Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes
The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that c...
Uložené v:
| Vydané v: | Diabetes (New York, N.Y.) Ročník 63; číslo 12; s. 4369 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.12.2014
|
| Predmet: | |
| ISSN: | 1939-327X, 1939-327X |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism. |
|---|---|
| AbstractList | The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism. The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism. |
| Author | Walker, Mark White, Charles C Semple, Robert K Borecki, Ingrid B Hivert, Marie-France Knowles, Joshua W Kooner, Jaspal S Scott, Robert A Bis, Joshua C Langenberg, Claudia Dastani, Zari Frayling, Timothy M Zhang, Weihua Speliotes, Elizabeth Ohlsson, Claes Franceschini, Nora Chambers, John C Yaghootkar, Hanieh Munroe, Patricia B Ehret, Georg B Perry, John R B Richards, J Brent Yerges-Armstrong, Laura Fox, Caroline S |
| Author_xml | – sequence: 1 givenname: Hanieh surname: Yaghootkar fullname: Yaghootkar, Hanieh organization: Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, U.K – sequence: 2 givenname: Robert A surname: Scott fullname: Scott, Robert A organization: MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, U.K – sequence: 3 givenname: Charles C surname: White fullname: White, Charles C organization: Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA Department of Biostatistics, Boston University School of Public Health, Boston, MA – sequence: 4 givenname: Weihua surname: Zhang fullname: Zhang, Weihua organization: Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K – sequence: 5 givenname: Elizabeth surname: Speliotes fullname: Speliotes, Elizabeth organization: Department of Internal Medicine, Division of Gastroenterology, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI – sequence: 6 givenname: Patricia B surname: Munroe fullname: Munroe, Patricia B organization: Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K – sequence: 7 givenname: Georg B surname: Ehret fullname: Ehret, Georg B organization: Cardiology Center, Geneva University Hospital, Geneva, Switzerland Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD – sequence: 8 givenname: Joshua C surname: Bis fullname: Bis, Joshua C organization: Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, WA – sequence: 9 givenname: Caroline S surname: Fox fullname: Fox, Caroline S organization: Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA Center for Population Studies, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA – sequence: 10 givenname: Mark surname: Walker fullname: Walker, Mark organization: Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K – sequence: 11 givenname: Ingrid B surname: Borecki fullname: Borecki, Ingrid B organization: Department of Genetics, Washington University School of Medicine, St. Louis, MO – sequence: 12 givenname: Joshua W surname: Knowles fullname: Knowles, Joshua W organization: Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA – sequence: 13 givenname: Laura surname: Yerges-Armstrong fullname: Yerges-Armstrong, Laura organization: University of Maryland School of Medicine, Division of Endocrinology, Baltimore, MA – sequence: 14 givenname: Claes surname: Ohlsson fullname: Ohlsson, Claes organization: Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden – sequence: 15 givenname: John R B surname: Perry fullname: Perry, John R B organization: MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, U.K – sequence: 16 givenname: John C surname: Chambers fullname: Chambers, John C organization: Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K – sequence: 17 givenname: Jaspal S surname: Kooner fullname: Kooner, Jaspal S organization: Cardiovascular Science, National Heart and Lung Institute, Imperial College London, London, U.K – sequence: 18 givenname: Nora surname: Franceschini fullname: Franceschini, Nora organization: Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC – sequence: 19 givenname: Claudia surname: Langenberg fullname: Langenberg, Claudia organization: MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, U.K. Department of Epidemiology and Public Health, University College London, London, U.K – sequence: 20 givenname: Marie-France surname: Hivert fullname: Hivert, Marie-France organization: Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA General Medicine Division, Massachusetts General Hospital, Boston, MA – sequence: 21 givenname: Zari surname: Dastani fullname: Dastani, Zari organization: Departments of Human Genetics and Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada – sequence: 22 givenname: J Brent surname: Richards fullname: Richards, J Brent organization: Department of Twin Research and Genetic Epidemiology, King's College London, London, U.K. Department of Medicine, Human Genetics, Epidemiology, and Biostatistics, McGill University, Montreal, Quebec, Canada – sequence: 23 givenname: Robert K surname: Semple fullname: Semple, Robert K organization: The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, U.K. The University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, U.K – sequence: 24 givenname: Timothy M surname: Frayling fullname: Frayling, Timothy M email: t.m.frayling@ex.ac.uk organization: Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, U.K. t.m.frayling@ex.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25048195$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1KAzEUhYNU7I8ufAEJXbnoaJL56yylaBUKbhTcDXeSO210JhknGaXP4ssatILcxbkcPs7lnikZGWuQkHPOrkQc59eq4knEYr48IhNexEUUi_xl9G8fk6lzr4yxLMwJGYuUJUtepBPytUaDXkuKH1qhkUhr21OgxvYtNNEn6u3O03mLHirbaAlNs6e2Qodz2u3QWL_vkDbavGmzpdq4Iey0R6edhxC3oLsA9B6N09YsqLS9NdDvKQQviNIOwQUMjKI_WSJ4UKFHd0qOa2gcnh10Rp7vbp9W99Hmcf2wutlEMk2Yj0TOakQoEpHxIsljDryq0jRLZBILBopJKVQFwFXBIMsky2XohRcsUCrLazEjl7-5XW_fB3S-bLWT2DRg0A6u5Fk4kYem04BeHNChalGVXa_b8E35V6j4BvySe4A |
| CitedBy_id | crossref_primary_10_1007_s11892_020_01302_2 crossref_primary_10_1038_s41467_020_15291_z crossref_primary_10_1007_s11886_016_0755_4 crossref_primary_10_3390_nu14153201 crossref_primary_10_3390_ijms252413238 crossref_primary_10_1007_s00125_016_4081_6 crossref_primary_10_1080_17446651_2017_1323631 crossref_primary_10_1371_journal_pone_0304036 crossref_primary_10_3390_antiox9060497 crossref_primary_10_1016_j_molmed_2015_04_004 crossref_primary_10_1097_XCE_0000000000000212 crossref_primary_10_2337_dc16_0586 crossref_primary_10_1038_s41598_020_66199_z crossref_primary_10_3390_ijms22157797 crossref_primary_10_1093_ije_dyad043 crossref_primary_10_1371_journal_pgen_1009975 crossref_primary_10_1038_s41574_025_01132_w crossref_primary_10_1038_s41467_022_32398_7 crossref_primary_10_2337_db14_0319 crossref_primary_10_1038_s41467_025_62730_w crossref_primary_10_3389_fcvm_2021_752789 crossref_primary_10_3390_diagnostics13142348 crossref_primary_10_1001_jama_2018_19329 crossref_primary_10_1038_s41575_021_00472_y crossref_primary_10_1111_joim_12827 crossref_primary_10_1016_S0140_6736_18_31132_2 crossref_primary_10_1111_dme_15226 crossref_primary_10_2337_db21_0129 crossref_primary_10_1111_dme_14531 crossref_primary_10_1111_nyas_13588 crossref_primary_10_3389_fgene_2020_615012 crossref_primary_10_1007_s13679_015_0173_8 crossref_primary_10_1016_j_isci_2024_109815 crossref_primary_10_1016_j_exger_2017_10_014 crossref_primary_10_1038_s41467_025_57452_y crossref_primary_10_3389_fgene_2017_00150 crossref_primary_10_1186_s12916_020_01688_6 crossref_primary_10_1016_j_diabet_2022_101409 crossref_primary_10_1007_s00125_018_4623_1 crossref_primary_10_1161_CIRCRESAHA_119_316065 crossref_primary_10_2217_ica_14_59 crossref_primary_10_1111_joim_13082 crossref_primary_10_1038_s42003_021_02550_y crossref_primary_10_1038_nrendo_2016_77 crossref_primary_10_1186_s12937_025_01155_z crossref_primary_10_2337_db24_1103 crossref_primary_10_1038_ng_3653 crossref_primary_10_2337_db14_1358 crossref_primary_10_1097_HCO_0000000000000297 crossref_primary_10_1016_j_ejim_2023_02_025 crossref_primary_10_1111_dme_15213 crossref_primary_10_3390_ijms22052235 crossref_primary_10_1038_s42255_022_00561_5 crossref_primary_10_1016_j_diabres_2025_112387 crossref_primary_10_3390_jcm10122688 crossref_primary_10_1007_s11892_015_0684_4 crossref_primary_10_1007_s11892_018_1009_1 crossref_primary_10_1038_s42003_019_0579_z crossref_primary_10_1111_jch_13591 crossref_primary_10_1007_s13340_021_00543_0 crossref_primary_10_1210_clinem_dgz198 crossref_primary_10_3390_nu13010125 crossref_primary_10_2337_dc21_1395 crossref_primary_10_1210_endocr_bqaa017 crossref_primary_10_1016_j_hnm_2023_200206 crossref_primary_10_1016_j_neurobiolaging_2021_02_010 crossref_primary_10_2174_0929867326666181220094721 crossref_primary_10_1016_j_cpcardiol_2017_05_001 crossref_primary_10_1186_s12916_014_0123_4 crossref_primary_10_1007_s13105_020_00781_x crossref_primary_10_1016_j_dsx_2019_07_038 crossref_primary_10_1097_MOL_0000000000000276 crossref_primary_10_2337_dbi16_0069 crossref_primary_10_2337_db16_0868 crossref_primary_10_2337_db23_0699 crossref_primary_10_3389_fendo_2019_00840 crossref_primary_10_1038_ng_3714 crossref_primary_10_1186_s12889_024_18418_9 crossref_primary_10_1007_s00125_022_05720_7 crossref_primary_10_1161_CIRCGENETICS_114_000740 crossref_primary_10_1007_s00125_020_05228_y crossref_primary_10_1038_s41588_023_01625_2 crossref_primary_10_1136_bmjdrc_2020_001217 crossref_primary_10_1172_JCI91578 crossref_primary_10_1016_j_cmet_2017_07_008 crossref_primary_10_1080_10799893_2020_1806319 crossref_primary_10_1007_s00592_023_02230_9 crossref_primary_10_1016_j_dsx_2016_01_035 crossref_primary_10_1016_j_numecd_2020_05_008 crossref_primary_10_1161_CIRCGEN_121_003583 crossref_primary_10_1161_HYPERTENSIONAHA_120_14535 crossref_primary_10_1002_ctm2_70076 crossref_primary_10_2337_db18_0708 crossref_primary_10_1158_1940_6207_CAPR_20_0633 crossref_primary_10_1016_j_metabol_2015_10_019 crossref_primary_10_1136_bmjdrc_2021_002275 crossref_primary_10_1016_j_orcp_2017_10_005 crossref_primary_10_1007_s00592_017_1015_9 crossref_primary_10_12688_wellcomeopenres_16251_1 crossref_primary_10_21101_cejph_a5077 crossref_primary_10_1016_S2213_8587_18_30070_6 crossref_primary_10_1111_1753_0407_12882 crossref_primary_10_1016_j_nut_2015_07_010 crossref_primary_10_1242_bio_058420 crossref_primary_10_1016_j_mce_2015_09_029 crossref_primary_10_1186_s13073_023_01255_7 crossref_primary_10_3390_nu11030652 crossref_primary_10_3390_jcm14030678 crossref_primary_10_3945_jn_115_214551 crossref_primary_10_1038_s41598_018_26701_0 crossref_primary_10_1161_CIRCGENETICS_117_001837 crossref_primary_10_2147_DMSO_S402849 crossref_primary_10_2337_db23_1005 crossref_primary_10_1007_s11154_016_9348_1 crossref_primary_10_4103_ijmr_IJMR_1768_17 crossref_primary_10_1016_S2213_8587_20_30110_8 crossref_primary_10_2337_db14_1710 crossref_primary_10_1007_s11695_019_03964_8 crossref_primary_10_1186_s13098_018_0375_9 crossref_primary_10_1038_ijo_2017_4 crossref_primary_10_1210_er_2019_00088 crossref_primary_10_7554_eLife_53074 crossref_primary_10_1016_j_ebiom_2025_105609 crossref_primary_10_3389_fendo_2021_647864 crossref_primary_10_1007_s40618_020_01446_8 crossref_primary_10_3390_ijms24010658 crossref_primary_10_1242_dmm_030981 crossref_primary_10_1186_s12933_025_02665_0 crossref_primary_10_2337_db16_0046 crossref_primary_10_1371_journal_pcbi_1008044 crossref_primary_10_1038_s41591_025_03931_0 crossref_primary_10_1038_s41598_017_17746_8 crossref_primary_10_3390_cancers13020255 crossref_primary_10_1002_oby_21624 crossref_primary_10_1007_s00125_022_05848_6 crossref_primary_10_1016_S2213_8587_23_00232_2 crossref_primary_10_1111_tra_70004 crossref_primary_10_1371_journal_pmed_1002654 crossref_primary_10_1007_s10528_017_9827_4 crossref_primary_10_3390_children9081262 crossref_primary_10_1210_js_2019_00069 crossref_primary_10_1371_journal_pgen_1004978 crossref_primary_10_1093_hmg_ddv465 crossref_primary_10_1097_MCO_0000000000000190 crossref_primary_10_2337_db15_1671 crossref_primary_10_1007_s00125_017_4266_7 crossref_primary_10_1016_j_metabol_2018_11_009 crossref_primary_10_1038_s42255_021_00346_2 crossref_primary_10_1007_s11892_020_1285_4 crossref_primary_10_1038_s42255_023_00807_w crossref_primary_10_1371_journal_pone_0252855 crossref_primary_10_1007_s00125_021_05552_x crossref_primary_10_1242_dmm_049340 crossref_primary_10_1007_s12149_014_0933_7 crossref_primary_10_1007_s00125_021_05570_9 crossref_primary_10_1136_bmjdrc_2025_005118 crossref_primary_10_1016_j_gde_2018_05_010 |
| ContentType | Journal Article |
| Copyright | 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. |
| Copyright_xml | – notice: 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.2337/db14-0318 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1939-327X |
| ExternalDocumentID | 25048195 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0500070 – fundername: Medical Research Council grantid: G0600717 – fundername: Medical Research Council grantid: MC_UU_12015/1 – fundername: Wellcome Trust grantid: 100574 – fundername: Medical Research Council grantid: MC_UU_12015/2 – fundername: Wellcome Trust grantid: 098498 |
| GroupedDBID | --- .55 .GJ .XZ 08P 0R~ 18M 1CY 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAFWJ AAKAS AAQQT AAWTL AAYEP AAYJJ ABOCM ABUWG ACGFO ACGOD ACPRK ADBBV ADGHP ADZCM AEGXH AENEX AERZD AFFNX AFKRA AHMBA AI. AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BTFSW BVXVI C1A CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBS ECM EDB EIF EJD EMOBN EX3 F5P FRP FYUFA GICCO GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HZ~ H~9 IAG IAO IEA IHR INH INR IOF IPO ITC J5H K-O K2M K9- KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5~ M7P MVM N4W NAPCQ NPM O5R O5S O9- OB3 OHH OK1 OVD P2P PCD PEA PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RPM S0X SJFOW SJN SV3 TDI TEORI TR2 UKHRP VH1 VVN W8F WH7 WOQ WOW X7M XOL YFH YHG YOC YQJ ZGI ZXP ZY1 ~KM 7X8 |
| ID | FETCH-LOGICAL-c540t-270feea9426194731a1bb5564c4320ad0cc2dbaa1d90a66c07c939190bb5d67f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345335500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-327X |
| IngestDate | Fri Sep 05 06:34:10 EDT 2025 Mon Jul 21 06:05:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-270feea9426194731a1bb5564c4320ad0cc2dbaa1d90a66c07c939190bb5d67f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://diabetes.diabetesjournals.org/content/diabetes/63/12/4369.full.pdf |
| PMID | 25048195 |
| PQID | 1627072335 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1627072335 pubmed_primary_25048195 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Diabetes (New York, N.Y.) |
| PublicationTitleAlternate | Diabetes |
| PublicationYear | 2014 |
| References | 25414016 - Diabetes. 2014 Dec;63(12):4004-7. doi: 10.2337/db14-1358. |
| References_xml | – reference: 25414016 - Diabetes. 2014 Dec;63(12):4004-7. doi: 10.2337/db14-1358. |
| SSID | ssj0006060 |
| Score | 2.5494554 |
| Snippet | The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4369 |
| SubjectTerms | Body Mass Index Coronary Artery Disease - genetics Diabetes Mellitus, Type 2 - genetics Genetic Predisposition to Disease Humans Hypertension - genetics Insulin Resistance - genetics Intra-Abdominal Fat Lipodystrophy - genetics Metabolic Syndrome - genetics Obesity - genetics Odds Ratio Phenotype Subcutaneous Fat |
| Title | Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25048195 https://www.proquest.com/docview/1627072335 |
| Volume | 63 |
| WOSCitedRecordID | wos000345335500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIsSFfSmbBsSxUbM1rk8IISoOtOIAqLfKWwRSSUpbQP0WfpYZx1VPSEhccoljWfbEeX5v8oaxS9vOIhMJG2Q6FUTdRIGwURpYIWVoW21jnJnO8z3v9dr9vnjwhNvEp1XO90S3UZtSE0fejLKYhzxOktbV6D2gqlGkrvoSGsusliCUoajm_YVbOILzsFKVRZDEvF85C2EfvGkUDogC-ndk6b4wnc3_jm2LbXhsCddVMGyzJVvssLWuV8932Td5TOM9sL6UKCBiBQkF4dZh8OVYUrh4s1OMDCLzhsMZlMpO7AVQKlhJfC34agvgs9gBz-uEQbG7Brxgg7HLiS-LBmhyR5DjGbi80Rl4MagBsjDg-ophzv3usafO7ePNXeCLMwQaQd6U_mPLrZXCHcFSnkQyUqrVylKdJnEoTah1bJSUkRGhzDIdco3LgPADW5mM5_E-WynKwh4yCEUuhFKc3AJSpbVSeYZAiTRSPDSrpM7O59M-wOAnRUMWtvyYDBYTX2cH1doNRpVLx4C82UgkPPrD08dsHYFQWqWpnLBajq--PWWr-nP6OhmfuajCa--h-wMU3dnU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evidence+for+a+normal-weight+%22metabolically+obese%22+phenotype+linking+insulin+resistance%2C+hypertension%2C+coronary+artery+disease%2C+and+type+2+diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Yaghootkar%2C+Hanieh&rft.au=Scott%2C+Robert+A&rft.au=White%2C+Charles+C&rft.au=Zhang%2C+Weihua&rft.date=2014-12-01&rft.issn=1939-327X&rft.eissn=1939-327X&rft.volume=63&rft.issue=12&rft.spage=4369&rft_id=info:doi/10.2337%2Fdb14-0318&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-327X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-327X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-327X&client=summon |