VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses
Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Virus...
Saved in:
| Published in: | Viruses Vol. 12; no. 11; p. 1268 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
06.11.2020
MDPI AG |
| Subjects: | |
| ISSN: | 1999-4915, 1999-4915 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user’s own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite. |
|---|---|
| AbstractList | Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user's own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of
and
in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite. Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user’s own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite. Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user's own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user's own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite. |
| Author | Kropinski, Andrew M. Moraru, Cristina Varsani, Arvind |
| AuthorAffiliation | 4 Departments of Food Science, and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; phage.canada@gmail.com 2 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Arvind.Varsani@asu.edu 1 Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky-Str. 9–11, D-26111 Oldenburg, Germany 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa |
| AuthorAffiliation_xml | – name: 1 Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky-Str. 9–11, D-26111 Oldenburg, Germany – name: 2 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Arvind.Varsani@asu.edu – name: 4 Departments of Food Science, and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; phage.canada@gmail.com – name: 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa |
| Author_xml | – sequence: 1 givenname: Cristina surname: Moraru fullname: Moraru, Cristina – sequence: 2 givenname: Arvind orcidid: 0000-0003-4111-2415 surname: Varsani fullname: Varsani, Arvind – sequence: 3 givenname: Andrew M. orcidid: 0000-0002-6871-6799 surname: Kropinski fullname: Kropinski, Andrew M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33172115$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhi3Uil5gwQugLGEx1I5jO94gVcMtUgUISreWLydTFydubWckdjwET8iTkOm0VQsbVj6y__87v3XOAdoZ4wgIPSP4FaUSH61JTQipefsI7RMp5aKRhO3cq_fQQc4XGHMusXiM9iglYrawfaTPui_dm275--ev4-pjXEOoTmMMVYnVUgc7BV2gKudQdWOBtIIxDt5WX_3gg06-eMhV7KvPKX7X6UcssOjGHmzx46o682nKkJ-g3V6HDE9vzkP07d3b0-WHxcmn993y-GRhWYPLojYNZ73AxlFrGJfMzRlNjUlDG-GI7rnrW8YMlbaWQoDlmjpnQBJhMYCgh6jbcl3UF-oy-WFOpKL26voippXSqXgbQHFq6oa3BtdzV9qDcc62fT2zCJFEupn1esu6nMwAzsJYkg4PoA9fRn-uVnGtBJdNi9kMeHEDSPFqglzU4LOFEPQIccqqbmRLMZX0f6RM8lo0YvPF5_dj3eW5HecsONoKbIo5J-iV9UUXHzcpfVAEq83CqLuFmR0v_3LcQv_V_gEL08B6 |
| CitedBy_id | crossref_primary_10_1186_s12864_024_10906_x crossref_primary_10_1089_phage_2024_0054 crossref_primary_10_1016_j_chom_2025_07_016 crossref_primary_10_1016_j_micpath_2022_105767 crossref_primary_10_1038_s41598_023_37176_z crossref_primary_10_1089_phage_2024_0050 crossref_primary_10_1128_msystems_00200_25 crossref_primary_10_1371_journal_pone_0313947 crossref_primary_10_1016_j_resmic_2024_104202 crossref_primary_10_1038_s41467_023_44370_0 crossref_primary_10_1186_s12985_025_02691_0 crossref_primary_10_1186_s12985_025_02917_1 crossref_primary_10_1016_j_coviro_2021_11_003 crossref_primary_10_1038_s43705_021_00083_3 crossref_primary_10_1186_s12864_024_10461_5 crossref_primary_10_1186_s12866_025_04254_3 crossref_primary_10_1089_phage_2022_0037 crossref_primary_10_1093_femsml_uqae027 crossref_primary_10_1128_mra_00109_24 crossref_primary_10_1038_s41467_024_52595_w crossref_primary_10_1007_s00203_022_03143_x crossref_primary_10_1016_j_micpath_2023_106452 crossref_primary_10_1016_j_virusres_2021_198569 crossref_primary_10_3389_fmicb_2021_668319 crossref_primary_10_1128_mra_01098_24 crossref_primary_10_1128_spectrum_03367_23 crossref_primary_10_1128_aac_00728_23 crossref_primary_10_1016_j_isci_2024_109790 crossref_primary_10_1089_phage_2020_0039 crossref_primary_10_3389_fmicb_2022_853593 crossref_primary_10_1089_phage_2020_0038 crossref_primary_10_1186_s40168_024_01902_0 crossref_primary_10_1128_spectrum_03332_24 crossref_primary_10_1186_s13568_025_01846_0 crossref_primary_10_1186_s40168_023_01607_w crossref_primary_10_1007_s00705_022_05477_9 crossref_primary_10_1038_s41598_022_22784_y crossref_primary_10_3389_fcimb_2023_1178248 crossref_primary_10_1016_j_virol_2023_05_006 crossref_primary_10_1038_s41598_023_48788_w crossref_primary_10_1128_spectrum_00037_24 crossref_primary_10_3389_fmicb_2024_1396213 crossref_primary_10_1089_phage_2020_0040 crossref_primary_10_1093_nargab_lqae183 crossref_primary_10_1016_j_watres_2024_122330 crossref_primary_10_1038_s41598_022_26198_8 crossref_primary_10_1093_femsml_uqae011 crossref_primary_10_1186_s12941_025_00783_x crossref_primary_10_1093_femsml_uqad044 crossref_primary_10_1002_fft2_425 crossref_primary_10_1007_s00705_022_05650_0 crossref_primary_10_1093_jambio_lxaf028 crossref_primary_10_1007_s00705_025_06331_4 crossref_primary_10_1128_spectrum_04298_22 crossref_primary_10_1007_s00203_024_04106_0 crossref_primary_10_1016_j_virusres_2022_198973 crossref_primary_10_1038_s41564_023_01439_2 crossref_primary_10_1007_s00705_023_05862_y crossref_primary_10_1016_j_fm_2024_104710 crossref_primary_10_1038_s41467_023_42125_5 crossref_primary_10_3389_fmicb_2023_1210319 crossref_primary_10_3389_fcimb_2023_1077995 crossref_primary_10_1016_j_ijfoodmicro_2023_110097 crossref_primary_10_1186_s12866_023_02907_9 crossref_primary_10_1099_jmm_0_001829 crossref_primary_10_1128_spectrum_00663_24 crossref_primary_10_1128_mra_00581_25 crossref_primary_10_1128_mra_01471_20 crossref_primary_10_1080_19490976_2023_2298254 crossref_primary_10_3389_fcimb_2024_1421724 crossref_primary_10_1038_s41467_023_41699_4 crossref_primary_10_3389_fmicb_2025_1584694 crossref_primary_10_1093_jambio_lxaf131 crossref_primary_10_1186_s12866_025_03854_3 crossref_primary_10_1111_1462_2920_16366 crossref_primary_10_1128_spectrum_01912_23 crossref_primary_10_1093_jambio_lxad079 crossref_primary_10_1016_j_fm_2023_104401 crossref_primary_10_1093_ismejo_wrae208 crossref_primary_10_1007_s00705_022_05663_9 crossref_primary_10_1007_s13205_023_03485_3 crossref_primary_10_1128_aac_01162_24 crossref_primary_10_1007_s00705_024_06047_x crossref_primary_10_1139_cjm_2023_0188 crossref_primary_10_1038_s41467_024_44965_1 crossref_primary_10_1186_s40168_025_02053_6 crossref_primary_10_1007_s11262_022_01954_0 crossref_primary_10_1007_s00705_025_06282_w crossref_primary_10_1007_s00705_025_06271_z crossref_primary_10_1016_j_virusres_2022_198719 crossref_primary_10_1038_s43705_023_00307_8 crossref_primary_10_1093_ve_veab001 crossref_primary_10_1128_jvi_00667_24 crossref_primary_10_1016_j_fsi_2025_110506 crossref_primary_10_1089_phage_2022_0003 crossref_primary_10_1089_phage_2025_0009 crossref_primary_10_1038_s41598_023_37307_6 crossref_primary_10_1186_s12866_024_03736_0 crossref_primary_10_1080_17460794_2024_2357918 crossref_primary_10_3389_fmicb_2024_1400700 crossref_primary_10_1038_s41598_024_64999_1 crossref_primary_10_1128_spectrum_01301_24 crossref_primary_10_3389_fmicb_2024_1401479 crossref_primary_10_1016_j_virol_2024_110322 crossref_primary_10_1089_phage_2024_0037 crossref_primary_10_1093_ismejo_wrae202 crossref_primary_10_1128_spectrum_04296_22 crossref_primary_10_1111_1462_2920_15651 crossref_primary_10_1371_journal_pone_0301247 crossref_primary_10_1007_s00343_024_3252_4 crossref_primary_10_1128_mra_01345_24 crossref_primary_10_1007_s00284_022_03092_0 crossref_primary_10_1007_s00294_022_01242_2 crossref_primary_10_1016_j_virol_2025_110619 crossref_primary_10_1371_journal_pbio_3002787 crossref_primary_10_1128_aem_00315_22 crossref_primary_10_1099_mgen_0_001065 crossref_primary_10_1007_s00705_024_06063_x crossref_primary_10_1007_s00705_024_05986_9 crossref_primary_10_2147_IDR_S466101 crossref_primary_10_1093_jambio_lxaf118 crossref_primary_10_1186_s12864_022_09023_4 crossref_primary_10_3389_fmicb_2025_1480411 crossref_primary_10_1007_s11802_024_5816_5 crossref_primary_10_1007_s00705_022_05418_6 crossref_primary_10_1016_j_micpath_2025_107517 crossref_primary_10_1128_MRA_00489_21 crossref_primary_10_1007_s00705_022_05542_3 crossref_primary_10_1007_s11262_023_02027_6 crossref_primary_10_1007_s10532_025_10181_x crossref_primary_10_1016_j_heliyon_2024_e27932 crossref_primary_10_1007_s11262_024_02064_9 crossref_primary_10_1007_s00705_025_06281_x crossref_primary_10_1016_j_aquaculture_2025_743219 crossref_primary_10_1038_s41598_023_47634_3 crossref_primary_10_1128_spectrum_05335_22 crossref_primary_10_1007_s00705_023_05700_1 crossref_primary_10_1128_aem_00215_23 crossref_primary_10_1016_j_aquaculture_2025_743215 crossref_primary_10_1186_s12985_025_02848_x crossref_primary_10_1038_s41598_025_96561_y crossref_primary_10_3389_fmicb_2023_1191157 crossref_primary_10_1038_s43705_023_00295_9 crossref_primary_10_1128_jvi_01821_23 crossref_primary_10_1093_gpbjnl_qzae082 crossref_primary_10_1016_j_virusres_2024_199524 crossref_primary_10_1002_mbo3_1347 crossref_primary_10_1007_s10123_025_00669_0 crossref_primary_10_1111_mmi_15374 crossref_primary_10_1016_j_heliyon_2024_e28813 crossref_primary_10_1007_s00705_023_05845_z crossref_primary_10_1016_j_virs_2025_06_003 crossref_primary_10_1099_jgv_0_001997 crossref_primary_10_1186_s12985_025_02739_1 crossref_primary_10_1093_bib_bbad408 crossref_primary_10_1186_s12985_023_02034_x crossref_primary_10_1007_s13205_024_04172_7 crossref_primary_10_1016_j_foodres_2024_115544 crossref_primary_10_1128_mra_00306_25 crossref_primary_10_1128_mra_01300_23 crossref_primary_10_1007_s42770_025_01707_9 crossref_primary_10_1128_aem_01062_23 crossref_primary_10_1128_mra_01031_24 crossref_primary_10_1089_phage_2021_0008 crossref_primary_10_1093_ismejo_wraf063 crossref_primary_10_1089_phage_2021_0003 crossref_primary_10_1371_journal_ppat_1012936 crossref_primary_10_1016_j_coviro_2021_10_011 crossref_primary_10_1016_j_virs_2023_07_002 crossref_primary_10_1089_phage_2024_0067 crossref_primary_10_1007_s00705_024_06112_5 crossref_primary_10_1186_s12866_023_03056_9 crossref_primary_10_1186_s12941_025_00790_y crossref_primary_10_1016_j_diagmicrobio_2024_116305 crossref_primary_10_1038_s41598_025_01489_y crossref_primary_10_1016_j_virol_2024_110090 crossref_primary_10_1128_spectrum_00993_24 crossref_primary_10_1371_journal_pone_0310824 crossref_primary_10_7717_peerj_11447 crossref_primary_10_1038_s41598_023_44840_x crossref_primary_10_1128_aem_02138_21 crossref_primary_10_1038_s41598_021_98457_z crossref_primary_10_1186_s12985_024_02306_0 crossref_primary_10_1093_bioinformatics_btaf239 crossref_primary_10_1093_femsle_fnaf017 crossref_primary_10_1038_s41564_022_01157_1 crossref_primary_10_1186_s12985_025_02679_w crossref_primary_10_1016_j_virusres_2023_199226 crossref_primary_10_1016_j_aquaculture_2023_740165 crossref_primary_10_1128_MRA_00311_23 crossref_primary_10_3389_fmicb_2025_1570665 crossref_primary_10_1038_s41598_024_59903_w crossref_primary_10_1128_spectrum_02795_23 crossref_primary_10_3389_fmicb_2024_1462459 crossref_primary_10_1186_s12866_024_03541_9 crossref_primary_10_3389_fcimb_2024_1473668 crossref_primary_10_1016_j_micres_2025_128320 crossref_primary_10_1016_j_virol_2024_110016 crossref_primary_10_1016_j_virol_2025_110657 crossref_primary_10_1038_s41467_025_57500_7 crossref_primary_10_1093_ismejo_wrae192 crossref_primary_10_1038_s41598_023_40228_z crossref_primary_10_1128_aem_01559_24 crossref_primary_10_1038_s41592_025_02701_7 crossref_primary_10_1128_msystems_00799_21 crossref_primary_10_1128_spectrum_00934_24 crossref_primary_10_1007_s00705_022_05680_8 crossref_primary_10_1007_s10499_024_01797_6 crossref_primary_10_1093_bib_bbaf449 crossref_primary_10_1186_s12866_025_04005_4 crossref_primary_10_3389_fmicb_2022_1001237 crossref_primary_10_1186_s12985_025_02646_5 crossref_primary_10_1128_mra_00554_25 crossref_primary_10_3389_fmicb_2024_1416665 crossref_primary_10_1016_j_virusres_2023_199132 crossref_primary_10_1016_j_micpath_2025_107956 crossref_primary_10_1016_j_foodcont_2023_110262 crossref_primary_10_1371_journal_pbio_3001922 crossref_primary_10_1007_s00705_023_05706_9 crossref_primary_10_3389_fmicb_2022_1041471 crossref_primary_10_1007_s00284_024_03736_3 crossref_primary_10_7717_peerj_19421 crossref_primary_10_1007_s00705_022_05391_0 crossref_primary_10_1111_mec_17801 crossref_primary_10_1016_j_envint_2025_109359 crossref_primary_10_1007_s12560_023_09558_z crossref_primary_10_1128_spectrum_00597_25 crossref_primary_10_1007_s00705_022_05692_4 crossref_primary_10_1128_spectrum_02537_23 crossref_primary_10_1099_jgv_0_001990 crossref_primary_10_1089_phage_2021_0013 crossref_primary_10_1111_1462_2920_16671 crossref_primary_10_1186_s12985_025_02710_0 crossref_primary_10_1089_phage_2023_0041 crossref_primary_10_1089_phage_2021_0015 crossref_primary_10_1111_1462_2920_15901 crossref_primary_10_1007_s00705_025_06373_8 crossref_primary_10_1371_journal_pone_0316157 crossref_primary_10_1007_s00284_022_02940_3 crossref_primary_10_3390_genes12020149 crossref_primary_10_3389_fmicb_2025_1592355 crossref_primary_10_1128_msystems_00443_23 crossref_primary_10_1099_jgv_0_002006 crossref_primary_10_1007_s00248_024_02401_3 crossref_primary_10_1128_msystems_00197_23 crossref_primary_10_1128_spectrum_00889_23 crossref_primary_10_1099_mgen_0_000752 crossref_primary_10_1007_s00705_023_05940_1 crossref_primary_10_1186_s12866_024_03608_7 crossref_primary_10_1016_j_ijfoodmicro_2024_110615 crossref_primary_10_1128_spectrum_00592_24 crossref_primary_10_1007_s11262_022_01913_9 crossref_primary_10_1128_spectrum_02588_24 crossref_primary_10_1093_ismejo_wraf149 crossref_primary_10_1128_mra_00160_23 crossref_primary_10_1038_s42003_024_07085_6 crossref_primary_10_1128_spectrum_02960_22 crossref_primary_10_1016_j_virusres_2024_199435 crossref_primary_10_1038_s41598_025_95398_9 crossref_primary_10_1093_nar_gkad622 crossref_primary_10_1128_mra_00610_22 crossref_primary_10_1128_msystems_01661_24 crossref_primary_10_1186_s12864_024_10937_4 crossref_primary_10_1016_j_virusres_2023_199270 crossref_primary_10_1038_s41598_024_77463_x crossref_primary_10_1007_s00705_025_06236_2 crossref_primary_10_1016_j_tvjl_2025_106426 crossref_primary_10_1038_s41396_023_01547_1 crossref_primary_10_1128_aac_00578_23 crossref_primary_10_1007_s00705_025_06357_8 crossref_primary_10_1128_aac_01439_23 crossref_primary_10_1128_spectrum_03702_22 crossref_primary_10_1007_s00253_023_12743_6 crossref_primary_10_1007_s00705_024_06148_7 crossref_primary_10_1016_j_jconrel_2025_01_091 crossref_primary_10_1186_s13568_023_01582_3 crossref_primary_10_1016_j_lwt_2023_115293 crossref_primary_10_3389_fmicb_2021_765271 crossref_primary_10_1038_s41467_023_40098_z crossref_primary_10_3389_fmicb_2022_1004733 crossref_primary_10_1089_phage_2023_0004 crossref_primary_10_1186_s12957_021_02248_9 crossref_primary_10_1016_j_csbj_2025_06_046 crossref_primary_10_1016_j_virusres_2023_199183 crossref_primary_10_1016_j_scitotenv_2024_177500 crossref_primary_10_1111_jph_13338 crossref_primary_10_1128_MRA_00452_23 crossref_primary_10_1128_spectrum_00973_23 crossref_primary_10_1128_spectrum_02833_23 crossref_primary_10_1128_mmbr_00004_21 crossref_primary_10_1186_s12929_025_01169_z crossref_primary_10_1007_s00705_024_06081_9 crossref_primary_10_1186_s12863_023_01153_2 crossref_primary_10_1038_s41598_023_48634_z crossref_primary_10_1038_s41598_025_85513_1 crossref_primary_10_1080_17460794_2025_2497647 crossref_primary_10_1007_s00284_025_04239_5 crossref_primary_10_1093_ve_veac123 crossref_primary_10_1126_science_adk1183 crossref_primary_10_1016_j_virol_2024_110219 crossref_primary_10_1111_1462_2920_70155 crossref_primary_10_1038_s41467_021_27583_z crossref_primary_10_1128_spectrum_05332_22 crossref_primary_10_1016_j_micpath_2025_107344 crossref_primary_10_1186_s12985_023_02036_9 crossref_primary_10_1371_journal_pone_0266683 crossref_primary_10_1186_s12985_025_02637_6 crossref_primary_10_1128_msystems_00201_25 crossref_primary_10_1016_j_ijbiomac_2023_125403 crossref_primary_10_1128_iai_00065_23 crossref_primary_10_1128_mra_00859_24 crossref_primary_10_1007_s00705_024_06190_5 crossref_primary_10_1186_s12866_025_03785_z crossref_primary_10_1007_s00705_022_05498_4 crossref_primary_10_1093_bib_bbaf084 crossref_primary_10_1099_mgen_0_001240 crossref_primary_10_1371_journal_pgen_1010998 crossref_primary_10_1186_s12864_022_09055_w crossref_primary_10_1016_j_micpath_2024_107058 crossref_primary_10_1128_msphere_01014_24 crossref_primary_10_1016_j_virol_2023_06_009 crossref_primary_10_1016_j_virusres_2022_198812 crossref_primary_10_1007_s00705_024_06149_6 crossref_primary_10_1016_j_virol_2024_110100 crossref_primary_10_1089_phage_2024_0012 crossref_primary_10_1016_j_foodcont_2022_109460 crossref_primary_10_1089_phage_2024_0014 crossref_primary_10_1128_spectrum_01003_23 crossref_primary_10_1007_s00705_025_06370_x crossref_primary_10_1016_j_micpath_2025_107926 crossref_primary_10_1089_phage_2023_0029 crossref_primary_10_1016_j_ijmm_2025_151668 crossref_primary_10_1016_j_virusres_2023_199088 crossref_primary_10_1007_s12275_024_00185_2 crossref_primary_10_1007_s10123_023_00456_9 crossref_primary_10_1016_j_micpath_2025_107921 crossref_primary_10_1089_phage_2023_0022 crossref_primary_10_1038_s41467_021_24803_4 crossref_primary_10_1128_mSystems_00385_21 crossref_primary_10_1186_s12866_025_04133_x crossref_primary_10_1186_s13568_025_01919_0 crossref_primary_10_3389_fmicb_2023_1161265 crossref_primary_10_1007_s00705_025_06329_y crossref_primary_10_1016_j_virusres_2022_198902 crossref_primary_10_3389_fmicb_2022_906961 crossref_primary_10_1016_j_virusres_2024_199491 crossref_primary_10_1007_s42995_022_00160_z crossref_primary_10_1016_j_ijfoodmicro_2024_110778 crossref_primary_10_1128_aem_00807_24 crossref_primary_10_1093_ismejo_wrae017 crossref_primary_10_1007_s00705_024_06154_9 crossref_primary_10_1128_mra_00552_25 crossref_primary_10_1007_s00705_023_05737_2 crossref_primary_10_3389_fmicb_2023_1230775 crossref_primary_10_1016_j_isci_2025_113513 crossref_primary_10_1186_s12866_024_03387_1 crossref_primary_10_1016_j_jmii_2025_08_022 crossref_primary_10_1093_jambio_lxaf052 crossref_primary_10_1089_phage_2023_0012 crossref_primary_10_1099_mgen_0_000968 crossref_primary_10_1016_j_virusres_2023_199072 crossref_primary_10_1016_j_virusres_2023_199193 crossref_primary_10_1016_j_ijfoodmicro_2022_109615 crossref_primary_10_1016_j_foodchem_2023_137128 crossref_primary_10_1089_phage_2023_0019 crossref_primary_10_1007_s00705_025_06245_1 crossref_primary_10_3389_fmicb_2023_1293846 crossref_primary_10_1128_spectrum_01571_22 crossref_primary_10_1007_s10123_024_00547_1 crossref_primary_10_3389_fmars_2022_1076885 crossref_primary_10_1038_s41396_021_01097_4 crossref_primary_10_1099_jgv_0_002102 crossref_primary_10_1038_s41598_025_92032_6 crossref_primary_10_1186_s40168_024_01984_w |
| Cites_doi | 10.1093/sysbio/syz036 10.3390/v4081318 10.1073/pnas.0409727102 10.2139/ssrn.3319797 10.1099/ijs.0.64483-0 10.1126/science.1261498 10.1007/s00705-014-2197-x 10.1371/journal.pone.0039107 10.1099/mgen.0.000169 10.1186/1471-2105-10-421 10.1093/nar/gkx1068 10.1111/j.1462-2920.2009.02030.x 10.18637/jss.v053.i09 10.1093/bioinformatics/btw313 10.1186/s12864-019-5647-8 10.1186/1471-2105-14-60 10.1007/s10482-017-0844-4 10.1371/journal.pone.0108277 10.1093/bioinformatics/bts199 10.1099/ijsem.0.000760 10.1371/journal.pone.0011147 10.1093/bioinformatics/btv681 10.6026/97320630012301 10.1093/bioinformatics/btx440 10.1093/database/baw084 10.1093/nar/gki478 10.2144/00286ir01 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/v12111268 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1999-4915 |
| ExternalDocumentID | oai_doaj_org_article_63b2468b022b43febddc8f2e9111919d PMC7694805 33172115 10_3390_v12111268 |
| Genre | Journal Article |
| GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP ALIPV CGR CUY CVF ECM EIF NPM 7X8 ESTFP PUEGO 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c540t-2b465f70bd3cb5695d317b2014347d1af6df855b39c2977ec6a3ddbe917c0ee73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 556 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4915 |
| IngestDate | Mon Nov 10 04:31:19 EST 2025 Tue Nov 04 02:00:31 EST 2025 Thu Oct 02 11:26:21 EDT 2025 Thu Oct 02 05:39:41 EDT 2025 Thu Apr 03 06:55:36 EDT 2025 Tue Nov 18 22:16:52 EST 2025 Sat Nov 29 07:19:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | phages nucleotide-based intergenomic similarity viruses VIRIDIC nucleotide-based intergenomic distance |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-2b465f70bd3cb5695d317b2014347d1af6df855b39c2977ec6a3ddbe917c0ee73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4111-2415 0000-0002-6871-6799 |
| OpenAccessLink | https://doaj.org/article/63b2468b022b43febddc8f2e9111919d |
| PMID | 33172115 |
| PQID | 2459627477 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_63b2468b022b43febddc8f2e9111919d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7694805 proquest_miscellaneous_2498303935 proquest_miscellaneous_2459627477 pubmed_primary_33172115 crossref_citationtrail_10_3390_v12111268 crossref_primary_10_3390_v12111268 |
| PublicationCentury | 2000 |
| PublicationDate | 20201106 |
| PublicationDateYYYYMMDD | 2020-11-06 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201106 day: 6 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Viruses |
| PublicationTitleAlternate | Viruses |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Richter (ref_7) 2016; 32 ref_13 Brum (ref_30) 2015; 348 ref_10 Mahadevan (ref_12) 2016; 12 Kearse (ref_26) 2012; 28 Bao (ref_8) 2012; 4 ref_18 ref_17 ref_16 ref_15 Barylski (ref_27) 2020; 69 Ceyssens (ref_5) 2009; 11 Kucherov (ref_11) 2005; 33 Lee (ref_4) 2016; 66 Goris (ref_1) 2007; 57 Konstantinidis (ref_28) 2005; 102 Gu (ref_19) 2016; 32 Yoon (ref_2) 2017; 110 ref_24 ref_23 ref_22 Stothard (ref_21) 2000; 28 (ref_14) 2017; 33 ref_3 ref_29 Bao (ref_9) 2014; 159 Haft (ref_20) 2018; 46 Rodriguez (ref_25) 2014; 9 ref_6 |
| References_xml | – volume: 9 start-page: 211 year: 2014 ident: ref_25 article-title: Bypassing Cultivation to Identify Bacterial Species publication-title: Microbe – volume: 69 start-page: 110 year: 2020 ident: ref_27 article-title: Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages publication-title: Syst. Biol. doi: 10.1093/sysbio/syz036 – volume: 4 start-page: 1318 year: 2012 ident: ref_8 article-title: PAirwise Sequence Comparison (PASC) and its application in the classification of filoviruses publication-title: Viruses doi: 10.3390/v4081318 – volume: 102 start-page: 2567 year: 2005 ident: ref_28 article-title: Genomic insights that advance the species definition for prokaryotes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409727102 – ident: ref_29 doi: 10.2139/ssrn.3319797 – volume: 57 start-page: 81 year: 2007 ident: ref_1 article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.64483-0 – volume: 348 start-page: 1261498 year: 2015 ident: ref_30 article-title: Patterns and ecological drivers of ocean viral communities publication-title: Science doi: 10.1126/science.1261498 – volume: 159 start-page: 3293 year: 2014 ident: ref_9 article-title: Improvements to pairwise sequence comparison (PASC): A genome-based web tool for virus classification publication-title: Arch. Virol. doi: 10.1007/s00705-014-2197-x – ident: ref_6 doi: 10.1371/journal.pone.0039107 – ident: ref_23 doi: 10.1099/mgen.0.000169 – ident: ref_16 doi: 10.1186/1471-2105-10-421 – volume: 46 start-page: D851 year: 2018 ident: ref_20 article-title: RefSeq: An update on prokaryotic genome annotation and curation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1068 – volume: 11 start-page: 2874 year: 2009 ident: ref_5 article-title: Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2009.02030.x – ident: ref_18 doi: 10.18637/jss.v053.i09 – volume: 32 start-page: 2847 year: 2016 ident: ref_19 article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw313 – ident: ref_24 doi: 10.1186/s12864-019-5647-8 – ident: ref_17 doi: 10.1186/1471-2105-14-60 – volume: 110 start-page: 1281 year: 2017 ident: ref_2 article-title: A large-scale evaluation of algorithms to calculate average nucleotide identity publication-title: Antonie Leeuwenhoek doi: 10.1007/s10482-017-0844-4 – ident: ref_10 doi: 10.1371/journal.pone.0108277 – ident: ref_15 – volume: 28 start-page: 1647 year: 2012 ident: ref_26 article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 66 start-page: 1100 year: 2016 ident: ref_4 article-title: OrthoANI: An improved algorithm and software for calculating average nucleotide identity publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.000760 – ident: ref_13 doi: 10.1371/journal.pone.0011147 – volume: 32 start-page: 929 year: 2016 ident: ref_7 article-title: JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv681 – volume: 12 start-page: 301 year: 2016 ident: ref_12 article-title: An Analysis of Adenovirus Genomes Using Whole Genome Software Tools publication-title: Bioinformation doi: 10.6026/97320630012301 – volume: 33 start-page: 3396 year: 2017 ident: ref_14 article-title: VICTOR: Genome-based phylogeny and classification of prokaryotic viruses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx440 – ident: ref_22 – ident: ref_3 doi: 10.1093/database/baw084 – volume: 33 start-page: W540 year: 2005 ident: ref_11 article-title: YASS: Enhancing the sensitivity of DNA similarity search publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki478 – volume: 28 start-page: 1102 year: 2000 ident: ref_21 article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences publication-title: Biotechniques doi: 10.2144/00286ir01 |
| SSID | ssj0066907 |
| Score | 2.6791823 |
| Snippet | Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1268 |
| SubjectTerms | algorithms Archaea Archaeal Viruses - genetics bacteria bacteriophages Bacteriophages - genetics bioinformatics Computational Biology - methods computer software data collection genome Genome, Viral genomics Genomics - methods Internet nucleotide-based intergenomic distance nucleotide-based intergenomic similarity phages Phylogeny Prokaryotic Cells - virology Software taxonomy VIRIDIC viruses |
| Title | VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33172115 https://www.proquest.com/docview/2459627477 https://www.proquest.com/docview/2498303935 https://pubmed.ncbi.nlm.nih.gov/PMC7694805 https://doaj.org/article/63b2468b022b43febddc8f2e9111919d |
| Volume | 12 |
| WOSCitedRecordID | wos000593902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB5BAakXxE5YogFx4GI1nvFsxza0wgciq5QqnCzPVixSu3KcSL3xI_iF_BJmSaIEVXDh4sPMO4zfMvO98fP3AHinFCcVVTyxGJMkSzVJuMlQ4qCIFUgy3zotNJtgkwmfTkWx1erL14RFeuCouAOKJcool-6skRm2RmqtuEXGB6lIhfa7r0M962Qq7sHU53yRRwi7pP5g6YnMUuT5VLdOn0DSfxOy_LNAcuvEOXkA7q-gIjyMS3wIbpnmEbgXm0dePwbVeX6af8jHv378PISTdmlm8KxtZ7Bv4bia-fLS3kAH72C49PNcrJe1gp_ry9ols4FHFbYWFl37vequ294keazLai7ged0t5mb-BHw5OT4bf0xWDRMS5YBXnzgNUWLZSGqsJKGCaIcOJPIUfhnTaWWptpwQiYVCDvcZRSustXS6ZGpkDMNPwV7TNuY5gIJngiNpRtRhDBe43EjBlE2RUVJWqR2A92tFlmrFJu6bWsxKl1V4nZcbnQ_A243oVaTQuEnoyFtjI-BZr8OA84Vy5Qvlv3xhAN6sbVm6KPGfPqrGtIt5ibLYZYixv8kIjsOvygPwLNp_sxyMQ6rsZtiOZ-ysd3emqb8Ftm5GRcZH5MX_eMGXYB_5fN9fa9NXYK_vFuY1uKuWfT3vhuA2m7Lw5ENw5-h4UpwOQ1gMfUVr4caK_FPx9TcNxBNv |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VIRIDIC%E2%80%94A+Novel+Tool+to+Calculate+the+Intergenomic+Similarities+of+Prokaryote-Infecting+Viruses&rft.jtitle=Viruses&rft.au=Moraru%2C+Cristina&rft.au=Varsani%2C+Arvind&rft.au=Kropinski%2C+Andrew+M.&rft.date=2020-11-06&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=12&rft.issue=11&rft.spage=1268&rft_id=info:doi/10.3390%2Fv12111268&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_v12111268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |