High‐Efficiency Ion‐Exchange Doping of Conducting Polymers

Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 34; H. 22; S. e2102988 - n/a
Hauptverfasser: Jacobs, Ian E., Lin, Yue, Huang, Yuxuan, Ren, Xinglong, Simatos, Dimitrios, Chen, Chen, Tjhe, Dion, Statz, Martin, Lai, Lianglun, Finn, Peter A., Neal, William G., D'Avino, Gabriele, Lemaur, Vincent, Fratini, Simone, Beljonne, David, Strzalka, Joseph, Nielsen, Christian B., Barlow, Stephen, Marder, Seth R., McCulloch, Iain, Sirringhaus, Henning
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.06.2022
Wiley-VCH Verlag
Wiley Blackwell (John Wiley & Sons)
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. An extremely efficient ion‐exchange doping process for conjugated polymers which enables conductivities exceeding 1000 S cm−1 is demonstrated. Factors which affect ion exchange, such as electrolyte concentration, doping solvent, and film crystallinity are discussed. When exchange is efficient there is a direct correspondence between ion exchange electrochemical doping, which is used to reveal the detrimental impact of off‐target oxidation reactions.
AbstractList Abstract Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl 3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm −1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl 3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. An extremely efficient ion‐exchange doping process for conjugated polymers which enables conductivities exceeding 1000 S cm−1 is demonstrated. Factors which affect ion exchange, such as electrolyte concentration, doping solvent, and film crystallinity are discussed. When exchange is efficient there is a direct correspondence between ion exchange electrochemical doping, which is used to reveal the detrimental impact of off‐target oxidation reactions.
Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm-1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm-1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl 3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm −1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl 3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, we study the equilibrium and kinetics of ion exchange doping in a model system, PBTTT doped with FeCl 3 and BMP TFSI, which reaches conductivities in excess of 1000 S/cm and ion exchange efficiencies above 99%. We demonstrate several factors which enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl 3. In this high ion exchange efficiency regime, we illustrate a simple connection between electrochemical doping and ion exchange, and show that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Author Marder, Seth R.
Lemaur, Vincent
Fratini, Simone
McCulloch, Iain
Strzalka, Joseph
Barlow, Stephen
Statz, Martin
Simatos, Dimitrios
Huang, Yuxuan
Finn, Peter A.
Lai, Lianglun
Sirringhaus, Henning
D'Avino, Gabriele
Chen, Chen
Jacobs, Ian E.
Neal, William G.
Lin, Yue
Ren, Xinglong
Tjhe, Dion
Beljonne, David
Nielsen, Christian B.
Author_xml – sequence: 1
  givenname: Ian E.
  surname: Jacobs
  fullname: Jacobs, Ian E.
  organization: University of Cambridge
– sequence: 2
  givenname: Yue
  surname: Lin
  fullname: Lin, Yue
  organization: University of Cambridge
– sequence: 3
  givenname: Yuxuan
  surname: Huang
  fullname: Huang, Yuxuan
  organization: University of Cambridge
– sequence: 4
  givenname: Xinglong
  surname: Ren
  fullname: Ren, Xinglong
  organization: University of Cambridge
– sequence: 5
  givenname: Dimitrios
  surname: Simatos
  fullname: Simatos, Dimitrios
  organization: University of Cambridge
– sequence: 6
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: University of Cambridge
– sequence: 7
  givenname: Dion
  surname: Tjhe
  fullname: Tjhe, Dion
  organization: University of Cambridge
– sequence: 8
  givenname: Martin
  surname: Statz
  fullname: Statz, Martin
  organization: University of Cambridge
– sequence: 9
  givenname: Lianglun
  surname: Lai
  fullname: Lai, Lianglun
  organization: University of Cambridge
– sequence: 10
  givenname: Peter A.
  surname: Finn
  fullname: Finn, Peter A.
  organization: Queen Mary University of London
– sequence: 11
  givenname: William G.
  surname: Neal
  fullname: Neal, William G.
  organization: Queen Mary University of London
– sequence: 12
  givenname: Gabriele
  surname: D'Avino
  fullname: D'Avino, Gabriele
  organization: Institut Néel
– sequence: 13
  givenname: Vincent
  surname: Lemaur
  fullname: Lemaur, Vincent
  organization: University of Mons
– sequence: 14
  givenname: Simone
  surname: Fratini
  fullname: Fratini, Simone
  organization: Institut Néel
– sequence: 15
  givenname: David
  surname: Beljonne
  fullname: Beljonne, David
  organization: University of Mons
– sequence: 16
  givenname: Joseph
  surname: Strzalka
  fullname: Strzalka, Joseph
  organization: Argonne National Laboratory
– sequence: 17
  givenname: Christian B.
  surname: Nielsen
  fullname: Nielsen, Christian B.
  organization: Queen Mary University of London
– sequence: 18
  givenname: Stephen
  surname: Barlow
  fullname: Barlow, Stephen
  organization: Georgia Institute of Technology
– sequence: 19
  givenname: Seth R.
  surname: Marder
  fullname: Marder, Seth R.
  organization: Georgia Institute of Technology
– sequence: 20
  givenname: Iain
  surname: McCulloch
  fullname: McCulloch, Iain
  organization: University of Oxford
– sequence: 21
  givenname: Henning
  orcidid: 0000-0001-9827-6061
  surname: Sirringhaus
  fullname: Sirringhaus, Henning
  email: hs220@cam.ac.uk
  organization: University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34418878$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03411915$$DView record in HAL
https://www.osti.gov/biblio/1821038$$D View this record in Osti.gov
BookMark eNqFkc9u1DAQxi1URLeFK0e0ggs9ZBn_SWJfkFbblq20CA5wthzH3nWV2EucAHvjEXhGngRHabdSJcRp5NHvm5nP3xk68cEbhF5iWGAA8k7VrVoQIBiI4PwJmuGc4IyByE_QDATNM1EwforOYrwFAFFA8QydUsYw5yWfofdrt939-fX7ylqnnfH6ML8Jfmz81Dvlt2Z-GfbOb-fBzlfB14Pux9fn0Bxa08Xn6KlVTTQv7uo5-np99WW1zjafPtyslptM5wx4xjinujKCqlrQikHFalFiktMSW0IKZSrIbW00VRprDKW1tLRamUJxDYoxeo5eT3ND7J2M2vVG73Tw3uheYp7sU56giwnaqUbuO9eq7iCDcnK93MixB5RhLHD-HSf27cTuu_BtMLGXrYvaNI3yJgxRkrygjJScioS-eYTehqHzya4kRUnS_TmUiXp1Rw1Va-rj_vuvTsBiAnQXYuyMPSIY5JilHLOUxyyTgD0SJNuqd8H3nXLNv2Vikv1wjTn8Z4lcXn5cPmj_AtAlses
CitedBy_id crossref_primary_10_1038_s41467_025_61708_y
crossref_primary_10_1038_s43246_022_00268_w
crossref_primary_10_1002_adma_202203109
crossref_primary_10_1016_j_trechm_2021_10_007
crossref_primary_10_1002_adfm_202202929
crossref_primary_10_1002_adfm_202513684
crossref_primary_10_1002_admt_202301542
crossref_primary_10_1002_aelm_202200629
crossref_primary_10_1016_j_cclet_2023_109014
crossref_primary_10_1063_5_0080820
crossref_primary_10_1016_j_cej_2024_153692
crossref_primary_10_1002_adfm_202111351
crossref_primary_10_1002_adfm_202309403
crossref_primary_10_1039_D5TA01703C
crossref_primary_10_1063_5_0192020
crossref_primary_10_1039_D5TA03744A
crossref_primary_10_1002_adma_202311303
crossref_primary_10_1016_j_mtcomm_2023_107682
crossref_primary_10_1002_anie_202219313
crossref_primary_10_1111_1541_4337_70045
crossref_primary_10_1002_advs_202207694
crossref_primary_10_1021_jacs_1c10651
crossref_primary_10_1016_j_cej_2023_144129
crossref_primary_10_1039_D5TA03149D
crossref_primary_10_1016_j_polymer_2025_128581
crossref_primary_10_1002_adma_202310480
crossref_primary_10_1002_marc_202400946
crossref_primary_10_1002_aenm_202403431
crossref_primary_10_1021_jacs_5c11337
crossref_primary_10_1002_adhm_202302354
crossref_primary_10_1002_aelm_202101019
crossref_primary_10_1002_pol_20210699
crossref_primary_10_35848_1882_0786_ad2f66
crossref_primary_10_1038_s43246_024_00507_2
crossref_primary_10_1002_aelm_202100888
crossref_primary_10_1002_smtd_202400084
crossref_primary_10_1002_smtd_202201145
crossref_primary_10_1016_j_cej_2024_151708
crossref_primary_10_1002_anie_202211600
crossref_primary_10_1002_adma_202412811
crossref_primary_10_1002_adfm_202300934
crossref_primary_10_1002_advs_202405676
crossref_primary_10_1002_adma_202404554
crossref_primary_10_1002_smtd_202300476
crossref_primary_10_1021_acsnano_5c04885
crossref_primary_10_1021_jacs_4c09843
crossref_primary_10_1002_adfm_202422778
crossref_primary_10_1002_aenm_202202797
crossref_primary_10_1002_adfm_202211740
crossref_primary_10_3390_ijms25031564
crossref_primary_10_1039_D5MH00620A
crossref_primary_10_1039_D5TC02396C
crossref_primary_10_1002_advs_202302880
crossref_primary_10_1088_1361_6528_ad1944
crossref_primary_10_1002_adma_202313863
crossref_primary_10_1002_adma_202504357
crossref_primary_10_3390_polym16172467
crossref_primary_10_1002_aelm_202400216
crossref_primary_10_1039_D5NR00506J
crossref_primary_10_1002_adfm_202112262
crossref_primary_10_1002_adma_202420323
crossref_primary_10_1038_s41586_023_06504_8
crossref_primary_10_1002_anie_202408537
crossref_primary_10_1002_ange_202211600
crossref_primary_10_1007_s10965_024_04140_y
crossref_primary_10_1002_sstr_202400319
crossref_primary_10_1002_aelm_202400817
crossref_primary_10_1016_j_materresbull_2024_113050
crossref_primary_10_1002_anie_202304245
crossref_primary_10_1002_adfm_202404411
crossref_primary_10_1038_s41467_024_49208_x
crossref_primary_10_1088_1361_6528_ac96fa
crossref_primary_10_1002_adma_202207320
crossref_primary_10_3390_polym17060746
crossref_primary_10_1002_adma_202314062
crossref_primary_10_1002_adfm_202510822
crossref_primary_10_1002_smll_202207858
crossref_primary_10_3390_polym16131884
crossref_primary_10_1002_adma_202417594
crossref_primary_10_1007_s40710_023_00654_7
crossref_primary_10_1039_D5TC01775K
crossref_primary_10_35848_1347_4065_acbb10
crossref_primary_10_1002_aenm_202401705
crossref_primary_10_1002_ange_202219313
crossref_primary_10_1021_acs_jpcc_5c02950
crossref_primary_10_1002_ange_202408537
crossref_primary_10_1016_j_cclet_2024_109837
crossref_primary_10_1021_acsnano_5c04666
crossref_primary_10_1002_aenm_202103049
crossref_primary_10_1002_ange_202304245
crossref_primary_10_1016_j_cej_2025_168253
crossref_primary_10_1246_bcsj_20230175
crossref_primary_10_1002_adfm_202413647
crossref_primary_10_1002_adfm_202300809
crossref_primary_10_1002_smll_202300231
crossref_primary_10_1038_s41467_024_50293_1
Cites_doi 10.1039/D0CS00204F
10.1039/C8MH00223A
10.1038/ncomms11948
10.1021/acs.jpclett.0c03620
10.1038/s41928-019-0222-5
10.1038/s41563-018-0277-0
10.1002/adma.201004554
10.1021/ar00118a005
10.1021/acs.chemmater.6b04880
10.1039/C5CS00303B
10.1039/C3MH00035D
10.1063/1.438233
10.1016/S0022-0728(98)00167-3
10.1002/adfm.201700173
10.1039/c2ee23006b
10.1103/PhysRevLett.108.035502
10.1039/C7CC08671G
10.1038/s41467-018-03302-z
10.1002/adma.201703063
10.1021/je60054a002
10.1016/S0040-6090(97)00554-3
10.1063/1.4938137
10.1021/ac60283a025
10.1021/j100885a036
10.1103/PhysRevB.87.115209
10.1039/C5TC04207K
10.1063/1.1140422
10.1103/PhysRevB.72.235202
10.1021/jp412344a
10.1021/acs.macromol.7b00672
10.1063/1.1700388
10.1021/jacs.9b12769
10.1016/j.electacta.2006.03.016
10.1103/PhysRevB.82.115454
10.1021/acs.chemrev.8b00279
10.1021/acs.accounts.0c00349
10.1021/ja00418a050
10.1246/bcsj.29.311
10.1021/ac60214a047
10.1002/adma.201806863
10.1016/j.chemgeo.2006.02.005
10.1021/acs.chemmater.9b01549
10.1016/0038-1101(74)90001-X
10.1038/s41586-019-1504-9
10.1038/nmat4634
10.1038/nmat2448
10.1021/acsmacrolett.5b00887
10.1002/adma.201506295
10.1107/S1600576715004434
10.1021/acs.chemrev.6b00329
10.1021/ic50211a080
10.1021/acs.jpclett.6b02048
10.1021/acs.chemmater.0c01293
10.1021/cm1002737
10.1039/C8MH00921J
10.1016/0021-9614(76)90060-4
10.1002/adma.201805647
10.1038/s41467-019-12526-6
10.1103/PhysRevB.84.045203
10.1039/C8TA05922E
10.1002/adfm.201702654
10.1021/acs.accounts.5b00438
10.1021/cr940053x
10.1021/ja01068a010
10.1351/pac198658070955
10.1038/nmat1612
10.1002/adfm.200900120
10.1002/advs.201800947
10.1021/ma0709001
ContentType Journal Article
Copyright 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
OTOTI
DOI 10.1002/adma.202102988
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList

PubMed
Materials Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1821038
oai:HAL:hal-03411915v1
34418878
10_1002_adma_202102988
ADMA202102988
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1729737
– fundername: Office of Science
  funderid: DE‐ AC02‐06CH11357
– fundername: Royal Society
  funderid: NF170736
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/R031894/1; EP/L015889/1
– fundername: European Research Council
  funderid: 610115
– fundername: National Science Foundation
  grantid: DMR-1729737
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L015889/1
– fundername: Royal Society
  grantid: NF170736
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/R031894/1
– fundername: Office of Science
  grantid: DE- AC02-06CH11357
– fundername: European Research Council
  grantid: 610115
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
OTOTI
ID FETCH-LOGICAL-c5408-4883cbe93ad93b40b4d97125371f226aeb05fdec3ac1c107ff37fcae6a8c0a443
IEDL.DBID 24P
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686932900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Jul 13 03:03:14 EDT 2025
Sat Nov 15 06:25:58 EST 2025
Sun Nov 09 08:59:15 EST 2025
Fri Jul 25 07:44:36 EDT 2025
Wed Feb 19 02:23:37 EST 2025
Tue Nov 18 21:59:32 EST 2025
Sat Nov 29 07:18:06 EST 2025
Wed Jan 22 16:24:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords doping
electrochemistry
electrical conductivity
conjugated polymers
ion exchange
Language English
License Attribution
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5408-4883cbe93ad93b40b4d97125371f226aeb05fdec3ac1c107ff37fcae6a8c0a443
Notes Dedicated to Professor Daoben Zhu on the occasion of his 80th birthday
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC)
AC02-06CH11357; 610115; EP/R031894/1; EP/L015889/1; DMR-1729737
European Commission (EC)
Royal Society Newton International Fellowship
European Research Council (ERC)
National Science Foundation (NSF)
Engineering and Physical Sciences Research Council
ORCID 0000-0001-9827-6061
0000-0002-4750-3241
0000-0001-5082-9990
0000000198276061
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102988
PMID 34418878
PQID 2672226507
PQPubID 2045203
PageCount 12
ParticipantIDs osti_scitechconnect_1821038
hal_primary_oai_HAL_hal_03411915v1
proquest_miscellaneous_2563427839
proquest_journals_2672226507
pubmed_primary_34418878
crossref_primary_10_1002_adma_202102988
crossref_citationtrail_10_1002_adma_202102988
wiley_primary_10_1002_adma_202102988_ADMA202102988
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
– name: Wiley Blackwell (John Wiley & Sons)
References 2019; 10
1998; 317
2019; 18
1964; 86
2015; 107
1979; 71
1974; 17
2014; 1
1952; 20
2018; 6
2010; 22
2018; 9
2015; 48
1985; 18
2018; 5
1965; 69
2020; 53
2015; 44
2020; 49
1964; 36
2016; 116
2011; 23
2005; 72
2009; 19
2016; 49
1972; 17
2014; 118
1989; 60
2019; 6
2006; 51
2019; 31
2013; 87
2019; 2
2020; 142
2017; 27
1986; 58
2011; 84
2016; 122
1996; 96
2006; 231
2006; 5
1995
1998; 456
2017; 29
2020; 32
1976; 8
2016; 15
2012; 108
2010; 82
2016; 4
1976; 98
2016; 5
2017; 50
2016; 7
2021; 12
1980; 19
2018; 118
2009; 8
1970; 42
1956; 29
2007; 40
2016; 28
2018; 54
2012; 5
2019; 572
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
Helfferich F. G. (e_1_2_8_32_1) 1995
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 621
  year: 2009
  publication-title: Nat. Mater.
– volume: 98
  start-page: 610
  year: 1976
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 4297
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 328
  year: 2006
  publication-title: Nat. Mater.
– volume: 29
  start-page: 832
  year: 2017
  publication-title: Chem. Mater.
– volume: 17
  start-page: 288
  year: 1972
  publication-title: J. Chem. Eng. Data
– volume: 42
  start-page: 43
  year: 1970
  publication-title: Anal. Chem.
– volume: 19
  start-page: 1906
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 242
  year: 2019
  publication-title: Nat. Mater.
– volume: 456
  start-page: 139
  year: 1998
  publication-title: J. Electroanal. Chem.
– volume: 69
  start-page: 244
  year: 1965
  publication-title: J. Phys. Chem.
– volume: 28
  start-page: 6003
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 111
  year: 2014
  publication-title: Mater. Horiz.
– volume: 19
  start-page: 2854
  year: 1980
  publication-title: Inorg. Chem.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 1217
  year: 1974
  publication-title: Solid‐State Electron.
– volume: 31
  start-page: 6986
  year: 2019
  publication-title: Chem. Mater.
– volume: 86
  start-page: 2799
  year: 1964
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4547
  year: 2019
  publication-title: Nat. Commun.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 9639
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 3926
  year: 2010
  publication-title: Chem. Mater.
– volume: 53
  start-page: 2201
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 60
  start-page: 271
  year: 1989
  publication-title: Rev. Sci. Instrum.
– volume: 54
  start-page: 307
  year: 2018
  publication-title: Chem. Commun.
– volume: 20
  start-page: 257
  year: 1952
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 107
  year: 2019
  publication-title: Mater. Horiz.
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 955
  year: 1986
  publication-title: Pure Appl. Chem
– volume: 118
  start-page: 1426
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 3454
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 36
  start-page: 1627
  year: 1964
  publication-title: Anal. Chem.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 7960
  year: 2007
  publication-title: Macromolecules
– volume: 5
  start-page: 268
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 317
  start-page: 367
  year: 1998
  publication-title: Thin Solid Films
– volume: 23
  start-page: 2367
  year: 2011
  publication-title: Adv. Mater.
– volume: 48
  start-page: 917
  year: 2015
  publication-title: J. Appl. Crystallogr.
– volume: 49
  start-page: 7210
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 72
  year: 2005
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 896
  year: 2016
  publication-title: Nat. Mater.
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 98
  year: 2019
  publication-title: Nat. Electron.
– volume: 8
  start-page: 403
  year: 1976
  publication-title: J. Chem. Thermodyn.
– volume: 29
  start-page: 311
  year: 1956
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 51
  start-page: 5567
  year: 2006
  publication-title: Electrochim. Acta
– volume: 142
  start-page: 7434
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 309
  year: 1985
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 5476
  year: 2017
  publication-title: Macromolecules
– volume: 71
  start-page: 4255
  year: 1979
  publication-title: J. Chem. Phys.
– year: 1995
– volume: 12
  start-page: 1284
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 49
  start-page: 370
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 32
  start-page: 6003
  year: 2020
  publication-title: Chem. Mater.
– volume: 5
  start-page: 655
  year: 2018
  publication-title: Mater. Horiz.
– volume: 231
  start-page: 326
  year: 2006
  publication-title: Chem. Geol.
– volume: 44
  start-page: 7484
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1182
  year: 2018
  publication-title: Nat. Commun.
– volume: 96
  start-page: 877
  year: 1996
  publication-title: Chem. Rev.
– volume: 572
  start-page: 634
  year: 2019
  publication-title: Nature
– ident: e_1_2_8_4_1
  doi: 10.1039/D0CS00204F
– ident: e_1_2_8_12_1
  doi: 10.1039/C8MH00223A
– ident: e_1_2_8_27_1
  doi: 10.1038/ncomms11948
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.jpclett.0c03620
– ident: e_1_2_8_28_1
  doi: 10.1038/s41928-019-0222-5
– ident: e_1_2_8_17_1
  doi: 10.1038/s41563-018-0277-0
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.201004554
– ident: e_1_2_8_56_1
  doi: 10.1021/ar00118a005
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemmater.6b04880
– ident: e_1_2_8_37_1
  doi: 10.1039/C5CS00303B
– ident: e_1_2_8_64_1
  doi: 10.1039/C3MH00035D
– ident: e_1_2_8_44_1
  doi: 10.1063/1.438233
– ident: e_1_2_8_26_1
  doi: 10.1016/S0022-0728(98)00167-3
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201700173
– ident: e_1_2_8_54_1
  doi: 10.1039/c2ee23006b
– ident: e_1_2_8_8_1
  doi: 10.1103/PhysRevLett.108.035502
– ident: e_1_2_8_61_1
  doi: 10.1039/C7CC08671G
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-018-03302-z
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201703063
– ident: e_1_2_8_48_1
  doi: 10.1021/je60054a002
– ident: e_1_2_8_25_1
  doi: 10.1016/S0040-6090(97)00554-3
– ident: e_1_2_8_55_1
  doi: 10.1063/1.4938137
– ident: e_1_2_8_43_1
  doi: 10.1021/ac60283a025
– ident: e_1_2_8_41_1
  doi: 10.1021/j100885a036
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.87.115209
– ident: e_1_2_8_33_1
  doi: 10.1039/C5TC04207K
– ident: e_1_2_8_67_1
  doi: 10.1063/1.1140422
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevB.72.235202
– ident: e_1_2_8_53_1
  doi: 10.1021/jp412344a
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.macromol.7b00672
– ident: e_1_2_8_40_1
  doi: 10.1063/1.1700388
– ident: e_1_2_8_58_1
  doi: 10.1021/jacs.9b12769
– ident: e_1_2_8_42_1
  doi: 10.1016/j.electacta.2006.03.016
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevB.82.115454
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.chemrev.8b00279
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.accounts.0c00349
– ident: e_1_2_8_65_1
  doi: 10.1021/ja00418a050
– ident: e_1_2_8_47_1
  doi: 10.1246/bcsj.29.311
– ident: e_1_2_8_69_1
  doi: 10.1021/ac60214a047
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201806863
– ident: e_1_2_8_45_1
  doi: 10.1016/j.chemgeo.2006.02.005
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemmater.9b01549
– ident: e_1_2_8_66_1
  doi: 10.1016/0038-1101(74)90001-X
– ident: e_1_2_8_24_1
  doi: 10.1038/s41586-019-1504-9
– ident: e_1_2_8_10_1
  doi: 10.1038/nmat4634
– ident: e_1_2_8_23_1
  doi: 10.1038/nmat2448
– ident: e_1_2_8_30_1
  doi: 10.1021/acsmacrolett.5b00887
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.201506295
– ident: e_1_2_8_70_1
  doi: 10.1107/S1600576715004434
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.6b00329
– ident: e_1_2_8_51_1
  doi: 10.1021/ic50211a080
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.jpclett.6b02048
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemmater.0c01293
– ident: e_1_2_8_62_1
  doi: 10.1021/cm1002737
– ident: e_1_2_8_7_1
  doi: 10.1039/C8MH00921J
– ident: e_1_2_8_36_1
  doi: 10.1016/0021-9614(76)90060-4
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201805647
– volume-title: Ion Exchange
  year: 1995
  ident: e_1_2_8_32_1
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-019-12526-6
– ident: e_1_2_8_71_1
  doi: 10.1103/PhysRevB.84.045203
– ident: e_1_2_8_46_1
  doi: 10.1039/C8TA05922E
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.201702654
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.accounts.5b00438
– ident: e_1_2_8_22_1
  doi: 10.1021/cr940053x
– ident: e_1_2_8_63_1
  doi: 10.1021/ja01068a010
– ident: e_1_2_8_49_1
  doi: 10.1351/pac198658070955
– ident: e_1_2_8_68_1
– ident: e_1_2_8_59_1
  doi: 10.1038/nmat1612
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.200900120
– ident: e_1_2_8_31_1
  doi: 10.1002/advs.201800947
– ident: e_1_2_8_60_1
  doi: 10.1021/ma0709001
SSID ssj0009606
Score 2.6736016
Snippet Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging...
Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging...
Abstract Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by...
SourceID osti
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2102988
SubjectTerms Acetonitrile
Chemical Sciences
Condensed Matter
Conducting polymers
conjugated polymers
Doping
electrical conductivity
electrochemistry
Ferric chloride
Ion exchange
Ionic liquids
MATERIALS SCIENCE
Organic semiconductors
Physics
Polymers
Stability
Title High‐Efficiency Ion‐Exchange Doping of Conducting Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102988
https://www.ncbi.nlm.nih.gov/pubmed/34418878
https://www.proquest.com/docview/2672226507
https://www.proquest.com/docview/2563427839
https://hal.science/hal-03411915
https://www.osti.gov/biblio/1821038
Volume 34
WOSCitedRecordID wos000686932900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTQ_tIX2nTtLglkJPJrbl1eNSWLJZUkjDUhrYm5C0EikEO2Q3ob3lJ-Q35pdkRt51stBSaC8G2ZLRazSfRppvAD7ywjAXeMhw5RNZhdKUKeZE1neeMxscL42JwSbE8bGcTNT4gRd_yw_RGdxIMuJ6TQJu7GzvnjTUTCNvEG1ZlJRrsF4UTFLwhrIa39Pu8hhdk077MsUruaRtzMu91fIramntlC5F9hoUst8Bz1UcGxXR6Nn_N-E5bCxAaDpoZ80LeOTrl_D0ATXhK_hMF0Bur28OIsUE-WemX5qaXvxsfYXTYXS1SpuQ7jc1scZSatyc_SJL-Gs4GR183z_MFrEWMoeYjWyKkjnrFTNTxWyV22qqBIIfJoqACM14m_fD1DtmXOFwyxgCE8EZz410uakq9gZ6dVP7t5ByOiO2FqGhlaj_nTLGWo84x5bS-yASyJZdrd2CiJziYZzplkK51NQvuuuXBD51-c9bCo4_5vyAI9dlIubsw8GRpnc5amvcmvavigS2aWA1IgyiyXV0n8jNNe6ziCs-gZ3leOuFNM90yQXCKMSyWPf33WeUQzpcMbVvLjFPn7MYtkQlsNnOk64iDDEnLub48zJOh780Qw-GXwddautfCm3Dk5L8NKK5aAd684tL_w4eu6v5j9nFbpQRfIqJ3IX14bfRydEdI5YRmA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB7BglQ4FGgpBGgJFRKniGycdeJLpRU_WsSy2gOVuFm21xaVUIJgQXDjEfqMfRJmnGzoSkWVEEc7duS_sb8Ze74B2OVtxYzjLsKdL4tSlKZIMJNFHWM5087wRCkfbCIbDPKLCzGsXxOSL0zFD9EY3Egy_H5NAk4G6f0X1lA18sRBpLOIPJ-FuRSPGlrqSTp84d3lPrwmXfdFgqf5hLcxTvan60-dS7OX9CqyVaKU_Qt5TgNZfxIdL71DH5bhYw1Dw261blZgxhafYPEvcsLP8IOegPx5-n3kSSbIQzM8KQvKeKi8hcND72wVli48KAvijaXUsLx6JFv4Kvw8Pjo_6EV1tIXIIGojq2LOjLaCqZFgOo11OhIZwh-WtR1iNGV13HEja5gybYNKo3Msc0ZZrnITqzRlX6BVlIVdh5DTLbHWCA51jgjACKW0toh0dJJb67IAoslYS1NTkVNEjCtZkSgnksZFNuMSwF5T_roi4Xi15HecuqYQcWf3un1JeTGe16icdu7bAWzSzErEGESUa-hFkRlL1LSILT6ArcmEy1qeb2XCMwRSiGax7TvNZ5REul5RhS3vsEyHMx-4RASwVi2UpiEMUSdu5_jzxK-H_3RDdg_Puk1q4y2VtuFD7_ysL_sng9NNWEjIa8Mbj7agNb65s19h3tyPf93efPMC8wx1uhL7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fSxwxEB_0LMU-aP9pV23dlkKfFvc2e9nNi3B4HorX4ygVfAtJNqGC7Iqe0r75EfyMfhJnsnurBxah9DHZbMi_SX6TzPwG4CvvKmYcdxHufFmUojRFgpks6hnLmXaGJ0r5YBPZeJyfnIhJY01IvjA1P0R74UaS4fdrEnB7XridB9ZQVXjiINJZRJ4vwlJKkWQ6sDT4MTwePTDvch9gkx78IsHTfMbcGCc78zXMnUyLv8guslOhnD2FPeehrD-Lhqv_oRevYaUBomG_XjlvYMGWb-HVI3rCd7BLRiB3N7f7nmaCfDTDw6qkjN-1v3A48O5WYeXCvaok5lhKTaqzP3Qb_h6Oh_s_9w6iJt5CZBC30b1izoy2gqlCMJ3GOi1EhgCIZV2HKE1ZHfdcYQ1TpmtQbXSOZc4oy1VuYpWmbA06ZVXaDxByeifWGuGhzhEDGKGU1haxjk5ya10WQDQba2kaMnKKiXEmaxrlRNK4yHZcAvjWlj-vaTj-WvILTl1biNizD_ojSXkxntionvauuwFs0sxKRBlElWvIpshMJepaxBcfwNZswmUj0Zcy4RlCKcSz2PbP7WeURXpgUaWtrrBMjzMfukQEsF4vlLYhDHEnbuhYeeLXwzPdkP3B936b2viXn7bh5WQwlKPD8dEmLCfktuFvj7agM724sh_hhbmenl5efGok5h7ycRQR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+Ion%E2%80%90Exchange+Doping+of+Conducting+Polymers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jacobs%2C+Ian+E&rft.au=Lin%2C+Yue&rft.au=Huang%2C+Yuxuan&rft.au=Ren%2C+Xinglong&rft.date=2022-06-01&rft.pub=Wiley-VCH+Verlag&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202102988&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03411915v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon