_01707_9
crossref_primary_10_1128_aem_01062_23
crossref_primary_10_1128_mra_01031_24
crossref_primary_10_1089_phage_2021_0008
crossref_primary_10_1093_ismejo_wraf063
crossref_primary_10_1089_phage_2021_0003
crossref_primary_10_1371_journal_ppat_1012936
crossref_primary_10_1016_j_coviro_2021_10_011
crossref_primary_10_1016_j_virs_2023_07_002
crossref_primary_10_1089_phage_2024_0067
crossref_primary_10_1007_s00705_024_06112_5
crossref_primary_10_1186_s12866_023_03056_9
crossref_primary_10_1186_s12941_025_00790_y
crossref_primary_10_1016_j_diagmicrobio_2024_116305
crossref_primary_10_1038_s41598_025_01489_y
crossref_primary_10_1016_j_virol_2024_110090
crossref_primary_10_1128_spectrum_00993_24
crossref_primary_10_1371_journal_pone_0310824
crossref_primary_10_7717_peerj_11447
crossref_primary_10_1038_s41598_023_44840_x
crossref_primary_10_1128_aem_02138_21
crossref_primary_10_1038_s41598_021_98457_z
crossref_primary_10_1186_s12985_024_02306_0
crossref_primary_10_1093_bioinformatics_btaf239
crossref_primary_10_1093_femsle_fnaf017
crossref_primary_10_1038_s41564_022_01157_1
crossref_primary_10_1186_s12985_025_02679_w
crossref_primary_10_1016_j_virusres_2023_199226
crossref_primary_10_1016_j_aquaculture_2023_740165
crossref_primary_10_1128_MRA_00311_23
crossref_primary_10_3389_fmicb_2025_1570665
crossref_primary_10_1038_s41598_024_59903_w
crossref_primary_10_1128_spectrum_02795_23
crossref_primary_10_3389_fmicb_2024_1462459
crossref_primary_10_1186_s12866_024_03541_9
crossref_primary_10_3389_fcimb_2024_1473668
crossref_primary_10_1016_j_micres_2025_128320
crossref_primary_10_1016_j_virol_2024_110016
crossref_primary_10_1016_j_virol_2025_110657
crossref_primary_10_1038_s41467_025_57500_7
crossref_primary_10_1093_ismejo_wrae192
crossref_primary_10_1038_s41598_023_40228_z
crossref_primary_10_1128_aem_01559_24
crossref_primary_10_1038_s41592_025_02701_7
crossref_primary_10_1128_msystems_00799_21
crossref_primary_10_1128_spectrum_00934_24
crossref_primary_10_1007_s00705_022_05680_8
crossref_primary_10_1007_s10499_024_01797_6
crossref_primary_10_1093_bib_bbaf449
crossref_primary_10_1186_s12866_025_04005_4
crossref_primary_10_3389_fmicb_2022_1001237
crossref_primary_10_1186_s12985_025_02646_5
crossref_primary_10_1128_mra_00554_25
crossref_primary_10_3389_fmicb_2024_1416665
crossref_primary_10_1016_j_virusres_2023_199132
crossref_primary_10_1016_j_micpath_2025_107956
crossref_primary_10_1016_j_foodcont_2023_110262
crossref_primary_10_1371_journal_pbio_3001922
crossref_primary_10_1007_s00705_023_05706_9
crossref_primary_10_3389_fmicb_2022_1041471
crossref_primary_10_1007_s00284_024_03736_3
crossref_primary_10_7717_peerj_19421
crossref_primary_10_1007_s00705_022_05391_0
crossref_primary_10_1111_mec_17801
crossref_primary_10_1016_j_envint_2025_109359
crossref_primary_10_1007_s12560_023_09558_z
crossref_primary_10_1128_spectrum_00597_25
crossref_primary_10_1007_s00705_022_05692_4
crossref_primary_10_1128_spectrum_02537_23
crossref_primary_10_1099_jgv_0_001990
crossref_primary_10_1089_phage_2021_0013
crossref_primary_10_1111_1462_2920_16671
crossref_primary_10_1186_s12985_025_02710_0
crossref_primary_10_1089_phage_2023_0041
crossref_primary_10_1089_phage_2021_0015
crossref_primary_10_1111_1462_2920_15901
crossref_primary_10_1007_s00705_025_06373_8
crossref_primary_10_1371_journal_pone_0316157
crossref_primary_10_1007_s00284_022_02940_3
crossref_primary_10_3390_genes12020149
crossref_primary_10_3389_fmicb_2025_1592355
crossref_primary_10_1128_msystems_00443_23
crossref_primary_10_1099_jgv_0_002006
crossref_primary_10_1007_s00248_024_02401_3
crossref_primary_10_1128_msystems_00197_23
crossref_primary_10_1128_spectrum_00889_23
crossref_primary_10_1099_mgen_0_000752
crossref_primary_10_1007_s00705_023_05940_1
crossref_primary_10_1186_s12866_024_03608_7
crossref_primary_10_1016_j_ijfoodmicro_2024_110615
crossref_primary_10_1128_spectrum_00592_24
crossref_primary_10_1007_s11262_022_01913_9
crossref_primary_10_1128_spectrum_02588_24
crossref_primary_10_1093_ismejo_wraf149
crossref_primary_10_1128_mra_00160_23
crossref_primary_10_1038_s42003_024_07085_6
crossref_primary_10_1128_spectrum_02960_22
crossref_primary_10_1016_j_virusres_2024_199435
crossref_primary_10_1038_s41598_025_95398_9
crossref_primary_10_1093_nar_gkad622
crossref_primary_10_1128_mra_00610_22
crossref_primary_10_1128_msystems_01661_24
crossref_primary_10_1186_s12864_024_10937_4
crossref_primary_10_1016_j_virusres_2023_199270
crossref_primary_10_1038_s41598_024_77463_x
crossref_primary_10_1007_s00705_025_06236_2
crossref_primary_10_1016_j_tvjl_2025_106426
crossref_primary_10_1038_s41396_023_01547_1
crossref_primary_10_1128_aac_00578_23
crossref_primary_10_1007_s00705_025_06357_8
crossref_primary_10_1128_aac_01439_23
crossref_primary_10_1128_spectrum_03702_22
crossref_primary_10_1007_s00253_023_12743_6
crossref_primary_10_1007_s00705_024_06148_7
crossref_primary_10_1016_j_jconrel_2025_01_091
crossref_primary_10_1186_s13568_023_01582_3
crossref_primary_10_1016_j_lwt_2023_115293
crossref_primary_10_3389_fmicb_2021_765271
crossref_primary_10_1038_s41467_023_40098_z
crossref_primary_10_3389_fmicb_2022_1004733
crossref_primary_10_1089_phage_2023_0004
crossref_primary_10_1186_s12957_021_02248_9
crossref_primary_10_1016_j_csbj_2025_06_046
crossref_primary_10_1016_j_virusres_2023_199183
crossref_primary_10_1016_j_scitotenv_2024_177500
crossref_primary_10_1111_jph_13338
crossref_primary_10_1128_MRA_00452_23
crossref_primary_10_1128_spectrum_00973_23
crossref_primary_10_1128_spectrum_02833_23
crossref_primary_10_1128_mmbr_00004_21
crossref_primary_10_1186_s12929_025_01169_z
crossref_primary_10_1007_s00705_024_06081_9
crossref_primary_10_1186_s12863_023_01153_2
crossref_primary_10_1038_s41598_023_48634_z
crossref_primary_10_1038_s41598_025_85513_1
crossref_primary_10_1080_17460794_2025_2497647
crossref_primary_10_1007_s00284_025_04239_5
crossref_primary_10_1093_ve_veac123
crossref_primary_10_1126_science_adk1183
crossref_primary_10_1016_j_virol_2024_110219
crossref_primary_10_1111_1462_2920_70155
crossref_primary_10_1038_s41467_021_27583_z
crossref_primary_10_1128_spectrum_05332_22
crossref_primary_10_1016_j_micpath_2025_107344
crossref_primary_10_1186_s12985_023_02036_9
crossref_primary_10_1371_journal_pone_0266683
crossref_primary_10_1186_s12985_025_02637_6
crossref_primary_10_1128_msystems_00201_25
crossref_primary_10_1016_j_ijbiomac_2023_125403
crossref_primary_10_1128_iai_00065_23
crossref_primary_10_1128_mra_00859_24
crossref_primary_10_1007_s00705_024_06190_5
crossref_primary_10_1186_s12866_025_03785_z
crossref_primary_10_1007_s00705_022_05498_4
crossref_primary_10_1093_bib_bbaf084
crossref_primary_10_1099_mgen_0_001240
crossref_primary_10_1371_journal_pgen_1010998
crossref_primary_10_1186_s12864_022_09055_w
crossref_primary_10_1016_j_micpath_2024_107058
crossref_primary_10_1128_msphere_01014_24
crossref_primary_10_1016_j_virol_2023_06_009
crossref_primary_10_1016_j_virusres_2022_198812
crossref_primary_10_1007_s00705_024_06149_6
crossref_primary_10_1016_j_virol_2024_110100
crossref_primary_10_1089_phage_2024_0012
crossref_primary_10_1016_j_foodcont_2022_109460
crossref_primary_10_1089_phage_2024_0014
crossref_primary_10_1128_spectrum_01003_23
crossref_primary_10_1007_s00705_025_06370_x
crossref_primary_10_1016_j_micpath_2025_107926
crossref_primary_10_1089_phage_2023_0029
crossref_primary_10_1016_j_ijmm_2025_151668
crossref_primary_10_1016_j_virusres_2023_199088
crossref_primary_10_1007_s12275_024_00185_2
crossref_primary_10_1007_s10123_023_00456_9
crossref_primary_10_1016_j_micpath_2025_107921
crossref_primary_10_1089_phage_2023_0022
crossref_primary_10_1038_s41467_021_24803_4
crossref_primary_10_1128_mSystems_00385_21
crossref_primary_10_1186_s12866_025_04133_x
crossref_primary_10_1186_s13568_025_01919_0
crossref_primary_10_3389_fmicb_2023_1161265
crossref_primary_10_1007_s00705_025_06329_y
crossref_primary_10_1016_j_virusres_2022_198902
crossref_primary_10_3389_fmicb_2022_906961
crossref_primary_10_1016_j_virusres_2024_199491
crossref_primary_10_1007_s42995_022_00160_z
crossref_primary_10_1016_j_ijfoodmicro_2024_110778
crossref_primary_10_1128_aem_00807_24
crossref_primary_10_1093_ismejo_wrae017
crossref_primary_10_1007_s00705_024_06154_9
crossref_primary_10_1128_mra_00552_25
crossref_primary_10_1007_s00705_023_05737_2
crossref_primary_10_3389_fmicb_2023_1230775
crossref_primary_10_1016_j_isci_2025_113513
crossref_primary_10_1186_s12866_024_03387_1
crossref_primary_10_1016_j_jmii_2025_08_022
crossref_primary_10_1093_jambio_lxaf052
crossref_primary_10_1089_phage_2023_0012
crossref_primary_10_1099_mgen_0_000968
crossref_primary_10_1016_j_virusres_2023_199072
crossref_primary_10_1016_j_virusres_2023_199193
crossref_primary_10_1016_j_ijfoodmicro_2022_109615
crossref_primary_10_1016_j_foodchem_2023_137128
crossref_primary_10_1089_phage_2023_0019
crossref_primary_10_1007_s00705_025_06245_1
crossref_primary_10_3389_fmicb_2023_1293846
crossref_primary_10_1128_spectrum_01571_22
crossref_primary_10_1007_s10123_024_00547_1
crossref_primary_10_3389_fmars_2022_1076885
crossref_primary_10_1038_s41396_021_01097_4
crossref_primary_10_1099_jgv_0_002102
crossref_primary_10_1038_s41598_025_92032_6
crossref_primary_10_1186_s40168_024_01984_w
Cites_doi 10.1093/sysbio/syz036
10.3390/v4081318
10.1073/pnas.0409727102
10.2139/ssrn.3319797
10.1099/ijs.0.64483-0
10.1126/science.1261498
10.1007/s00705-014-2197-x
10.1371/journal.pone.0039107
10.1099/mgen.0.000169
10.1186/1471-2105-10-421
10.1093/nar/gkx1068
10.1111/j.1462-2920.2009.02030.x
10.18637/jss.v053.i09
10.1093/bioinformatics/btw313
10.1186/s12864-019-5647-8
10.1186/1471-2105-14-60
10.1007/s10482-017-0844-4
10.1371/journal.pone.0108277
10.1093/bioinformatics/bts199
10.1099/ijsem.0.000760
10.1371/journal.pone.0011147
10.1093/bioinformatics/btv681
10.6026/97320630012301
10.1093/bioinformatics/btx440
10.1093/database/baw084
10.1093/nar/gki478
10.2144/00286ir01
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/v12111268
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_63b2468b022b43febddc8f2e9111919d
PMC7694805
33172115
10_3390_v12111268
Genre Journal Article
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RPM
TR2
TUS
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c540t-2b465f70bd3cb5695d317b2014347d1af6df855b39c2977ec6a3ddbe917c0ee73
IEDL.DBID DOA
ISICitedReferencesCount 556
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4915
IngestDate Mon Nov 10 04:31:19 EST 2025
Tue Nov 04 02:00:31 EST 2025
Thu Oct 02 11:26:21 EDT 2025
Thu Oct 02 05:39:41 EDT 2025
Thu Apr 03 06:55:36 EDT 2025
Tue Nov 18 22:16:52 EST 2025
Sat Nov 29 07:19:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords phages
nucleotide-based intergenomic similarity
viruses
VIRIDIC
nucleotide-based intergenomic distance
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-2b465f70bd3cb5695d317b2014347d1af6df855b39c2977ec6a3ddbe917c0ee73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4111-2415
0000-0002-6871-6799
OpenAccessLink https://doaj.org/article/63b2468b022b43febddc8f2e9111919d
PMID 33172115
PQID 2459627477
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_63b2468b022b43febddc8f2e9111919d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7694805
proquest_miscellaneous_2498303935
proquest_miscellaneous_2459627477
pubmed_primary_33172115
crossref_citationtrail_10_3390_v12111268
crossref_primary_10_3390_v12111268
PublicationCentury 2000
PublicationDate 20201106
PublicationDateYYYYMMDD 2020-11-06
PublicationDate_xml – month: 11
  year: 2020
  text: 20201106
  day: 6
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Richter (ref_7) 2016; 32
ref_13
Brum (ref_30) 2015; 348
ref_10
Mahadevan (ref_12) 2016; 12
Kearse (ref_26) 2012; 28
Bao (ref_8) 2012; 4
ref_18
ref_17
ref_16
ref_15
Barylski (ref_27) 2020; 69
Ceyssens (ref_5) 2009; 11
Kucherov (ref_11) 2005; 33
Lee (ref_4) 2016; 66
Goris (ref_1) 2007; 57
Konstantinidis (ref_28) 2005; 102
Gu (ref_19) 2016; 32
Yoon (ref_2) 2017; 110
ref_24
ref_23
ref_22
Stothard (ref_21) 2000; 28
(ref_14) 2017; 33
ref_3
ref_29
Bao (ref_9) 2014; 159
Haft (ref_20) 2018; 46
Rodriguez (ref_25) 2014; 9
ref_6
References_xml – volume: 9
  start-page: 211
  year: 2014
  ident: ref_25
  article-title: Bypassing Cultivation to Identify Bacterial Species
  publication-title: Microbe
– volume: 69
  start-page: 110
  year: 2020
  ident: ref_27
  article-title: Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syz036
– volume: 4
  start-page: 1318
  year: 2012
  ident: ref_8
  article-title: PAirwise Sequence Comparison (PASC) and its application in the classification of filoviruses
  publication-title: Viruses
  doi: 10.3390/v4081318
– volume: 102
  start-page: 2567
  year: 2005
  ident: ref_28
  article-title: Genomic insights that advance the species definition for prokaryotes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409727102
– ident: ref_29
  doi: 10.2139/ssrn.3319797
– volume: 57
  start-page: 81
  year: 2007
  ident: ref_1
  article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.64483-0
– volume: 348
  start-page: 1261498
  year: 2015
  ident: ref_30
  article-title: Patterns and ecological drivers of ocean viral communities
  publication-title: Science
  doi: 10.1126/science.1261498
– volume: 159
  start-page: 3293
  year: 2014
  ident: ref_9
  article-title: Improvements to pairwise sequence comparison (PASC): A genome-based web tool for virus classification
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-014-2197-x
– ident: ref_6
  doi: 10.1371/journal.pone.0039107
– ident: ref_23
  doi: 10.1099/mgen.0.000169
– ident: ref_16
  doi: 10.1186/1471-2105-10-421
– volume: 46
  start-page: D851
  year: 2018
  ident: ref_20
  article-title: RefSeq: An update on prokaryotic genome annotation and curation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1068
– volume: 11
  start-page: 2874
  year: 2009
  ident: ref_5
  article-title: Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2009.02030.x
– ident: ref_18
  doi: 10.18637/jss.v053.i09
– volume: 32
  start-page: 2847
  year: 2016
  ident: ref_19
  article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw313
– ident: ref_24
  doi: 10.1186/s12864-019-5647-8
– ident: ref_17
  doi: 10.1186/1471-2105-14-60
– volume: 110
  start-page: 1281
  year: 2017
  ident: ref_2
  article-title: A large-scale evaluation of algorithms to calculate average nucleotide identity
  publication-title: Antonie Leeuwenhoek
  doi: 10.1007/s10482-017-0844-4
– ident: ref_10
  doi: 10.1371/journal.pone.0108277
– ident: ref_15
– volume: 28
  start-page: 1647
  year: 2012
  ident: ref_26
  article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts199
– volume: 66
  start-page: 1100
  year: 2016
  ident: ref_4
  article-title: OrthoANI: An improved algorithm and software for calculating average nucleotide identity
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijsem.0.000760
– ident: ref_13
  doi: 10.1371/journal.pone.0011147
– volume: 32
  start-page: 929
  year: 2016
  ident: ref_7
  article-title: JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv681
– volume: 12
  start-page: 301
  year: 2016
  ident: ref_12
  article-title: An Analysis of Adenovirus Genomes Using Whole Genome Software Tools
  publication-title: Bioinformation
  doi: 10.6026/97320630012301
– volume: 33
  start-page: 3396
  year: 2017
  ident: ref_14
  article-title: VICTOR: Genome-based phylogeny and classification of prokaryotic viruses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx440
– ident: ref_22
– ident: ref_3
  doi: 10.1093/database/baw084
– volume: 33
  start-page: W540
  year: 2005
  ident: ref_11
  article-title: YASS: Enhancing the sensitivity of DNA similarity search
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki478
– volume: 28
  start-page: 1102
  year: 2000
  ident: ref_21
  article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences
  publication-title: Biotechniques
  doi: 10.2144/00286ir01
SSID ssj0066907
Score 2.6791823
Snippet Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1268
SubjectTerms algorithms
Archaea
Archaeal Viruses - genetics
bacteria
bacteriophages
Bacteriophages - genetics
bioinformatics
Computational Biology - methods
computer software
data collection
genome
Genome, Viral
genomics
Genomics - methods
Internet
nucleotide-based intergenomic distance
nucleotide-based intergenomic similarity
phages
Phylogeny
Prokaryotic Cells - virology
Software
taxonomy
VIRIDIC
viruses
Title VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses
URI https://www.ncbi.nlm.nih.gov/pubmed/33172115
https://www.proquest.com/docview/2459627477
https://www.proquest.com/docview/2498303935
https://pubmed.ncbi.nlm.nih.gov/PMC7694805
https://doaj.org/article/63b2468b022b43febddc8f2e9111919d
Volume 12
WOSCitedRecordID wos000593902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB5BAakXxE5YogFx4GI1nvFsxza0wgciq5QqnCzPVixSu3KcSL3xI_iF_BJmSaIEVXDh4sPMO4zfMvO98fP3AHinFCcVVTyxGJMkSzVJuMlQ4qCIFUgy3zotNJtgkwmfTkWx1erL14RFeuCouAOKJcool-6skRm2RmqtuEXGB6lIhfa7r0M962Qq7sHU53yRRwi7pP5g6YnMUuT5VLdOn0DSfxOy_LNAcuvEOXkA7q-gIjyMS3wIbpnmEbgXm0dePwbVeX6af8jHv378PISTdmlm8KxtZ7Bv4bia-fLS3kAH72C49PNcrJe1gp_ry9ols4FHFbYWFl37vequ294keazLai7ged0t5mb-BHw5OT4bf0xWDRMS5YBXnzgNUWLZSGqsJKGCaIcOJPIUfhnTaWWptpwQiYVCDvcZRSustXS6ZGpkDMNPwV7TNuY5gIJngiNpRtRhDBe43EjBlE2RUVJWqR2A92tFlmrFJu6bWsxKl1V4nZcbnQ_A243oVaTQuEnoyFtjI-BZr8OA84Vy5Qvlv3xhAN6sbVm6KPGfPqrGtIt5ibLYZYixv8kIjsOvygPwLNp_sxyMQ6rsZtiOZ-ysd3emqb8Ftm5GRcZH5MX_eMGXYB_5fN9fa9NXYK_vFuY1uKuWfT3vhuA2m7Lw5ENw5-h4UpwOQ1gMfUVr4caK_FPx9TcNxBNv
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VIRIDIC%E2%80%94A+Novel+Tool+to+Calculate+the+Intergenomic+Similarities+of+Prokaryote-Infecting+Viruses&rft.jtitle=Viruses&rft.au=Moraru%2C+Cristina&rft.au=Varsani%2C+Arvind&rft.au=Kropinski%2C+Andrew+M.&rft.date=2020-11-06&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=12&rft.issue=11&rft.spage=1268&rft_id=info:doi/10.3390%2Fv12111268&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_v12111268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon