An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists

With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis ( tda ) is a recent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in artificial intelligence Ročník 4; s. 667963
Hlavní autoři: Chazal, Frédéric, Michel, Bertrand
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 29.09.2021
Edice:Front. Artif. Intell
Témata:
ISSN:2624-8212, 2624-8212
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the recent explosion in the amount, the variety, and the dimensionality of available data, identifying, extracting, and exploiting their underlying structure has become a problem of fundamental importance for data analysis and statistical learning. Topological data analysis ( tda ) is a recent and fast-growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. It proposes new well-founded mathematical theories and computational tools that can be used independently or in combination with other data analysis and statistical learning techniques. This article is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for nonexperts.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Devendra Singh Dhami, Darmstadt University of Technology, Germany
Edited by: Sriraam Natarajan, The University of Texas at Dallas, United States
Reviewed by: Ajey Kumar, Symbiosis International (Deemed University), India
This article was submitted to Machine Learning and Artificial Intelligence, a section of the journal Frontiers in Artificial Intelligence
ISSN:2624-8212
2624-8212
DOI:10.3389/frai.2021.667963