Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes

The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Diabetes (New York, N.Y.) Ročník 63; číslo 12; s. 4369
Hlavní autori: Yaghootkar, Hanieh, Scott, Robert A, White, Charles C, Zhang, Weihua, Speliotes, Elizabeth, Munroe, Patricia B, Ehret, Georg B, Bis, Joshua C, Fox, Caroline S, Walker, Mark, Borecki, Ingrid B, Knowles, Joshua W, Yerges-Armstrong, Laura, Ohlsson, Claes, Perry, John R B, Chambers, John C, Kooner, Jaspal S, Franceschini, Nora, Langenberg, Claudia, Hivert, Marie-France, Dastani, Zari, Richards, J Brent, Semple, Robert K, Frayling, Timothy M
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.12.2014
Predmet:
ISSN:1939-327X, 1939-327X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.
AbstractList The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.
The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.
Author Walker, Mark
White, Charles C
Semple, Robert K
Borecki, Ingrid B
Hivert, Marie-France
Knowles, Joshua W
Kooner, Jaspal S
Scott, Robert A
Bis, Joshua C
Langenberg, Claudia
Dastani, Zari
Frayling, Timothy M
Zhang, Weihua
Speliotes, Elizabeth
Ohlsson, Claes
Franceschini, Nora
Chambers, John C
Yaghootkar, Hanieh
Munroe, Patricia B
Ehret, Georg B
Perry, John R B
Richards, J Brent
Yerges-Armstrong, Laura
Fox, Caroline S
Author_xml – sequence: 1
  givenname: Hanieh
  surname: Yaghootkar
  fullname: Yaghootkar, Hanieh
  organization: Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, U.K
– sequence: 2
  givenname: Robert A
  surname: Scott
  fullname: Scott, Robert A
  organization: MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, U.K
– sequence: 3
  givenname: Charles C
  surname: White
  fullname: White, Charles C
  organization: Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA Department of Biostatistics, Boston University School of Public Health, Boston, MA
– sequence: 4
  givenname: Weihua
  surname: Zhang
  fullname: Zhang, Weihua
  organization: Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K
– sequence: 5
  givenname: Elizabeth
  surname: Speliotes
  fullname: Speliotes, Elizabeth
  organization: Department of Internal Medicine, Division of Gastroenterology, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
– sequence: 6
  givenname: Patricia B
  surname: Munroe
  fullname: Munroe, Patricia B
  organization: Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
– sequence: 7
  givenname: Georg B
  surname: Ehret
  fullname: Ehret, Georg B
  organization: Cardiology Center, Geneva University Hospital, Geneva, Switzerland Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
– sequence: 8
  givenname: Joshua C
  surname: Bis
  fullname: Bis, Joshua C
  organization: Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, WA
– sequence: 9
  givenname: Caroline S
  surname: Fox
  fullname: Fox, Caroline S
  organization: Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA Center for Population Studies, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
– sequence: 10
  givenname: Mark
  surname: Walker
  fullname: Walker, Mark
  organization: Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
– sequence: 11
  givenname: Ingrid B
  surname: Borecki
  fullname: Borecki, Ingrid B
  organization: Department of Genetics, Washington University School of Medicine, St. Louis, MO
– sequence: 12
  givenname: Joshua W
  surname: Knowles
  fullname: Knowles, Joshua W
  organization: Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
– sequence: 13
  givenname: Laura
  surname: Yerges-Armstrong
  fullname: Yerges-Armstrong, Laura
  organization: University of Maryland School of Medicine, Division of Endocrinology, Baltimore, MA
– sequence: 14
  givenname: Claes
  surname: Ohlsson
  fullname: Ohlsson, Claes
  organization: Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
– sequence: 15
  givenname: John R B
  surname: Perry
  fullname: Perry, John R B
  organization: MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, U.K
– sequence: 16
  givenname: John C
  surname: Chambers
  fullname: Chambers, John C
  organization: Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K
– sequence: 17
  givenname: Jaspal S
  surname: Kooner
  fullname: Kooner, Jaspal S
  organization: Cardiovascular Science, National Heart and Lung Institute, Imperial College London, London, U.K
– sequence: 18
  givenname: Nora
  surname: Franceschini
  fullname: Franceschini, Nora
  organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
– sequence: 19
  givenname: Claudia
  surname: Langenberg
  fullname: Langenberg, Claudia
  organization: MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, U.K. Department of Epidemiology and Public Health, University College London, London, U.K
– sequence: 20
  givenname: Marie-France
  surname: Hivert
  fullname: Hivert, Marie-France
  organization: Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA General Medicine Division, Massachusetts General Hospital, Boston, MA
– sequence: 21
  givenname: Zari
  surname: Dastani
  fullname: Dastani, Zari
  organization: Departments of Human Genetics and Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada
– sequence: 22
  givenname: J Brent
  surname: Richards
  fullname: Richards, J Brent
  organization: Department of Twin Research and Genetic Epidemiology, King's College London, London, U.K. Department of Medicine, Human Genetics, Epidemiology, and Biostatistics, McGill University, Montreal, Quebec, Canada
– sequence: 23
  givenname: Robert K
  surname: Semple
  fullname: Semple, Robert K
  organization: The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, U.K. The University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, U.K
– sequence: 24
  givenname: Timothy M
  surname: Frayling
  fullname: Frayling, Timothy M
  email: t.m.frayling@ex.ac.uk
  organization: Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, U.K. t.m.frayling@ex.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25048195$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1KAzEUhYNU7I8ufAEJXbnoaJL56yylaBUKbhTcDXeSO210JhknGaXP4ssatILcxbkcPs7lnikZGWuQkHPOrkQc59eq4knEYr48IhNexEUUi_xl9G8fk6lzr4yxLMwJGYuUJUtepBPytUaDXkuKH1qhkUhr21OgxvYtNNEn6u3O03mLHirbaAlNs6e2Qodz2u3QWL_vkDbavGmzpdq4Iey0R6edhxC3oLsA9B6N09YsqLS9NdDvKQQviNIOwQUMjKI_WSJ4UKFHd0qOa2gcnh10Rp7vbp9W99Hmcf2wutlEMk2Yj0TOakQoEpHxIsljDryq0jRLZBILBopJKVQFwFXBIMsky2XohRcsUCrLazEjl7-5XW_fB3S-bLWT2DRg0A6u5Fk4kYem04BeHNChalGVXa_b8E35V6j4BvySe4A
CitedBy_id crossref_primary_10_1007_s11892_020_01302_2
crossref_primary_10_1038_s41467_020_15291_z
crossref_primary_10_1007_s11886_016_0755_4
crossref_primary_10_3390_nu14153201
crossref_primary_10_3390_ijms252413238
crossref_primary_10_1007_s00125_016_4081_6
crossref_primary_10_1080_17446651_2017_1323631
crossref_primary_10_1371_journal_pone_0304036
crossref_primary_10_3390_antiox9060497
crossref_primary_10_1016_j_molmed_2015_04_004
crossref_primary_10_1097_XCE_0000000000000212
crossref_primary_10_2337_dc16_0586
crossref_primary_10_1038_s41598_020_66199_z
crossref_primary_10_3390_ijms22157797
crossref_primary_10_1093_ije_dyad043
crossref_primary_10_1371_journal_pgen_1009975
crossref_primary_10_1038_s41574_025_01132_w
crossref_primary_10_1038_s41467_022_32398_7
crossref_primary_10_2337_db14_0319
crossref_primary_10_1038_s41467_025_62730_w
crossref_primary_10_3389_fcvm_2021_752789
crossref_primary_10_3390_diagnostics13142348
crossref_primary_10_1001_jama_2018_19329
crossref_primary_10_1038_s41575_021_00472_y
crossref_primary_10_1111_joim_12827
crossref_primary_10_1016_S0140_6736_18_31132_2
crossref_primary_10_1111_dme_15226
crossref_primary_10_2337_db21_0129
crossref_primary_10_1111_dme_14531
crossref_primary_10_1111_nyas_13588
crossref_primary_10_3389_fgene_2020_615012
crossref_primary_10_1007_s13679_015_0173_8
crossref_primary_10_1016_j_isci_2024_109815
crossref_primary_10_1016_j_exger_2017_10_014
crossref_primary_10_1038_s41467_025_57452_y
crossref_primary_10_3389_fgene_2017_00150
crossref_primary_10_1186_s12916_020_01688_6
crossref_primary_10_1016_j_diabet_2022_101409
crossref_primary_10_1007_s00125_018_4623_1
crossref_primary_10_1161_CIRCRESAHA_119_316065
crossref_primary_10_2217_ica_14_59
crossref_primary_10_1111_joim_13082
crossref_primary_10_1038_s42003_021_02550_y
crossref_primary_10_1038_nrendo_2016_77
crossref_primary_10_1186_s12937_025_01155_z
crossref_primary_10_2337_db24_1103
crossref_primary_10_1038_ng_3653
crossref_primary_10_2337_db14_1358
crossref_primary_10_1097_HCO_0000000000000297
crossref_primary_10_1016_j_ejim_2023_02_025
crossref_primary_10_1111_dme_15213
crossref_primary_10_3390_ijms22052235
crossref_primary_10_1038_s42255_022_00561_5
crossref_primary_10_1016_j_diabres_2025_112387
crossref_primary_10_3390_jcm10122688
crossref_primary_10_1007_s11892_015_0684_4
crossref_primary_10_1007_s11892_018_1009_1
crossref_primary_10_1038_s42003_019_0579_z
crossref_primary_10_1111_jch_13591
crossref_primary_10_1007_s13340_021_00543_0
crossref_primary_10_1210_clinem_dgz198
crossref_primary_10_3390_nu13010125
crossref_primary_10_2337_dc21_1395
crossref_primary_10_1210_endocr_bqaa017
crossref_primary_10_1016_j_hnm_2023_200206
crossref_primary_10_1016_j_neurobiolaging_2021_02_010
crossref_primary_10_2174_0929867326666181220094721
crossref_primary_10_1016_j_cpcardiol_2017_05_001
crossref_primary_10_1186_s12916_014_0123_4
crossref_primary_10_1007_s13105_020_00781_x
crossref_primary_10_1016_j_dsx_2019_07_038
crossref_primary_10_1097_MOL_0000000000000276
crossref_primary_10_2337_dbi16_0069
crossref_primary_10_2337_db16_0868
crossref_primary_10_2337_db23_0699
crossref_primary_10_3389_fendo_2019_00840
crossref_primary_10_1038_ng_3714
crossref_primary_10_1186_s12889_024_18418_9
crossref_primary_10_1007_s00125_022_05720_7
crossref_primary_10_1161_CIRCGENETICS_114_000740
crossref_primary_10_1007_s00125_020_05228_y
crossref_primary_10_1038_s41588_023_01625_2
crossref_primary_10_1136_bmjdrc_2020_001217
crossref_primary_10_1172_JCI91578
crossref_primary_10_1016_j_cmet_2017_07_008
crossref_primary_10_1080_10799893_2020_1806319
crossref_primary_10_1007_s00592_023_02230_9
crossref_primary_10_1016_j_dsx_2016_01_035
crossref_primary_10_1016_j_numecd_2020_05_008
crossref_primary_10_1161_CIRCGEN_121_003583
crossref_primary_10_1161_HYPERTENSIONAHA_120_14535
crossref_primary_10_1002_ctm2_70076
crossref_primary_10_2337_db18_0708
crossref_primary_10_1158_1940_6207_CAPR_20_0633
crossref_primary_10_1016_j_metabol_2015_10_019
crossref_primary_10_1136_bmjdrc_2021_002275
crossref_primary_10_1016_j_orcp_2017_10_005
crossref_primary_10_1007_s00592_017_1015_9
crossref_primary_10_12688_wellcomeopenres_16251_1
crossref_primary_10_21101_cejph_a5077
crossref_primary_10_1016_S2213_8587_18_30070_6
crossref_primary_10_1111_1753_0407_12882
crossref_primary_10_1016_j_nut_2015_07_010
crossref_primary_10_1242_bio_058420
crossref_primary_10_1016_j_mce_2015_09_029
crossref_primary_10_1186_s13073_023_01255_7
crossref_primary_10_3390_nu11030652
crossref_primary_10_3390_jcm14030678
crossref_primary_10_3945_jn_115_214551
crossref_primary_10_1038_s41598_018_26701_0
crossref_primary_10_1161_CIRCGENETICS_117_001837
crossref_primary_10_2147_DMSO_S402849
crossref_primary_10_2337_db23_1005
crossref_primary_10_1007_s11154_016_9348_1
crossref_primary_10_4103_ijmr_IJMR_1768_17
crossref_primary_10_1016_S2213_8587_20_30110_8
crossref_primary_10_2337_db14_1710
crossref_primary_10_1007_s11695_019_03964_8
crossref_primary_10_1186_s13098_018_0375_9
crossref_primary_10_1038_ijo_2017_4
crossref_primary_10_1210_er_2019_00088
crossref_primary_10_7554_eLife_53074
crossref_primary_10_1016_j_ebiom_2025_105609
crossref_primary_10_3389_fendo_2021_647864
crossref_primary_10_1007_s40618_020_01446_8
crossref_primary_10_3390_ijms24010658
crossref_primary_10_1242_dmm_030981
crossref_primary_10_1186_s12933_025_02665_0
crossref_primary_10_2337_db16_0046
crossref_primary_10_1371_journal_pcbi_1008044
crossref_primary_10_1038_s41591_025_03931_0
crossref_primary_10_1038_s41598_017_17746_8
crossref_primary_10_3390_cancers13020255
crossref_primary_10_1002_oby_21624
crossref_primary_10_1007_s00125_022_05848_6
crossref_primary_10_1016_S2213_8587_23_00232_2
crossref_primary_10_1111_tra_70004
crossref_primary_10_1371_journal_pmed_1002654
crossref_primary_10_1007_s10528_017_9827_4
crossref_primary_10_3390_children9081262
crossref_primary_10_1210_js_2019_00069
crossref_primary_10_1371_journal_pgen_1004978
crossref_primary_10_1093_hmg_ddv465
crossref_primary_10_1097_MCO_0000000000000190
crossref_primary_10_2337_db15_1671
crossref_primary_10_1007_s00125_017_4266_7
crossref_primary_10_1016_j_metabol_2018_11_009
crossref_primary_10_1038_s42255_021_00346_2
crossref_primary_10_1007_s11892_020_1285_4
crossref_primary_10_1038_s42255_023_00807_w
crossref_primary_10_1371_journal_pone_0252855
crossref_primary_10_1007_s00125_021_05552_x
crossref_primary_10_1242_dmm_049340
crossref_primary_10_1007_s12149_014_0933_7
crossref_primary_10_1007_s00125_021_05570_9
crossref_primary_10_1136_bmjdrc_2025_005118
crossref_primary_10_1016_j_gde_2018_05_010
ContentType Journal Article
Copyright 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Copyright_xml – notice: 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2337/db14-0318
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
ExternalDocumentID 25048195
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0500070
– fundername: Medical Research Council
  grantid: G0600717
– fundername: Medical Research Council
  grantid: MC_UU_12015/1
– fundername: Wellcome Trust
  grantid: 100574
– fundername: Medical Research Council
  grantid: MC_UU_12015/2
– fundername: Wellcome Trust
  grantid: 098498
GroupedDBID ---
.55
.GJ
.XZ
08P
0R~
18M
1CY
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAFWJ
AAKAS
AAQQT
AAWTL
AAYEP
AAYJJ
ABOCM
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADGHP
ADZCM
AEGXH
AENEX
AERZD
AFFNX
AFKRA
AHMBA
AI.
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EBS
ECM
EDB
EIF
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GICCO
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
J5H
K-O
K2M
K9-
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5~
M7P
MVM
N4W
NAPCQ
NPM
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
PEA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
TEORI
TR2
UKHRP
VH1
VVN
W8F
WH7
WOQ
WOW
X7M
XOL
YFH
YHG
YOC
YQJ
ZGI
ZXP
ZY1
~KM
7X8
ID FETCH-LOGICAL-c540t-270feea9426194731a1bb5564c4320ad0cc2dbaa1d90a66c07c939190bb5d67f2
IEDL.DBID 7X8
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345335500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-327X
IngestDate Fri Sep 05 06:34:10 EDT 2025
Mon Jul 21 06:05:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-270feea9426194731a1bb5564c4320ad0cc2dbaa1d90a66c07c939190bb5d67f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://diabetes.diabetesjournals.org/content/diabetes/63/12/4369.full.pdf
PMID 25048195
PQID 1627072335
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1627072335
pubmed_primary_25048195
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2014
References 25414016 - Diabetes. 2014 Dec;63(12):4004-7. doi: 10.2337/db14-1358.
References_xml – reference: 25414016 - Diabetes. 2014 Dec;63(12):4004-7. doi: 10.2337/db14-1358.
SSID ssj0006060
Score 2.5494554
Snippet The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4369
SubjectTerms Body Mass Index
Coronary Artery Disease - genetics
Diabetes Mellitus, Type 2 - genetics
Genetic Predisposition to Disease
Humans
Hypertension - genetics
Insulin Resistance - genetics
Intra-Abdominal Fat
Lipodystrophy - genetics
Metabolic Syndrome - genetics
Obesity - genetics
Odds Ratio
Phenotype
Subcutaneous Fat
Title Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/25048195
https://www.proquest.com/docview/1627072335
Volume 63
WOSCitedRecordID wos000345335500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIsSFfSmbBsSxUbM1rk8IISoOtOIAqLfKWwRSSUpbQP0WfpYZx1VPSEhccoljWfbEeX5v8oaxS9vOIhMJG2Q6FUTdRIGwURpYIWVoW21jnJnO8z3v9dr9vnjwhNvEp1XO90S3UZtSE0fejLKYhzxOktbV6D2gqlGkrvoSGsusliCUoajm_YVbOILzsFKVRZDEvF85C2EfvGkUDogC-ndk6b4wnc3_jm2LbXhsCddVMGyzJVvssLWuV8932Td5TOM9sL6UKCBiBQkF4dZh8OVYUrh4s1OMDCLzhsMZlMpO7AVQKlhJfC34agvgs9gBz-uEQbG7Brxgg7HLiS-LBmhyR5DjGbi80Rl4MagBsjDg-ophzv3usafO7ePNXeCLMwQaQd6U_mPLrZXCHcFSnkQyUqrVylKdJnEoTah1bJSUkRGhzDIdco3LgPADW5mM5_E-WynKwh4yCEUuhFKc3AJSpbVSeYZAiTRSPDSrpM7O59M-wOAnRUMWtvyYDBYTX2cH1doNRpVLx4C82UgkPPrD08dsHYFQWqWpnLBajq--PWWr-nP6OhmfuajCa--h-wMU3dnU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evidence+for+a+normal-weight+%22metabolically+obese%22+phenotype+linking+insulin+resistance%2C+hypertension%2C+coronary+artery+disease%2C+and+type+2+diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Yaghootkar%2C+Hanieh&rft.au=Scott%2C+Robert+A&rft.au=White%2C+Charles+C&rft.au=Zhang%2C+Weihua&rft.date=2014-12-01&rft.issn=1939-327X&rft.eissn=1939-327X&rft.volume=63&rft.issue=12&rft.spage=4369&rft_id=info:doi/10.2337%2Fdb14-0318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-327X&client=summon