An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists

With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis ( tda ) is a recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in artificial intelligence Jg. 4; S. 667963
Hauptverfasser: Chazal, Frédéric, Michel, Bertrand
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 29.09.2021
Schriftenreihe:Front. Artif. Intell
Schlagworte:
ISSN:2624-8212, 2624-8212
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis ( tda ) is a recent and fast-growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. It proposes new well-founded mathematical theories and computational tools that can be used independently or in combination with other data analysis and statistical learning techniques. This article is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for nonexperts.
AbstractList With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis (tda) is a recent and fast-growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. It proposes new well-founded mathematical theories and computational tools that can be used independently or in combination with other data analysis and statistical learning techniques. This article is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for nonexperts.With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis (tda) is a recent and fast-growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. It proposes new well-founded mathematical theories and computational tools that can be used independently or in combination with other data analysis and statistical learning techniques. This article is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for nonexperts.
With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis (tda) is a recent and fast-growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. It proposes new well-founded mathematical theories and computational tools that can be used independently or in combination with other data analysis and statistical learning techniques. This article is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for nonexperts.
Topological Data Analysis (TDA)is a recent and fast growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. This paper is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of TDA for non experts.
With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis ( tda ) is a recent and fast-growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. It proposes new well-founded mathematical theories and computational tools that can be used independently or in combination with other data analysis and statistical learning techniques. This article is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for nonexperts.
Author Chazal, Frédéric
Michel, Bertrand
AuthorAffiliation 1 Inria Saclay - Île-de-France Research Centre, Palaiseau , France
2 Ecole Centrale de Nantes, Nantes , France
AuthorAffiliation_xml – name: 1 Inria Saclay - Île-de-France Research Centre, Palaiseau , France
– name: 2 Ecole Centrale de Nantes, Nantes , France
Author_xml – sequence: 1
  givenname: Frédéric
  surname: Chazal
  fullname: Chazal, Frédéric
– sequence: 2
  givenname: Bertrand
  surname: Michel
  fullname: Michel, Bertrand
BackLink https://inria.hal.science/hal-01614384$$DView record in HAL
BookMark eNp1Uk1v1DAUtFARLaV3jjnCYRd_x-GAtCqUrrQSSJSz9WI7W1dZe7GdSv33OKRItBInP703M29sz2t0EmJwCL0leM2Y6j4MCfyaYkrWUradZC_QGZWUrxQl9OSf-hRd5HyHMaYCC0LoK3TKuJQEd-IMmU1otqGkaCdTfAxNic1NPMYx7r2BsfkMBZpNgPEh-_yxuZqChYMLpY4g2OZ7gkqbgZt8dKbkZohpIf0wvuJ8LvkNejnAmN3F43mOfl59ubm8Xu2-fd1ebnYrI1hXVgO1bQeGKDow3hpFBeCBAuuFBe6MEx3nCisulMWEqBYkJlh2uO96MvTMsnO0XXRthDt9TP4A6UFH8PpPI6a9hlTdjk5DxRNnuRNWckzbvhXESNtxVqve0ar1adE6Tv3BWVOvkmB8Ivp0Evyt3sd7reoTK8qqwPtF4PYZ7Xqz03MPE0k4U_yeVOy7x2Up_ppcLvrgs3HjCMHFKWsqFGNYKtxVqFygJsWckxu08QXmn6su_KgJ1nM49BwOPYdDL-GoRPyM-NfUfym_AZCjvXQ
CitedBy_id crossref_primary_10_1007_s13721_024_00472_3
crossref_primary_10_3390_app15158576
crossref_primary_10_1109_ACCESS_2023_3309418
crossref_primary_10_1016_j_micron_2024_103731
crossref_primary_10_1214_22_STS881
crossref_primary_10_1016_j_fub_2025_100059
crossref_primary_10_1016_j_chaos_2025_116054
crossref_primary_10_1186_s12859_025_06085_5
crossref_primary_10_1371_journal_pcbi_1010533
crossref_primary_10_1111_jsr_70017
crossref_primary_10_3934_math_2025693
crossref_primary_10_1080_01621459_2023_2270750
crossref_primary_10_1007_s10462_024_10710_9
crossref_primary_10_1002_adts_202300475
crossref_primary_10_1038_s41540_024_00472_z
crossref_primary_10_3389_fnhum_2023_1134012
crossref_primary_10_1016_j_aim_2024_109780
crossref_primary_10_3390_math12030476
crossref_primary_10_1038_s41746_023_00821_y
crossref_primary_10_1103_PhysRevApplied_23_054054
crossref_primary_10_1016_j_compbiomed_2023_106640
crossref_primary_10_3389_fnins_2025_1597899
crossref_primary_10_1017_pan_2025_10019
crossref_primary_10_1080_13658816_2022_2155654
crossref_primary_10_1002_aisy_202400539
crossref_primary_10_1109_JSEN_2022_3142750
crossref_primary_10_1371_journal_pone_0270236
crossref_primary_10_1016_j_cviu_2022_103552
crossref_primary_10_1016_j_mfglet_2024_12_002
crossref_primary_10_1093_rasti_rzaf006
crossref_primary_10_1007_s10618_023_00980_2
crossref_primary_10_1109_JSEN_2022_3225584
crossref_primary_10_1016_j_jmps_2023_105307
crossref_primary_10_1016_j_it_2023_05_003
crossref_primary_10_1038_s41598_023_49958_6
crossref_primary_10_1142_S179300572550053X
crossref_primary_10_3390_e25010024
crossref_primary_10_3390_sym14050865
crossref_primary_10_3390_electronics13183670
crossref_primary_10_3390_pr10061200
crossref_primary_10_1002_admt_202400172
crossref_primary_10_1109_TIM_2023_3265114
crossref_primary_10_1186_s40537_024_01020_6
crossref_primary_10_1016_j_expthermflusci_2023_111062
crossref_primary_10_1016_j_procs_2023_10_155
crossref_primary_10_3390_e26080701
crossref_primary_10_3389_frai_2023_1293504
crossref_primary_10_3390_app12147248
crossref_primary_10_1016_j_colsurfa_2023_131796
crossref_primary_10_1016_j_physa_2022_128224
crossref_primary_10_3389_fams_2024_1260828
crossref_primary_10_1016_j_asoc_2024_111691
crossref_primary_10_1680_jsuin_22_00027
crossref_primary_10_1038_s41598_024_55726_x
crossref_primary_10_1016_j_gmod_2024_101219
crossref_primary_10_1109_TPWRS_2023_3266956
crossref_primary_10_1111_jtsa_12677
crossref_primary_10_3390_molecules30112303
crossref_primary_10_1016_j_compbiomed_2022_106031
crossref_primary_10_7717_peerj_cs_1195
crossref_primary_10_1109_ACCESS_2024_3376249
crossref_primary_10_1002_wics_1609
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125012
crossref_primary_10_1017_S2633903X23000260
crossref_primary_10_1177_02783649231188740
crossref_primary_10_1016_j_advwatres_2024_104762
crossref_primary_10_1016_j_cag_2025_104225
crossref_primary_10_1088_2632_072X_ad353b
crossref_primary_10_1016_j_ymssp_2025_112319
crossref_primary_10_1186_s40537_025_01087_9
crossref_primary_10_1007_s00285_022_01763_x
crossref_primary_10_1007_s10260_022_00666_x
crossref_primary_10_1016_j_eswa_2025_127637
crossref_primary_10_1038_s41467_022_32848_2
crossref_primary_10_1128_msystems_01512_21
crossref_primary_10_1063_5_0209201
crossref_primary_10_3390_math12040547
crossref_primary_10_1016_j_bspc_2023_105779
crossref_primary_10_1016_j_ymssp_2024_112048
crossref_primary_10_1109_TVCG_2025_3528197
crossref_primary_10_1109_ACCESS_2025_3583581
crossref_primary_10_1016_j_dajour_2023_100253
crossref_primary_10_1016_j_ijgfs_2024_101088
crossref_primary_10_3934_fods_2022002
crossref_primary_10_1103_PhysRevResearch_6_023107
crossref_primary_10_1039_D5SM00245A
crossref_primary_10_20473_jkl_v17i2_2025_177_186
crossref_primary_10_3390_a16030161
crossref_primary_10_1017_apr_2024_61
crossref_primary_10_1038_s41467_024_53883_1
crossref_primary_10_1080_00401706_2025_2515928
crossref_primary_10_3389_fnins_2021_761703
crossref_primary_10_1016_j_physd_2025_134841
crossref_primary_10_1186_s13321_025_01045_w
crossref_primary_10_1016_j_compbiomed_2025_110513
crossref_primary_10_3390_smartcities6060137
crossref_primary_10_1007_s10614_024_10748_5
crossref_primary_10_1007_s10208_024_09679_2
crossref_primary_10_3389_fninf_2024_1387400
crossref_primary_10_1017_apr_2024_66
crossref_primary_10_1109_LSP_2025_3561095
crossref_primary_10_1007_s10489_024_06053_1
crossref_primary_10_1111_tgis_13149
crossref_primary_10_1021_acsmaterialslett_5c00848
crossref_primary_10_1016_j_ifacol_2024_07_199
crossref_primary_10_1016_j_visres_2025_108697
crossref_primary_10_3390_math11102375
crossref_primary_10_1088_1741_2552_add8bd
crossref_primary_10_5351_KJAS_2025_38_2_177
crossref_primary_10_1007_s00542_025_05859_4
crossref_primary_10_1007_s11869_024_01596_1
crossref_primary_10_1186_s12859_023_05402_0
crossref_primary_10_1002_cpe_7732
crossref_primary_10_1103_k2xs_4y67
crossref_primary_10_1287_moor_2022_1302
crossref_primary_10_1007_s11005_025_01949_6
crossref_primary_10_1109_TMI_2023_3249343
crossref_primary_10_1007_s10015_025_01005_5
crossref_primary_10_1063_5_0280985
crossref_primary_10_1186_s12967_024_05915_z
crossref_primary_10_7554_eLife_74968
crossref_primary_10_1038_s41598_025_95495_9
crossref_primary_10_1109_TVCG_2024_3456365
crossref_primary_10_1080_17460441_2025_2477625
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1038_s41746_024_01015_w
crossref_primary_10_3934_math_2025942
crossref_primary_10_1371_journal_pone_0318108
crossref_primary_10_1214_23_AOS2277
crossref_primary_10_1016_j_neuri_2023_100148
crossref_primary_10_1088_1361_6560_abfbf4
crossref_primary_10_1007_s12220_024_01821_4
crossref_primary_10_3389_fnhum_2025_1607941
crossref_primary_10_1007_JHEP07_2024_146
crossref_primary_10_1007_s11135_023_01708_6
crossref_primary_10_1038_s44259_024_00069_w
crossref_primary_10_3390_math12111727
crossref_primary_10_1016_j_rineng_2024_102235
crossref_primary_10_3389_fimmu_2025_1615278
crossref_primary_10_1016_j_matcom_2024_04_013
crossref_primary_10_1007_s00200_025_00699_1
crossref_primary_10_3389_fpls_2023_1260005
crossref_primary_10_3390_cancers16173100
crossref_primary_10_1109_JSEN_2024_3517653
crossref_primary_10_1016_j_jbi_2022_104082
crossref_primary_10_1214_25_SS153
crossref_primary_10_3390_cancers15092606
crossref_primary_10_1109_LSP_2025_3586189
crossref_primary_10_1214_23_AOS2281
crossref_primary_10_1109_TKDE_2025_3589681
crossref_primary_10_1242_dmm_052024
crossref_primary_10_3390_rs16213989
crossref_primary_10_1007_s41468_024_00166_9
crossref_primary_10_1016_j_cad_2024_103703
crossref_primary_10_1155_2022_9631579
crossref_primary_10_1089_cmb_2025_0076
crossref_primary_10_1016_j_neucom_2024_127806
crossref_primary_10_1061_JCCEE5_CPENG_6168
crossref_primary_10_1038_s41598_025_97175_0
crossref_primary_10_3390_math11041008
crossref_primary_10_1587_nolta_14_92
crossref_primary_10_1080_10618600_2025_2505734
crossref_primary_10_1098_rsos_211189
crossref_primary_10_1016_j_physd_2025_134595
crossref_primary_10_1038_s41598_024_52493_7
crossref_primary_10_1109_TKDE_2022_3147070
crossref_primary_10_3390_mti6110096
crossref_primary_10_3934_fods_2025017
crossref_primary_10_1371_journal_pdig_0000935
crossref_primary_10_1016_j_cad_2024_103835
crossref_primary_10_3390_e25020331
crossref_primary_10_1080_00401706_2023_2203744
crossref_primary_10_1016_j_csbj_2023_03_009
crossref_primary_10_3389_fmicb_2025_1461293
crossref_primary_10_1016_j_mbs_2024_109158
crossref_primary_10_1109_ACCESS_2025_3543071
crossref_primary_10_1080_10586458_2024_2337910
crossref_primary_10_1007_s00521_024_09479_3
crossref_primary_10_1002_hbm_26304
crossref_primary_10_1016_j_labinv_2024_102060
crossref_primary_10_1186_s44156_024_00057_w
crossref_primary_10_1016_j_physletb_2023_138188
crossref_primary_10_1016_j_jocs_2025_102680
crossref_primary_10_1088_1361_651X_acfd48
crossref_primary_10_1007_s10278_025_01575_7
crossref_primary_10_1016_j_cagd_2024_102326
crossref_primary_10_1007_s42484_024_00143_6
crossref_primary_10_1016_j_compchemeng_2024_108679
crossref_primary_10_1109_TAI_2023_3330949
crossref_primary_10_3390_math12050725
crossref_primary_10_1016_j_cma_2024_116780
crossref_primary_10_3389_fmars_2024_1497336
crossref_primary_10_3390_e26010067
crossref_primary_10_1007_s40590_022_00434_7
crossref_primary_10_1007_s10994_025_06874_2
crossref_primary_10_1016_j_patrec_2024_02_003
crossref_primary_10_1109_TVCG_2024_3418653
crossref_primary_10_1016_j_physletb_2025_139405
crossref_primary_10_1109_TRO_2023_3343994
crossref_primary_10_1029_2021EF002644
Cites_doi 10.3150/20-bej1214
10.1007/978-3-319-39441-1_3
10.1007/978-3-030-43408-3_6
10.1016/j.ymssp.2015.09.046
10.1214/19-ejs1551
10.1214/aos/1176324626
10.1145/1542362.1542407
10.1146/annurev-statistics-031017-100045
10.1145/2535927
10.3389/frai.2021.681108
10.1080/10618600.2019.1573686
10.1007/s00454-004-1146-y
10.1016/j.compchemeng.2020.107202
10.1007/s00454-008-9053-2
10.1109/cvpr.2015.7299106
10.1063/1.3103496
10.1016/j.physd.2016.02.003
10.1007/978-3-030-43408-3_5
10.18255/1818-1015-2013-6-111-120
10.1007/s00454-002-2885-2
10.1016/j.comgeo.2007.07.001
10.1088/0957-4484/26/30/304001
10.1162/netn_a_00073
10.1109/cvprw.2016.131
10.1007/s41468-017-0008-7
10.1016/j.jmva.2005.05.004
10.1515/sagmb-2015-0057
10.1093/imaiai/iau011
10.1007/s10208-009-9056-2
10.1090/conm/516/10167
10.1007/s41468-020-00048-w
10.1117/12.57059
10.1137/0138038
10.1214/aoap/1015345393
10.1111/cgf.13487
10.1103/PhysRevE.87.042207
10.1017/9781108297806
10.1090/pspum/054.3/1216630
10.1090/gsm/058
10.1007/s41468-020-00063-x
10.1214/08-aos661
10.1088/0266-5611/27/12/124007
10.1214/aos/1069362732
10.1007/s13160-019-00374-2
10.1038/srep01236
10.1137/19m1268719
10.1214/12-aos994
10.1016/j.media.2019.03.014
10.1007/978-3-030-43408-3_2
10.1093/bioinformatics/btz788
10.1016/j.tre.2019.05.017
10.1007/s10208-011-9098-0
10.1007/s00454-014-9604-7
10.1137/090762932
10.1527/tjsai.d-g72
10.1007/s00454-012-9465-x
10.1007/s00454-009-9144-8
10.1090/s0002-9947-1959-0110078-1
10.1023/a:1010933404324
10.1038/ncomms15396
10.1080/01621459.2016.1228536
10.1007/s10208-010-9060-6
10.1214/16-ejs1161
10.1239/aap/1086957575
10.1007/s41468-020-00061-z
10.1007/s00454-015-9674-1
10.1090/s0273-0979-09-01249-x
10.1016/j.comgeo.2008.12.002
10.1109/mcse.2011.37
10.1145/2093973.2094007
10.1214/11-ejs606
10.1214/19-ejs1539
10.1111/j.1467-8659.2009.01516.x
10.1214/14-aos1252
10.1137/1.9781611973730.13
ContentType Journal Article
Copyright Copyright © 2021 Chazal and Michel.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2021 Chazal and Michel. 2021 Chazal and Michel
Copyright_xml – notice: Copyright © 2021 Chazal and Michel.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2021 Chazal and Michel. 2021 Chazal and Michel
DBID AAYXX
CITATION
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/frai.2021.667963
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
Mathematics
DocumentTitleAlternate Chazal and Michel
EISSN 2624-8212
ExternalDocumentID oai_doaj_org_article_ab3d1ed4e5d64027b751c6d943b75be2
PMC8511823
oai:HAL:hal-01614384v1
10_3389_frai_2021_667963
GroupedDBID 53G
9T4
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
PGMZT
RPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c539t-f2d79ac182f347c825a0f2a3b5da4ece5944808458d01187a6010690b9b1fb3d3
IEDL.DBID DOA
ISICitedReferencesCount 299
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751704800082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-8212
IngestDate Fri Oct 03 12:30:44 EDT 2025
Tue Sep 30 16:56:50 EDT 2025
Tue Oct 14 20:50:59 EDT 2025
Fri Sep 05 14:28:01 EDT 2025
Sat Nov 29 02:47:44 EST 2025
Tue Nov 18 22:42:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-f2d79ac182f347c825a0f2a3b5da4ece5944808458d01187a6010690b9b1fb3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Devendra Singh Dhami, Darmstadt University of Technology, Germany
Edited by: Sriraam Natarajan, The University of Texas at Dallas, United States
Reviewed by: Ajey Kumar, Symbiosis International (Deemed University), India
This article was submitted to Machine Learning and Artificial Intelligence, a section of the journal Frontiers in Artificial Intelligence
ORCID 0000-0002-3719-2187
OpenAccessLink https://doaj.org/article/ab3d1ed4e5d64027b751c6d943b75be2
PMID 34661095
PQID 2583306809
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ab3d1ed4e5d64027b751c6d943b75be2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8511823
hal_primary_oai_HAL_hal_01614384v1
proquest_miscellaneous_2583306809
crossref_citationtrail_10_3389_frai_2021_667963
crossref_primary_10_3389_frai_2021_667963
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationSeriesTitle Front. Artif. Intell
PublicationTitle Frontiers in artificial intelligence
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Carlsson (B21) 2020
Chazal (B41)
Poulenard (B112) 2018; 37
Chazal (B44); 60
De Silva (B58) 2004
Robinson (B119) 2017; 1
Kramár (B85) 2016; 334
Robins (B118) 1999; 24
Carrière (B24) 2020
Zomorodian (B138) 2005; 33
Frosini (B70) 1992
Wasserman (B135) 2018; 5
Yao (B136) 2009; 130
Kusano (B87) 2017
Kim (B82) 2020
Chazal (B40)
Divol (B65) 2020; 5
Rieck (B116) 2019
Breiman (B13) 2001; 45
Fasy (B67)
Moor (B101) 2020
Adams (B2) 2017; 18
Brécheteau (B11) 2019; 13
Carrière (B29) 2020
Nakamura (B102) 2015; 26
Curry (B57) 2018
Grove (B74) 1993; 54
Berry (B5) 2020; 4
van der Walt (B133) 2011; 13
Edelsbrunner (B66) 2002; 28
Chazal (B36) 2010; 10
Biau (B6) 2011; 5
Chazal (B49); 10
Carlsson (B22) 2009; 46
Chazal (B43)
Divol (B64) 2020; 10
Tsybakov (B129) 1997; 25
Chazal (B31)
Kramar (B84) 2013; 87
Bonis (B10) 2016
Aamari (B1) 2019; 13
Chazal (B39)
Chen (B52) 2015
Turner (B131); 3
Petrunin (B108) 2007
Roycraft (B120) 2020
Balakrishna (B4) 2012; 22
Brécheteau (B12) 2020; 26
Anai (B3) 2020
Brown (B14) 2020; 5
Chazal (B50) 2008
Chen (B53) 2017; 112
Pike (B110) 2020; 36
Chazal (B30)
Carriere (B23) 2020
Carrière (B25) 2019
Hofer (B80) 2017
Chen (B51) 2019
Bobrowski (B8) 2014
De Silva (B59) 2007; 54
Chazal (B38)
Cohen-Steiner (B55) 2005
Hofer (B78); 20
Buchet (B18)
Carriere (B26) 2018; 19
Chazal (B32); 28
Maria (B96) 2014
Devroye (B60) 1980; 38
Krebs (B86) 2019
Skraba (B127) 2010
Kusano (B88) 2016
Gabrielsson (B71) 2019
Kovacev-Nikolic (B83) 2016; 15
Seversky (B123) 2016
Obayashi (B105) 2017
Niyogi (B104) 2008; 39
Turner (B130); 52
Cadre (B20) 2006; 97
Smith (B128) 2021; 146
Federer (B69) 1959; 93
Mileyko (B99) 2011; 27
Qaiser (B113) 2019; 55
Phillips (B109) 2014
Boissonnat (B9) 2018
Bubenik (B17) 2015; 16
Buchet (B19)
Cuevas (B56) 2004; 36
Chazal (B48) 2008; 40
Dindin (B63) 2020
Sizemore (B126) 2019; 3
Chazal (B47) 2020
Bubenik (B16) 2010; 516
Khasawneh (B81) 2016
Zieliński (B137) 2010
Chazal (B35) 2008
Dey (B61) 2016
Hofer (B79)
Penrose (B107) 2001; 11
Chazal (B34); 42
Polonik (B111) 1995; 23
Lacombe (B90) 2018
Brüel-Gabrielsson (B15) 2019
Leygonie (B92) 2019
Chazal (B46); 53
Cohen-Steiner (B54) 2010; 10
Genovese (B72) 2012; 40
Ghrist (B73) 2017
Singh (B124) 2009; 37
Hensel (B77) 2021; 4
Singh (B125) 2007
Chazal (B45) 2017
Royer (B121) 2021
Guibas (B75) 2013; 49
Chazal (B37); 11
Villani (B134) 2003
Li (B93) 2014
Moon (B100) 2020
Carriere (B27) 2017
Umeda (B132) 2017; 32
Chazal (B42); 6
Reininghaus (B115) 2015
Biscio (B7) 2019; 28
Lee (B91) 2017; 8
Rieck (B117) 2020; 33
McKinney (B98) 2010
Pedregosa (B106) 2011; 12
Li (B94) 2019; 128
Ramamurthy (B114) 2019
Carrière (B28) 2015
Fasy (B68); 42
Kusano (B89) 2019; 36
Lum (B95) 2013; 3
Maroulas (B97) 2020; 2
Dey (B62) 2017
Hatcher (B76) 2001
Barannikov (B122) 1994
Niyogi (B103) 2011; 40
Chazal (B33); 41
References_xml – volume: 26
  start-page: 3017
  year: 2020
  ident: B12
  article-title: A K-Points-Based Distance for Robust Geometric Inference
  publication-title: Bernoulli
  doi: 10.3150/20-bej1214
– start-page: 19
  year: 2016
  ident: B10
  article-title: Persistence-based Pooling for Shape Pose Recognition
  doi: 10.1007/978-3-319-39441-1_3
– start-page: 147
  volume-title: Topological Data Analysis
  year: 2020
  ident: B29
  article-title: Topological Data Analysis of Single-Cell Hi-C Contact Maps
  doi: 10.1007/978-3-030-43408-3_6
– volume: 20
  start-page: 1
  ident: B78
  article-title: Learning Representations of Persistence Barcodes
  publication-title: J. Machine Learn. Res.
– start-page: 527
  year: 2016
  ident: B81
  article-title: Chatter Detection in Turning Using Persistent Homology
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.09.046
– volume: 13
  start-page: 1359
  year: 2019
  ident: B1
  article-title: Estimating the Reach of a Manifold
  publication-title: Electron. J. Stat.
  doi: 10.1214/19-ejs1551
– volume: 23
  start-page: 855
  year: 1995
  ident: B111
  article-title: Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176324626
– start-page: 237
  ident: B31
  article-title: Proximity of Persistence Modules and Their Diagrams
  publication-title: SCG
  doi: 10.1145/1542362.1542407
– start-page: 2004
  year: 2016
  ident: B88
  article-title: Persistence Weighted Gaussian Kernel for Topological Data Analysis
– volume: 5
  start-page: 501
  year: 2018
  ident: B135
  article-title: Topological Data Analysis
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-031017-100045
– volume-title: Persistence Diagrams with Linear Machine Learning Models
  year: 2017
  ident: B105
– volume: 60
  start-page: 41
  ident: B44
  article-title: Persistence-based Clustering in Riemannian Manifolds
  publication-title: J. ACM (Jacm)
  doi: 10.1145/2535927
– volume: 4
  start-page: 52
  year: 2021
  ident: B77
  article-title: A Survey of Topological Machine Learning Methods
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2021.681108
– volume: 28
  start-page: 671
  year: 2019
  ident: B7
  article-title: The Accumulated Persistence Function, a New Useful Functional Summary Statistic for Topological Data Analysis, with a View to Brain Artery Trees and Spatial point Process Applications
  publication-title: J. Comput. Graphical Stat.
  doi: 10.1080/10618600.2019.1573686
– volume: 22
  start-page: 64
  year: 2012
  ident: B4
  article-title: Minimax Rates for Homology Inference
  publication-title: J. Machine Learn. Res. - Proc. Track
– volume-title: Proc. Sympos. On Computational Geometry
  ident: B18
  article-title: Topological Analysis of Scalar fields with Outliers
– volume-title: Hypothesis Testing for Shapes Using Vectorized Persistence Diagrams
  year: 2020
  ident: B100
– volume: 33
  start-page: 249
  year: 2005
  ident: B138
  article-title: Computing Persistent Homology
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-004-1146-y
– start-page: 232
  year: 2008
  ident: B50
  article-title: Towards Persistence-Based Reconstruction in Euclidean Spaces
– volume: 146
  start-page: 107202
  year: 2021
  ident: B128
  article-title: Topological Data Analysis: Concepts, Computation, and Applications in Chemical Engineering
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107202
– volume: 39
  start-page: 419
  year: 2008
  ident: B104
  article-title: Finding the Homology of Submanifolds with High Confidence from Random Samples
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-008-9053-2
– start-page: 4741
  year: 2015
  ident: B115
  article-title: A Stable Multi-Scale Kernel for Topological Machine Learning
  doi: 10.1109/cvpr.2015.7299106
– volume-title: Deep Learning with Topological Signatures
  year: 2017
  ident: B80
– volume: 130
  start-page: 144115
  year: 2009
  ident: B136
  article-title: Topological Methods for Exploring Low-Density States in Biomolecular Folding Pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3103496
– volume: 334
  start-page: 82
  year: 2016
  ident: B85
  article-title: Analysis of Kolmogorov Flow and Rayleigh-Bénard Convection Using Persistent Homology
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2016.02.003
– start-page: 119
  volume-title: Topological Data Analysis
  year: 2020
  ident: B21
  article-title: Topological Approaches to Deep Learning
  doi: 10.1007/978-3-030-43408-3_5
– volume: 12
  start-page: 2825
  year: 2011
  ident: B106
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Machine Learn. Res.
– volume-title: On the Bootstrap for Persistence Diagrams and Landscapes
  ident: B41
  doi: 10.18255/1818-1015-2013-6-111-120
– start-page: 2751
  ident: B79
  article-title: Connectivity-optimized Representation Learning via Persistent Homology
– start-page: 93
  volume-title: Adv. Soviet Math.
  year: 1994
  ident: B122
  article-title: The Framed morse Complex and its Invariants
– start-page: 91
  year: 2007
  ident: B125
  article-title: 8. Tensor Decomposition
– volume: 28
  start-page: 511
  year: 2002
  ident: B66
  article-title: Topological Persistence and Simplification
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-002-2885-2
– volume-title: A Note on Stochastic Subgradient Descent for Persistence-Based Functionals: Convergence and Practical Aspects
  year: 2020
  ident: B23
– volume: 40
  start-page: 156
  year: 2008
  ident: B48
  article-title: Smooth Manifold Reconstruction from Noisy and Non-uniform Approximation with Guarantees
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2007.07.001
– volume: 26
  start-page: 304001
  year: 2015
  ident: B102
  article-title: Persistent Homology and many-body Atomic Structure for Medium-Range Order in the Glass
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/30/304001
– volume: 19
  year: 2018
  ident: B26
  article-title: Statistical Analysis and Parameter Selection for Mapper
  publication-title: J. Machine Learn. Res.
– volume: 3
  start-page: 656
  year: 2019
  ident: B126
  article-title: The Importance of the Whole: Topological Data Analysis for the Network Neuroscientist
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00073
– volume-title: Optimal Quantization of the Mean Measure and Application to Clustering of Measures
  year: 2020
  ident: B47
– start-page: 51
  year: 2010
  ident: B98
  article-title: Data Structures for Statistical Computing in python
– year: 2010
  ident: B137
  article-title: Persistence Bag-Of-Words for Topological Data Analysis
– volume-title: A Framework for Differential Calculus on Persistence Barcodes
  year: 2019
  ident: B92
– volume-title: Geometric Inference on Kernel Density Estimates
  year: 2014
  ident: B109
– start-page: 59
  year: 2016
  ident: B123
  article-title: On Time-Series Topological Data Analysis: New Data and Opportunities
  doi: 10.1109/cvprw.2016.131
– volume: 1
  start-page: 241
  year: 2017
  ident: B119
  article-title: Hypothesis Testing for Topological Data Analysis
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-017-0008-7
– volume: 97
  start-page: 999
  year: 2006
  ident: B20
  article-title: Kernel Estimation of Density Level Sets
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2005.05.004
– volume: 15
  start-page: 19
  year: 2016
  ident: B83
  article-title: Using Persistent Homology and Dynamical Distances to Analyze Protein Binding
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.1515/sagmb-2015-0057
– volume: 3
  start-page: 310
  ident: B131
  article-title: Persistent Homology Transform for Modeling Shapes and Surfaces
  publication-title: Inf. Inference
  doi: 10.1093/imaiai/iau011
– volume: 10
  start-page: 221
  year: 2010
  ident: B36
  article-title: Boundary Measures for Geometric Inference
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9056-2
– volume: 516
  start-page: 75
  year: 2010
  ident: B16
  article-title: Statistical Topology via morse Theory Persistence and Nonparametric Estimation
  publication-title: Algebraic Methods Stat. Probab.
  doi: 10.1090/conm/516/10167
– volume: 4
  start-page: 211
  year: 2020
  ident: B5
  article-title: Functional Summaries of Persistence Diagrams
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-020-00048-w
– start-page: 122
  volume-title: Intelligent Robots and Computer Vision X: Algorithms and Techniques
  year: 1992
  ident: B70
  article-title: Measuring Shapes by Size Functions
  doi: 10.1117/12.57059
– volume: 38
  start-page: 480
  year: 1980
  ident: B60
  article-title: Detection of Abnormal Behavior via Nonparametric Estimation of the Support
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0138038
– volume: 11
  start-page: 1005
  year: 2001
  ident: B107
  article-title: Central Limit Theorems for Some Graphs in Computational Geometry
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1015345393
– volume: 37
  start-page: 13
  year: 2018
  ident: B112
  article-title: Topological Function Optimization for Continuous Shape Matching
  publication-title: Comput. Graphics Forum
  doi: 10.1111/cgf.13487
– start-page: 157
  year: 2004
  ident: B58
  article-title: Topological Estimation Using Witness Complexes
– volume-title: Approximation of Reeb Spaces with Mappers and Applications to Stochastic Filters
  year: 2019
  ident: B25
– volume: 87
  start-page: 042207
  year: 2013
  ident: B84
  article-title: Persistence of Force Networks in Compressed Granular media
  publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys.
  doi: 10.1103/PhysRevE.87.042207
– volume-title: Geometric and Topological Inference
  year: 2018
  ident: B9
  doi: 10.1017/9781108297806
– start-page: 997
  year: 2016
  ident: B61
  article-title: Multiscale Mapper: Topological Summarization via Codomain Covers
– start-page: 1485
  year: 2008
  ident: B35
  article-title: Stability of Curvature Measures
  publication-title: Comput. Graphics Forum (proc. SGP 2009)
– volume: 54
  year: 1993
  ident: B74
  article-title: Critical point Theory for Distance Functions
  publication-title: Proc. Symposia Pure Math.
  doi: 10.1090/pspum/054.3/1216630
– volume-title: Topics in Optimal Transportation
  year: 2003
  ident: B134
  doi: 10.1090/gsm/058
– volume: 5
  start-page: 99
  year: 2020
  ident: B14
  article-title: Probabilistic Convergence and Stability of Random Mapper Graphs
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-020-00063-x
– volume-title: Structure and Stability of the 1-dimensional Mapper
  year: 2015
  ident: B28
– volume: 37
  start-page: 2760
  year: 2009
  ident: B124
  article-title: Adaptive Hausdorff Estimation of Density Level Sets
  publication-title: Ann. Statist.
  doi: 10.1214/08-aos661
– start-page: 263
  volume-title: Stability of Persistence Diagrams
  year: 2005
  ident: B55
– year: 2020
  ident: B82
  article-title: Pllay: Efficient Topological Layer Based on Persistence Landscapes
– volume-title: To Appear in ICML-17
  year: 2017
  ident: B27
  article-title: Sliced Wasserstein Kernel for Persistence Diagrams
– volume-title: Homological Algebra and Data
  year: 2017
  ident: B73
– volume: 27
  start-page: 124007
  year: 2011
  ident: B99
  article-title: Probability Measures on the Space of Persistence Diagrams
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/27/12/124007
– volume: 25
  start-page: 948
  year: 1997
  ident: B129
  article-title: On Nonparametric Estimation of Density Level Sets
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1069362732
– volume-title: Bootstrapping Persistent Betti Numbers and Other Stabilizing Statistics
  year: 2020
  ident: B120
– volume: 16
  start-page: 77
  year: 2015
  ident: B17
  article-title: Statistical Topological Data Analysis Using Persistence Landscapes
  publication-title: J. Machine Learn. Res.
– volume: 36
  start-page: 861
  year: 2019
  ident: B89
  article-title: On the Expectation of a Persistence Diagram by the Persistence Weighted Kernel
  publication-title: Jpn. J. Indust. Appl. Math.
  doi: 10.1007/s13160-019-00374-2
– volume: 3
  start-page: 1236
  year: 2013
  ident: B95
  article-title: Extracting Insights from the Shape of Complex Data Using Topology
  publication-title: Sci. Rep.
  doi: 10.1038/srep01236
– start-page: 1069
  year: 2019
  ident: B71
  article-title: Exposition and Interpretation of the Topology of Neural Networks
– volume: 2
  start-page: 48
  year: 2020
  ident: B97
  article-title: A Bayesian Framework for Persistent Homology
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/19m1268719
– volume: 40
  start-page: 941
  year: 2012
  ident: B72
  article-title: Manifold Estimation and Singular Deconvolution under Hausdorff Loss
  publication-title: Ann. Statist.
  doi: 10.1214/12-aos994
– volume: 10
  start-page: 127
  year: 2020
  ident: B64
  article-title: The Density of Expected Persistence Diagrams and its Kernel Based Estimation
  publication-title: J. Comput. Geom.
– volume: 24
  start-page: 503
  year: 1999
  ident: B118
  article-title: Towards Computing Homology from Finite Approximations
  publication-title: Topology Proc.
– start-page: 7045
  year: 2020
  ident: B101
  article-title: Topological Autoencoders
– volume-title: To Appear in JMLR
  ident: B39
  article-title: Robust Topological Inference: Distance to a Measure and Kernel Distance
– year: 2017
  ident: B62
  article-title: Topological Analysis of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers
– start-page: 167
  volume-title: International Congress on Mathematical Software
  year: 2014
  ident: B96
  article-title: The Gudhi Library: Simplicial Complexes and Persistent Homology
– volume: 55
  start-page: 1
  year: 2019
  ident: B113
  article-title: Fast and Accurate Tumor Segmentation of Histology Images Using Persistent Homology and Deep Convolutional Features
  publication-title: Med. image Anal.
  doi: 10.1016/j.media.2019.03.014
– start-page: 33
  volume-title: Topological Data Analysis
  year: 2020
  ident: B3
  article-title: Dtm-based Filtrations
  doi: 10.1007/978-3-030-43408-3_2
– ident: B40
  article-title: Subsampling Methods for Persistent Homology
– volume-title: Convergence Rates for Persistence Diagram Estimation in Topological Data Analysis
  ident: B43
– volume: 36
  start-page: 1614
  year: 2020
  ident: B110
  article-title: Topological Data Analysis Quantifies Biological Nano-Structure from Single Molecule Localization Microscopy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz788
– volume-title: Topological Consistency via Kernel Estimation
  year: 2014
  ident: B8
– volume: 128
  start-page: 149
  year: 2019
  ident: B94
  article-title: Topological Data Analysis for Aviation Applications
  publication-title: Transportation Res. E: Logistics Transportation Rev.
  doi: 10.1016/j.tre.2019.05.017
– volume: 11
  start-page: 733
  ident: B37
  article-title: Geometric Inference for Probability Measures
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-011-9098-0
– volume-title: On the Asymptotic Normality of Persistent Betti Numbers
  year: 2019
  ident: B86
– volume: 52
  start-page: 44
  ident: B130
  article-title: Fréchet Means for Distributions of Persistence Diagrams
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-014-9604-7
– volume: 6
  start-page: 140
  ident: B42
  article-title: Stochastic Convergence of Persistence Landscapes and Silhouettes
  publication-title: J. Comput. Geom.
– volume: 40
  start-page: 646
  year: 2011
  ident: B103
  article-title: A Topological View of Unsupervised Learning from Noisy Data
  publication-title: SIAM J. Comput.
  doi: 10.1137/090762932
– year: 2021
  ident: B121
  article-title: Atol: Measure Vectorisation for Automatic Topologically-Oriented Learning
– volume: 32
  start-page: D–G72_1
  year: 2017
  ident: B132
  article-title: Time Series Classification via Topological Data Analysis
  publication-title: Trans. Jpn. Soc. Artif. Intell.
  doi: 10.1527/tjsai.d-g72
– volume: 49
  start-page: 22
  year: 2013
  ident: B75
  article-title: Witnessed K-Distance
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-012-9465-x
– volume: 41
  start-page: 461
  ident: B33
  article-title: A Sampling Theory for Compact Sets in Euclidean Space
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-009-9144-8
– volume: 18
  start-page: 1
  year: 2017
  ident: B2
  article-title: Persistence Images: a Stable Vector Representation of Persistent Homology
  publication-title: J. Machine Learn. Res.
– start-page: 177
  year: 2020
  ident: B63
  article-title: Topological Data Analysis for Arrhythmia Detection through Modular Neural Networks
– volume: 93
  start-page: 418
  year: 1959
  ident: B69
  article-title: Curvature Measures
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/s0002-9947-1959-0110078-1
– volume: 33
  year: 2020
  ident: B117
  article-title: Uncovering the Topology of Time-Varying Fmri Data Using Cubical Persistence
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 5
  year: 2001
  ident: B13
  article-title: Random Forests
  publication-title: Machine Learn.
  doi: 10.1023/a:1010933404324
– volume-title: A Topology Layer for Machine Learning
  year: 2019
  ident: B15
– volume-title: How many Directions Determine a Shape and Other Sufficiency Results for Two Topological Transforms
  year: 2018
  ident: B57
– volume: 8
  start-page: 15396
  year: 2017
  ident: B91
  article-title: Quantifying Similarity of Pore-Geometry in Nanoporous Materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15396
– volume-title: Density Level Sets: Asymptotics, Inference, and Visualization
  year: 2015
  ident: B52
– volume: 112
  start-page: 1684
  year: 2017
  ident: B53
  article-title: Density Level Sets: Asymptotics, Inference, and Visualization
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1228536
– volume: 10
  start-page: 127
  year: 2010
  ident: B54
  article-title: Lipschitz Functions Have L P -Stable Persistence
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-010-9060-6
– volume: 10
  start-page: 2243
  ident: B49
  article-title: Rates of Convergence for Robust Geometric Inference
  publication-title: Electron. J. Statist.
  doi: 10.1214/16-ejs1161
– start-page: 45
  year: 2010
  ident: B127
  article-title: Persistence-based Segmentation of Deformable Shapes
– volume: 36
  start-page: 340
  year: 2004
  ident: B56
  article-title: On Boundary Estimation
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1086957575
– volume-title: Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor
  year: 2017
  ident: B87
– volume-title: SpringerBriefs in Mathematics
  ident: B38
  article-title: The Structure and Stability of Persistence Modules
– volume: 5
  start-page: 1
  year: 2020
  ident: B65
  article-title: Understanding the Topology and the Geometry of the Persistence Diagram Space via Optimal Partial Transport
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-020-00061-z
– volume: 53
  start-page: 621
  ident: B46
  article-title: Gromov-Hausdorff Approximation of Filamentary Structures Using Reeb-type Graphs
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-015-9674-1
– volume: 46
  start-page: 255
  year: 2009
  ident: B22
  article-title: Topology and Data
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/s0273-0979-09-01249-x
– start-page: 137
  volume-title: Surveys in Differential Geometry
  year: 2007
  ident: B108
  article-title: Applied Manifold Geometry
– volume-title: Handbook of Discrete and Computational Geometry
  year: 2017
  ident: B45
  article-title: High-dimensional Topological Data Analysis
– volume: 42
  start-page: 566
  ident: B34
  article-title: Normal Cone Approximation and Offset Shape Isotopy
  publication-title: Comp. Geom. Theor. Appl.
  doi: 10.1016/j.comgeo.2008.12.002
– year: 2019
  ident: B116
  article-title: Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology
– volume: 13
  start-page: 22
  year: 2011
  ident: B133
  article-title: The Numpy Array: a Structure for Efficient Numerical Computation
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/mcse.2011.37
– volume-title: Introduction to the R Package Tda
  ident: B67
– volume-title: Large Scale Computation of Means and Clusters for Persistence Diagrams Using Optimal Transport
  year: 2018
  ident: B90
– start-page: 2573
  year: 2019
  ident: B51
  article-title: A Topological Regularizer for Classifiers via Persistent Homology
– ident: B30
  article-title: Data-driven Trajectory Smoothing
  doi: 10.1145/2093973.2094007
– volume: 54
  year: 2007
  ident: B59
  article-title: Homological Sensor Networks
  publication-title: Notices Am. Math. Soc.
– start-page: 5351
  year: 2019
  ident: B114
  article-title: Topological Data Analysis of Decision Boundaries with Application to Model Selection
– volume: 5
  start-page: 204
  year: 2011
  ident: B6
  article-title: A Weighted K-Nearest Neighbor Density Estimate for Geometric Inference
  publication-title: Electron. J. Stat.
  doi: 10.1214/11-ejs606
– start-page: 2786
  year: 2020
  ident: B24
  article-title: Perslay: a Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures
– volume-title: Algebraic Topology
  year: 2001
  ident: B76
– volume: 13
  start-page: 795
  year: 2019
  ident: B11
  article-title: A Statistical Test of Isomorphism between Metric-Measure Spaces Using the Distance-To-A-Measure Signature
  publication-title: Electron. J. Stat.
  doi: 10.1214/19-ejs1539
– volume: 28
  start-page: 1393
  ident: B32
  article-title: Gromov-hausdorff Stable Signatures for Shapes Using Persistence
  publication-title: Comput. Graphics Forum (proc. SGP 2009)
  doi: 10.1111/j.1467-8659.2009.01516.x
– volume: 42
  start-page: 2301
  ident: B68
  article-title: Confidence Sets for Persistence Diagrams
  publication-title: Ann. Stat.
  doi: 10.1214/14-aos1252
– start-page: 2003
  volume-title: ,
  year: 2014
  ident: B93
  article-title: Persistence-based Structural Recognition
– ident: B19
  article-title: Efficient and Robust Persistent Homology for Measures
  doi: 10.1137/1.9781611973730.13
SSID ssj0002505112
Score 2.645312
SecondaryResourceType review_article
Snippet With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying...
Topological Data Analysis (TDA)is a recent and fast growing field providing a set of new topological and geometric tools to infer relevant features for...
SourceID doaj
pubmedcentral
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 667963
SubjectTerms Algebraic Topology
Artificial Intelligence
Computer Science
geometric inference
Machine Learning
Mathematics
statistic
Statistics
topological data analysis
topological inference
Title An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists
URI https://www.proquest.com/docview/2583306809
https://inria.hal.science/hal-01614384
https://pubmed.ncbi.nlm.nih.gov/PMC8511823
https://doaj.org/article/ab3d1ed4e5d64027b751c6d943b75be2
Volume 4
WOSCitedRecordID wos000751704800082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-8212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002505112
  issn: 2624-8212
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED40QYcu6StF1aQBG2TJoFoSKVHs5j4MFwiCDCngjaBEEgkQyIUt-_f3jpQDa2mWbAJF6sHvKN4nHr8DuKi84LXLfSpd5VIhOE-NR0CUVbLJuClqG5NNyOvrerFQN3upvigmLMoDx46bmIbb3FnhSlsh15GNLPO2skpwPGpc-Pqi17NHpugbTBM7ehJxXRJZmJr4lblHOljkXyv6dcJH81CQ68fZ5Y6CIfc8zXGc5N7EM3sDR4PHyKbxSd_CC9e9g9e7bAxsGJzvoZ127DfFndsoCMv6JbuNKRAICPbT9IbtNEi-sRltAYnK_sx0lkXhIqo4Dbsv1wzd2dgo3KJHe1gfw5_Zr9sf83RIoZC2JVd96gsrlWmRRHguZIt00GS-MLwprRGOtmAhPctqUdY2JB43YdlVZY1qco89zz_AYbfs3Edgua1aEgd0MvciQ-BNVjvhZFl6i42LBCa7DtXtoC9OaS4eNPIMgkATBJog0BGCBC4fW_yN2hr_qfudMHqsR6rYoQBtRQ-2op-ylQTOEeHRNebTK01l5Pmi1YptnsCXnQFoHGq0fmI6t9ysdUE71ChXiUpAjixjdMnxme7-Loh214HK8U_P8R4n8Iq6hsJWCnUKh_1q4z7Dy3aLprA6gwO5qM_CePgH51AQKg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Introduction+to+Topological+Data+Analysis%3A+Fundamental+and+Practical+Aspects+for+Data+Scientists&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Chazal%2C+Fr%C3%A9d%C3%A9ric&rft.au=Michel%2C+Bertrand&rft.date=2021-09-29&rft.issn=2624-8212&rft.eissn=2624-8212&rft.volume=4&rft.spage=667963&rft_id=info:doi/10.3389%2Ffrai.2021.667963&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon