Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers
Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects...
Saved in:
| Published in: | Cell metabolism Vol. 33; no. 5; p. 957 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
04.05.2021
|
| Subjects: | |
| ISSN: | 1932-7420, 1932-7420 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group. |
|---|---|
| AbstractList | Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group.Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group. Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group. |
| Author | Ekblom, Björn Tais, Senna Flockhart, Mikael Apró, William Larsen, Filip J Nilsson, Lina C |
| Author_xml | – sequence: 1 givenname: Mikael surname: Flockhart fullname: Flockhart, Mikael email: mikael.flockhart@gih.se organization: The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden. Electronic address: mikael.flockhart@gih.se – sequence: 2 givenname: Lina C surname: Nilsson fullname: Nilsson, Lina C organization: The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden – sequence: 3 givenname: Senna surname: Tais fullname: Tais, Senna organization: The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden – sequence: 4 givenname: Björn surname: Ekblom fullname: Ekblom, Björn organization: The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden – sequence: 5 givenname: William surname: Apró fullname: Apró, William organization: The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden; Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden – sequence: 6 givenname: Filip J surname: Larsen fullname: Larsen, Filip J email: filip.larsen@gih.se organization: The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden. Electronic address: filip.larsen@gih.se |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33740420$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAURC1URGnhB1ggL9kk-JWkWaKqPKRKbGAduc5168qxi-1UrcTHk4oisZqjuXNnMRM0ct4BQneU5JTQ8nGbqw5SzgijOWE5odUFuqY1Z1klGBn94zGaxLglhJe85ldozHklyOBfo-_FQUGMZg8YDhCUiYBTkMYZt8ZK9hEi7kzyauNdG4y0WPdOJePdgKbbSRM6cAlL1-IWVAB5-ljbXvlTk7cQpFOAjcMbkDZtjnjvbe8SQIg36FJLG-H2rFP0-bz4mL9my_eXt_nTMlOFICljvNAFrcpCVgPUBMqyYprSWQ2tInQmWoBar4BSWnJBCjEcNJVcK6KBAWVT9PDbuwv-q4eYms5EBdZKB76PDSsIF6KktRii9-dov-qgbXbBdDIcm7_F2A9GZHNo |
| CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2021_09_014 crossref_primary_10_1038_s41574_021_00500_6 crossref_primary_10_1002_2211_5463_13293 crossref_primary_10_1038_s43856_024_00507_w crossref_primary_10_1002_ejsc_12220 crossref_primary_10_3390_biomedicines9121853 crossref_primary_10_56984_8ZG007D4I1D crossref_primary_10_3233_BPL_210133 crossref_primary_10_1016_j_molmed_2024_12_010 crossref_primary_10_3390_jcm10071542 crossref_primary_10_1016_j_afres_2024_100662 crossref_primary_10_1016_j_foodres_2024_114311 crossref_primary_10_1093_function_zqad066 crossref_primary_10_70007_yalovaspor_1509439 crossref_primary_10_1016_j_cmet_2024_12_005 crossref_primary_10_1016_j_jshs_2025_101029 crossref_primary_10_2337_dc23_0800 crossref_primary_10_3389_fnhum_2021_771553 crossref_primary_10_1016_j_smhs_2021_10_006 crossref_primary_10_3390_ijerph18105329 crossref_primary_10_3390_foods12163083 crossref_primary_10_1016_j_tifs_2023_104319 crossref_primary_10_1016_j_jshs_2023_09_007 crossref_primary_10_1038_s41598_022_21424_9 crossref_primary_10_4162_nrp_2025_19_4_483 crossref_primary_10_1016_j_cmet_2021_04_008 crossref_primary_10_3389_fnut_2023_1084021 crossref_primary_10_3390_nu15040952 crossref_primary_10_1038_s41598_025_06057_y crossref_primary_10_3390_nu15081941 crossref_primary_10_3389_fphys_2023_1150265 crossref_primary_10_1016_j_semcdb_2021_08_011 crossref_primary_10_1155_2022_8803404 crossref_primary_10_1016_j_freeradbiomed_2021_10_003 crossref_primary_10_1016_j_biopha_2023_115852 crossref_primary_10_3389_fphys_2025_1553846 crossref_primary_10_1152_japplphysiol_00829_2020 crossref_primary_10_3389_fphys_2024_1376801 crossref_primary_10_1113_JP285175 crossref_primary_10_1111_acel_13770 crossref_primary_10_3390_bios14120574 crossref_primary_10_3390_ijms22126479 crossref_primary_10_1007_s00421_024_05557_5 crossref_primary_10_1016_j_ecoenv_2024_116389 crossref_primary_10_1016_j_cmet_2023_10_011 crossref_primary_10_1002_advs_202408912 crossref_primary_10_1016_j_smhs_2025_01_006 crossref_primary_10_1111_1753_0407_13556 crossref_primary_10_3389_fcvm_2021_752640 crossref_primary_10_1249_MSS_0000000000002709 crossref_primary_10_15649_cuidarte_2624 crossref_primary_10_1186_s13018_025_05809_w crossref_primary_10_1210_clinem_dgad509 crossref_primary_10_3390_app14146146 crossref_primary_10_3390_nano12010105 crossref_primary_10_5507_bp_2025_009 crossref_primary_10_52082_jssm_2023_688 crossref_primary_10_69569_jip_2024_536 crossref_primary_10_1007_s11332_021_00887_9 crossref_primary_10_1113_EP092977 crossref_primary_10_3390_healthcare9101289 crossref_primary_10_1186_s12937_023_00859_4 crossref_primary_10_1007_s40279_023_01910_4 crossref_primary_10_1016_j_jff_2024_106468 crossref_primary_10_1111_apha_13816 crossref_primary_10_3390_life11121339 crossref_primary_10_1016_j_freeradbiomed_2021_11_030 crossref_primary_10_1016_j_mgene_2022_101012 crossref_primary_10_1002_1873_3468_14937 crossref_primary_10_3390_jfmk8030134 crossref_primary_10_3390_nu16132048 crossref_primary_10_14814_phy2_70562 crossref_primary_10_1016_j_tem_2021_07_003 crossref_primary_10_20517_evcna_2025_36 crossref_primary_10_3389_fpsyt_2023_1123864 crossref_primary_10_3389_fspor_2023_1267631 crossref_primary_10_1161_JAHA_121_023386 crossref_primary_10_1038_s41467_025_55917_8 crossref_primary_10_4093_dmj_2022_0092 crossref_primary_10_1111_nyas_14912 crossref_primary_10_3389_fphys_2023_1151389 crossref_primary_10_3390_ijms25136915 crossref_primary_10_1080_15548627_2025_2488563 crossref_primary_10_3390_ijerph182413141 crossref_primary_10_1519_SSC_0000000000000848 crossref_primary_10_3390_cells10102639 crossref_primary_10_3389_fphys_2023_1170324 crossref_primary_10_1016_j_freeradbiomed_2024_07_039 crossref_primary_10_1016_j_freeradbiomed_2024_12_060 crossref_primary_10_1038_s12276_024_01183_5 crossref_primary_10_1096_fj_202401780R crossref_primary_10_3389_fspor_2021_719434 crossref_primary_10_1016_j_molmet_2025_102135 crossref_primary_10_1111_apha_14007 crossref_primary_10_7554_eLife_79939 crossref_primary_10_3390_sports12030072 crossref_primary_10_1038_s41467_021_27422_1 crossref_primary_10_1007_s12274_022_4788_2 crossref_primary_10_1042_BCJ20210185 crossref_primary_10_3389_fphys_2025_1568060 crossref_primary_10_1016_j_aca_2023_342008 crossref_primary_10_1016_j_freeradbiomed_2024_01_008 crossref_primary_10_1016_j_jgg_2024_11_008 crossref_primary_10_1111_jpi_12912 crossref_primary_10_1016_j_bbagen_2021_130011 crossref_primary_10_1097_HJH_0000000000003503 crossref_primary_10_1016_j_addr_2023_114968 crossref_primary_10_3390_ani13010172 crossref_primary_10_1016_j_freeradbiomed_2021_11_002 crossref_primary_10_1245_s10434_024_16054_6 crossref_primary_10_1007_s40279_022_01734_8 crossref_primary_10_1249_MSS_0000000000003453 crossref_primary_10_1113_EP092922 crossref_primary_10_3390_antiox11061128 crossref_primary_10_3389_fphys_2025_1554222 crossref_primary_10_3390_cancers13153740 crossref_primary_10_1016_j_tem_2023_10_011 crossref_primary_10_1123_ijsnem_2024_0119 crossref_primary_10_3390_antiox12081624 crossref_primary_10_1007_s40279_022_01757_1 crossref_primary_10_1111_sms_14551 crossref_primary_10_3390_ijms24097994 crossref_primary_10_1177_17511437251328899 crossref_primary_10_1186_s13102_025_01221_3 crossref_primary_10_1152_physrev_00033_2024 crossref_primary_10_3390_biology11121739 crossref_primary_10_1146_annurev_physiol_022724_104836 crossref_primary_10_1016_j_cophys_2022_100550 crossref_primary_10_3923_ijp_2024_1221_1233 crossref_primary_10_1111_apha_13972 crossref_primary_10_1016_j_cbi_2024_110855 crossref_primary_10_2337_db23_0142 crossref_primary_10_3390_ijerph18137201 crossref_primary_10_3390_sports13070216 crossref_primary_10_3390_nu14040862 crossref_primary_10_1016_j_arr_2025_102762 crossref_primary_10_1016_j_ijnurstu_2024_104786 crossref_primary_10_1016_j_psyneuen_2023_106322 crossref_primary_10_4239_wjd_v16_i7_108121 crossref_primary_10_3389_fendo_2025_1580559 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmet.2021.02.017 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1932-7420 |
| ExternalDocumentID | 33740420 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDT AAEDW AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NPM O-L O9- OK1 P2P ROL RPZ SES SSZ TR2 UNMZH 7X8 AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c540t-235f51765a75f590e6672f1189edc0184dee9fbe11163405489ef1a3fc0fe2e12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 162 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647175300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-7420 |
| IngestDate | Thu Oct 02 07:04:49 EDT 2025 Thu Apr 03 06:58:41 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | high-intensity interval training mitochondria metabolic dysfunction exercise adaptations exercise athletes mitochondrial dysfunction continuous glucose monitoring glucose tolerance insulin resistance mitochondrial dynamics |
| Language | English |
| License | Copyright © 2021 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-235f51765a75f590e6672f1189edc0184dee9fbe11163405489ef1a3fc0fe2e12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S1550413121001029/pdf |
| PMID | 33740420 |
| PQID | 2503446194 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2503446194 pubmed_primary_33740420 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-04 |
| PublicationDateYYYYMMDD | 2021-05-04 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell metabolism |
| PublicationTitleAlternate | Cell Metab |
| PublicationYear | 2021 |
| References | 33951467 - Cell Metab. 2021 May 4;33(5):847-848 33948017 - Nat Rev Endocrinol. 2021 Jul;17(7):385-386 |
| References_xml | – reference: 33948017 - Nat Rev Endocrinol. 2021 Jul;17(7):385-386 – reference: 33951467 - Cell Metab. 2021 May 4;33(5):847-848 |
| SSID | ssj0036393 |
| Score | 2.6665106 |
| Snippet | Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 957 |
| SubjectTerms | Blood Glucose - analysis Catalase - metabolism Glucose Tolerance Test Glucose Transporter Type 4 - metabolism Glycogen - metabolism Healthy Volunteers Humans Hydrogen Peroxide - metabolism Mitochondria - metabolism Muscle, Skeletal - metabolism Muscle, Skeletal - pathology NF-E2-Related Factor 2 - metabolism Oxidative Stress Physical Endurance Superoxide Dismutase - metabolism |
| Title | Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33740420 https://www.proquest.com/docview/2503446194 |
| Volume | 33 |
| WOSCitedRecordID | wos000647175300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qFLz4_TG_iOC12CVtsp5EZMODjh1Uditp8gID1851Ewf-8b40rV48CF5KoQRK3st7v_eVHyFXYWYlj3QnMEkmgohJCBIFNjDCWgQYoYor5rmXBzkYdEejZFgn3Mq6rbKxiZWhNoV2OfJrdNUcQxeMuW-mb4FjjXLV1ZpCY5W0OEIZ19IlR99VBI7el_uqMqLIiIX10Izv79ITcL2UzN_ZWROW_QoxK1fT3_7vT-6QrRpk0luvFbtkBfI9suFpJ5f75LP34YYD0M7RhnGJNlQRVKtFCSWd4ElHy5gbp6DUeT-fNKRurHI8czlFqnJDTQU73Yq6-Z3Oi1dwbB1Axzn1Y5ZL6owgihCx5gF57vee7u6DmoUh0Ijm5gHjsUWBiVhJfElCEEIyi3FJAkaHGCAagMRmgEZTcIR_EX6wHcWtDi0w6LBDspYXORwTym0mDY-7QioMzATrom01GTexTZiQELbJZbOtKWq5K12oHIpFmf5sbJscedmkU38dR8q5jND0hCd_WH1KNp3Iq47F6Iy0LJ5xOCfr-n0-LmcXlfrgczB8_AK5WtJ9 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excessive+exercise+training+causes+mitochondrial+functional+impairment+and+decreases+glucose+tolerance+in+healthy+volunteers&rft.jtitle=Cell+metabolism&rft.au=Flockhart%2C+Mikael&rft.au=Nilsson%2C+Lina+C&rft.au=Tais%2C+Senna&rft.au=Ekblom%2C+Bj%C3%B6rn&rft.date=2021-05-04&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=33&rft.issue=5&rft.spage=957&rft_id=info:doi/10.1016%2Fj.cmet.2021.02.017&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon |