Advanced Deep Learning and Machine Learning Techniques for MRI Brain Tumor Analysis: A Review
A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2746 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
26.04.2025
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018–2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies. |
|---|---|
| AbstractList | A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018–2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies. A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018-2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies.A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is difficult to diagnose and cure. In this study, we focus on current advances in medical imaging, particularly magnetic resonance imaging (MRI), and how machine learning (ML) and deep learning (DL) algorithms might be combined with clinical assessments to improve brain tumor diagnosis. Due to its superior contrast resolution and safety compared to other imaging methods, MRI is highlighted as the preferred imaging modality for brain tumors. The challenges related to brain tumor analysis in different processes including detection, segmentation, classification, and survival prediction are addressed along with how ML/DL approaches significantly improve these steps. We systematically analyzed 107 studies (2018-2024) employing ML, DL, and hybrid models across publicly available datasets such as BraTS, TCIA, and Figshare. In the light of recent developments in brain tumor analysis, many algorithms have been proposed to accurately obtain ontological characteristics of tumors, enhancing diagnostic precision and personalized therapeutic strategies. |
| Audience | Academic |
| Author | Hechkel, Wided Saadaoui, Wajdi Helali, Abdelhamid Missaoui, Rim Leo, Marco |
| AuthorAffiliation | 4 Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy 1 Laboratory of Micro-Optoelectronics and Nanostructures (LMON), University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia; missaouirima22@gmail.com (R.M.); hechkelwided@gmail.com (W.H.); abdelhamid.helali@gmail.com (A.H.) 2 National High School of Engineering of Tunis (ENSIT), 5 Rue Taha Hussein–Montfleury, Tunis 1008, Tunisia 3 LRMAN Laboratory, Higher Institute of Applied Sciences and Technology of Kasserine (ISSAT), Kasserine 1200, Tunisia; wajdi.enit@gmail.com |
| AuthorAffiliation_xml | – name: 1 Laboratory of Micro-Optoelectronics and Nanostructures (LMON), University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia; missaouirima22@gmail.com (R.M.); hechkelwided@gmail.com (W.H.); abdelhamid.helali@gmail.com (A.H.) – name: 2 National High School of Engineering of Tunis (ENSIT), 5 Rue Taha Hussein–Montfleury, Tunis 1008, Tunisia – name: 3 LRMAN Laboratory, Higher Institute of Applied Sciences and Technology of Kasserine (ISSAT), Kasserine 1200, Tunisia; wajdi.enit@gmail.com – name: 4 Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy |
| Author_xml | – sequence: 1 givenname: Rim surname: Missaoui fullname: Missaoui, Rim – sequence: 2 givenname: Wided orcidid: 0000-0002-1299-1804 surname: Hechkel fullname: Hechkel, Wided – sequence: 3 givenname: Wajdi orcidid: 0000-0001-8977-9652 surname: Saadaoui fullname: Saadaoui, Wajdi – sequence: 4 givenname: Abdelhamid orcidid: 0000-0002-1623-6830 surname: Helali fullname: Helali, Abdelhamid – sequence: 5 givenname: Marco orcidid: 0000-0001-5636-6130 surname: Leo fullname: Leo, Marco |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363185$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1vEzEQhleoiH7AgT-AVuICh7Rej3fXywWF8hUpFVIVjsia9Y4TVxs72Jug_nscUtKmqnywPX7mtd7Re5odOe8oy14X7BygYReRl6zhtaieZSeF4GIkOWdHD87H2WmMN4xxAJAvsmPBoIJClifZr3G3Qaepyz8TrfIpYXDWzXN0XX6FemEd3RdnpBfO_l5TzI0P-dX1JP8U0Lp8tl6m-9hhfxtt_JCP82vaWPrzMntusI_06m4_y35-_TK7_D6a_vg2uRxPR7qEZhhJlKZCqLuGQIM0DLBkZaU5M7rsOOeypXQBJlpCUxcCeFsaQVIDtKKr4Cyb7HQ7jzdqFewSw63yaNW_gg9zhWGwuielUXBgWjbb4bSywtrIJCiMKHWNlU5aH3daq3W7pE6TGwL2B6KHL84u1NxvVMFZLYqyTgrv7hSC3w5rUEsbNfU9OvLrqCBZaXgyIRP69hF649chzXFHcV6DLO6pOSYH1hmfPtZbUTWW0DRFIyVP1PkTVFodLa1OiTE21Q8a3jx0urf4Px0JeL8DdPAxBjJ7pGBqmzy1T15iLx6x2g44WL8dku2f6PgLDb3V6g |
| CitedBy_id | crossref_primary_10_3390_app15095140 crossref_primary_10_3389_fmed_2025_1636059 |
| Cites_doi | 10.1007/s11227-023-05549-w 10.3390/diagnostics12020345 10.1007/s00330-020-06737-5 10.1055/s-0043-1767786 10.1038/sdata.2017.117 10.3389/fonc.2021.724191 10.1109/ICHI.2018.00091 10.47852/bonviewMEDIN42021685 10.1007/s11042-023-15377-y 10.3389/fnins.2019.00810 10.1007/s11042-023-14828-w 10.1016/j.procs.2016.09.407 10.3322/caac.21552 10.1109/ACCESS.2025.3554405 10.1016/j.compbiomed.2019.103345 10.1016/j.mehy.2019.109507 10.1109/ICCIT60459.2023.10440978 10.3390/biomedicines10020223 10.1007/s00521-022-07934-7 10.1109/RBME.2021.3055556 10.1038/s41598-024-57970-7 10.1007/s11045-018-0603-3 10.3390/s22218201 10.1109/ACCESS.2024.3359418 10.1007/s10278-023-00912-y 10.3390/diagnostics11010105 10.1016/j.procs.2020.03.295 10.1016/j.procs.2019.12.089 10.1038/s41598-021-89848-3 10.1109/ISMSIT.2019.8932878 10.1155/2021/1004767 10.1002/jmri.10424 10.1002/ima.22979 10.1109/AIIIP61647.2023.00048 10.1007/s00521-023-09306-1 10.1109/ICJECE.2023.3289609 10.1109/CASE.2009.146 10.13005/bpj/2409 10.1016/j.cmpb.2018.09.006 10.1088/2632-2153/acd5a9 10.1016/j.patrec.2017.10.036 10.1007/s00530-021-00797-3 10.1007/s10916-019-1223-7 10.1007/s11042-022-14305-w 10.3390/cancers14102363 10.3390/s21062222 10.37256/ccds.4220232740 10.1109/ICRAI54018.2021.9651367 10.1109/ICDSNS58469.2023.10245128 10.1109/ACCESS.2022.3140289 10.1038/s41598-024-51867-1 10.1007/s00521-019-04679-8 10.1155/2019/7305832 10.4137/MRI.S12561 10.1007/s11042-021-11821-z 10.3390/diagnostics13091562 10.1016/j.measen.2024.101026 10.1002/mp.15814 10.1002/ima.22735 10.1007/978-3-030-11726-9_9 10.3390/bioengineering11060627 10.1007/s13534-024-00393-0 10.1109/ICEAST.2019.8802562 10.1007/s12652-021-03535-9 10.3389/fpubh.2022.959667 10.1053/j.sult.2021.07.006 10.2174/1573405616666200712180521 10.1038/s41598-024-52823-9 10.1002/ima.22549 10.1109/ACCESS.2023.3288017 10.1016/j.jksuci.2021.05.008 10.1007/s10278-022-00602-1 10.3390/app10217790 10.14445/23488549/IJECE-V10I8P103 10.1016/j.array.2020.100017 10.1109/ICCCEEE.2018.8515763 10.1109/JTEHM.2022.3176737 10.3389/fninf.2024.1414925 10.1155/2022/1830010 10.3390/s22072726 10.1007/s12553-020-00514-6 10.1007/s13369-019-03967-8 10.3390/curroncol29100590 10.3390/bioengineering11030266 10.1007/s10916-019-1368-4 10.1016/j.mlwa.2020.100004 10.1186/s12883-020-02036-0 10.1016/S2589-7500(21)00205-3 10.2139/ssrn.4827019 10.1109/ICACCS48705.2020.9074375 10.1109/RBME.2021.3075500 10.3390/brainsci13040602 10.3390/diagnostics13122094 10.1038/s41598-021-90428-8 10.1007/s11042-022-13713-2 10.1016/j.compeleceng.2022.108105 10.3390/cancers15164172 10.20944/preprints202207.0211.v1 10.3390/axioms11010034 10.1109/ISAMSR53229.2021.9567799 10.1007/s10548-023-00953-0 10.1038/s41598-024-56983-6 10.3390/s23156930 10.3390/life13020349 10.3389/fncom.2020.00061 10.1007/s00500-018-3618-7 10.1007/s00330-023-10316-9 10.3390/a16040176 10.1007/978-981-15-1420-3_19 10.1109/ACCESS.2023.3325294 10.1109/IC2PCT60090.2024.10486772 10.1007/978-3-030-49161-1_17 10.1186/s12911-023-02114-6 10.1109/ELECSYM.2019.8901560 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25092746 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ca4230c891424b86a7f81434f45c7a6c PMC12074157 A839919882 40363185 10_3390_s25092746 |
| Genre | Journal Article Review |
| GeographicLocations | Switzerland |
| GeographicLocations_xml | – name: Switzerland |
| GrantInformation_xml | – fundername: Italian Ministery of University and Research grantid: Future Artificial Intelligence Research-FAIR CUP B53C220036 30006 grant number PE0000013 – fundername: Italian Ministry for Universities and Research (MUR) under the grant Future Artificial Intelligence Research—FAIR CUP B53C220036 30006 grantid: PE0000013 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c539t-8a8f6a37d9e3c38f03a5056c20fc5d2228bec20304beaf71432b5f4e8c33b4d63 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486604300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:31:57 EDT 2025 Tue Nov 04 02:03:33 EST 2025 Fri Sep 05 16:47:46 EDT 2025 Tue Oct 07 07:39:33 EDT 2025 Tue Nov 11 10:48:38 EST 2025 Tue Nov 04 18:11:11 EST 2025 Sat May 17 01:30:25 EDT 2025 Tue Nov 18 22:36:01 EST 2025 Sat Nov 29 07:16:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | magnetic resonance imaging (MRI) machine learning (ML) brain tumors deep learning (DL) |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c539t-8a8f6a37d9e3c38f03a5056c20fc5d2228bec20304beaf71432b5f4e8c33b4d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1623-6830 0000-0001-5636-6130 0000-0001-8977-9652 0000-0002-1299-1804 |
| OpenAccessLink | https://www.proquest.com/docview/3203227381?pq-origsite=%requestingapplication% |
| PMID | 40363185 |
| PQID | 3203227381 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ca4230c891424b86a7f81434f45c7a6c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074157 proquest_miscellaneous_3203924328 proquest_journals_3203227381 gale_infotracmisc_A839919882 gale_infotracacademiconefile_A839919882 pubmed_primary_40363185 crossref_primary_10_3390_s25092746 crossref_citationtrail_10_3390_s25092746 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-26 |
| PublicationDateYYYYMMDD | 2025-04-26 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zaitoon (ref_130) 2023; 11 ref_93 ref_90 ref_14 ref_99 ref_98 ref_96 Haq (ref_81) 2023; 14 ref_18 ref_17 Eliasy (ref_10) 2020; 6 ref_15 Wagner (ref_123) 2020; Volume 11993 ref_125 Bakas (ref_9) 2017; 4 Selvapandian (ref_28) 2018; 166 Marghalani (ref_42) 2019; 163 ref_127 Kumar (ref_79) 2023; 36 Srinivas (ref_113) 2019; 8 ref_25 Jane (ref_68) 2024; 36 ref_24 ref_22 ref_122 Alshaikhli (ref_3) 2021; 11 Amin (ref_27) 2020; 139 Grussu (ref_20) 2021; 42 ref_29 Mitra (ref_8) 2023; 16 Sharif (ref_33) 2020; 32 Rajan (ref_38) 2019; 43 Almufareh (ref_110) 2024; 12 Bi (ref_11) 2019; 69 ref_70 Asthana (ref_128) 2022; 32 Alqazzaz (ref_39) 2022; 35 Jiang (ref_46) 2023; 4 Fidon (ref_71) 2021; Volume 12659 ref_78 ref_76 ref_75 Choi (ref_50) 2020; 30 ref_74 Zhou (ref_129) 2024; 34 Tiwary (ref_112) 2025; 13 Arunkumar (ref_26) 2019; 23 Rajput (ref_52) 2023; 4 Asif (ref_80) 2023; 82 Aamir (ref_61) 2022; 101 Sajid (ref_95) 2019; 44 Tummala (ref_117) 2022; 29 ref_82 Thillaikkarasi (ref_103) 2019; 43 Kumar (ref_120) 2024; 14 ref_89 ref_88 ref_85 Dong (ref_19) 2004; 19 Kesav (ref_1) 2022; 34 ref_58 Mohanty (ref_86) 2024; 16 ref_56 ref_55 ref_54 Daimary (ref_104) 2020; 167 Naz (ref_16) 2022; 28 Bhargava (ref_6) 2013; 6 ref_59 Ali (ref_4) 2016; 102 ref_60 Nassar (ref_119) 2024; 80 Bhushan (ref_23) 2023; 82 Amian (ref_124) 2020; Volume 11992 Balamurugan (ref_106) 2023; 35 ref_69 ref_67 ref_66 ref_65 ref_64 ref_63 Saha (ref_121) 2023; 82 Jalalifar (ref_91) 2022; 49 Amla (ref_12) 2024; 37 Sharma (ref_32) 2019; 30 Islam (ref_94) 2020; Volume 11992 Shedbalkar (ref_109) 2023; 10 Senan (ref_21) 2021; 2021 ref_115 Crimi (ref_77) 2021; Volume 12658 Anantharajan (ref_97) 2024; 31 Ramamoorthy (ref_108) 2023; 46 ref_114 Rao (ref_43) 2022; 81 ref_116 ref_118 Ottom (ref_72) 2022; 10 Musallam (ref_53) 2022; 10 ref_35 Joshi (ref_84) 2024; 1 Tiwari (ref_5) 2022; 2022 ref_34 Rajasekaran (ref_7) 2018; Volume 11 ref_31 ref_30 Mahjoubi (ref_57) 2023; 14 Babu (ref_37) 2020; 17 Meredig (ref_92) 2021; 3 Rafi (ref_126) 2021; 31 Mishro (ref_13) 2022; 15 Jain (ref_87) 2023; 15 Sert (ref_36) 2020; 136 Sahli (ref_107) 2023; 31 Almadhoun (ref_62) 2022; 6 ref_105 Mandle (ref_44) 2022; 15 ref_47 ref_45 ref_41 ref_102 ref_40 ref_101 ref_2 ref_49 ref_48 Omid (ref_100) 2020; 10 Datta (ref_111) 2024; 34 Manjunath (ref_51) 2023; 33 Kumar (ref_83) 2023; 82 Rajendran (ref_73) 2023; 11 |
| References_xml | – volume: 80 start-page: 2403 year: 2024 ident: ref_119 article-title: A robust MRI-based brain tumor classification via a hybrid deep learning technique publication-title: J. Supercomput. doi: 10.1007/s11227-023-05549-w – ident: ref_90 doi: 10.3390/diagnostics12020345 – volume: 30 start-page: 3834 year: 2020 ident: ref_50 article-title: Machine learning and radiomic phenotyping of lower grade gliomas: Improving survival prediction publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06737-5 – volume: 33 start-page: 338 year: 2023 ident: ref_51 article-title: A Comparison of Machine Learning Models for Survival Prediction of Patients with Glioma Using Radiomic Features from MRI Scans publication-title: Indian J. Radiol. Imaging doi: 10.1055/s-0043-1767786 – volume: 4 start-page: 170117 year: 2017 ident: ref_9 article-title: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – ident: ref_127 doi: 10.3389/fonc.2021.724191 – ident: ref_47 doi: 10.1109/ICHI.2018.00091 – volume: 1 start-page: 79 year: 2024 ident: ref_84 article-title: Proportion Estimation and Multi-Class Classification of Abnormal Brain Cells publication-title: Medinformatics doi: 10.47852/bonviewMEDIN42021685 – volume: 82 start-page: 44479 year: 2023 ident: ref_121 article-title: BCM-VEMT: Classification of brain cancer from MRI images using deep learning and ensemble of machine learning techniques publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15377-y – ident: ref_122 doi: 10.3389/fnins.2019.00810 – volume: 82 start-page: 31709 year: 2023 ident: ref_80 article-title: An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-14828-w – volume: 102 start-page: 317 year: 2016 ident: ref_4 article-title: Review of MRI-based brain tumor image segmentation using deep learning methods publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.407 – volume: Volume 11992 start-page: 262 year: 2020 ident: ref_94 article-title: Brain tumor segmentation and survival prediction using 3d attention unet publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019, Revised Selected Papers, Part I 5 – volume: 69 start-page: 127 year: 2019 ident: ref_11 article-title: Artificial intelligence in cancer imaging: Clinical challenges and applications. CA publication-title: Cancer J. Clin. doi: 10.3322/caac.21552 – volume: 13 start-page: 54920 year: 2025 ident: ref_112 article-title: Deep Learning-Based MRI Brain Tumor Segmentation with EfficientNet-Enhanced UNet publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3554405 – ident: ref_78 doi: 10.1016/j.compbiomed.2019.103345 – volume: 136 start-page: 109507 year: 2020 ident: ref_36 article-title: Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.109507 – ident: ref_56 – ident: ref_99 doi: 10.1109/ICCIT60459.2023.10440978 – ident: ref_116 doi: 10.3390/biomedicines10020223 – volume: 35 start-page: 4739 year: 2023 ident: ref_106 article-title: Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07934-7 – volume: 15 start-page: 184 year: 2022 ident: ref_13 article-title: A Survey on State-of-the-Art Denoising Techniques for Brain Magnetic Resonance Images publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2021.3055556 – ident: ref_48 – ident: ref_102 doi: 10.1038/s41598-024-57970-7 – volume: 30 start-page: 1263 year: 2019 ident: ref_32 article-title: Brain tumor segmentation using DE embedded OTSU method and neural network publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-018-0603-3 – ident: ref_105 doi: 10.3390/s22218201 – volume: 12 start-page: 16189 year: 2024 ident: ref_110 article-title: Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3359418 – volume: 37 start-page: 386 year: 2024 ident: ref_12 article-title: Review of the Free Research Software for Computer-Assisted Interventions publication-title: J. Imaging Inform. Med. doi: 10.1007/s10278-023-00912-y – ident: ref_18 doi: 10.3390/diagnostics11010105 – volume: 167 start-page: 2419 year: 2020 ident: ref_104 article-title: Brain Tumor Segmentation from MRI Images using Hybrid Convolutional Neural Networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.295 – volume: 163 start-page: 78 year: 2019 ident: ref_42 article-title: Automatic Classification of Brain Tumor and Alzheimer’s Disease in MRI publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.12.089 – volume: 16 start-page: 1617 year: 2024 ident: ref_86 article-title: Feature-enhanced deep learning technique with soft attention for MRI-based brain tumor classification publication-title: Int. J. Inf. Technol. – ident: ref_15 doi: 10.1038/s41598-021-89848-3 – ident: ref_40 doi: 10.1109/ISMSIT.2019.8932878 – volume: 2021 start-page: 1004767 year: 2021 ident: ref_21 article-title: Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques publication-title: J. Healthc. Eng. doi: 10.1155/2021/1004767 – volume: 19 start-page: 6 year: 2004 ident: ref_19 article-title: Clinical Applications of Diffusion Tensor Imaging publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10424 – volume: 34 start-page: e22979 year: 2024 ident: ref_111 article-title: Brain tumor image pixel segmentation and detection using an aggregation of GAN models with vision transformer publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22979 – ident: ref_76 doi: 10.1109/AIIIP61647.2023.00048 – volume: 36 start-page: 6403 year: 2024 ident: ref_68 article-title: VITALT: A robust and efficient brain tumor detection system using vision transformer with attention and linear transformation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-09306-1 – volume: 46 start-page: 298 year: 2023 ident: ref_108 article-title: TransAttU-Net Deep Neural Network for Brain Tumor Segmentation in Magnetic Resonance Imaging publication-title: IEEE Can. J. Electr. Comput. Eng. doi: 10.1109/ICJECE.2023.3289609 – ident: ref_22 doi: 10.1109/CASE.2009.146 – volume: 15 start-page: 699 year: 2022 ident: ref_44 article-title: Brain Tumor Segmentation and Classification in MRI using Clustering and Kernel-Based SVM publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/2409 – volume: 166 start-page: 33 year: 2018 ident: ref_28 article-title: Fusion based Glioma brain tumor detection and segmentation using ANFIS classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.09.006 – volume: 4 start-page: 025025 year: 2023 ident: ref_52 article-title: Interpretable machine learning model to predict survival days of malignant brain tumor patients publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/acd5a9 – volume: 139 start-page: 118 year: 2020 ident: ref_27 article-title: A distinctive approach in brain tumor detection and classification using MRI publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.10.036 – volume: 28 start-page: 85 year: 2022 ident: ref_16 article-title: Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset publication-title: Multimed. Syst. doi: 10.1007/s00530-021-00797-3 – volume: 43 start-page: 84 year: 2019 ident: ref_103 article-title: An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation Using Kernel Based CNN with M-SVM publication-title: Med. Syst. doi: 10.1007/s10916-019-1223-7 – volume: 82 start-page: 26731 year: 2023 ident: ref_23 article-title: Machine learning and deep learning approach for medical image analysis: Diagnosis to detection publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-14305-w – ident: ref_30 doi: 10.3390/cancers14102363 – ident: ref_115 doi: 10.3390/s21062222 – volume: 4 start-page: 122 year: 2023 ident: ref_46 article-title: Magnetic Resonance Imaging (MRI) Brain Tumor Image Classification Based on Five Machine Learning Algorithms publication-title: Cloud Comput. Data Sci. doi: 10.37256/ccds.4220232740 – ident: ref_125 doi: 10.1109/ICRAI54018.2021.9651367 – ident: ref_60 doi: 10.1109/ICDSNS58469.2023.10245128 – volume: 10 start-page: 2775 year: 2022 ident: ref_53 article-title: A New Convolutional Neural Network Architecture for Automatic Detection of Brain Tumors in Magnetic Resonance Imaging Images publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3140289 – ident: ref_85 doi: 10.1038/s41598-024-51867-1 – volume: 32 start-page: 15975 year: 2020 ident: ref_33 article-title: Brain tumor detection based on extreme learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04679-8 – ident: ref_34 doi: 10.1155/2019/7305832 – volume: 6 start-page: MRI.S12561 year: 2013 ident: ref_6 article-title: Contrast-enhanced Magnetic Resonance Imaging in Pediatric Patients: Review and Recommendations for Current Practice publication-title: Magn. Reson. Insights doi: 10.4137/MRI.S12561 – volume: 81 start-page: 7393 year: 2022 ident: ref_43 article-title: Efficient Detection and Classification of Brain Tumor using Kernel based SVM for MRI publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11821-z – ident: ref_74 doi: 10.3390/diagnostics13091562 – volume: 31 start-page: 101026 year: 2024 ident: ref_97 article-title: MRI brain tumor detection using deep learning and machine learning approaches publication-title: Meas. Sens. doi: 10.1016/j.measen.2024.101026 – volume: 49 start-page: 7167 year: 2022 ident: ref_91 article-title: Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI-based deep learning features publication-title: Med. Phys. doi: 10.1002/mp.15814 – volume: 32 start-page: 1801 year: 2022 ident: ref_128 article-title: Brain tumor detection and patient survival prediction using U-Net and regression model publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22735 – ident: ref_93 doi: 10.1007/978-3-030-11726-9_9 – ident: ref_98 doi: 10.3390/bioengineering11060627 – volume: 14 start-page: 1069 year: 2024 ident: ref_120 article-title: GT—Net: Global transformer network for multiclass brain tumor classification using MR images publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-024-00393-0 – ident: ref_29 doi: 10.1109/ICEAST.2019.8802562 – volume: 14 start-page: 6697 year: 2023 ident: ref_81 article-title: An MRI-based deep learning approach for efficient classification of brain tumors publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03535-9 – ident: ref_64 doi: 10.3389/fpubh.2022.959667 – volume: 10 start-page: 6863 year: 2020 ident: ref_100 article-title: A Hybrid Model of Faster R-CNN and SVM for Tumor Detection and Classification of MRI Brain Images publication-title: Int. J. Mech. Prod. Eng. Res. Dev. – volume: 42 start-page: 490 year: 2021 ident: ref_20 article-title: Diffusion-Weighted Imaging: Recent Advances and Applications publication-title: Semin. Ultrasound CT MRI doi: 10.1053/j.sult.2021.07.006 – volume: 17 start-page: 331 year: 2020 ident: ref_37 article-title: Brain Tumor Segmentation of T1w MRI Images Based on Clustering Using Dimensionality Reduction Random Projection Technique publication-title: Curr. Med. Imaging Former. Curr. Med. Imaging Rev. doi: 10.2174/1573405616666200712180521 – ident: ref_65 doi: 10.1038/s41598-024-52823-9 – volume: 31 start-page: 1519 year: 2021 ident: ref_126 article-title: Multi-level dilated convolutional neural network for brain tumour segmentation and multi-view-based radiomics for overall survival prediction publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22549 – volume: 11 start-page: 64758 year: 2023 ident: ref_73 article-title: Automated Segmentation of Brain Tumor MRI Images Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3288017 – volume: 34 start-page: 6229 year: 2022 ident: ref_1 article-title: Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2021.05.008 – volume: 35 start-page: 938 year: 2022 ident: ref_39 article-title: Combined Features in Region of Interest for Brain Tumor Segmentation publication-title: J. Digit. Imaging doi: 10.1007/s10278-022-00602-1 – ident: ref_69 doi: 10.3390/app10217790 – volume: 10 start-page: 22 year: 2023 ident: ref_109 article-title: UNet and Transformer-Based Model for Multi-Modality Brain Tumor Segmentation publication-title: SSRG Int. J. Electron. Commun. Eng. doi: 10.14445/23488549/IJECE-V10I8P103 – volume: 6 start-page: 100017 year: 2020 ident: ref_10 article-title: The role of AI in capital structure to enhance corporate funding strategies publication-title: Array doi: 10.1016/j.array.2020.100017 – ident: ref_25 doi: 10.1109/ICCCEEE.2018.8515763 – volume: 10 start-page: 1800508 year: 2022 ident: ref_72 article-title: Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2022.3176737 – ident: ref_66 doi: 10.3389/fninf.2024.1414925 – volume: 2022 start-page: 1830010 year: 2022 ident: ref_5 article-title: CNN Based Multiclass Brain Tumor Detection Using Medical Imaging publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/1830010 – volume: 6 start-page: 29 year: 2022 ident: ref_62 article-title: Detection of Brain Tumor Using Deep Learning publication-title: Int. J. Acad. Eng. Res. (IJAER) – ident: ref_2 doi: 10.3390/s22072726 – volume: 11 start-page: 267 year: 2021 ident: ref_3 article-title: MRI brain tumor medical images analysis using deep learning techniques: A systematic review publication-title: Health Technol. doi: 10.1007/s12553-020-00514-6 – volume: 44 start-page: 9249 year: 2019 ident: ref_95 article-title: Brain Tumor Detection and Segmentation in MR Images Using Deep Learning publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03967-8 – volume: 29 start-page: 7498 year: 2022 ident: ref_117 article-title: Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling publication-title: Curr. Oncol. doi: 10.3390/curroncol29100590 – ident: ref_31 doi: 10.3390/bioengineering11030266 – volume: 43 start-page: 282 year: 2019 ident: ref_38 article-title: Brain Tumor Detection and Segmentation by Intensity Adjustment publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1368-4 – ident: ref_14 doi: 10.1016/j.mlwa.2020.100004 – volume: 8 start-page: 5230 year: 2019 ident: ref_113 article-title: A hybrid CNN-KNN model for MRI brain tumor classification publication-title: Int. J. Recent Technol. Eng. – ident: ref_17 doi: 10.1186/s12883-020-02036-0 – volume: Volume 12659 start-page: 200 year: 2021 ident: ref_71 article-title: Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for Brain Tumor Segmentation: BraTS 2020 Challenge publication-title: International MICCAI Brainlesion Workshop – volume: 3 start-page: e784 year: 2021 ident: ref_92 article-title: Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: A multicentre, retrospective cohort study publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(21)00205-3 – volume: 15 start-page: 2031 year: 2023 ident: ref_87 article-title: Novel approach to classify brain tumor based on transfer learning and deep learning publication-title: Int. J. Inf. Technol. – ident: ref_75 doi: 10.2139/ssrn.4827019 – volume: Volume 11993 start-page: 99 year: 2020 ident: ref_123 article-title: Fully automated brain tumor segmentation and survival prediction of gliomas using deep learning and MRI publication-title: International MICCAI Brainlesion Workshop – ident: ref_59 doi: 10.1109/ICACCS48705.2020.9074375 – volume: 16 start-page: 579 year: 2023 ident: ref_8 article-title: Deep Learning With Radiogenomics Towards Personalized Management of Gliomas publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2021.3075500 – ident: ref_82 doi: 10.3390/brainsci13040602 – ident: ref_67 doi: 10.3390/diagnostics13122094 – ident: ref_70 doi: 10.1038/s41598-021-90428-8 – ident: ref_24 – volume: 82 start-page: 7599 year: 2023 ident: ref_83 article-title: Human brain tumor classification and segmentation using CNN publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13713-2 – volume: 101 start-page: 108105 year: 2022 ident: ref_61 article-title: A deep learning approach for brain tumor classification using MRI images publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108105 – ident: ref_63 doi: 10.3390/cancers15164172 – ident: ref_35 doi: 10.20944/preprints202207.0211.v1 – ident: ref_55 doi: 10.3390/axioms11010034 – volume: 14 start-page: 406 year: 2023 ident: ref_57 article-title: Improved Multiclass Brain Tumor Detection using Convolutional Neural Networks and Magnetic Resonance Imaging publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_58 doi: 10.1109/ISAMSR53229.2021.9567799 – volume: 36 start-page: 305 year: 2023 ident: ref_79 article-title: Brain Tumor Classification Using Deep Neural Network and Transfer Learning publication-title: Brain Topogr. doi: 10.1007/s10548-023-00953-0 – ident: ref_88 doi: 10.1038/s41598-024-56983-6 – ident: ref_101 doi: 10.3390/s23156930 – ident: ref_89 doi: 10.3390/life13020349 – ident: ref_49 doi: 10.3389/fncom.2020.00061 – volume: 23 start-page: 9083 year: 2019 ident: ref_26 article-title: K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor publication-title: Soft Comput. doi: 10.1007/s00500-018-3618-7 – volume: 34 start-page: 3644 year: 2024 ident: ref_129 article-title: Automatic image segmentation and online survival prediction model of medulloblastoma based on machine learning publication-title: Eur. Radiol. doi: 10.1007/s00330-023-10316-9 – ident: ref_54 doi: 10.3390/a16040176 – volume: 31 start-page: 27 year: 2023 ident: ref_107 article-title: ResNet-SVM: Fusion based glioblastoma tumor segmentation and classification publication-title: J. Xray. Sci. Technol. – ident: ref_45 doi: 10.1007/978-981-15-1420-3_19 – volume: 11 start-page: 118105 year: 2023 ident: ref_130 article-title: RU-Net2+: A Deep Learning Algorithm for Accurate Brain Tumor Segmentation and Survival Rate Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3325294 – volume: Volume 12658 start-page: 274 year: 2021 ident: ref_77 article-title: Vox2Vox: 3D-GAN for Brain Tumour Segmentation publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science – ident: ref_118 doi: 10.1109/IC2PCT60090.2024.10486772 – ident: ref_114 doi: 10.1007/978-3-030-49161-1_17 – ident: ref_96 doi: 10.1186/s12911-023-02114-6 – volume: Volume 11992 start-page: 221 year: 2020 ident: ref_124 article-title: Multi-resolution 3d cnn for mri brain tumor segmentation and survival prediction publication-title: International MICCAI Brainlesion Workshop – volume: Volume 11 start-page: 83 year: 2018 ident: ref_7 article-title: Advanced Brain Tumour Segmentation from MRI Images publication-title: Basic Physical Principles and Clinical Applications, High-Resolution Neuroimaging – ident: ref_41 doi: 10.1109/ELECSYM.2019.8901560 |
| SSID | ssj0023338 |
| Score | 2.4803588 |
| SecondaryResourceType | review_article |
| Snippet | A brain tumor is the result of abnormal growth of cells in the central nervous system (CNS), widely considered as a complex and diverse clinical entity that is... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2746 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Automation Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging Brain tumors Classification Decision making Deep Learning deep learning (DL) Glioma Humans Machine Learning machine learning (ML) Magnetic resonance imaging magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Medical imaging Medical imaging equipment Medical research Medicine, Experimental Metastasis NMR Nuclear magnetic resonance Radiation Radiomics Review Spinal cord Tomography Tumors |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDLfQxAEOiG8KAwWEBJdqfUmTJtzegAkOmxB6SLugKM3HmATdtPcefz92m5ZXgcSFYxO3Shw7thvnZ4CXUnsVjE4lN8qVtQ6xdKGqS6lD5aSXi1b5vthEc3KiT0_Np51SX5QTNsADD4w78A4NfuW1oStZrVauSRptfJ1q6RunPO2-VWPGYCqHWgIjrwFHSGBQf7BGQ28w_lIz69OD9P-5Fe_Yonme5I7hOboNt7LHyJbDSO_AtdjdhZs7OIL34Osyn-SzdzFesoyZesZcF9hxny0ZfzeuRtTWNUOHlR1__sgOqU4EW21_4POIUvKGLdlwcHAfvhy9X739UOa6CaWXwmxK7XRSTjTBROGFTpVw5Od4XiUvA_3ywYXjdCbaRpeoADpvZaqj9kK0dVDiAex1F118BCwY_KLiKciQCEnQGVzBhiudTBV9LQt4PfLT-gwqTrUtvlsMLoj1dmJ9AS8m0ssBSeNvRIe0KBMBgV_3DSgSNouE_ZdIFPCKltSSiuJgvMs3DXBKBHZll-gUmoXB2KKA_Rklqpafd49CYbNqr62gmvN0oWlRwPOpm96kdLUuXmwHGgxsBdcFPBxkaJpSTUfn6CUVoGfSNZvzvKc7_9YDfy947wA2j_8Hl57ADU61jFExudqHvc3VNj6F6_7n5nx99axXp1-jESJ0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Advanced Deep Learning and Machine Learning Techniques for MRI Brain Tumor Analysis: A Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40363185 https://www.proquest.com/docview/3203227381 https://www.proquest.com/docview/3203924328 https://pubmed.ncbi.nlm.nih.gov/PMC12074157 https://doaj.org/article/ca4230c891424b86a7f81434f45c7a6c |
| Volume | 25 |
| WOSCitedRecordID | wos001486604300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48H4ElsogJLhEm8aJY3NBLXTFHlpVqyKVA4pcP5aVIC19cOS3M5O4jwjEhUuk2JPIlmfsGXv8fQCvcmmEVdLHqRI6zqR1sbZJFufSJjo3eXcmTE02UYxGcjpV47Dhtgpplds5sZ6o7dzQHvkpJ6pvukfSfbf4ERNrFJ2uBgqN63BMtNmk58V0H3BxjL8aNCGOof3pCpd7hVGYaK1BNVT_nxPywYrUzpY8WH7O7vxvw-_C7eB4sl6jKffgmqvuw60DOMIH8KUXEgLYB-cWLECvXjJdWTasky7dvnCyBX9dMfR72fDinPWJboJNNt_xfQt28pb1WHP-8BA-nQ0m7z_GgX4hNjlX61hq6YXmhVWOGy59wjW5SyZNvMkt7Rzh-Kd0tDpz2hOPejrLfeak4XyWWcEfwVE1r9wTYFbhH0XqbW49ARJqhYpQpEJ6lTiT5RG82Q5IaQI2OVFkfCsxRqGxK3djF8HLneiiAeT4m1CfRnUnQBjadcF8eVkGkyyNRlcyMVLRZb-ZFLrwEjuR-Sw3hRYmgtekEyVZOjbG6HBhAbtEmFllD31L1VUYokRw0pJECzXt6q1mlGGGWJV7tYjgxa6avqSst8rNN40Mxsc8lRE8bpRw16WMTuDR2YpAttSz1ed2TXX1tcYP76a1H1k8_Xe7nsHNlMiO0XJTcQJH6-XGPYcb5uf6arXs1JZWP2UHjvuD0fiiU29o4HP4a4Bl4_Ph-PNvgZM3VA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tCxJw4P0ILGAQCC7Rpnbi2EgIdVlWW-22QqhIvaDg2s6yEqSlDxB_it_ITB5tIxC3PXBsPI0y7efxTDz-PoCnibLSaZWHXEsTxsr50LgoDhPlIpPYpDOWthSbSAcDNRrpd1vwqzkLQ22VTUwsA7WbWHpHvitI6pvOkXReT7-FpBpFu6uNhEYFiyP_8weWbPNXvX38f59xfvB2-OYwrFUFQpsIvQiVUbk0InXaCytUHglDWYDlUW4TRy9E0C1OO4Zjb3KSB-fjJI-9skKMYycF3vccnMc4nlKxl47WBZ7Aeq9iLxJCR7tzTC80Vn2yteaV0gB_LgAbK2C7O3NjuTu4-r_9UNfgSp1Ys241E67Dli9uwOUNusWb8LFbNzywfe-nrKaWPWGmcKxfNpX69cVhQ247Z5jXs_77HtsjOQ02XH7Fzw2Zy0vWZdX-yi34cCb-3YbtYlL4u8CcxjtKnrvE5US4aDQCPeVS5TryNk4CeNEAILM19zpJgHzJsAYjrGQrrATwZGU6rQhH_ma0RyhaGRBHeHlhMjvJ6pCTWYOpcmSVpsOMYyVNmit0Is7jxKZG2gCeEwYzimT4MNbUBzLQJeIEy7qYO-uOxhIsgJ2WJUYg2x5ukJjVEXCerWEYwOPVMH2TuvoKP1lWNlj_C64CuFOBfuVSTB0GmEwGoFrToeVze6Q4_Vzyo3d4mSen9_79XI_g4uGwf5wd9wZH9-ESJ2FnjFJc7sD2Yrb0D-CC_b44nc8elrOcwaezni2_AWN7jgU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPsRWMAgEFyipnYeNhJCXUpFtbSqUFdaDii4trOsBGnpA8Rf49cxk0e3EYjbHjgmnkSZZGY8E4-_D-BJJE1slcx8rmLth9I6X9sg9CNpAx2ZqDONTUE2kYxG8uhIjXfgV70Xhtoq65hYBGo7M_SPvC2I6pv2kXTaWdUWMe71X82_-cQgRSutNZ1GaSIH7ucPLN-WLwc9_NZPOe-_mbx-61cMA76JhFr5Usss1iKxygkjZBYITRmB4UFmIks_R1BFTquHU6czogrn0ygLnTRCTEMbC7zvOdjFlDzkLdgdD4bjD5tyT2D1V2IZCaGC9hKTDYU1YNyYAQuigD-ng635sNmruTX59a_8z6_tKlyuUm7WLX3kGuy4_Dpc2gJivAEfu1UrBOs5N2cV6Owx07llw6Ld1J2enNSwt0uGGT8bvh-wfSLaYJP1VzyuYV5esC4rV15uwuGZ6HcLWvksd3eAWYV3jHlmI5sRFKNW6AIJj2WmAmfCyIPntTGkpkJlJ3KQLylWZ2Q36cZuPHi8EZ2XUCR_E9oni9oIEHp4cWK2OE6rYJQajUl0YKSibY5TGeskk6hEmIWRSXRsPHhG9phSjMOHMbraqoEqEVpY2sWsWnUUFmce7DUkMTaZ5nBtlWkVG5fpqUl68GgzTFdSv1_uZutSRnF8r9KD26UDbFQKqfcA00wPZMM1Gjo3R_KTzwVyeocXGXRy99_P9RAuoJOk7wajg3twkRPjM4YvHu9Ba7VYu_tw3nxfnSwXDyqXZ_DprN3lN805mFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Deep+Learning+and+Machine+Learning+Techniques+for+MRI+Brain+Tumor+Analysis%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Missaoui%2C+Rim&rft.au=Hechkel%2C+Wided&rft.au=Saadaoui%2C+Wajdi&rft.au=Helali%2C+Abdelhamid&rft.date=2025-04-26&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092746&rft_id=info%3Apmid%2F40363185&rft.externalDocID=40363185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |