Multichannel acoustic source and image dataset for the cocktail party effect in hearing aid and implant users
The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties...
Saved in:
| Published in: | Scientific data Vol. 7; no. 1; pp. 440 - 13 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
17.12.2020
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2052-4463, 2052-4463 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants’ heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing.
Measurement(s)
acoustic Cocktail Party scenarios • acoustic composition of speech • Noise
Technology Type(s)
head-mounted microphones
Factor Type(s)
head shape of the participants • acoustic Cocktail Party scenarios played
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13181921 |
|---|---|
| AbstractList | The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants’ heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing.
Measurement(s)
acoustic Cocktail Party scenarios • acoustic composition of speech • Noise
Technology Type(s)
head-mounted microphones
Factor Type(s)
head shape of the participants • acoustic Cocktail Party scenarios played
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13181921 Measurement(s) acoustic Cocktail Party scenarios • acoustic composition of speech • Noise Technology Type(s) head-mounted microphones Factor Type(s) head shape of the participants • acoustic Cocktail Party scenarios played Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13181921 The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants’ heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing.Measurement(s)acoustic Cocktail Party scenarios • acoustic composition of speech • NoiseTechnology Type(s)head-mounted microphonesFactor Type(s)head shape of the participants • acoustic Cocktail Party scenarios playedSample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13181921 The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants' heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing.The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants' heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing. The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants’ heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing. Measurement(s) acoustic Cocktail Party scenarios • acoustic composition of speech • Noise Technology Type(s) head-mounted microphones Factor Type(s) head shape of the participants • acoustic Cocktail Party scenarios played Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13181921 The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants’ heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing. |
| ArticleNumber | 440 |
| Author | Caversaccio, Marco Wimmer, Wilhelm Fischer, Tim |
| Author_xml | – sequence: 1 givenname: Tim orcidid: 0000-0003-4584-6096 surname: Fischer fullname: Fischer, Tim email: tim.fischer@artorg.unibe.ch organization: Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern – sequence: 2 givenname: Marco orcidid: 0000-0002-7090-8087 surname: Caversaccio fullname: Caversaccio, Marco organization: Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern – sequence: 3 givenname: Wilhelm orcidid: 0000-0001-5392-2074 surname: Wimmer fullname: Wimmer, Wilhelm email: wilhelm.wimmer@insel.ch organization: Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33335098$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1DAUjVARLaU_wAJZYsMm4FfiZIOEKqCVitjA2rpxrmc8ZOzBdir173E6Q1-LeuPXOUfn3nteV0c-eKyqt4x-ZFR0n5JkTa9qymlNqVKq7l5UJ5w2vJayFUcPzsfVWUobSikTkjaKvqqORVkN7buTavtjnrIza_AeJwImzKlcSQpzNEjAj8RtYYVkhAwJM7EhkrxGYoL5k8FNZAcx3xC0Fk0mzpM1QnR-RcCNB_puAp_JnDCmN9VLC1PCs8N-Wv3-9vXX-UV99fP75fmXq9o0kuaagRSNGiWAAhR2VIz3lrfS0hZ7yYdBwdgJJjjaxjJlxq5RlholgBnGOhCn1eVedwyw0btYaog3OoDTtw8hrnSx7cyEujWcDR2VTHIrraQ9k0Mr1IAAxYNiRevzXms3D1scDfocYXok-vjHu7VehWutlFStoEXgw0Eghr8zpqy3LhmcSluwtFtzqZhsW6ZEgb5_At2UQfjSqgUlWN8xvjh699DRnZX_Uy0AvgeYGFKKaO8gjOolPXqfHl3So2_ToxdS94RkXIbswlKVm56nij017ZbZY7y3_QzrHwqk2Os |
| CitedBy_id | crossref_primary_10_3389_fneur_2022_856219 crossref_primary_10_1016_j_heares_2024_109155 crossref_primary_10_1109_ACCESS_2024_3429524 crossref_primary_10_1038_s42005_024_01818_z crossref_primary_10_1016_j_heares_2021_108294 |
| Cites_doi | 10.1109/TASL.2009.2015084 10.1109/TASLP.2016.2647702 10.1109/WASPAA.2017.8170002 10.1109/ICASSP.2019.8683520 10.1016/j.specom.2016.07.002 10.1162/neco.1996.8.3.643 10.21437/Interspeech.2020-3038 10.1007/s00266-005-6095-1 10.1109/TASLP.2017.2672401 10.21437/Interspeech.2016-88 10.1016/j.apacoust.2020.107363 10.1631/FITEE.1700814 10.1097/MAO.0000000000001924 10.1007/978-3-319-51662-2 10.1097/AUD.0000000000000412 10.1159/000380741 10.1109/ICASSP.2009.4960543 10.1007/s10579-007-9054-4 10.1109/JSTSP.2019.2912565 10.1121/1.5133944 10.1093/oxfordhb/9780199233557.001.0001 10.4324/9781315514611 10.1097/AUD.0000000000000912 10.1109/SAM.2018.8448644 10.7551/mitpress/6391.001.0001 10.1109/ICASSP.2012.6288223 10.1109/ASRU.2017.8268914 10.1136/adc.67.10.1286 10.21437/Interspeech.2019-2821 10.1002/9781119279860.ch4 10.1097/MAO.0000000000000866 10.21437/Interspeech.2008-644 10.1109/ICASSP.2015.7178964 10.1080/14786440709463595 10.1371/journal.pone.0211899 10.6084/m9.figshare.c.5087012.v1 10.1145/3385955.3407928 10.3390/app9040734 10.1177/2331216518779313 10.1121/1.1907229 10.21437/CHiME.2020-1 10.21437/Interspeech.2020-1673 10.1109/ICASSP.2019.8682733 10.1016/j.cub.2009.09.005 10.1109/ICASSP40776.2020.9053074 10.1016/j.specom.2018.11.002 10.21437/Interspeech.2018-1454 10.1016/B978-0-12-814601-9.00022-5 10.21437/Interspeech.2019-2441 10.1109/ASRU.2015.7404805 10.1097/MAO.0000000000000775 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1038/s41597-020-00777-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Central Biological Science Database (via ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2052-4463 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_6c21b804142f4f40914b637beaa35771 PMC7747630 33335098 10_1038_s41597_020_00777_8 |
| Genre | Dataset Journal Article |
| GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-1a4357d4aa7ae3fd7129f264f06e942bb7ad83132ef5f17cd857f0c73a1c118a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601267000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-4463 |
| IngestDate | Fri Oct 03 12:21:44 EDT 2025 Tue Nov 04 01:40:44 EST 2025 Thu Oct 02 05:24:58 EDT 2025 Tue Oct 07 07:05:59 EDT 2025 Thu Jan 02 22:41:32 EST 2025 Sat Nov 29 05:58:39 EST 2025 Tue Nov 18 22:30:56 EST 2025 Fri Feb 21 02:37:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-1a4357d4aa7ae3fd7129f264f06e942bb7ad83132ef5f17cd857f0c73a1c118a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| ORCID | 0000-0003-4584-6096 0000-0002-7090-8087 0000-0001-5392-2074 |
| OpenAccessLink | https://doaj.org/article/6c21b804142f4f40914b637beaa35771 |
| PMID | 33335098 |
| PQID | 2473198121 |
| PQPubID | 2041912 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6c21b804142f4f40914b637beaa35771 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7747630 proquest_miscellaneous_2471466173 proquest_journals_2473198121 pubmed_primary_33335098 crossref_primary_10_1038_s41597_020_00777_8 crossref_citationtrail_10_1038_s41597_020_00777_8 springer_journals_10_1038_s41597_020_00777_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-17 |
| PublicationDateYYYYMMDD | 2020-12-17 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific data |
| PublicationTitleAbbrev | Sci Data |
| PublicationTitleAlternate | Sci Data |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Richey, C. et al. Voices obscured in complex environmental settings (voices) corpus. arXiv preprint arXiv:1804.05053 (2018). Fischer, T., Caversaccio, M. & Wimmer, W. A front-back confusion metric in horizontal sound localization: The fbc score. In ACM Symposium on Applied Perception 2020, SAP ’20, https://doi.org/10.1145/3385955.3407928 (Association for Computing Machinery, New York, NY, USA, 2020). AvanPGiraudetFBükiBImportance of binaural hearingAudiol. Neurotol.2015203610.1159/000380741 BozkırMGKaraka¸sPYavuzMDereFMorphometry of the external ear in our adult populationAesthetic plastic surgery200630818510.1007/s00266-005-6095-1 WimmerWWederSCaversaccioMKompisMSpeech intelligibility in noise with a pinna effect imitating cochlear implant processorOtol. & neurotology201637192310.1097/MAO.0000000000000866 GannotSVincentEMarkovich-GolanSOzerovAA consolidated perspective on multimicrophone speech enhancement and source separationIEEE/ACM Transactions on Audio, Speech, Lang. Process.20172569273010.1109/TASLP.2016.2647702 BushbyKColeTMatthewsJGoodshipJCentiles for adult head circumferenceArch. disease childhood199267128612871:STN:280:DyaK3s%2FnsVSmuw%3D%3D10.1136/adc.67.10.1286 BertinNVoicehome-2, an extended corpus for multichannel speech processing in real homesSpeech Commun.2019106687810.1016/j.specom.2018.11.002 Cuevas-RodríguezM3D Tune-In Toolkit: An open-source library for real-time binaural spatialisationPLOS ONE201914e02118991:CAS:528:DC%2BC1MXnvFemur0%3D10.1371/journal.pone.0211899308561986411112 DenkFErnstSMEwertSDKollmeierBAdapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device stylesTrends hearing2018222331216518779313 International Telecommunication Union. Recommendation itu-r bs.2051-2. In Advanced sound system for programme production (ITU, 2018). Cosentino, J., Pariente, M., Cornell, S., Deleforge, A. & Vincent, E. Librimix: An open-source dataset for generalizable speech separation. arXiv preprint arXiv:2005.11262 (2020). DrudeLHaeb-UmbachRIntegration of neural networks and probabilistic spatial models for acoustic blind source separationIEEE J. Sel. Top. Signal Process.2019138158262019ISTSP..13..815D10.1109/JSTSP.2019.2912565 BiancoMJMachine learning in acoustics: Theory and applications. TheJ. Acoust. Soc. Am.2019146359036282019ASAJ..146.3590B10.1121/1.5133944 Van SegbroeckMDipco–dinner party corpusarXiv preprint arXiv2019190913447 Middlebrooks, J. C., Simon, J. Z., Popper, A. N. & Fay, R. R. The auditory system at the cocktail party, vol. 60 (Springer, 2017). Fischer, T. et al. Pinna-imitating microphone directionality improves sound localization and discrimination in bilateral cochlear implant users. Ear Hear. (in print)https://doi.org/10.1097/AUD.0000000000000912 (2020). Drude, L., Hasenklever, D. & Haeb-Umbach, R. Unsupervised training of a deep clustering model for multichannel blind source separation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 695–699 (IEEE, 2019). Kim, C. & Stern, R. M. Robust signal-to-noise ratio estimation based on waveform amplitude distribution analysis. In Ninth Annual Conference of the International Speech Communication Association (2008). CucisP-AHearing in noise: The importance of coding strategies—normal-hearing subjects and cochlear implant usersAppl. Sci.2019973410.3390/app9040734 RayleighLXii. on our perception of sound directionThe London, Edinburgh, Dublin Philos. Mag. J. Sci.19071321423210.1080/14786440709463595 Snyder, D., Chen, G. & Povey, D. Musan: A music, speech, and noise corpus. arXiv preprint arXiv:1510.08484 (2015). SainathTNMultichannel signal processing with deep neural networks for automatic speech recognitionIEEE/ACM Transactions on Audio, Speech, Lang. Process.20172596597910.1109/TASLP.2017.2672401 Zen, H. et al. Libritts: A corpus derived from librispeech for text-to-speech. arXiv preprint arXiv:1904.02882 (2019). Vacher, M. et al. The sweet-home speech and multimodal corpus for home automation interaction (2014). Panayotov, V., Chen, G., Povey, D. & Khudanpur, S. Librispeech: an asr corpus based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5206–5210 (IEEE, 2015). MostefaDThe chil audiovisual corpus for lecture and meeting analysis inside smart roomsLang. resources evaluation20074138940710.1007/s10579-007-9054-4 WimmerWKompisMStiegerCCaversaccioMWederSDirectional microphone contralateral routing of signals in cochlear implant users: A within-subjects comparisonEar hearing20173836837310.1097/AUD.0000000000000412 BarkerJWatanabeSVincentETrmalJThe fifth’chime’speech separation and recognition challenge: dataset, task and baselinesarXiv preprint arXiv2018180310609 FischerTCaversaccioMWimmerWMultichannel acoustic source and image dataset for the cocktail party effect in hearing aid and implant users202010.6084/m9.figshare.c.5087012.v1figshare FischerTKompisMMantokoudisGCaversaccioMWimmerWDynamic sound field audiometry: Static and dynamic spatial hearing tests in the full horizontal planeAppl. Acoust.202016610736310.1016/j.apacoust.2020.107363 Stupakov, A., Hanusa, E., Bilmes, J. & Fox, D. Cosine-a corpus of multi-party conversational speech in noisy environments. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 4153–4156 (IEEE, 2009). Leijon, A. D. 5.1: Subset of signal enhancement techniques operational on pc system. Hear. Deliv. D5 (2005). CherryECSome Experiments on the Recognition of Speech, with One and with Two EarsThe J. Acoust. Soc. Am.1953259759791953ASAJ...25..975C10.1121/1.1907229 Plack, C. J. (ed.) Oxford Handbook of Auditory Science: Hearing (Oxford University Press, 2010). AnGThe effects of adding noise during backpropagation training on a generalization performanceNeural computation1996864367410.1162/neco.1996.8.3.643 Mathur, A., Kawsar, F., Berthouze, N. & Lane, N. D. Libri-adapt: a new speech dataset for unsupervised domain adaptation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7439–7443 (IEEE, 2020). QianY-mWengCChangX-kWangSYuDPast review, current progress, and challenges ahead on the cocktail party problemFront. Inf. Technol. & Electron. Eng.201819406310.1631/FITEE.1700814 Pertilä, P., Brutti, A., Svaizer, P. & Omologo, M. Multichannel Source Activity Detection, Localization, and Tracking. In Audio Source Separation and Speech Enhancement, 47–64, https://doi.org/10.1002/9781119279860.ch4 (John Wiley & Sons Ltd, Chichester, UK, 2018). Shinn-CunninghamBGBottom-up and top-down influences on spatial unmaskingActa Acustica United with Acustica200591967979 Kumar, A. & Florencio, D. Speech enhancement in multiple-noise conditions using deep neural networks. arXiv preprint arXiv:1605.02427 (2016). Moray, N. Attention: Selective processes in vision and hearing (Routledge, 2017). Watanabe, S., Mandel, M., Barker, J. & Vincent, E. Chime-6 challenge: Tackling multispeaker speech recognition for unsegmented recordings. arXiv preprint arXiv:2004.09249 (2020). Pariente, M. et al. Asteroid: the pytorch-based audio source separation toolkit for researchers. arXiv preprint arXiv:2005.04132 (2020). Reddy, C. K. et al. The interspeech 2020 deep noise suppression challenge: Datasets, subjective speech quality and testing framework. arXiv preprint arXiv:2001.08662 (2020). Ravanelli, M. et al. The dirha-english corpus and related tasks for distant-speech recognition in domestic environments. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 275–282 (IEEE, 2015). WimmerWCaversaccioMKompisMSpeech intelligibility in noise with a single-unit cochlear implant audio processorOtol. & neurotology2015361197120210.1097/MAO.0000000000000775 Jeub, M., Herglotz, C., Nelke, C., Beaugeant, C. & Vary, P. Noise reduction for dual-microphone mobile phones exploiting power level differences. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1693–1696 (IEEE, 2012). Blauert, J. Spatial hearing : the psychophysics of human sound localization (MIT Press, 1997). Calamia, P., Davis, S., Smalt, C. & Weston, C. A conformal, helmet-mounted microphone array for auditory situational awareness and hearing protection. In 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 96–100 (IEEE, 2017). LevinDYHabetsEAGannotSNear-field signal acquisition for smartglasses using two acoustic vector-sensorsSpeech Commun.201683425310.1016/j.specom.2016.07.002 Girin, L., Gannot, S. & Li, X. Chapter 3 - audio source separation into the wild. In Alameda-Pineda, X., Ricci, E. & Sebe, N. (eds.) Multimodal Behavior Analysis in the Wild, Computer Vision and Pattern Recognition, 53–78, https://doi.org/10.1016/B978-0-12-814601-9.00022-5 (Academic Press, 2019). Higuchi, T., Kinoshita, K., Delcroix, M. & Nakatani, T. Adversarial training for data-driven speech enhancement without parallel corpus. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 40–47 (IEEE, 2017). McDermottJHThe cocktail party problemCurr. Biol.200919R1024R10271:CAS:528:DC%2BD1MXhsV2hu7nL10.1016/j.cub.2009.09.00519948136 World Health Organization. Deafness and hearing loss, Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (2020). GawliczekTUnilateral and bilateral audiological benefit with an adhesively attached, noninvasive bone conduction hearing systemOtol. & neurotology2018391025103010.1097/MAO.0000000000001924 Wichern, G. et al. Wham!: Extending speech separation to noisy environments. arXiv preprint arXiv:1907.01160 (2019). KrishnamurthyNHansenJHBabble noise: modeling, analysis, and applicationsIEEE transactions on audio, speech, language processing2009171394140710.1109/TASL.2009.2015084 Corey, R. M., Tsuda, N. & Singer, A. C. Acoustic impulse responses for wearable audio devices. In ICASSP 2019-2019 IEEE International Conf N Bertin (777_CR14) 2019; 106 777_CR46 777_CR47 777_CR48 777_CR41 777_CR42 777_CR43 TN Sainath (777_CR33) 2017; 25 W Wimmer (777_CR49) 2017; 38 D Mostefa (777_CR15) 2007; 41 777_CR40 JH McDermott (777_CR3) 2009; 19 S Gannot (777_CR60) 2017; 25 M Van Segbroeck (777_CR8) 2019; 1909 G An (777_CR57) 1996; 8 EC Cherry (777_CR5) 1953; 25 MJ Bianco (777_CR38) 2019; 146 W Wimmer (777_CR51) 2016; 37 777_CR16 777_CR17 777_CR18 777_CR19 T Gawliczek (777_CR52) 2018; 39 777_CR12 777_CR56 Y-m Qian (777_CR6) 2018; 19 777_CR13 777_CR4 J Barker (777_CR9) 2018; 1803 777_CR10 F Denk (777_CR27) 2018; 22 777_CR54 MG Bozkır (777_CR58) 2006; 30 777_CR11 DY Levin (777_CR24) 2016; 83 L Drude (777_CR34) 2019; 13 K Bushby (777_CR59) 1992; 67 777_CR1 T Fischer (777_CR45) 2020; 166 P Avan (777_CR53) 2015; 20 M Cuevas-Rodríguez (777_CR37) 2019; 14 T Fischer (777_CR55) 2020 777_CR29 777_CR23 777_CR25 777_CR26 777_CR20 L Rayleigh (777_CR28) 1907; 13 777_CR21 N Krishnamurthy (777_CR44) 2009; 17 777_CR22 P-A Cucis (777_CR7) 2019; 9 777_CR61 777_CR39 777_CR35 777_CR36 777_CR30 777_CR31 777_CR32 W Wimmer (777_CR50) 2015; 36 BG Shinn-Cunningham (777_CR2) 2005; 91 |
| References_xml | – reference: Zen, H. et al. Libritts: A corpus derived from librispeech for text-to-speech. arXiv preprint arXiv:1904.02882 (2019). – reference: Higuchi, T., Kinoshita, K., Delcroix, M. & Nakatani, T. Adversarial training for data-driven speech enhancement without parallel corpus. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 40–47 (IEEE, 2017). – reference: International Telecommunication Union. Recommendation itu-r bs.1770-4. In Algorithms to measure audio programme loudness and true-peak audio level (ITU, 2015). – reference: WimmerWKompisMStiegerCCaversaccioMWederSDirectional microphone contralateral routing of signals in cochlear implant users: A within-subjects comparisonEar hearing20173836837310.1097/AUD.0000000000000412 – reference: BarkerJWatanabeSVincentETrmalJThe fifth’chime’speech separation and recognition challenge: dataset, task and baselinesarXiv preprint arXiv2018180310609 – reference: WimmerWWederSCaversaccioMKompisMSpeech intelligibility in noise with a pinna effect imitating cochlear implant processorOtol. & neurotology201637192310.1097/MAO.0000000000000866 – reference: AvanPGiraudetFBükiBImportance of binaural hearingAudiol. Neurotol.2015203610.1159/000380741 – reference: Wichern, G. et al. Wham!: Extending speech separation to noisy environments. arXiv preprint arXiv:1907.01160 (2019). – reference: KrishnamurthyNHansenJHBabble noise: modeling, analysis, and applicationsIEEE transactions on audio, speech, language processing2009171394140710.1109/TASL.2009.2015084 – reference: Drude, L., Hasenklever, D. & Haeb-Umbach, R. Unsupervised training of a deep clustering model for multichannel blind source separation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 695–699 (IEEE, 2019). – reference: BertinNVoicehome-2, an extended corpus for multichannel speech processing in real homesSpeech Commun.2019106687810.1016/j.specom.2018.11.002 – reference: Reddy, C. K. et al. The interspeech 2020 deep noise suppression challenge: Datasets, subjective speech quality and testing framework. arXiv preprint arXiv:2001.08662 (2020). – reference: GannotSVincentEMarkovich-GolanSOzerovAA consolidated perspective on multimicrophone speech enhancement and source separationIEEE/ACM Transactions on Audio, Speech, Lang. Process.20172569273010.1109/TASLP.2016.2647702 – reference: Corey, R. M., Tsuda, N. & Singer, A. C. Acoustic impulse responses for wearable audio devices. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 216–220 (IEEE, 2019). – reference: McDermottJHThe cocktail party problemCurr. Biol.200919R1024R10271:CAS:528:DC%2BD1MXhsV2hu7nL10.1016/j.cub.2009.09.00519948136 – reference: Vacher, M. et al. The sweet-home speech and multimodal corpus for home automation interaction (2014). – reference: Cuevas-RodríguezM3D Tune-In Toolkit: An open-source library for real-time binaural spatialisationPLOS ONE201914e02118991:CAS:528:DC%2BC1MXnvFemur0%3D10.1371/journal.pone.0211899308561986411112 – reference: Jeub, M., Herglotz, C., Nelke, C., Beaugeant, C. & Vary, P. Noise reduction for dual-microphone mobile phones exploiting power level differences. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1693–1696 (IEEE, 2012). – reference: Fischer, T. et al. Pinna-imitating microphone directionality improves sound localization and discrimination in bilateral cochlear implant users. Ear Hear. (in print)https://doi.org/10.1097/AUD.0000000000000912 (2020). – reference: Blauert, J. Spatial hearing : the psychophysics of human sound localization (MIT Press, 1997). – reference: Pertilä, P., Brutti, A., Svaizer, P. & Omologo, M. Multichannel Source Activity Detection, Localization, and Tracking. In Audio Source Separation and Speech Enhancement, 47–64, https://doi.org/10.1002/9781119279860.ch4 (John Wiley & Sons Ltd, Chichester, UK, 2018). – reference: International Telecommunication Union. Recommendation itu-r bs.2051-2. In Advanced sound system for programme production (ITU, 2018). – reference: Ravanelli, M. et al. The dirha-english corpus and related tasks for distant-speech recognition in domestic environments. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 275–282 (IEEE, 2015). – reference: Girin, L., Gannot, S. & Li, X. Chapter 3 - audio source separation into the wild. In Alameda-Pineda, X., Ricci, E. & Sebe, N. (eds.) Multimodal Behavior Analysis in the Wild, Computer Vision and Pattern Recognition, 53–78, https://doi.org/10.1016/B978-0-12-814601-9.00022-5 (Academic Press, 2019). – reference: BiancoMJMachine learning in acoustics: Theory and applications. TheJ. Acoust. Soc. Am.2019146359036282019ASAJ..146.3590B10.1121/1.5133944 – reference: BushbyKColeTMatthewsJGoodshipJCentiles for adult head circumferenceArch. disease childhood199267128612871:STN:280:DyaK3s%2FnsVSmuw%3D%3D10.1136/adc.67.10.1286 – reference: Snyder, D., Chen, G. & Povey, D. Musan: A music, speech, and noise corpus. arXiv preprint arXiv:1510.08484 (2015). – reference: CucisP-AHearing in noise: The importance of coding strategies—normal-hearing subjects and cochlear implant usersAppl. Sci.2019973410.3390/app9040734 – reference: DrudeLHaeb-UmbachRIntegration of neural networks and probabilistic spatial models for acoustic blind source separationIEEE J. Sel. Top. Signal Process.2019138158262019ISTSP..13..815D10.1109/JSTSP.2019.2912565 – reference: World Health Organization. Deafness and hearing loss, Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (2020). – reference: Panayotov, V., Chen, G., Povey, D. & Khudanpur, S. Librispeech: an asr corpus based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5206–5210 (IEEE, 2015). – reference: Fischer, T., Caversaccio, M. & Wimmer, W. A front-back confusion metric in horizontal sound localization: The fbc score. In ACM Symposium on Applied Perception 2020, SAP ’20, https://doi.org/10.1145/3385955.3407928 (Association for Computing Machinery, New York, NY, USA, 2020). – reference: Middlebrooks, J. C., Simon, J. Z., Popper, A. N. & Fay, R. R. The auditory system at the cocktail party, vol. 60 (Springer, 2017). – reference: CherryECSome Experiments on the Recognition of Speech, with One and with Two EarsThe J. Acoust. Soc. Am.1953259759791953ASAJ...25..975C10.1121/1.1907229 – reference: Shinn-CunninghamBGBottom-up and top-down influences on spatial unmaskingActa Acustica United with Acustica200591967979 – reference: Kumar, A. & Florencio, D. Speech enhancement in multiple-noise conditions using deep neural networks. arXiv preprint arXiv:1605.02427 (2016). – reference: FischerTCaversaccioMWimmerWMultichannel acoustic source and image dataset for the cocktail party effect in hearing aid and implant users202010.6084/m9.figshare.c.5087012.v1figshare – reference: Mathur, A., Kawsar, F., Berthouze, N. & Lane, N. D. Libri-adapt: a new speech dataset for unsupervised domain adaptation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7439–7443 (IEEE, 2020). – reference: Calamia, P., Davis, S., Smalt, C. & Weston, C. A conformal, helmet-mounted microphone array for auditory situational awareness and hearing protection. In 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 96–100 (IEEE, 2017). – reference: Plack, C. J. (ed.) Oxford Handbook of Auditory Science: Hearing (Oxford University Press, 2010). – reference: GawliczekTUnilateral and bilateral audiological benefit with an adhesively attached, noninvasive bone conduction hearing systemOtol. & neurotology2018391025103010.1097/MAO.0000000000001924 – reference: MostefaDThe chil audiovisual corpus for lecture and meeting analysis inside smart roomsLang. resources evaluation20074138940710.1007/s10579-007-9054-4 – reference: FischerTKompisMMantokoudisGCaversaccioMWimmerWDynamic sound field audiometry: Static and dynamic spatial hearing tests in the full horizontal planeAppl. Acoust.202016610736310.1016/j.apacoust.2020.107363 – reference: Leijon, A. D. 5.1: Subset of signal enhancement techniques operational on pc system. Hear. Deliv. D5 (2005). – reference: RayleighLXii. on our perception of sound directionThe London, Edinburgh, Dublin Philos. Mag. J. Sci.19071321423210.1080/14786440709463595 – reference: Moray, N. Attention: Selective processes in vision and hearing (Routledge, 2017). – reference: Van SegbroeckMDipco–dinner party corpusarXiv preprint arXiv2019190913447 – reference: Löllmann, H. W. et al. The locata challenge data corpus for acoustic source localization and tracking. In 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), 410–414 (2018). – reference: Richey, C. et al. Voices obscured in complex environmental settings (voices) corpus. arXiv preprint arXiv:1804.05053 (2018). – reference: Pariente, M. et al. Asteroid: the pytorch-based audio source separation toolkit for researchers. arXiv preprint arXiv:2005.04132 (2020). – reference: Cosentino, J., Pariente, M., Cornell, S., Deleforge, A. & Vincent, E. Librimix: An open-source dataset for generalizable speech separation. arXiv preprint arXiv:2005.11262 (2020). – reference: DenkFErnstSMEwertSDKollmeierBAdapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device stylesTrends hearing2018222331216518779313 – reference: Kim, C. & Stern, R. M. Robust signal-to-noise ratio estimation based on waveform amplitude distribution analysis. In Ninth Annual Conference of the International Speech Communication Association (2008). – reference: Watanabe, S., Mandel, M., Barker, J. & Vincent, E. Chime-6 challenge: Tackling multispeaker speech recognition for unsegmented recordings. arXiv preprint arXiv:2004.09249 (2020). – reference: AnGThe effects of adding noise during backpropagation training on a generalization performanceNeural computation1996864367410.1162/neco.1996.8.3.643 – reference: Stupakov, A., Hanusa, E., Bilmes, J. & Fox, D. Cosine-a corpus of multi-party conversational speech in noisy environments. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 4153–4156 (IEEE, 2009). – reference: BozkırMGKaraka¸sPYavuzMDereFMorphometry of the external ear in our adult populationAesthetic plastic surgery200630818510.1007/s00266-005-6095-1 – reference: LevinDYHabetsEAGannotSNear-field signal acquisition for smartglasses using two acoustic vector-sensorsSpeech Commun.201683425310.1016/j.specom.2016.07.002 – reference: QianY-mWengCChangX-kWangSYuDPast review, current progress, and challenges ahead on the cocktail party problemFront. Inf. Technol. & Electron. Eng.201819406310.1631/FITEE.1700814 – reference: SainathTNMultichannel signal processing with deep neural networks for automatic speech recognitionIEEE/ACM Transactions on Audio, Speech, Lang. Process.20172596597910.1109/TASLP.2017.2672401 – reference: WimmerWCaversaccioMKompisMSpeech intelligibility in noise with a single-unit cochlear implant audio processorOtol. & neurotology2015361197120210.1097/MAO.0000000000000775 – volume: 17 start-page: 1394 year: 2009 ident: 777_CR44 publication-title: IEEE transactions on audio, speech, language processing doi: 10.1109/TASL.2009.2015084 – volume: 25 start-page: 692 year: 2017 ident: 777_CR60 publication-title: IEEE/ACM Transactions on Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2016.2647702 – ident: 777_CR26 doi: 10.1109/WASPAA.2017.8170002 – ident: 777_CR36 doi: 10.1109/ICASSP.2019.8683520 – ident: 777_CR41 – volume: 83 start-page: 42 year: 2016 ident: 777_CR24 publication-title: Speech Commun. doi: 10.1016/j.specom.2016.07.002 – volume: 8 start-page: 643 year: 1996 ident: 777_CR57 publication-title: Neural computation doi: 10.1162/neco.1996.8.3.643 – ident: 777_CR12 doi: 10.21437/Interspeech.2020-3038 – volume: 30 start-page: 81 year: 2006 ident: 777_CR58 publication-title: Aesthetic plastic surgery doi: 10.1007/s00266-005-6095-1 – volume: 25 start-page: 965 year: 2017 ident: 777_CR33 publication-title: IEEE/ACM Transactions on Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2017.2672401 – ident: 777_CR32 doi: 10.21437/Interspeech.2016-88 – volume: 166 start-page: 107363 year: 2020 ident: 777_CR45 publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107363 – volume: 19 start-page: 40 year: 2018 ident: 777_CR6 publication-title: Front. Inf. Technol. & Electron. Eng. doi: 10.1631/FITEE.1700814 – volume: 39 start-page: 1025 year: 2018 ident: 777_CR52 publication-title: Otol. & neurotology doi: 10.1097/MAO.0000000000001924 – ident: 777_CR1 doi: 10.1007/978-3-319-51662-2 – volume: 38 start-page: 368 year: 2017 ident: 777_CR49 publication-title: Ear hearing doi: 10.1097/AUD.0000000000000412 – volume: 20 start-page: 3 year: 2015 ident: 777_CR53 publication-title: Audiol. Neurotol. doi: 10.1159/000380741 – ident: 777_CR22 doi: 10.1109/ICASSP.2009.4960543 – ident: 777_CR13 – volume: 41 start-page: 389 year: 2007 ident: 777_CR15 publication-title: Lang. resources evaluation doi: 10.1007/s10579-007-9054-4 – volume: 13 start-page: 815 year: 2019 ident: 777_CR34 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2912565 – volume: 146 start-page: 3590 year: 2019 ident: 777_CR38 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5133944 – ident: 777_CR23 – ident: 777_CR39 doi: 10.1093/oxfordhb/9780199233557.001.0001 – ident: 777_CR4 doi: 10.4324/9781315514611 – ident: 777_CR48 doi: 10.1097/AUD.0000000000000912 – ident: 777_CR20 doi: 10.1109/SAM.2018.8448644 – ident: 777_CR29 doi: 10.7551/mitpress/6391.001.0001 – ident: 777_CR47 doi: 10.1109/ICASSP.2012.6288223 – ident: 777_CR35 doi: 10.1109/ASRU.2017.8268914 – volume: 67 start-page: 1286 year: 1992 ident: 777_CR59 publication-title: Arch. disease childhood doi: 10.1136/adc.67.10.1286 – ident: 777_CR21 doi: 10.21437/Interspeech.2019-2821 – ident: 777_CR30 doi: 10.1002/9781119279860.ch4 – volume: 37 start-page: 19 year: 2016 ident: 777_CR51 publication-title: Otol. & neurotology doi: 10.1097/MAO.0000000000000866 – ident: 777_CR43 doi: 10.21437/Interspeech.2008-644 – ident: 777_CR61 doi: 10.1109/ICASSP.2015.7178964 – volume: 13 start-page: 214 year: 1907 ident: 777_CR28 publication-title: The London, Edinburgh, Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440709463595 – volume: 1803 start-page: 10609 year: 2018 ident: 777_CR9 publication-title: arXiv preprint arXiv – volume: 14 start-page: e0211899 year: 2019 ident: 777_CR37 publication-title: PLOS ONE doi: 10.1371/journal.pone.0211899 – year: 2020 ident: 777_CR55 doi: 10.6084/m9.figshare.c.5087012.v1 – ident: 777_CR46 doi: 10.1145/3385955.3407928 – ident: 777_CR18 – volume: 1909 start-page: 13447 year: 2019 ident: 777_CR8 publication-title: arXiv preprint arXiv – ident: 777_CR56 – volume: 9 start-page: 734 year: 2019 ident: 777_CR7 publication-title: Appl. Sci. doi: 10.3390/app9040734 – volume: 22 start-page: 233121651877931 year: 2018 ident: 777_CR27 publication-title: Trends hearing doi: 10.1177/2331216518779313 – ident: 777_CR42 – volume: 25 start-page: 975 year: 1953 ident: 777_CR5 publication-title: The J. Acoust. Soc. Am. doi: 10.1121/1.1907229 – ident: 777_CR10 doi: 10.21437/CHiME.2020-1 – ident: 777_CR54 doi: 10.21437/Interspeech.2020-1673 – ident: 777_CR25 – volume: 91 start-page: 967 year: 2005 ident: 777_CR2 publication-title: Acta Acustica United with Acustica – ident: 777_CR19 doi: 10.1109/ICASSP.2019.8682733 – volume: 19 start-page: R1024 year: 2009 ident: 777_CR3 publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.09.005 – ident: 777_CR11 doi: 10.1109/ICASSP40776.2020.9053074 – volume: 106 start-page: 68 year: 2019 ident: 777_CR14 publication-title: Speech Commun. doi: 10.1016/j.specom.2018.11.002 – ident: 777_CR16 doi: 10.21437/Interspeech.2018-1454 – ident: 777_CR31 doi: 10.1016/B978-0-12-814601-9.00022-5 – ident: 777_CR40 doi: 10.21437/Interspeech.2019-2441 – ident: 777_CR17 doi: 10.1109/ASRU.2015.7404805 – volume: 36 start-page: 1197 year: 2015 ident: 777_CR50 publication-title: Otol. & neurotology doi: 10.1097/MAO.0000000000000775 |
| SSID | ssj0001340570 |
| Score | 2.2549584 |
| Snippet | The Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in... Measurement(s) acoustic Cocktail Party scenarios • acoustic composition of speech • Noise Technology Type(s) head-mounted microphones Factor Type(s) head shape... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 440 |
| SubjectTerms | 631/114/1305 631/378/2619 639/166/985 639/705/117 Acoustics Cochlea Cochlear Implants Data Descriptor Hearing Hearing Aids Humanities and Social Sciences Humans multidisciplinary Noise Science Science (multidisciplinary) Transplants & implants |
| SummonAdditionalLinks | – databaseName: ProQuest Central Biological Science Database (via ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4cAFWJ6BBRmJAwiijWPXdk4IECtOqz2AtDfLT4jUTUtTkPj3zDhuq_LYCz02jmR7Xl_G428IeR6Sh6gpZK2ljLUIltUdb0ItOy94E7UOLORmE-r0VJ-fd2cl4TaWssqNT8yOOiw85siPW6FAWyAcsTfLbzV2jcLT1dJC4yq5hiwJPJfune1yLBzhSFPuyjRcH48Qr5B-tMXr1EqBg96LR5m2_29Y88-Syd_OTXM4Orn1vwu5TW4WIErfTppzSK7E4Q45LKY-0heFj_rlXXKRL-niDeEhzil40NwAjE5pf2qHQPsL8EoUi03HuKYAgynASoquFutT6RLU8yedKkdoP1Bsog2LorYP5fXlHARMMWEy3iOfTz58ev-xLl0aag9ob10zC4hLBWGtspGnoABBJIBZqZGxE61zygaNBJExzRJTPuiZSo1X3DIPXzeW3ycHw2KIDwmVMwfRUXdWAChV3mknuy4IBZhGt07xirCNrIwvFObYSWNu8lE612aSrwH5mixfoyvyavvOciLwuHT0O1SB7Ugk385_LFZfTLFlI33LHPI2iTaJBB_ITDjJlYvWwk4oVpGjjeRN8Qij2Ym9Is-2j8GW8YDGDhFkh2PAbABTwkofTPq2nQmHH4A7mKHa08S9qe4_GfqvmS8cN1PypiKvNzq7m9a_t-LR5at4TG60aEasrZk6Igfr1ff4hFz3P9b9uHqa7fAXIJI4xQ priority: 102 providerName: ProQuest |
| Title | Multichannel acoustic source and image dataset for the cocktail party effect in hearing aid and implant users |
| URI | https://link.springer.com/article/10.1038/s41597-020-00777-8 https://www.ncbi.nlm.nih.gov/pubmed/33335098 https://www.proquest.com/docview/2473198121 https://www.proquest.com/docview/2471466173 https://pubmed.ncbi.nlm.nih.gov/PMC7747630 https://doaj.org/article/6c21b804142f4f40914b637beaa35771 |
| Volume | 7 |
| WOSCitedRecordID | wos000601267000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAFsTwLS2UkDiCINo5dj3NkUVdwoIoQSOVkObYjInVDtSlIXPjtzDhp2fK80EMOtSNN5uH5bM-Dsceh8eg1lc6M1jFTwYmslHnIdOmVzKMxQYTUbAIWC7NcltWFVl8UEzaUBx4Yd6x9IWoqkqOKRjW4GxGq1hLq6JycQcoeLxD1XNhMpdMVSUAkH7NkcmmOe_RUVHi0oERqAFya9zxRKtj_O5T5a7DkTzemyRGd3mDXRwTJXwyUH7JLsbvJDkcb7fmTsZD001vsLGXXUmpvF1ccl77UuYsP5_XcdYG3Z7iccIoS7eOGI37liAc5rZEUWMrXyJ6vfAj54G3Hqfs10sRdG8bX1yuUDKeTjv42e386f_fyVTa2V8g8wrRNJhxCJQjKOXBRNgHQ9TeIj5pcx1IVdQ0uGKrsGJtZI8AHM4Mm9yCd8LgtcfIOO-g-dfEe43pWo1szpVOIJsHXptZlGRSgtExRg5wwsWW19WPtcWqBsbLpDlwaO4jHonhsEo81E_Zs9856qLzx19knJMHdTKqanf5AXbKjLtl_6dKEHW3lb0dT7m2hAJcpxEE4_Gg3jEZINyuuiyg7moP6jmAQv_TuoC47SiT-EJUhhbCnSHuk7o907cdU6JuYqWU-Yc-3KveDrD-z4v7_YMUDdq0gWxFFJuCIHWzOP8eH7Kr_smn78ym7DEtITzNlV07mi-rtNBnglGJnK3p-m-NI9fpN9eE7UBsw1w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILUJ4LBYwEEgiixo-NnQNCvKpWLaseitSb69gORNpml80C6p_iNzLjJLtaHr31QI4bJ7In38x8a8-DkCe-dOA1ZZboLAuJ9JYluUh9kuVOijRo7ZmPzSbUaKSPjvKDNfKzz4XBsMreJkZD7ScO98i3uFSAFnBH7PX0a4Jdo_B0tW-h0cJiL5z-gL9szavd9_B9n3K-_eHw3U7SdRVIHLCTecIsMATlpbXKBlF6BR6vBFpQplnIJS8KZb3GgoahHJZMOa-HqkydEpY5YONWwHsvkItAI7iOoYIHyz0dgfQn7XJzUqG3GvCPWO6UY_q2UuAQVvxfbBPwN277Z4jmb-e00f1tX_vfBHedXO2INn3TasYGWQv1DbLRmbKGPuvqbT-_SU5iEjJmQNdhTMFDxAZntD3WoLb2tDoBq0sxmLYJcwo0nwJtpuhKMP6WTkH9TmkbGUOrmmKTcBAitZXvHp-OAcAUN4SaW-TTuSz7NlmvJ3W4S2g2LMD769xKIN3KFbrI8txLBZxN80KJAWE9NozrSrRjp5CxiaECQpsWTwbwZCKejB6QF4tnpm2BkjNHv0XILUZicfH4w2T22XS2ymSOswLrUkleylLC7GSRCVUEa0ESig3IZo8001m8xixhNiCPF7fBVuEBlK0DfDscA2YBODOs9E6L78VMBFxAXmGGagX5K1NdvVNXX2I9dBRmJtIBednryHJa_xbFvbNX8Yhc3jn8uG_2d0d798kVjirMeMLUJlmfz76FB-SS-z6vmtnDaAMoOT5v3fkFSiSVzg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBaG9AMszsICRQAJB1Dh2Y-eAELBUrBZVPYC0N-PYDhupm5amgPav8euYcZJW5bG3PZBj40T25JuZr_Y8CHnsSgteU2SxyjIfC2dYnPPExVluBU-8Uo650GxCjsfq6CifbJGffS4MhlX2NjEYajezuEc-SIUEtIA7YoOyC4uY7I9ezb_G2EEKT1r7dhotRA796Q_4-9a8PNiHb_0kTUfvPr59H3cdBmILTGUZMwNsQTphjDSel06C9yuBIpRJ5nORFoU0TmFxQ18OSyatU0NZJlZywywwc8PhvRfIRYlFy0PY4GS9v8ORCiVdnk7C1aABX4mlT1NM5ZYSnMOGLwwtA_7Gc_8M1_ztzDa4wtHV_1mI18iVjoDT163G7JItX18nu52Ja-jTrg73sxvkJCQnY2Z07acUPEdofEbb4w5qakerE7DGFINsG7-kQP8p0GmKLgbjcukc1PKUthEztKopNg8HgVJTue7x-RSATXGjqLlJPp3Lsm-R7XpW-zuEZsMCWIHKjQAyLm2hiizPnZDA5VRaSB4R1uNE2650O3YQmeoQQsCVbrGlAVs6YEuriDxfPTNvC5ecOfoNwm81EouOhx9miy-6s2E6sykrsF6VSEtRCpidKDIuC28MSEKyiOz1qNOdJWz0GnIRebS6DTYMD6ZM7eHb4RgwF8ClYaW3W6yvZsLhAlILM5QbWrAx1c07dXUc6qSjMDOeRORFry_raf1bFHfPXsVDchlURn84GB_eIzspajNLYyb3yPZy8c3fJ5fs92XVLB4Ec0DJ5_NWnV9gtp6L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multichannel+acoustic+source+and+image+dataset+for+the+cocktail+party+effect+in+hearing+aid+and+implant+users&rft.jtitle=Scientific+data&rft.au=Fischer%2C+Tim&rft.au=Caversaccio%2C+Marco&rft.au=Wimmer%2C+Wilhelm&rft.date=2020-12-17&rft.eissn=2052-4463&rft.volume=7&rft.issue=1&rft.spage=440&rft_id=info:doi/10.1038%2Fs41597-020-00777-8&rft_id=info%3Apmid%2F33335098&rft.externalDocID=33335098 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |