High‐Efficiency Ion‐Exchange Doping of Conducting Polymers
Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 34; H. 22; S. e2102988 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.06.2022
Wiley-VCH Verlag Wiley Blackwell (John Wiley & Sons) |
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
An extremely efficient ion‐exchange doping process for conjugated polymers which enables conductivities exceeding 1000 S cm−1 is demonstrated. Factors which affect ion exchange, such as electrolyte concentration, doping solvent, and film crystallinity are discussed. When exchange is efficient there is a direct correspondence between ion exchange electrochemical doping, which is used to reveal the detrimental impact of off‐target oxidation reactions. |
|---|---|
| AbstractList | Abstract
Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl
3
and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm
−1
and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl
3
, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. An extremely efficient ion‐exchange doping process for conjugated polymers which enables conductivities exceeding 1000 S cm−1 is demonstrated. Factors which affect ion exchange, such as electrolyte concentration, doping solvent, and film crystallinity are discussed. When exchange is efficient there is a direct correspondence between ion exchange electrochemical doping, which is used to reveal the detrimental impact of off‐target oxidation reactions. Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm-1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm-1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl 3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm −1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl 3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, we study the equilibrium and kinetics of ion exchange doping in a model system, PBTTT doped with FeCl 3 and BMP TFSI, which reaches conductivities in excess of 1000 S/cm and ion exchange efficiencies above 99%. We demonstrate several factors which enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl 3. In this high ion exchange efficiency regime, we illustrate a simple connection between electrochemical doping and ion exchange, and show that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. |
| Author | Marder, Seth R. Lemaur, Vincent Fratini, Simone McCulloch, Iain Strzalka, Joseph Barlow, Stephen Statz, Martin Simatos, Dimitrios Huang, Yuxuan Finn, Peter A. Lai, Lianglun Sirringhaus, Henning D'Avino, Gabriele Chen, Chen Jacobs, Ian E. Neal, William G. Lin, Yue Ren, Xinglong Tjhe, Dion Beljonne, David Nielsen, Christian B. |
| Author_xml | – sequence: 1 givenname: Ian E. surname: Jacobs fullname: Jacobs, Ian E. organization: University of Cambridge – sequence: 2 givenname: Yue surname: Lin fullname: Lin, Yue organization: University of Cambridge – sequence: 3 givenname: Yuxuan surname: Huang fullname: Huang, Yuxuan organization: University of Cambridge – sequence: 4 givenname: Xinglong surname: Ren fullname: Ren, Xinglong organization: University of Cambridge – sequence: 5 givenname: Dimitrios surname: Simatos fullname: Simatos, Dimitrios organization: University of Cambridge – sequence: 6 givenname: Chen surname: Chen fullname: Chen, Chen organization: University of Cambridge – sequence: 7 givenname: Dion surname: Tjhe fullname: Tjhe, Dion organization: University of Cambridge – sequence: 8 givenname: Martin surname: Statz fullname: Statz, Martin organization: University of Cambridge – sequence: 9 givenname: Lianglun surname: Lai fullname: Lai, Lianglun organization: University of Cambridge – sequence: 10 givenname: Peter A. surname: Finn fullname: Finn, Peter A. organization: Queen Mary University of London – sequence: 11 givenname: William G. surname: Neal fullname: Neal, William G. organization: Queen Mary University of London – sequence: 12 givenname: Gabriele surname: D'Avino fullname: D'Avino, Gabriele organization: Institut Néel – sequence: 13 givenname: Vincent surname: Lemaur fullname: Lemaur, Vincent organization: University of Mons – sequence: 14 givenname: Simone surname: Fratini fullname: Fratini, Simone organization: Institut Néel – sequence: 15 givenname: David surname: Beljonne fullname: Beljonne, David organization: University of Mons – sequence: 16 givenname: Joseph surname: Strzalka fullname: Strzalka, Joseph organization: Argonne National Laboratory – sequence: 17 givenname: Christian B. surname: Nielsen fullname: Nielsen, Christian B. organization: Queen Mary University of London – sequence: 18 givenname: Stephen surname: Barlow fullname: Barlow, Stephen organization: Georgia Institute of Technology – sequence: 19 givenname: Seth R. surname: Marder fullname: Marder, Seth R. organization: Georgia Institute of Technology – sequence: 20 givenname: Iain surname: McCulloch fullname: McCulloch, Iain organization: University of Oxford – sequence: 21 givenname: Henning orcidid: 0000-0001-9827-6061 surname: Sirringhaus fullname: Sirringhaus, Henning email: hs220@cam.ac.uk organization: University of Cambridge |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34418878$$D View this record in MEDLINE/PubMed https://hal.science/hal-03411915$$DView record in HAL https://www.osti.gov/biblio/1821038$$D View this record in Osti.gov |
| BookMark | eNqFkc9u1DAQxi1URLeFK0e0ggs9ZBn_SWJfkFbblq20CA5wthzH3nWV2EucAHvjEXhGngRHabdSJcRp5NHvm5nP3xk68cEbhF5iWGAA8k7VrVoQIBiI4PwJmuGc4IyByE_QDATNM1EwforOYrwFAFFA8QydUsYw5yWfofdrt939-fX7ylqnnfH6ML8Jfmz81Dvlt2Z-GfbOb-fBzlfB14Pux9fn0Bxa08Xn6KlVTTQv7uo5-np99WW1zjafPtyslptM5wx4xjinujKCqlrQikHFalFiktMSW0IKZSrIbW00VRprDKW1tLRamUJxDYoxeo5eT3ND7J2M2vVG73Tw3uheYp7sU56giwnaqUbuO9eq7iCDcnK93MixB5RhLHD-HSf27cTuu_BtMLGXrYvaNI3yJgxRkrygjJScioS-eYTehqHzya4kRUnS_TmUiXp1Rw1Va-rj_vuvTsBiAnQXYuyMPSIY5JilHLOUxyyTgD0SJNuqd8H3nXLNv2Vikv1wjTn8Z4lcXn5cPmj_AtAlses |
| CitedBy_id | crossref_primary_10_1038_s41467_025_61708_y crossref_primary_10_1038_s43246_022_00268_w crossref_primary_10_1002_adma_202203109 crossref_primary_10_1016_j_trechm_2021_10_007 crossref_primary_10_1002_adfm_202202929 crossref_primary_10_1002_adfm_202513684 crossref_primary_10_1002_admt_202301542 crossref_primary_10_1002_aelm_202200629 crossref_primary_10_1016_j_cclet_2023_109014 crossref_primary_10_1063_5_0080820 crossref_primary_10_1016_j_cej_2024_153692 crossref_primary_10_1002_adfm_202111351 crossref_primary_10_1002_adfm_202309403 crossref_primary_10_1039_D5TA01703C crossref_primary_10_1063_5_0192020 crossref_primary_10_1039_D5TA03744A crossref_primary_10_1002_adma_202311303 crossref_primary_10_1016_j_mtcomm_2023_107682 crossref_primary_10_1002_anie_202219313 crossref_primary_10_1111_1541_4337_70045 crossref_primary_10_1002_advs_202207694 crossref_primary_10_1021_jacs_1c10651 crossref_primary_10_1016_j_cej_2023_144129 crossref_primary_10_1039_D5TA03149D crossref_primary_10_1016_j_polymer_2025_128581 crossref_primary_10_1002_adma_202310480 crossref_primary_10_1002_marc_202400946 crossref_primary_10_1002_aenm_202403431 crossref_primary_10_1021_jacs_5c11337 crossref_primary_10_1002_adhm_202302354 crossref_primary_10_1002_aelm_202101019 crossref_primary_10_1002_pol_20210699 crossref_primary_10_35848_1882_0786_ad2f66 crossref_primary_10_1038_s43246_024_00507_2 crossref_primary_10_1002_aelm_202100888 crossref_primary_10_1002_smtd_202400084 crossref_primary_10_1002_smtd_202201145 crossref_primary_10_1016_j_cej_2024_151708 crossref_primary_10_1002_anie_202211600 crossref_primary_10_1002_adma_202412811 crossref_primary_10_1002_adfm_202300934 crossref_primary_10_1002_advs_202405676 crossref_primary_10_1002_adma_202404554 crossref_primary_10_1002_smtd_202300476 crossref_primary_10_1021_acsnano_5c04885 crossref_primary_10_1021_jacs_4c09843 crossref_primary_10_1002_adfm_202422778 crossref_primary_10_1002_aenm_202202797 crossref_primary_10_1002_adfm_202211740 crossref_primary_10_3390_ijms25031564 crossref_primary_10_1039_D5MH00620A crossref_primary_10_1039_D5TC02396C crossref_primary_10_1002_advs_202302880 crossref_primary_10_1088_1361_6528_ad1944 crossref_primary_10_1002_adma_202313863 crossref_primary_10_1002_adma_202504357 crossref_primary_10_3390_polym16172467 crossref_primary_10_1002_aelm_202400216 crossref_primary_10_1039_D5NR00506J crossref_primary_10_1002_adfm_202112262 crossref_primary_10_1002_adma_202420323 crossref_primary_10_1038_s41586_023_06504_8 crossref_primary_10_1002_anie_202408537 crossref_primary_10_1002_ange_202211600 crossref_primary_10_1007_s10965_024_04140_y crossref_primary_10_1002_sstr_202400319 crossref_primary_10_1002_aelm_202400817 crossref_primary_10_1016_j_materresbull_2024_113050 crossref_primary_10_1002_anie_202304245 crossref_primary_10_1002_adfm_202404411 crossref_primary_10_1038_s41467_024_49208_x crossref_primary_10_1088_1361_6528_ac96fa crossref_primary_10_1002_adma_202207320 crossref_primary_10_3390_polym17060746 crossref_primary_10_1002_adma_202314062 crossref_primary_10_1002_adfm_202510822 crossref_primary_10_1002_smll_202207858 crossref_primary_10_3390_polym16131884 crossref_primary_10_1002_adma_202417594 crossref_primary_10_1007_s40710_023_00654_7 crossref_primary_10_1039_D5TC01775K crossref_primary_10_35848_1347_4065_acbb10 crossref_primary_10_1002_aenm_202401705 crossref_primary_10_1002_ange_202219313 crossref_primary_10_1021_acs_jpcc_5c02950 crossref_primary_10_1002_ange_202408537 crossref_primary_10_1016_j_cclet_2024_109837 crossref_primary_10_1021_acsnano_5c04666 crossref_primary_10_1002_aenm_202103049 crossref_primary_10_1002_ange_202304245 crossref_primary_10_1016_j_cej_2025_168253 crossref_primary_10_1246_bcsj_20230175 crossref_primary_10_1002_adfm_202413647 crossref_primary_10_1002_adfm_202300809 crossref_primary_10_1002_smll_202300231 crossref_primary_10_1038_s41467_024_50293_1 |
| Cites_doi | 10.1039/D0CS00204F 10.1039/C8MH00223A 10.1038/ncomms11948 10.1021/acs.jpclett.0c03620 10.1038/s41928-019-0222-5 10.1038/s41563-018-0277-0 10.1002/adma.201004554 10.1021/ar00118a005 10.1021/acs.chemmater.6b04880 10.1039/C5CS00303B 10.1039/C3MH00035D 10.1063/1.438233 10.1016/S0022-0728(98)00167-3 10.1002/adfm.201700173 10.1039/c2ee23006b 10.1103/PhysRevLett.108.035502 10.1039/C7CC08671G 10.1038/s41467-018-03302-z 10.1002/adma.201703063 10.1021/je60054a002 10.1016/S0040-6090(97)00554-3 10.1063/1.4938137 10.1021/ac60283a025 10.1021/j100885a036 10.1103/PhysRevB.87.115209 10.1039/C5TC04207K 10.1063/1.1140422 10.1103/PhysRevB.72.235202 10.1021/jp412344a 10.1021/acs.macromol.7b00672 10.1063/1.1700388 10.1021/jacs.9b12769 10.1016/j.electacta.2006.03.016 10.1103/PhysRevB.82.115454 10.1021/acs.chemrev.8b00279 10.1021/acs.accounts.0c00349 10.1021/ja00418a050 10.1246/bcsj.29.311 10.1021/ac60214a047 10.1002/adma.201806863 10.1016/j.chemgeo.2006.02.005 10.1021/acs.chemmater.9b01549 10.1016/0038-1101(74)90001-X 10.1038/s41586-019-1504-9 10.1038/nmat4634 10.1038/nmat2448 10.1021/acsmacrolett.5b00887 10.1002/adma.201506295 10.1107/S1600576715004434 10.1021/acs.chemrev.6b00329 10.1021/ic50211a080 10.1021/acs.jpclett.6b02048 10.1021/acs.chemmater.0c01293 10.1021/cm1002737 10.1039/C8MH00921J 10.1016/0021-9614(76)90060-4 10.1002/adma.201805647 10.1038/s41467-019-12526-6 10.1103/PhysRevB.84.045203 10.1039/C8TA05922E 10.1002/adfm.201702654 10.1021/acs.accounts.5b00438 10.1021/cr940053x 10.1021/ja01068a010 10.1351/pac198658070955 10.1038/nmat1612 10.1002/adfm.200900120 10.1002/advs.201800947 10.1021/ma0709001 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 1XC VOOES OTOTI |
| DOI | 10.1002/adma.202102988 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 1821038 oai:HAL:hal-03411915v1 34418878 10_1002_adma_202102988 ADMA202102988 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1729737 – fundername: Office of Science funderid: DE‐ AC02‐06CH11357 – fundername: Royal Society funderid: NF170736 – fundername: Engineering and Physical Sciences Research Council funderid: EP/R031894/1; EP/L015889/1 – fundername: European Research Council funderid: 610115 – fundername: National Science Foundation grantid: DMR-1729737 – fundername: Engineering and Physical Sciences Research Council grantid: EP/L015889/1 – fundername: Royal Society grantid: NF170736 – fundername: Engineering and Physical Sciences Research Council grantid: EP/R031894/1 – fundername: Office of Science grantid: DE- AC02-06CH11357 – fundername: European Research Council grantid: 610115 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 1XC VOOES OTOTI |
| ID | FETCH-LOGICAL-c5408-4883cbe93ad93b40b4d97125371f226aeb05fdec3ac1c107ff37fcae6a8c0a443 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686932900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Jul 13 03:03:14 EDT 2025 Sat Nov 15 06:25:58 EST 2025 Sun Nov 09 08:59:15 EST 2025 Fri Jul 25 07:44:36 EDT 2025 Wed Feb 19 02:23:37 EST 2025 Tue Nov 18 21:59:32 EST 2025 Sat Nov 29 07:18:06 EST 2025 Wed Jan 22 16:24:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | doping electrochemistry electrical conductivity conjugated polymers ion exchange |
| Language | English |
| License | Attribution 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5408-4883cbe93ad93b40b4d97125371f226aeb05fdec3ac1c107ff37fcae6a8c0a443 |
| Notes | Dedicated to Professor Daoben Zhu on the occasion of his 80th birthday ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC) AC02-06CH11357; 610115; EP/R031894/1; EP/L015889/1; DMR-1729737 European Commission (EC) Royal Society Newton International Fellowship European Research Council (ERC) National Science Foundation (NSF) Engineering and Physical Sciences Research Council |
| ORCID | 0000-0001-9827-6061 0000-0002-4750-3241 0000-0001-5082-9990 0000000198276061 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102988 |
| PMID | 34418878 |
| PQID | 2672226507 |
| PQPubID | 2045203 |
| PageCount | 12 |
| ParticipantIDs | osti_scitechconnect_1821038 hal_primary_oai_HAL_hal_03411915v1 proquest_miscellaneous_2563427839 proquest_journals_2672226507 pubmed_primary_34418878 crossref_primary_10_1002_adma_202102988 crossref_citationtrail_10_1002_adma_202102988 wiley_primary_10_1002_adma_202102988_ADMA202102988 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag – name: Wiley Blackwell (John Wiley & Sons) |
| References | 2019; 10 1998; 317 2019; 18 1964; 86 2015; 107 1979; 71 1974; 17 2014; 1 1952; 20 2018; 6 2010; 22 2018; 9 2015; 48 1985; 18 2018; 5 1965; 69 2020; 53 2015; 44 2020; 49 1964; 36 2016; 116 2011; 23 2005; 72 2009; 19 2016; 49 1972; 17 2014; 118 1989; 60 2019; 6 2006; 51 2019; 31 2013; 87 2019; 2 2020; 142 2017; 27 1986; 58 2011; 84 2016; 122 1996; 96 2006; 231 2006; 5 1995 1998; 456 2017; 29 2020; 32 1976; 8 2016; 15 2012; 108 2010; 82 2016; 4 1976; 98 2016; 5 2017; 50 2016; 7 2021; 12 1980; 19 2018; 118 2009; 8 1970; 42 1956; 29 2007; 40 2016; 28 2018; 54 2012; 5 2019; 572 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 Helfferich F. G. (e_1_2_8_32_1) 1995 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 621 year: 2009 publication-title: Nat. Mater. – volume: 98 start-page: 610 year: 1976 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 4297 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 328 year: 2006 publication-title: Nat. Mater. – volume: 29 start-page: 832 year: 2017 publication-title: Chem. Mater. – volume: 17 start-page: 288 year: 1972 publication-title: J. Chem. Eng. Data – volume: 42 start-page: 43 year: 1970 publication-title: Anal. Chem. – volume: 19 start-page: 1906 year: 2009 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 242 year: 2019 publication-title: Nat. Mater. – volume: 456 start-page: 139 year: 1998 publication-title: J. Electroanal. Chem. – volume: 69 start-page: 244 year: 1965 publication-title: J. Phys. Chem. – volume: 28 start-page: 6003 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 111 year: 2014 publication-title: Mater. Horiz. – volume: 19 start-page: 2854 year: 1980 publication-title: Inorg. Chem. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 1217 year: 1974 publication-title: Solid‐State Electron. – volume: 31 start-page: 6986 year: 2019 publication-title: Chem. Mater. – volume: 86 start-page: 2799 year: 1964 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4547 year: 2019 publication-title: Nat. Commun. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 5 start-page: 9639 year: 2012 publication-title: Energy Environ. Sci. – volume: 22 start-page: 3926 year: 2010 publication-title: Chem. Mater. – volume: 53 start-page: 2201 year: 2020 publication-title: Acc. Chem. Res. – volume: 60 start-page: 271 year: 1989 publication-title: Rev. Sci. Instrum. – volume: 54 start-page: 307 year: 2018 publication-title: Chem. Commun. – volume: 20 start-page: 257 year: 1952 publication-title: J. Chem. Phys. – volume: 6 start-page: 107 year: 2019 publication-title: Mater. Horiz. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 58 start-page: 955 year: 1986 publication-title: Pure Appl. Chem – volume: 118 start-page: 1426 year: 2014 publication-title: J. Phys. Chem. B – volume: 4 start-page: 3454 year: 2016 publication-title: J. Mater. Chem. C – volume: 36 start-page: 1627 year: 1964 publication-title: Anal. Chem. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 40 start-page: 7960 year: 2007 publication-title: Macromolecules – volume: 5 start-page: 268 year: 2016 publication-title: ACS Macro Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 317 start-page: 367 year: 1998 publication-title: Thin Solid Films – volume: 23 start-page: 2367 year: 2011 publication-title: Adv. Mater. – volume: 48 start-page: 917 year: 2015 publication-title: J. Appl. Crystallogr. – volume: 49 start-page: 7210 year: 2020 publication-title: Chem. Soc. Rev. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 72 year: 2005 publication-title: Phys. Rev. B – volume: 15 start-page: 896 year: 2016 publication-title: Nat. Mater. – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 98 year: 2019 publication-title: Nat. Electron. – volume: 8 start-page: 403 year: 1976 publication-title: J. Chem. Thermodyn. – volume: 29 start-page: 311 year: 1956 publication-title: Bull. Chem. Soc. Jpn. – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 51 start-page: 5567 year: 2006 publication-title: Electrochim. Acta – volume: 142 start-page: 7434 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 309 year: 1985 publication-title: Acc. Chem. Res. – volume: 50 start-page: 5476 year: 2017 publication-title: Macromolecules – volume: 71 start-page: 4255 year: 1979 publication-title: J. Chem. Phys. – year: 1995 – volume: 12 start-page: 1284 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 49 start-page: 370 year: 2016 publication-title: Acc. Chem. Res. – volume: 32 start-page: 6003 year: 2020 publication-title: Chem. Mater. – volume: 5 start-page: 655 year: 2018 publication-title: Mater. Horiz. – volume: 231 start-page: 326 year: 2006 publication-title: Chem. Geol. – volume: 44 start-page: 7484 year: 2015 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1182 year: 2018 publication-title: Nat. Commun. – volume: 96 start-page: 877 year: 1996 publication-title: Chem. Rev. – volume: 572 start-page: 634 year: 2019 publication-title: Nature – ident: e_1_2_8_4_1 doi: 10.1039/D0CS00204F – ident: e_1_2_8_12_1 doi: 10.1039/C8MH00223A – ident: e_1_2_8_27_1 doi: 10.1038/ncomms11948 – ident: e_1_2_8_39_1 doi: 10.1021/acs.jpclett.0c03620 – ident: e_1_2_8_28_1 doi: 10.1038/s41928-019-0222-5 – ident: e_1_2_8_17_1 doi: 10.1038/s41563-018-0277-0 – ident: e_1_2_8_50_1 doi: 10.1002/adma.201004554 – ident: e_1_2_8_56_1 doi: 10.1021/ar00118a005 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemmater.6b04880 – ident: e_1_2_8_37_1 doi: 10.1039/C5CS00303B – ident: e_1_2_8_64_1 doi: 10.1039/C3MH00035D – ident: e_1_2_8_44_1 doi: 10.1063/1.438233 – ident: e_1_2_8_26_1 doi: 10.1016/S0022-0728(98)00167-3 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201700173 – ident: e_1_2_8_54_1 doi: 10.1039/c2ee23006b – ident: e_1_2_8_8_1 doi: 10.1103/PhysRevLett.108.035502 – ident: e_1_2_8_61_1 doi: 10.1039/C7CC08671G – ident: e_1_2_8_16_1 doi: 10.1038/s41467-018-03302-z – ident: e_1_2_8_2_1 doi: 10.1002/adma.201703063 – ident: e_1_2_8_48_1 doi: 10.1021/je60054a002 – ident: e_1_2_8_25_1 doi: 10.1016/S0040-6090(97)00554-3 – ident: e_1_2_8_55_1 doi: 10.1063/1.4938137 – ident: e_1_2_8_43_1 doi: 10.1021/ac60283a025 – ident: e_1_2_8_41_1 doi: 10.1021/j100885a036 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.87.115209 – ident: e_1_2_8_33_1 doi: 10.1039/C5TC04207K – ident: e_1_2_8_67_1 doi: 10.1063/1.1140422 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevB.72.235202 – ident: e_1_2_8_53_1 doi: 10.1021/jp412344a – ident: e_1_2_8_34_1 doi: 10.1021/acs.macromol.7b00672 – ident: e_1_2_8_40_1 doi: 10.1063/1.1700388 – ident: e_1_2_8_58_1 doi: 10.1021/jacs.9b12769 – ident: e_1_2_8_42_1 doi: 10.1016/j.electacta.2006.03.016 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevB.82.115454 – ident: e_1_2_8_38_1 doi: 10.1021/acs.chemrev.8b00279 – ident: e_1_2_8_57_1 doi: 10.1021/acs.accounts.0c00349 – ident: e_1_2_8_65_1 doi: 10.1021/ja00418a050 – ident: e_1_2_8_47_1 doi: 10.1246/bcsj.29.311 – ident: e_1_2_8_69_1 doi: 10.1021/ac60214a047 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201806863 – ident: e_1_2_8_45_1 doi: 10.1016/j.chemgeo.2006.02.005 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemmater.9b01549 – ident: e_1_2_8_66_1 doi: 10.1016/0038-1101(74)90001-X – ident: e_1_2_8_24_1 doi: 10.1038/s41586-019-1504-9 – ident: e_1_2_8_10_1 doi: 10.1038/nmat4634 – ident: e_1_2_8_23_1 doi: 10.1038/nmat2448 – ident: e_1_2_8_30_1 doi: 10.1021/acsmacrolett.5b00887 – ident: e_1_2_8_52_1 doi: 10.1002/adma.201506295 – ident: e_1_2_8_70_1 doi: 10.1107/S1600576715004434 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemrev.6b00329 – ident: e_1_2_8_51_1 doi: 10.1021/ic50211a080 – ident: e_1_2_8_6_1 doi: 10.1021/acs.jpclett.6b02048 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemmater.0c01293 – ident: e_1_2_8_62_1 doi: 10.1021/cm1002737 – ident: e_1_2_8_7_1 doi: 10.1039/C8MH00921J – ident: e_1_2_8_36_1 doi: 10.1016/0021-9614(76)90060-4 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201805647 – volume-title: Ion Exchange year: 1995 ident: e_1_2_8_32_1 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-019-12526-6 – ident: e_1_2_8_71_1 doi: 10.1103/PhysRevB.84.045203 – ident: e_1_2_8_46_1 doi: 10.1039/C8TA05922E – ident: e_1_2_8_11_1 doi: 10.1002/adfm.201702654 – ident: e_1_2_8_1_1 doi: 10.1021/acs.accounts.5b00438 – ident: e_1_2_8_22_1 doi: 10.1021/cr940053x – ident: e_1_2_8_63_1 doi: 10.1021/ja01068a010 – ident: e_1_2_8_49_1 doi: 10.1351/pac198658070955 – ident: e_1_2_8_68_1 – ident: e_1_2_8_59_1 doi: 10.1038/nmat1612 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.200900120 – ident: e_1_2_8_31_1 doi: 10.1002/advs.201800947 – ident: e_1_2_8_60_1 doi: 10.1021/ma0709001 |
| SSID | ssj0009606 |
| Score | 2.6736016 |
| Snippet | Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging... Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging... Abstract Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by... |
| SourceID | osti hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2102988 |
| SubjectTerms | Acetonitrile Chemical Sciences Condensed Matter Conducting polymers conjugated polymers Doping electrical conductivity electrochemistry Ferric chloride Ion exchange Ionic liquids MATERIALS SCIENCE Organic semiconductors Physics Polymers Stability |
| Title | High‐Efficiency Ion‐Exchange Doping of Conducting Polymers |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102988 https://www.ncbi.nlm.nih.gov/pubmed/34418878 https://www.proquest.com/docview/2672226507 https://www.proquest.com/docview/2563427839 https://hal.science/hal-03411915 https://www.osti.gov/biblio/1821038 |
| Volume | 34 |
| WOSCitedRecordID | wos000686932900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTQ_tIX2nTtLglkJPJrbl1eNSWLJZUkjDUhrYm5C0EikEO2Q3ob3lJ-Q35pdkRt51stBSaC8G2ZLRazSfRppvAD7ywjAXeMhw5RNZhdKUKeZE1neeMxscL42JwSbE8bGcTNT4gRd_yw_RGdxIMuJ6TQJu7GzvnjTUTCNvEG1ZlJRrsF4UTFLwhrIa39Pu8hhdk077MsUruaRtzMu91fIramntlC5F9hoUst8Bz1UcGxXR6Nn_N-E5bCxAaDpoZ80LeOTrl_D0ATXhK_hMF0Bur28OIsUE-WemX5qaXvxsfYXTYXS1SpuQ7jc1scZSatyc_SJL-Gs4GR183z_MFrEWMoeYjWyKkjnrFTNTxWyV22qqBIIfJoqACM14m_fD1DtmXOFwyxgCE8EZz410uakq9gZ6dVP7t5ByOiO2FqGhlaj_nTLGWo84x5bS-yASyJZdrd2CiJziYZzplkK51NQvuuuXBD51-c9bCo4_5vyAI9dlIubsw8GRpnc5amvcmvavigS2aWA1IgyiyXV0n8jNNe6ziCs-gZ3leOuFNM90yQXCKMSyWPf33WeUQzpcMbVvLjFPn7MYtkQlsNnOk64iDDEnLub48zJOh780Qw-GXwddautfCm3Dk5L8NKK5aAd684tL_w4eu6v5j9nFbpQRfIqJ3IX14bfRydEdI5YRmA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB7BglQ4FGgpBGgJFRKniGycdeJLpRU_WsSy2gOVuFm21xaVUIJgQXDjEfqMfRJmnGzoSkWVEEc7duS_sb8Ze74B2OVtxYzjLsKdL4tSlKZIMJNFHWM5087wRCkfbCIbDPKLCzGsXxOSL0zFD9EY3Egy_H5NAk4G6f0X1lA18sRBpLOIPJ-FuRSPGlrqSTp84d3lPrwmXfdFgqf5hLcxTvan60-dS7OX9CqyVaKU_Qt5TgNZfxIdL71DH5bhYw1Dw261blZgxhafYPEvcsLP8IOegPx5-n3kSSbIQzM8KQvKeKi8hcND72wVli48KAvijaXUsLx6JFv4Kvw8Pjo_6EV1tIXIIGojq2LOjLaCqZFgOo11OhIZwh-WtR1iNGV13HEja5gybYNKo3Msc0ZZrnITqzRlX6BVlIVdh5DTLbHWCA51jgjACKW0toh0dJJb67IAoslYS1NTkVNEjCtZkSgnksZFNuMSwF5T_roi4Xi15HecuqYQcWf3un1JeTGe16icdu7bAWzSzErEGESUa-hFkRlL1LSILT6ArcmEy1qeb2XCMwRSiGax7TvNZ5REul5RhS3vsEyHMx-4RASwVi2UpiEMUSdu5_jzxK-H_3RDdg_Puk1q4y2VtuFD7_ysL_sng9NNWEjIa8Mbj7agNb65s19h3tyPf93efPMC8wx1uhL7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fSxwxEB_0LMU-aP9pV23dlkKfFvc2e9nNi3B4HorX4ygVfAtJNqGC7Iqe0r75EfyMfhJnsnurBxah9DHZbMi_SX6TzPwG4CvvKmYcdxHufFmUojRFgpks6hnLmXaGJ0r5YBPZeJyfnIhJY01IvjA1P0R74UaS4fdrEnB7XridB9ZQVXjiINJZRJ4vwlJKkWQ6sDT4MTwePTDvch9gkx78IsHTfMbcGCc78zXMnUyLv8guslOhnD2FPeehrD-Lhqv_oRevYaUBomG_XjlvYMGWb-HVI3rCd7BLRiB3N7f7nmaCfDTDw6qkjN-1v3A48O5WYeXCvaok5lhKTaqzP3Qb_h6Oh_s_9w6iJt5CZBC30b1izoy2gqlCMJ3GOi1EhgCIZV2HKE1ZHfdcYQ1TpmtQbXSOZc4oy1VuYpWmbA06ZVXaDxByeifWGuGhzhEDGKGU1haxjk5ya10WQDQba2kaMnKKiXEmaxrlRNK4yHZcAvjWlj-vaTj-WvILTl1biNizD_ojSXkxntionvauuwFs0sxKRBlElWvIpshMJepaxBcfwNZswmUj0Zcy4RlCKcSz2PbP7WeURXpgUaWtrrBMjzMfukQEsF4vlLYhDHEnbuhYeeLXwzPdkP3B936b2viXn7bh5WQwlKPD8dEmLCfktuFvj7agM724sh_hhbmenl5efGok5h7ycRQR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+Ion%E2%80%90Exchange+Doping+of+Conducting+Polymers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jacobs%2C+Ian+E&rft.au=Lin%2C+Yue&rft.au=Huang%2C+Yuxuan&rft.au=Ren%2C+Xinglong&rft.date=2022-06-01&rft.pub=Wiley-VCH+Verlag&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202102988&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03411915v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |