Advanced Deep Learning and Machine Learning Techniques for MRI Brain Tumor Analysis: A Review

A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2746
Main Authors: Missaoui, Rim, Hechkel, Wided, Saadaoui, Wajdi, Helali, Abdelhamid, Leo, Marco
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 26.04.2025
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018–2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies.
AbstractList A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018–2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies.
A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018-2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies.A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018-2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies.
Audience Academic
Author Hechkel, Wided
Saadaoui, Wajdi
Helali, Abdelhamid
Missaoui, Rim
Leo, Marco
AuthorAffiliation 4 Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy
1 Laboratory of Micro-Optoelectronics and Nanostructures (LMON), University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia; missaouirima22@gmail.com (R.M.); hechkelwided@gmail.com (W.H.); abdelhamid.helali@gmail.com (A.H.)
2 National High School of Engineering of Tunis (ENSIT), 5 Rue Taha Hussein–Montfleury, Tunis 1008, Tunisia
3 LRMAN Laboratory, Higher Institute of Applied Sciences and Technology of Kasserine (ISSAT), Kasserine 1200, Tunisia; wajdi.enit@gmail.com
AuthorAffiliation_xml – name: 1 Laboratory of Micro-Optoelectronics and Nanostructures (LMON), University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia; missaouirima22@gmail.com (R.M.); hechkelwided@gmail.com (W.H.); abdelhamid.helali@gmail.com (A.H.)
– name: 2 National High School of Engineering of Tunis (ENSIT), 5 Rue Taha Hussein–Montfleury, Tunis 1008, Tunisia
– name: 3 LRMAN Laboratory, Higher Institute of Applied Sciences and Technology of Kasserine (ISSAT), Kasserine 1200, Tunisia; wajdi.enit@gmail.com
– name: 4 Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy
Author_xml – sequence: 1
  givenname: Rim
  surname: Missaoui
  fullname: Missaoui, Rim
– sequence: 2
  givenname: Wided
  orcidid: 0000-0002-1299-1804
  surname: Hechkel
  fullname: Hechkel, Wided
– sequence: 3
  givenname: Wajdi
  orcidid: 0000-0001-8977-9652
  surname: Saadaoui
  fullname: Saadaoui, Wajdi
– sequence: 4
  givenname: Abdelhamid
  orcidid: 0000-0002-1623-6830
  surname: Helali
  fullname: Helali, Abdelhamid
– sequence: 5
  givenname: Marco
  orcidid: 0000-0001-5636-6130
  surname: Leo
  fullname: Leo, Marco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40363185$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-AVuICh7Rej3fXywWF8hUpFVIVjsia9Y4TVxs72Jug_nscUtKmqnywPX7mtd7Re5odOe8oy14X7BygYReRl6zhtaieZSeF4GIkOWdHD87H2WmMN4xxAJAvsmPBoIJClifZr3G3Qaepyz8TrfIpYXDWzXN0XX6FemEd3RdnpBfO_l5TzI0P-dX1JP8U0Lp8tl6m-9hhfxtt_JCP82vaWPrzMntusI_06m4_y35-_TK7_D6a_vg2uRxPR7qEZhhJlKZCqLuGQIM0DLBkZaU5M7rsOOeypXQBJlpCUxcCeFsaQVIDtKKr4Cyb7HQ7jzdqFewSw63yaNW_gg9zhWGwuielUXBgWjbb4bSywtrIJCiMKHWNlU5aH3daq3W7pE6TGwL2B6KHL84u1NxvVMFZLYqyTgrv7hSC3w5rUEsbNfU9OvLrqCBZaXgyIRP69hF649chzXFHcV6DLO6pOSYH1hmfPtZbUTWW0DRFIyVP1PkTVFodLa1OiTE21Q8a3jx0urf4Px0JeL8DdPAxBjJ7pGBqmzy1T15iLx6x2g44WL8dku2f6PgLDb3V6g
CitedBy_id crossref_primary_10_3390_app15095140
crossref_primary_10_3389_fmed_2025_1636059
Cites_doi 10.1007/s11227-023-05549-w
10.3390/diagnostics12020345
10.1007/s00330-020-06737-5
10.1055/s-0043-1767786
10.1038/sdata.2017.117
10.3389/fonc.2021.724191
10.1109/ICHI.2018.00091
10.47852/bonviewMEDIN42021685
10.1007/s11042-023-15377-y
10.3389/fnins.2019.00810
10.1007/s11042-023-14828-w
10.1016/j.procs.2016.09.407
10.3322/caac.21552
10.1109/ACCESS.2025.3554405
10.1016/j.compbiomed.2019.103345
10.1016/j.mehy.2019.109507
10.1109/ICCIT60459.2023.10440978
10.3390/biomedicines10020223
10.1007/s00521-022-07934-7
10.1109/RBME.2021.3055556
10.1038/s41598-024-57970-7
10.1007/s11045-018-0603-3
10.3390/s22218201
10.1109/ACCESS.2024.3359418
10.1007/s10278-023-00912-y
10.3390/diagnostics11010105
10.1016/j.procs.2020.03.295
10.1016/j.procs.2019.12.089
10.1038/s41598-021-89848-3
10.1109/ISMSIT.2019.8932878
10.1155/2021/1004767
10.1002/jmri.10424
10.1002/ima.22979
10.1109/AIIIP61647.2023.00048
10.1007/s00521-023-09306-1
10.1109/ICJECE.2023.3289609
10.1109/CASE.2009.146
10.13005/bpj/2409
10.1016/j.cmpb.2018.09.006
10.1088/2632-2153/acd5a9
10.1016/j.patrec.2017.10.036
10.1007/s00530-021-00797-3
10.1007/s10916-019-1223-7
10.1007/s11042-022-14305-w
10.3390/cancers14102363
10.3390/s21062222
10.37256/ccds.4220232740
10.1109/ICRAI54018.2021.9651367
10.1109/ICDSNS58469.2023.10245128
10.1109/ACCESS.2022.3140289
10.1038/s41598-024-51867-1
10.1007/s00521-019-04679-8
10.1155/2019/7305832
10.4137/MRI.S12561
10.1007/s11042-021-11821-z
10.3390/diagnostics13091562
10.1016/j.measen.2024.101026
10.1002/mp.15814
10.1002/ima.22735
10.1007/978-3-030-11726-9_9
10.3390/bioengineering11060627
10.1007/s13534-024-00393-0
10.1109/ICEAST.2019.8802562
10.1007/s12652-021-03535-9
10.3389/fpubh.2022.959667
10.1053/j.sult.2021.07.006
10.2174/1573405616666200712180521
10.1038/s41598-024-52823-9
10.1002/ima.22549
10.1109/ACCESS.2023.3288017
10.1016/j.jksuci.2021.05.008
10.1007/s10278-022-00602-1
10.3390/app10217790
10.14445/23488549/IJECE-V10I8P103
10.1016/j.array.2020.100017
10.1109/ICCCEEE.2018.8515763
10.1109/JTEHM.2022.3176737
10.3389/fninf.2024.1414925
10.1155/2022/1830010
10.3390/s22072726
10.1007/s12553-020-00514-6
10.1007/s13369-019-03967-8
10.3390/curroncol29100590
10.3390/bioengineering11030266
10.1007/s10916-019-1368-4
10.1016/j.mlwa.2020.100004
10.1186/s12883-020-02036-0
10.1016/S2589-7500(21)00205-3
10.2139/ssrn.4827019
10.1109/ICACCS48705.2020.9074375
10.1109/RBME.2021.3075500
10.3390/brainsci13040602
10.3390/diagnostics13122094
10.1038/s41598-021-90428-8
10.1007/s11042-022-13713-2
10.1016/j.compeleceng.2022.108105
10.3390/cancers15164172
10.20944/preprints202207.0211.v1
10.3390/axioms11010034
10.1109/ISAMSR53229.2021.9567799
10.1007/s10548-023-00953-0
10.1038/s41598-024-56983-6
10.3390/s23156930
10.3390/life13020349
10.3389/fncom.2020.00061
10.1007/s00500-018-3618-7
10.1007/s00330-023-10316-9
10.3390/a16040176
10.1007/978-981-15-1420-3_19
10.1109/ACCESS.2023.3325294
10.1109/IC2PCT60090.2024.10486772
10.1007/978-3-030-49161-1_17
10.1186/s12911-023-02114-6
10.1109/ELECSYM.2019.8901560
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25092746
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ca4230c891424b86a7f81434f45c7a6c
PMC12074157
A839919882
40363185
10_3390_s25092746
Genre Journal Article
Review
GeographicLocations Switzerland
GeographicLocations_xml – name: Switzerland
GrantInformation_xml – fundername: Italian Ministery of University and Research
  grantid: Future Artificial Intelligence Research-FAIR CUP B53C220036 30006 grant number PE0000013
– fundername: Italian Ministry for Universities and Research (MUR) under the grant Future Artificial Intelligence Research—FAIR CUP B53C220036 30006
  grantid: PE0000013
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c539t-8a8f6a37d9e3c38f03a5056c20fc5d2228bec20304beaf71432b5f4e8c33b4d63
IEDL.DBID 7X7
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486604300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:31:57 EDT 2025
Tue Nov 04 02:03:33 EST 2025
Fri Sep 05 16:47:46 EDT 2025
Tue Oct 07 07:39:33 EDT 2025
Tue Nov 11 10:48:38 EST 2025
Tue Nov 04 18:11:11 EST 2025
Sat May 17 01:30:25 EDT 2025
Tue Nov 18 22:36:01 EST 2025
Sat Nov 29 07:16:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords magnetic resonance imaging (MRI)
machine learning (ML)
brain tumors
deep learning (DL)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-8a8f6a37d9e3c38f03a5056c20fc5d2228bec20304beaf71432b5f4e8c33b4d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1623-6830
0000-0001-5636-6130
0000-0001-8977-9652
0000-0002-1299-1804
OpenAccessLink https://www.proquest.com/docview/3203227381?pq-origsite=%requestingapplication%
PMID 40363185
PQID 3203227381
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ca4230c891424b86a7f81434f45c7a6c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074157
proquest_miscellaneous_3203924328
proquest_journals_3203227381
gale_infotracmisc_A839919882
gale_infotracacademiconefile_A839919882
pubmed_primary_40363185
crossref_primary_10_3390_s25092746
crossref_citationtrail_10_3390_s25092746
PublicationCentury 2000
PublicationDate 2025-04-26
PublicationDateYYYYMMDD 2025-04-26
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zaitoon (ref_130) 2023; 11
ref_93
ref_90
ref_14
ref_99
ref_98
ref_96
Haq (ref_81) 2023; 14
ref_18
ref_17
Eliasy (ref_10) 2020; 6
ref_15
Wagner (ref_123) 2020; Volume 11993
ref_125
Bakas (ref_9) 2017; 4
Selvapandian (ref_28) 2018; 166
Marghalani (ref_42) 2019; 163
ref_127
Kumar (ref_79) 2023; 36
Srinivas (ref_113) 2019; 8
ref_25
Jane (ref_68) 2024; 36
ref_24
ref_22
ref_122
Alshaikhli (ref_3) 2021; 11
Amin (ref_27) 2020; 139
Grussu (ref_20) 2021; 42
ref_29
Mitra (ref_8) 2023; 16
Sharif (ref_33) 2020; 32
Rajan (ref_38) 2019; 43
Almufareh (ref_110) 2024; 12
Bi (ref_11) 2019; 69
ref_70
Asthana (ref_128) 2022; 32
Alqazzaz (ref_39) 2022; 35
Jiang (ref_46) 2023; 4
Fidon (ref_71) 2021; Volume 12659
ref_78
ref_76
ref_75
Choi (ref_50) 2020; 30
ref_74
Zhou (ref_129) 2024; 34
Tiwary (ref_112) 2025; 13
Arunkumar (ref_26) 2019; 23
Rajput (ref_52) 2023; 4
Asif (ref_80) 2023; 82
Aamir (ref_61) 2022; 101
Sajid (ref_95) 2019; 44
Tummala (ref_117) 2022; 29
ref_82
Thillaikkarasi (ref_103) 2019; 43
Kumar (ref_120) 2024; 14
ref_89
ref_88
ref_85
Dong (ref_19) 2004; 19
Kesav (ref_1) 2022; 34
ref_58
Mohanty (ref_86) 2024; 16
ref_56
ref_55
ref_54
Daimary (ref_104) 2020; 167
Naz (ref_16) 2022; 28
Bhargava (ref_6) 2013; 6
ref_59
Ali (ref_4) 2016; 102
ref_60
Nassar (ref_119) 2024; 80
Bhushan (ref_23) 2023; 82
Amian (ref_124) 2020; Volume 11992
Balamurugan (ref_106) 2023; 35
ref_69
ref_67
ref_66
ref_65
ref_64
ref_63
Saha (ref_121) 2023; 82
Jalalifar (ref_91) 2022; 49
Amla (ref_12) 2024; 37
Sharma (ref_32) 2019; 30
Islam (ref_94) 2020; Volume 11992
Shedbalkar (ref_109) 2023; 10
Senan (ref_21) 2021; 2021
ref_115
Crimi (ref_77) 2021; Volume 12658
Anantharajan (ref_97) 2024; 31
Ramamoorthy (ref_108) 2023; 46
ref_114
Rao (ref_43) 2022; 81
ref_116
ref_118
Ottom (ref_72) 2022; 10
Musallam (ref_53) 2022; 10
ref_35
Joshi (ref_84) 2024; 1
Tiwari (ref_5) 2022; 2022
ref_34
Rajasekaran (ref_7) 2018; Volume 11
ref_31
ref_30
Mahjoubi (ref_57) 2023; 14
Babu (ref_37) 2020; 17
Meredig (ref_92) 2021; 3
Rafi (ref_126) 2021; 31
Mishro (ref_13) 2022; 15
Jain (ref_87) 2023; 15
Sert (ref_36) 2020; 136
Sahli (ref_107) 2023; 31
Almadhoun (ref_62) 2022; 6
ref_105
Mandle (ref_44) 2022; 15
ref_47
ref_45
ref_41
ref_102
ref_40
ref_101
ref_2
ref_49
ref_48
Omid (ref_100) 2020; 10
Datta (ref_111) 2024; 34
Manjunath (ref_51) 2023; 33
Kumar (ref_83) 2023; 82
Rajendran (ref_73) 2023; 11
References_xml – volume: 80
  start-page: 2403
  year: 2024
  ident: ref_119
  article-title: A robust MRI-based brain tumor classification via a hybrid deep learning technique
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05549-w
– ident: ref_90
  doi: 10.3390/diagnostics12020345
– volume: 30
  start-page: 3834
  year: 2020
  ident: ref_50
  article-title: Machine learning and radiomic phenotyping of lower grade gliomas: Improving survival prediction
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06737-5
– volume: 33
  start-page: 338
  year: 2023
  ident: ref_51
  article-title: A Comparison of Machine Learning Models for Survival Prediction of Patients with Glioma Using Radiomic Features from MRI Scans
  publication-title: Indian J. Radiol. Imaging
  doi: 10.1055/s-0043-1767786
– volume: 4
  start-page: 170117
  year: 2017
  ident: ref_9
  article-title: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– ident: ref_127
  doi: 10.3389/fonc.2021.724191
– ident: ref_47
  doi: 10.1109/ICHI.2018.00091
– volume: 1
  start-page: 79
  year: 2024
  ident: ref_84
  article-title: Proportion Estimation and Multi-Class Classification of Abnormal Brain Cells
  publication-title: Medinformatics
  doi: 10.47852/bonviewMEDIN42021685
– volume: 82
  start-page: 44479
  year: 2023
  ident: ref_121
  article-title: BCM-VEMT: Classification of brain cancer from MRI images using deep learning and ensemble of machine learning techniques
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15377-y
– ident: ref_122
  doi: 10.3389/fnins.2019.00810
– volume: 82
  start-page: 31709
  year: 2023
  ident: ref_80
  article-title: An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14828-w
– volume: 102
  start-page: 317
  year: 2016
  ident: ref_4
  article-title: Review of MRI-based brain tumor image segmentation using deep learning methods
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.407
– volume: Volume 11992
  start-page: 262
  year: 2020
  ident: ref_94
  article-title: Brain tumor segmentation and survival prediction using 3d attention unet
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019, Revised Selected Papers, Part I 5
– volume: 69
  start-page: 127
  year: 2019
  ident: ref_11
  article-title: Artificial intelligence in cancer imaging: Clinical challenges and applications. CA
  publication-title: Cancer J. Clin.
  doi: 10.3322/caac.21552
– volume: 13
  start-page: 54920
  year: 2025
  ident: ref_112
  article-title: Deep Learning-Based MRI Brain Tumor Segmentation with EfficientNet-Enhanced UNet
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3554405
– ident: ref_78
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 136
  start-page: 109507
  year: 2020
  ident: ref_36
  article-title: Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109507
– ident: ref_56
– ident: ref_99
  doi: 10.1109/ICCIT60459.2023.10440978
– ident: ref_116
  doi: 10.3390/biomedicines10020223
– volume: 35
  start-page: 4739
  year: 2023
  ident: ref_106
  article-title: Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07934-7
– volume: 15
  start-page: 184
  year: 2022
  ident: ref_13
  article-title: A Survey on State-of-the-Art Denoising Techniques for Brain Magnetic Resonance Images
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2021.3055556
– ident: ref_48
– ident: ref_102
  doi: 10.1038/s41598-024-57970-7
– volume: 30
  start-page: 1263
  year: 2019
  ident: ref_32
  article-title: Brain tumor segmentation using DE embedded OTSU method and neural network
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-018-0603-3
– ident: ref_105
  doi: 10.3390/s22218201
– volume: 12
  start-page: 16189
  year: 2024
  ident: ref_110
  article-title: Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3359418
– volume: 37
  start-page: 386
  year: 2024
  ident: ref_12
  article-title: Review of the Free Research Software for Computer-Assisted Interventions
  publication-title: J. Imaging Inform. Med.
  doi: 10.1007/s10278-023-00912-y
– ident: ref_18
  doi: 10.3390/diagnostics11010105
– volume: 167
  start-page: 2419
  year: 2020
  ident: ref_104
  article-title: Brain Tumor Segmentation from MRI Images using Hybrid Convolutional Neural Networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.295
– volume: 163
  start-page: 78
  year: 2019
  ident: ref_42
  article-title: Automatic Classification of Brain Tumor and Alzheimer’s Disease in MRI
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.12.089
– volume: 16
  start-page: 1617
  year: 2024
  ident: ref_86
  article-title: Feature-enhanced deep learning technique with soft attention for MRI-based brain tumor classification
  publication-title: Int. J. Inf. Technol.
– ident: ref_15
  doi: 10.1038/s41598-021-89848-3
– ident: ref_40
  doi: 10.1109/ISMSIT.2019.8932878
– volume: 2021
  start-page: 1004767
  year: 2021
  ident: ref_21
  article-title: Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2021/1004767
– volume: 19
  start-page: 6
  year: 2004
  ident: ref_19
  article-title: Clinical Applications of Diffusion Tensor Imaging
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10424
– volume: 34
  start-page: e22979
  year: 2024
  ident: ref_111
  article-title: Brain tumor image pixel segmentation and detection using an aggregation of GAN models with vision transformer
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22979
– ident: ref_76
  doi: 10.1109/AIIIP61647.2023.00048
– volume: 36
  start-page: 6403
  year: 2024
  ident: ref_68
  article-title: VITALT: A robust and efficient brain tumor detection system using vision transformer with attention and linear transformation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-09306-1
– volume: 46
  start-page: 298
  year: 2023
  ident: ref_108
  article-title: TransAttU-Net Deep Neural Network for Brain Tumor Segmentation in Magnetic Resonance Imaging
  publication-title: IEEE Can. J. Electr. Comput. Eng.
  doi: 10.1109/ICJECE.2023.3289609
– ident: ref_22
  doi: 10.1109/CASE.2009.146
– volume: 15
  start-page: 699
  year: 2022
  ident: ref_44
  article-title: Brain Tumor Segmentation and Classification in MRI using Clustering and Kernel-Based SVM
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/2409
– volume: 166
  start-page: 33
  year: 2018
  ident: ref_28
  article-title: Fusion based Glioma brain tumor detection and segmentation using ANFIS classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.09.006
– volume: 4
  start-page: 025025
  year: 2023
  ident: ref_52
  article-title: Interpretable machine learning model to predict survival days of malignant brain tumor patients
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/acd5a9
– volume: 139
  start-page: 118
  year: 2020
  ident: ref_27
  article-title: A distinctive approach in brain tumor detection and classification using MRI
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.10.036
– volume: 28
  start-page: 85
  year: 2022
  ident: ref_16
  article-title: Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-021-00797-3
– volume: 43
  start-page: 84
  year: 2019
  ident: ref_103
  article-title: An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation Using Kernel Based CNN with M-SVM
  publication-title: Med. Syst.
  doi: 10.1007/s10916-019-1223-7
– volume: 82
  start-page: 26731
  year: 2023
  ident: ref_23
  article-title: Machine learning and deep learning approach for medical image analysis: Diagnosis to detection
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-14305-w
– ident: ref_30
  doi: 10.3390/cancers14102363
– ident: ref_115
  doi: 10.3390/s21062222
– volume: 4
  start-page: 122
  year: 2023
  ident: ref_46
  article-title: Magnetic Resonance Imaging (MRI) Brain Tumor Image Classification Based on Five Machine Learning Algorithms
  publication-title: Cloud Comput. Data Sci.
  doi: 10.37256/ccds.4220232740
– ident: ref_125
  doi: 10.1109/ICRAI54018.2021.9651367
– ident: ref_60
  doi: 10.1109/ICDSNS58469.2023.10245128
– volume: 10
  start-page: 2775
  year: 2022
  ident: ref_53
  article-title: A New Convolutional Neural Network Architecture for Automatic Detection of Brain Tumors in Magnetic Resonance Imaging Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3140289
– ident: ref_85
  doi: 10.1038/s41598-024-51867-1
– volume: 32
  start-page: 15975
  year: 2020
  ident: ref_33
  article-title: Brain tumor detection based on extreme learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04679-8
– ident: ref_34
  doi: 10.1155/2019/7305832
– volume: 6
  start-page: MRI.S12561
  year: 2013
  ident: ref_6
  article-title: Contrast-enhanced Magnetic Resonance Imaging in Pediatric Patients: Review and Recommendations for Current Practice
  publication-title: Magn. Reson. Insights
  doi: 10.4137/MRI.S12561
– volume: 81
  start-page: 7393
  year: 2022
  ident: ref_43
  article-title: Efficient Detection and Classification of Brain Tumor using Kernel based SVM for MRI
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11821-z
– ident: ref_74
  doi: 10.3390/diagnostics13091562
– volume: 31
  start-page: 101026
  year: 2024
  ident: ref_97
  article-title: MRI brain tumor detection using deep learning and machine learning approaches
  publication-title: Meas. Sens.
  doi: 10.1016/j.measen.2024.101026
– volume: 49
  start-page: 7167
  year: 2022
  ident: ref_91
  article-title: Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI-based deep learning features
  publication-title: Med. Phys.
  doi: 10.1002/mp.15814
– volume: 32
  start-page: 1801
  year: 2022
  ident: ref_128
  article-title: Brain tumor detection and patient survival prediction using U-Net and regression model
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22735
– ident: ref_93
  doi: 10.1007/978-3-030-11726-9_9
– ident: ref_98
  doi: 10.3390/bioengineering11060627
– volume: 14
  start-page: 1069
  year: 2024
  ident: ref_120
  article-title: GT—Net: Global transformer network for multiclass brain tumor classification using MR images
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-024-00393-0
– ident: ref_29
  doi: 10.1109/ICEAST.2019.8802562
– volume: 14
  start-page: 6697
  year: 2023
  ident: ref_81
  article-title: An MRI-based deep learning approach for efficient classification of brain tumors
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-021-03535-9
– ident: ref_64
  doi: 10.3389/fpubh.2022.959667
– volume: 10
  start-page: 6863
  year: 2020
  ident: ref_100
  article-title: A Hybrid Model of Faster R-CNN and SVM for Tumor Detection and Classification of MRI Brain Images
  publication-title: Int. J. Mech. Prod. Eng. Res. Dev.
– volume: 42
  start-page: 490
  year: 2021
  ident: ref_20
  article-title: Diffusion-Weighted Imaging: Recent Advances and Applications
  publication-title: Semin. Ultrasound CT MRI
  doi: 10.1053/j.sult.2021.07.006
– volume: 17
  start-page: 331
  year: 2020
  ident: ref_37
  article-title: Brain Tumor Segmentation of T1w MRI Images Based on Clustering Using Dimensionality Reduction Random Projection Technique
  publication-title: Curr. Med. Imaging Former. Curr. Med. Imaging Rev.
  doi: 10.2174/1573405616666200712180521
– ident: ref_65
  doi: 10.1038/s41598-024-52823-9
– volume: 31
  start-page: 1519
  year: 2021
  ident: ref_126
  article-title: Multi-level dilated convolutional neural network for brain tumour segmentation and multi-view-based radiomics for overall survival prediction
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22549
– volume: 11
  start-page: 64758
  year: 2023
  ident: ref_73
  article-title: Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3288017
– volume: 34
  start-page: 6229
  year: 2022
  ident: ref_1
  article-title: Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2021.05.008
– volume: 35
  start-page: 938
  year: 2022
  ident: ref_39
  article-title: Combined Features in Region of Interest for Brain Tumor Segmentation
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-022-00602-1
– ident: ref_69
  doi: 10.3390/app10217790
– volume: 10
  start-page: 22
  year: 2023
  ident: ref_109
  article-title: UNet and Transformer-Based Model for Multi-Modality Brain Tumor Segmentation
  publication-title: SSRG Int. J. Electron. Commun. Eng.
  doi: 10.14445/23488549/IJECE-V10I8P103
– volume: 6
  start-page: 100017
  year: 2020
  ident: ref_10
  article-title: The role of AI in capital structure to enhance corporate funding strategies
  publication-title: Array
  doi: 10.1016/j.array.2020.100017
– ident: ref_25
  doi: 10.1109/ICCCEEE.2018.8515763
– volume: 10
  start-page: 1800508
  year: 2022
  ident: ref_72
  article-title: Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2022.3176737
– ident: ref_66
  doi: 10.3389/fninf.2024.1414925
– volume: 2022
  start-page: 1830010
  year: 2022
  ident: ref_5
  article-title: CNN Based Multiclass Brain Tumor Detection Using Medical Imaging
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/1830010
– volume: 6
  start-page: 29
  year: 2022
  ident: ref_62
  article-title: Detection of Brain Tumor Using Deep Learning
  publication-title: Int. J. Acad. Eng. Res. (IJAER)
– ident: ref_2
  doi: 10.3390/s22072726
– volume: 11
  start-page: 267
  year: 2021
  ident: ref_3
  article-title: MRI brain tumor medical images analysis using deep learning techniques: A systematic review
  publication-title: Health Technol.
  doi: 10.1007/s12553-020-00514-6
– volume: 44
  start-page: 9249
  year: 2019
  ident: ref_95
  article-title: Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03967-8
– volume: 29
  start-page: 7498
  year: 2022
  ident: ref_117
  article-title: Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling
  publication-title: Curr. Oncol.
  doi: 10.3390/curroncol29100590
– ident: ref_31
  doi: 10.3390/bioengineering11030266
– volume: 43
  start-page: 282
  year: 2019
  ident: ref_38
  article-title: Brain Tumor Detection and Segmentation by Intensity Adjustment
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1368-4
– ident: ref_14
  doi: 10.1016/j.mlwa.2020.100004
– volume: 8
  start-page: 5230
  year: 2019
  ident: ref_113
  article-title: A hybrid CNN-KNN model for MRI brain tumor classification
  publication-title: Int. J. Recent Technol. Eng.
– ident: ref_17
  doi: 10.1186/s12883-020-02036-0
– volume: Volume 12659
  start-page: 200
  year: 2021
  ident: ref_71
  article-title: Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for Brain Tumor Segmentation: BraTS 2020 Challenge
  publication-title: International MICCAI Brainlesion Workshop
– volume: 3
  start-page: e784
  year: 2021
  ident: ref_92
  article-title: Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: A multicentre, retrospective cohort study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00205-3
– volume: 15
  start-page: 2031
  year: 2023
  ident: ref_87
  article-title: Novel approach to classify brain tumor based on transfer learning and deep learning
  publication-title: Int. J. Inf. Technol.
– ident: ref_75
  doi: 10.2139/ssrn.4827019
– volume: Volume 11993
  start-page: 99
  year: 2020
  ident: ref_123
  article-title: Fully automated brain tumor segmentation and survival prediction of gliomas using deep learning and MRI
  publication-title: International MICCAI Brainlesion Workshop
– ident: ref_59
  doi: 10.1109/ICACCS48705.2020.9074375
– volume: 16
  start-page: 579
  year: 2023
  ident: ref_8
  article-title: Deep Learning With Radiogenomics Towards Personalized Management of Gliomas
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2021.3075500
– ident: ref_82
  doi: 10.3390/brainsci13040602
– ident: ref_67
  doi: 10.3390/diagnostics13122094
– ident: ref_70
  doi: 10.1038/s41598-021-90428-8
– ident: ref_24
– volume: 82
  start-page: 7599
  year: 2023
  ident: ref_83
  article-title: Human brain tumor classification and segmentation using CNN
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13713-2
– volume: 101
  start-page: 108105
  year: 2022
  ident: ref_61
  article-title: A deep learning approach for brain tumor classification using MRI images
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108105
– ident: ref_63
  doi: 10.3390/cancers15164172
– ident: ref_35
  doi: 10.20944/preprints202207.0211.v1
– ident: ref_55
  doi: 10.3390/axioms11010034
– volume: 14
  start-page: 406
  year: 2023
  ident: ref_57
  article-title: Improved Multiclass Brain Tumor Detection using Convolutional Neural Networks and Magnetic Resonance Imaging
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_58
  doi: 10.1109/ISAMSR53229.2021.9567799
– volume: 36
  start-page: 305
  year: 2023
  ident: ref_79
  article-title: Brain Tumor Classification Using Deep Neural Network and Transfer Learning
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-023-00953-0
– ident: ref_88
  doi: 10.1038/s41598-024-56983-6
– ident: ref_101
  doi: 10.3390/s23156930
– ident: ref_89
  doi: 10.3390/life13020349
– ident: ref_49
  doi: 10.3389/fncom.2020.00061
– volume: 23
  start-page: 9083
  year: 2019
  ident: ref_26
  article-title: K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3618-7
– volume: 34
  start-page: 3644
  year: 2024
  ident: ref_129
  article-title: Automatic image segmentation and online survival prediction model of medulloblastoma based on machine learning
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-023-10316-9
– ident: ref_54
  doi: 10.3390/a16040176
– volume: 31
  start-page: 27
  year: 2023
  ident: ref_107
  article-title: ResNet-SVM: Fusion based glioblastoma tumor segmentation and classification
  publication-title: J. Xray. Sci. Technol.
– ident: ref_45
  doi: 10.1007/978-981-15-1420-3_19
– volume: 11
  start-page: 118105
  year: 2023
  ident: ref_130
  article-title: RU-Net2+: A Deep Learning Algorithm for Accurate Brain Tumor Segmentation and Survival Rate Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3325294
– volume: Volume 12658
  start-page: 274
  year: 2021
  ident: ref_77
  article-title: Vox2Vox: 3D-GAN for Brain Tumour Segmentation
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science
– ident: ref_118
  doi: 10.1109/IC2PCT60090.2024.10486772
– ident: ref_114
  doi: 10.1007/978-3-030-49161-1_17
– ident: ref_96
  doi: 10.1186/s12911-023-02114-6
– volume: Volume 11992
  start-page: 221
  year: 2020
  ident: ref_124
  article-title: Multi-resolution 3d cnn for mri brain tumor segmentation and survival prediction
  publication-title: International MICCAI Brainlesion Workshop
– volume: Volume 11
  start-page: 83
  year: 2018
  ident: ref_7
  article-title: Advanced Brain Tumour Segmentation from MRI Images
  publication-title: Basic Physical Principles and Clinical Applications, High-Resolution Neuroimaging
– ident: ref_41
  doi: 10.1109/ELECSYM.2019.8901560
SSID ssj0023338
Score 2.4803588
SecondaryResourceType review_article
Snippet A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2746
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumors
Classification
Decision making
Deep Learning
deep learning (DL)
Glioma
Humans
Machine Learning
machine learning (ML)
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Medical imaging
Medical imaging equipment
Medical research
Medicine, Experimental
Metastasis
NMR
Nuclear magnetic resonance
Radiation
Radiomics
Review
Spinal cord
Tomography
Tumors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDLfQxAEOiG8KAwWEBJdqfUmTJtzegAkOmxB6SLugKM3HmATdtPcefz92m5ZXgcSFYxO3Shw7thvnZ4CXUnsVjE4lN8qVtQ6xdKGqS6lD5aSXi1b5vthEc3KiT0_Np51SX5QTNsADD4w78A4NfuW1oStZrVauSRptfJ1q6RunPO2-VWPGYCqHWgIjrwFHSGBQf7BGQ28w_lIz69OD9P-5Fe_Yonme5I7hOboNt7LHyJbDSO_AtdjdhZs7OIL34Osyn-SzdzFesoyZesZcF9hxny0ZfzeuRtTWNUOHlR1__sgOqU4EW21_4POIUvKGLdlwcHAfvhy9X739UOa6CaWXwmxK7XRSTjTBROGFTpVw5Od4XiUvA_3ywYXjdCbaRpeoADpvZaqj9kK0dVDiAex1F118BCwY_KLiKciQCEnQGVzBhiudTBV9LQt4PfLT-gwqTrUtvlsMLoj1dmJ9AS8m0ssBSeNvRIe0KBMBgV_3DSgSNouE_ZdIFPCKltSSiuJgvMs3DXBKBHZll-gUmoXB2KKA_Rklqpafd49CYbNqr62gmvN0oWlRwPOpm96kdLUuXmwHGgxsBdcFPBxkaJpSTUfn6CUVoGfSNZvzvKc7_9YDfy947wA2j_8Hl57ADU61jFExudqHvc3VNj6F6_7n5nx99axXp1-jESJ0
  priority: 102
  providerName: Directory of Open Access Journals
Title Advanced Deep Learning and Machine Learning Techniques for MRI Brain Tumor Analysis: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/40363185
https://www.proquest.com/docview/3203227381
https://www.proquest.com/docview/3203924328
https://pubmed.ncbi.nlm.nih.gov/PMC12074157
https://doaj.org/article/ca4230c891424b86a7f81434f45c7a6c
Volume 25
WOSCitedRecordID wos001486604300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48H4ElsogJLhEm8aJY3NBLXTFHlpVqyKVA4pcP5aVIC19cOS3M5O4jwjEhUuk2JPIlmfsGXv8fQCvcmmEVdLHqRI6zqR1sbZJFufSJjo3eXcmTE02UYxGcjpV47Dhtgpplds5sZ6o7dzQHvkpJ6pvukfSfbf4ERNrFJ2uBgqN63BMtNmk58V0H3BxjL8aNCGOof3pCpd7hVGYaK1BNVT_nxPywYrUzpY8WH7O7vxvw-_C7eB4sl6jKffgmqvuw60DOMIH8KUXEgLYB-cWLECvXjJdWTasky7dvnCyBX9dMfR72fDinPWJboJNNt_xfQt28pb1WHP-8BA-nQ0m7z_GgX4hNjlX61hq6YXmhVWOGy59wjW5SyZNvMkt7Rzh-Kd0tDpz2hOPejrLfeak4XyWWcEfwVE1r9wTYFbhH0XqbW49ARJqhYpQpEJ6lTiT5RG82Q5IaQI2OVFkfCsxRqGxK3djF8HLneiiAeT4m1CfRnUnQBjadcF8eVkGkyyNRlcyMVLRZb-ZFLrwEjuR-Sw3hRYmgtekEyVZOjbG6HBhAbtEmFllD31L1VUYokRw0pJECzXt6q1mlGGGWJV7tYjgxa6avqSst8rNN40Mxsc8lRE8bpRw16WMTuDR2YpAttSz1ed2TXX1tcYP76a1H1k8_Xe7nsHNlMiO0XJTcQJH6-XGPYcb5uf6arXs1JZWP2UHjvuD0fiiU29o4HP4a4Bl4_Ph-PNvgZM3VA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tCxJw4P0ILGAQCC7Rpnbi2EgIdVlWW-22QqhIvaDg2s6yEqSlDxB_it_ITB5tIxC3PXBsPI0y7efxTDz-PoCnibLSaZWHXEsTxsr50LgoDhPlIpPYpDOWthSbSAcDNRrpd1vwqzkLQ22VTUwsA7WbWHpHvitI6pvOkXReT7-FpBpFu6uNhEYFiyP_8weWbPNXvX38f59xfvB2-OYwrFUFQpsIvQiVUbk0InXaCytUHglDWYDlUW4TRy9E0C1OO4Zjb3KSB-fjJI-9skKMYycF3vccnMc4nlKxl47WBZ7Aeq9iLxJCR7tzTC80Vn2yteaV0gB_LgAbK2C7O3NjuTu4-r_9UNfgSp1Ys241E67Dli9uwOUNusWb8LFbNzywfe-nrKaWPWGmcKxfNpX69cVhQ247Z5jXs_77HtsjOQ02XH7Fzw2Zy0vWZdX-yi34cCb-3YbtYlL4u8CcxjtKnrvE5US4aDQCPeVS5TryNk4CeNEAILM19zpJgHzJsAYjrGQrrATwZGU6rQhH_ma0RyhaGRBHeHlhMjvJ6pCTWYOpcmSVpsOMYyVNmit0Is7jxKZG2gCeEwYzimT4MNbUBzLQJeIEy7qYO-uOxhIsgJ2WJUYg2x5ukJjVEXCerWEYwOPVMH2TuvoKP1lWNlj_C64CuFOBfuVSTB0GmEwGoFrToeVze6Q4_Vzyo3d4mSen9_79XI_g4uGwf5wd9wZH9-ESJ2FnjFJc7sD2Yrb0D-CC_b44nc8elrOcwaezni2_AWN7jgU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPsRWMAgEFyipnYeNhJCXUpFtbSqUFdaDii4trOsBGnpA8Rf49cxk0e3EYjbHjgmnkSZZGY8E4-_D-BJJE1slcx8rmLth9I6X9sg9CNpAx2ZqDONTUE2kYxG8uhIjXfgV70Xhtoq65hYBGo7M_SPvC2I6pv2kXTaWdUWMe71X82_-cQgRSutNZ1GaSIH7ucPLN-WLwc9_NZPOe-_mbx-61cMA76JhFr5Usss1iKxygkjZBYITRmB4UFmIks_R1BFTquHU6czogrn0ygLnTRCTEMbC7zvOdjFlDzkLdgdD4bjD5tyT2D1V2IZCaGC9hKTDYU1YNyYAQuigD-ng635sNmruTX59a_8z6_tKlyuUm7WLX3kGuy4_Dpc2gJivAEfu1UrBOs5N2cV6Owx07llw6Ld1J2enNSwt0uGGT8bvh-wfSLaYJP1VzyuYV5esC4rV15uwuGZ6HcLWvksd3eAWYV3jHlmI5sRFKNW6AIJj2WmAmfCyIPntTGkpkJlJ3KQLylWZ2Q36cZuPHi8EZ2XUCR_E9oni9oIEHp4cWK2OE6rYJQajUl0YKSibY5TGeskk6hEmIWRSXRsPHhG9phSjMOHMbraqoEqEVpY2sWsWnUUFmce7DUkMTaZ5nBtlWkVG5fpqUl68GgzTFdSv1_uZutSRnF8r9KD26UDbFQKqfcA00wPZMM1Gjo3R_KTzwVyeocXGXRy99_P9RAuoJOk7wajg3twkRPjM4YvHu9Ba7VYu_tw3nxfnSwXDyqXZ_DprN3lN805mFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Deep+Learning+and+Machine+Learning+Techniques+for+MRI+Brain+Tumor+Analysis%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Missaoui%2C+Rim&rft.au=Hechkel%2C+Wided&rft.au=Saadaoui%2C+Wajdi&rft.au=Helali%2C+Abdelhamid&rft.date=2025-04-26&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092746&rft_id=info%3Apmid%2F40363185&rft.externalDocID=40363185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon