CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding
One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project...
Saved in:
| Published in: | Nature reviews. Chemistry Vol. 6; no. 4; pp. 287 - 295 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.04.2022
Nature Publishing Group Springer Nature |
| Subjects: | |
| ISSN: | 2397-3358, 2397-3358 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small-molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small-molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared and openly published. CACHE will launch three new benchmarking exercises every year. The outcomes will be better prediction methods, new small-molecule binders for target proteins of importance for fundamental biology or drug discovery and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.
Critical Assessment of Computational Hit-finding Experiments (CACHE) is a public benchmarking project to compare and improve computational small-molecule hit-finding approaches through cycles of prediction, compound synthesis and experimental testing. By that, CACHE will enable a more efficient and effective approach to hit identification and drug discovery. |
|---|---|
| AbstractList | One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins. One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins. One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small-molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small-molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared and openly published. CACHE will launch three new benchmarking exercises every year. The outcomes will be better prediction methods, new small-molecule binders for target proteins of importance for fundamental biology or drug discovery and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.Critical Assessment of Computational Hit-finding Experiments (CACHE) is a public benchmarking project to compare and improve computational small-molecule hit-finding approaches through cycles of prediction, compound synthesis and experimental testing. By that, CACHE will enable a more efficient and effective approach to hit identification and drug discovery. One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small-molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small-molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared and openly published. CACHE will launch three new benchmarking exercises every year. The outcomes will be better prediction methods, new small-molecule binders for target proteins of importance for fundamental biology or drug discovery and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins. Critical Assessment of Computational Hit-finding Experiments (CACHE) is a public benchmarking project to compare and improve computational small-molecule hit-finding approaches through cycles of prediction, compound synthesis and experimental testing. By that, CACHE will enable a more efficient and effective approach to hit identification and drug discovery. Not provided. |
| Author | Riley, Patrick Gilson, Michael K. Jansen, Johanna M. Saikatendu, Kumar Singh Muegge, Ingo Rousseaux, Sophie A. L. Vedadi, Masoud Amaro, Rommie E. Morgan, Maxwell R. Ackloo, Suzanne Hillisch, Alexander Lessel, Uta Ecker, Gerhard F. Oprea, Tudor I. Bologa, Cristian G. Kuhn, Daniel Willson, Timothy M. Irwin, John J. Betz, Ulrich A. K. Dunham, Ian Perry, Benjamin G. Todd, Matthew H. Volkamer, Andrea Santhakumar, Vijayaratnam Hessler, Gerhard Batey, Robert A. Chodera, John D. Azevedo, Hatylas Edfeldt, Kristina Al-awar, Rima Cornell, Wendy D. Moult, John Edwards, Aled M. Leach, Andrew R. Scholten, Cora Arrowsmith, Cheryl H. Lee, Alpha A. Gordijo, Claudia R. Hogner, Anders Bengio, Yoshua Schapira, Matthieu |
| AuthorAffiliation | 13 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK 6 Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo, Brazil 10 Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico Albuquerque, Albuquerque, NM, USA 15 Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria 11 Computational and Systems Biology Program Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA 27 Institute for Bioscience and Biotechnology Research, Rockville, MD, USA 25 Department of Physics, University of Cambridge, Cambridge, UK 8 Mila, University of Montreal, Québec, Canada 1 Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada 21 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA 37 Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina |
| AuthorAffiliation_xml | – name: 11 Computational and Systems Biology Program Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA – name: 5 Drug Design Data Resource, University of California, San Diego, La Jolla, CA, USA – name: 36 In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany – name: 13 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK – name: 8 Mila, University of Montreal, Québec, Canada – name: 10 Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico Albuquerque, Albuquerque, NM, USA – name: 26 Boehringer Ingelheim Pharma GmbH & Co. KG, Medicinal Chemistry, Biberach an der Riss, Germany – name: 4 Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, USA – name: 12 Healthcare & Life Sciences Research, IBM TJ Watson Research Center, New York, USA – name: 30 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA – name: 33 Global Research Externalization, Takeda California, Inc., San Diego, CA, USA – name: 23 Merck Healthcare KGaA, Computational Chemistry & Biologics, Darmstadt, Germany – name: 16 Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden – name: 29 Alkermes, Inc., Waltham, MA, USA – name: 18 Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Frankfurt am Main, Germany – name: 24 PostEra Inc, San Franciso, CA, USA – name: 15 Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria – name: 2 Ontario Institute for Cancer Research, Toronto, Ontario, Canada – name: 27 Institute for Bioscience and Biotechnology Research, Rockville, MD, USA – name: 20 Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden – name: 1 Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada – name: 14 Open Targets, Wellcome Genome Campus, Hinxton, UK – name: 22 Novartis Institutes for BioMedical Research, Emeryville, CA, USA – name: 31 Drugs for Neglected Diseases initiative, Geneva, Switzerland – name: 28 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA – name: 21 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA – name: 19 Bayer AG, Pharmaceuticals, Research and Development, Wuppertal, Germany – name: 35 School of Pharmacy, University College London, London, UK – name: 37 Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – name: 32 Relay Therapeutics, Boston, MA, USA – name: 6 Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo, Brazil – name: 7 Department of Chemistry, University of Toronto, Toronto, Ontario, Canada – name: 34 Bayer AG, Pharmaceuticals, Open Innovation – Public Private Partnerships, Berlin, Germany – name: 3 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada – name: 17 Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA – name: 9 Merck Healthcare KGaA, Darmstadt, Germany – name: 25 Department of Physics, University of Cambridge, Cambridge, UK |
| Author_xml | – sequence: 1 givenname: Suzanne orcidid: 0000-0002-9696-1839 surname: Ackloo fullname: Ackloo, Suzanne organization: Structural Genomics Consortium, University of Toronto – sequence: 2 givenname: Rima surname: Al-awar fullname: Al-awar, Rima organization: Ontario Institute for Cancer Research, Department of Pharmacology and Toxicology, University of Toronto – sequence: 3 givenname: Rommie E. orcidid: 0000-0002-9275-9553 surname: Amaro fullname: Amaro, Rommie E. organization: Department of Chemistry and Biochemistry, UC San Diego, Drug Design Data Resource, University of California, San Diego – sequence: 4 givenname: Cheryl H. surname: Arrowsmith fullname: Arrowsmith, Cheryl H. organization: Structural Genomics Consortium, University of Toronto – sequence: 5 givenname: Hatylas surname: Azevedo fullname: Azevedo, Hatylas organization: Aché Laboratórios Farmacêuticos – sequence: 6 givenname: Robert A. orcidid: 0000-0001-8808-7646 surname: Batey fullname: Batey, Robert A. organization: Department of Chemistry, University of Toronto – sequence: 7 givenname: Yoshua orcidid: 0000-0002-9322-3515 surname: Bengio fullname: Bengio, Yoshua organization: Mila, University of Montreal – sequence: 8 givenname: Ulrich A. K. orcidid: 0000-0002-4499-4313 surname: Betz fullname: Betz, Ulrich A. K. organization: Merck Healthcare KGaA – sequence: 9 givenname: Cristian G. orcidid: 0000-0003-2232-4244 surname: Bologa fullname: Bologa, Cristian G. organization: Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico Albuquerque – sequence: 10 givenname: John D. orcidid: 0000-0003-0542-119X surname: Chodera fullname: Chodera, John D. organization: Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center – sequence: 11 givenname: Wendy D. orcidid: 0000-0002-7339-0201 surname: Cornell fullname: Cornell, Wendy D. organization: Healthcare & Life Sciences Research, IBM TJ Watson Research Center – sequence: 12 givenname: Ian orcidid: 0000-0003-2525-5598 surname: Dunham fullname: Dunham, Ian organization: European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Open Targets, Wellcome Genome Campus – sequence: 13 givenname: Gerhard F. orcidid: 0000-0003-4209-6883 surname: Ecker fullname: Ecker, Gerhard F. organization: Department of Pharmaceutical Sciences, University of Vienna – sequence: 14 givenname: Kristina orcidid: 0000-0002-0550-1133 surname: Edfeldt fullname: Edfeldt, Kristina organization: Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet – sequence: 15 givenname: Aled M. orcidid: 0000-0002-4782-6016 surname: Edwards fullname: Edwards, Aled M. email: aled.edwards@utoronto.ca organization: Structural Genomics Consortium, University of Toronto – sequence: 16 givenname: Michael K. orcidid: 0000-0002-3375-1738 surname: Gilson fullname: Gilson, Michael K. organization: Drug Design Data Resource, University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego – sequence: 17 givenname: Claudia R. orcidid: 0000-0001-9054-0913 surname: Gordijo fullname: Gordijo, Claudia R. organization: Structural Genomics Consortium, University of Toronto – sequence: 18 givenname: Gerhard surname: Hessler fullname: Hessler, Gerhard organization: Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery – sequence: 19 givenname: Alexander orcidid: 0000-0002-4228-2347 surname: Hillisch fullname: Hillisch, Alexander email: alexander.hillisch@bayer.com organization: Bayer AG, Pharmaceuticals, Research and Development – sequence: 20 givenname: Anders orcidid: 0000-0003-3823-4534 surname: Hogner fullname: Hogner, Anders organization: Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca – sequence: 21 givenname: John J. orcidid: 0000-0002-1195-6417 surname: Irwin fullname: Irwin, John J. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 22 givenname: Johanna M. orcidid: 0000-0003-3937-6243 surname: Jansen fullname: Jansen, Johanna M. organization: Novartis Institutes for BioMedical Research – sequence: 23 givenname: Daniel orcidid: 0000-0002-0550-4174 surname: Kuhn fullname: Kuhn, Daniel organization: Computational Chemistry & Biologics, Merck Healthcare KGaA – sequence: 24 givenname: Andrew R. orcidid: 0000-0001-8178-0253 surname: Leach fullname: Leach, Andrew R. organization: European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Open Targets, Wellcome Genome Campus – sequence: 25 givenname: Alpha A. surname: Lee fullname: Lee, Alpha A. organization: PostEra Inc., Department of Physics, University of Cambridge – sequence: 26 givenname: Uta orcidid: 0000-0002-1698-6017 surname: Lessel fullname: Lessel, Uta organization: Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG – sequence: 27 givenname: Maxwell R. orcidid: 0000-0002-4784-6113 surname: Morgan fullname: Morgan, Maxwell R. organization: Structural Genomics Consortium, University of Toronto – sequence: 28 givenname: John surname: Moult fullname: Moult, John organization: Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular Genetics, University of Maryland – sequence: 29 givenname: Ingo orcidid: 0000-0003-3294-1852 surname: Muegge fullname: Muegge, Ingo organization: Alkermes, Inc – sequence: 30 givenname: Tudor I. orcidid: 0000-0002-6195-6976 surname: Oprea fullname: Oprea, Tudor I. organization: Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico Albuquerque, University of New Mexico Comprehensive Cancer Center – sequence: 31 givenname: Benjamin G. orcidid: 0000-0001-6715-4213 surname: Perry fullname: Perry, Benjamin G. organization: Drugs for Neglected Diseases initiative (DNDi) – sequence: 32 givenname: Patrick orcidid: 0000-0003-0797-0272 surname: Riley fullname: Riley, Patrick organization: Relay Therapeutics – sequence: 33 givenname: Sophie A. L. surname: Rousseaux fullname: Rousseaux, Sophie A. L. organization: Department of Chemistry, University of Toronto – sequence: 34 givenname: Kumar Singh surname: Saikatendu fullname: Saikatendu, Kumar Singh organization: Global Research Externalization, Takeda California, Inc – sequence: 35 givenname: Vijayaratnam orcidid: 0000-0002-7001-557X surname: Santhakumar fullname: Santhakumar, Vijayaratnam organization: Structural Genomics Consortium, University of Toronto – sequence: 36 givenname: Matthieu orcidid: 0000-0002-1047-3309 surname: Schapira fullname: Schapira, Matthieu organization: Structural Genomics Consortium, University of Toronto, Department of Pharmacology and Toxicology, University of Toronto – sequence: 37 givenname: Cora surname: Scholten fullname: Scholten, Cora organization: Bayer AG, Pharmaceuticals, Open Innovation — Public Private Partnerships – sequence: 38 givenname: Matthew H. surname: Todd fullname: Todd, Matthew H. organization: School of Pharmacy, University College London – sequence: 39 givenname: Masoud surname: Vedadi fullname: Vedadi, Masoud organization: Structural Genomics Consortium, University of Toronto, Department of Pharmacology and Toxicology, University of Toronto – sequence: 40 givenname: Andrea orcidid: 0000-0002-3760-580X surname: Volkamer fullname: Volkamer, Andrea organization: In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin – sequence: 41 givenname: Timothy M. surname: Willson fullname: Willson, Timothy M. organization: Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35783295$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1982142$$D View this record in Osti.gov |
| BookMark | eNp9Us1u1DAYjFARLaUvwAFZcCmHgGM7G5sD0ipaWKRKXOBsOc6XxiWxg-1dQU-8Aw_Eu_AkON0u_Tn05E_yzHwzn-ZpdmCdhSx7XuA3Bab8bWBFWeEcE5JjTBc0v3yUHREqqpzSkh_cmg-zkxAuMMaFoExU4kl2SMuKUyLKo-xPvazXK3RaexONVgNahgAhjGAjch2q3ThtoorG2fS3NjHvjG2NPUerHxN4M-PC63doiaZNMxj999fvyZutioAm5aMFH3ozoQas7kflv81MY9OqJLkFFB0Cq5ohTT2gFrYwuGm_W9_ZPULsXRtQ5zzqb3w8yx53aghwcv0eZ18_rL7U6_zs88dP9fIs1yUVMeesajloUYoSdw1RLWeKE9KVDVvwbiG0Ygy3uMNc87ZqgFOqCo5p187HBUaPs_c73ZRzhFYnj14NMoVNsX5Kp4y8-2NNL8_dVgrCFrTESeDlTsCFaGTQJoLutbMWdJSF4KRgJIFOr7d4930DIcrRBA3DoCy4TZBkwZMUY1Qk6Kt70Au38elSM4oJktohZsEXt23_97svQALwHUB7F4KHTiZnVzdPKcwgCyznusld3WSqm7yqm7xMVHKPuld_kER3pJDA9hz8je0HWP8A4IXtNg |
| CitedBy_id | crossref_primary_10_1039_D4SC07532C crossref_primary_10_3390_ijms252212350 crossref_primary_10_1021_acs_jcim_5c00535 crossref_primary_10_1038_s41570_025_00737_z crossref_primary_10_1108_IJSBI_08_2024_0038 crossref_primary_10_1002_hlca_202400175 crossref_primary_10_1038_s41594_024_01244_3 crossref_primary_10_1038_s41597_024_03443_5 crossref_primary_10_1002_cmdc_202400543 crossref_primary_10_1016_j_ejmech_2024_117162 crossref_primary_10_1016_j_drudis_2024_104106 crossref_primary_10_1038_s41467_023_43506_6 crossref_primary_10_1038_s41467_025_58406_0 crossref_primary_10_1007_s00044_024_03253_9 crossref_primary_10_1016_j_compbiolchem_2025_108416 crossref_primary_10_1016_j_tibtech_2025_04_021 crossref_primary_10_1038_s41592_024_02516_y crossref_primary_10_1038_s41589_024_01570_z crossref_primary_10_1038_s41467_024_49777_x crossref_primary_10_1021_acs_jcim_5c00588 crossref_primary_10_1038_s41589_024_01679_1 crossref_primary_10_1016_j_drudis_2025_104341 crossref_primary_10_3389_fimmu_2025_1571371 crossref_primary_10_3390_molecules27144568 crossref_primary_10_1002_prot_70008 crossref_primary_10_1111_nyas_14930 crossref_primary_10_1038_s41467_024_49892_9 crossref_primary_10_1051_fopen_2022011 crossref_primary_10_1039_D5CP01448D crossref_primary_10_1021_acs_jcim_4c02296 crossref_primary_10_1038_s43588_023_00529_9 crossref_primary_10_1021_acsptsci_5c00293 crossref_primary_10_3390_su16062587 crossref_primary_10_1038_s43588_024_00699_0 crossref_primary_10_1038_s41587_024_02469_9 crossref_primary_10_1039_D3SC06880C crossref_primary_10_1002_wcms_1678 crossref_primary_10_1016_j_sbi_2024_102812 crossref_primary_10_1080_17460441_2024_2390511 crossref_primary_10_1002_jcc_70201 crossref_primary_10_1002_wcms_1637 crossref_primary_10_1007_s43546_024_00718_2 crossref_primary_10_1038_s41586_023_05905_z crossref_primary_10_1016_j_ailsci_2022_100056 crossref_primary_10_1080_17460441_2025_2508866 crossref_primary_10_3390_molecules29122912 |
| Cites_doi | 10.1371/journal.pcbi.1009302 10.1038/d41586-021-01571-1 10.1021/acschembio.7b00903 10.1126/science.abj8754 10.4155/fmc.12.137 10.1126/science.abm4805 10.1007/s10822-016-9974-4 10.1038/s41586-019-0917-9 10.1186/s13321-016-0137-3 10.1002/cmdc.200600168 10.1021/jm000942e 10.1021/acs.jcim.0c01009 10.1016/j.jmgm.2012.07.007 10.1007/s10822-016-9954-8 10.1021/ci7004498 10.1039/D1MD00228G 10.1021/jm030266r 10.1021/jm901241e 10.1007/s10822-017-0088-4 10.1021/acs.jcim.9b00779 10.1007/s10822-018-0180-4 10.1021/acs.jcim.0c00675 10.1038/s41586-021-03819-2 10.1038/sdata.2016.18 10.1038/s41586-020-2117-z 10.1002/prot.340230303 10.1007/s10822-020-00289-y 10.1021/acschemneuro.6b00029 10.1021/acs.jmedchem.5b01338 10.1038/nchembio0709-436 10.1007/s10822-016-9946-8 10.1101/2021.10.04.463034 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2022 Springer Nature Limited 2022. |
| Copyright_xml | – notice: Springer Nature Limited 2022 – notice: Springer Nature Limited 2022. |
| CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 OTOTI 5PM |
| DOI | 10.1038/s41570-022-00363-z |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2397-3358 |
| EndPage | 295 |
| ExternalDocumentID | PMC9246350 1982142 35783295 10_1038_s41570_022_00363_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM124270 – fundername: NIGMS NIH HHS grantid: R01 GM133836 – fundername: NCI NIH HHS grantid: U24 CA224370 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIGMS NIH HHS grantid: R01 GM061300 – fundername: NCATS NIH HHS grantid: U24 TR002278 |
| GroupedDBID | 0R~ 88I AAEEF AARCD AAWYQ AAYZH ABJCF ABJNI ABLJU ABUWG ACGFS ADBBV AFKRA AFSHS AGSTI AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BGLVJ BKKNO CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ M2P M7S NNMJJ O9- ODYON PTHSS RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA AFFHD ATHPR CITATION PHGZM PHGZT PQGLB NFIDA NPM 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U 7X8 AADEA AADWK AAYJO AAZLF ABEEJ ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADZGE AEFTE AGGBP AJDOV NYICJ OTOTI 5PM |
| ID | FETCH-LOGICAL-c539t-847d8ec95950fb2ad84a822f5b468f69ca440d0f08c8d7be833a1803fd0036e43 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755390100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2397-3358 |
| IngestDate | Tue Nov 04 02:07:14 EST 2025 Mon Jun 12 04:07:18 EDT 2023 Fri Sep 05 07:41:41 EDT 2025 Sat Aug 23 12:48:42 EDT 2025 Mon Jul 21 06:08:44 EDT 2025 Tue Nov 18 21:54:24 EST 2025 Sat Nov 29 06:23:17 EST 2025 Fri Feb 21 02:37:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c539t-847d8ec95950fb2ad84a822f5b468f69ca440d0f08c8d7be833a1803fd0036e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-05CH11231 |
| ORCID | 0000-0001-8178-0253 0000-0002-3760-580X 0000-0002-0550-1133 0000-0002-7001-557X 0000-0003-2232-4244 0000-0002-4784-6113 0000-0003-3823-4534 0000-0003-2525-5598 0000-0001-9054-0913 0000-0002-1698-6017 0000-0002-4228-2347 0000-0002-6195-6976 0000-0002-1195-6417 0000-0001-6715-4213 0000-0003-0797-0272 0000-0002-9696-1839 0000-0003-3937-6243 0000-0002-4499-4313 0000-0003-4209-6883 0000-0002-1047-3309 0000-0002-7339-0201 0000-0002-0550-4174 0000-0001-8808-7646 0000-0002-3375-1738 0000-0003-3294-1852 0000-0002-4782-6016 0000-0002-9275-9553 0000-0002-9322-3515 0000-0003-0542-119X 0000000211956417 0000000296961839 0000000338234534 0000000247826016 0000000322324244 0000000210473309 0000000233751738 0000000188087646 0000000325255598 0000000342096883 0000000292759553 0000000181780253 0000000205501133 0000000167154213 0000000332941852 0000000307970272 0000000339376243 0000000242282347 000000030542119X 0000000273390201 0000000293223515 0000000244994313 000000027001557X 0000000216986017 0000000247846113 0000000261956976 0000000190540913 0000000205504174 000000023760580X |
| OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:148843598 |
| PMID | 35783295 |
| PQID | 2649215792 |
| PQPubID | 4669715 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9246350 osti_scitechconnect_1982142 proquest_miscellaneous_2685034439 proquest_journals_2649215792 pubmed_primary_35783295 crossref_citationtrail_10_1038_s41570_022_00363_z crossref_primary_10_1038_s41570_022_00363_z springer_journals_10_1038_s41570_022_00363_z |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationTitle | Nature reviews. Chemistry |
| PublicationTitleAbbrev | Nat Rev Chem |
| PublicationTitleAlternate | Nat Rev Chem |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature |
| References | Moult, Pedersen, Judson, Fidelis (CR5) 1995; 23 Bannan (CR17) 2016; 30 McGovern, Helfand, Feng, Shoichet (CR23) 2003; 46 Yang (CR25) 2016; 8 Lobell (CR28) 2006; 1 Jansen, Cornell, Tseng, Amaro (CR13) 2012; 38 Baell, Nissink (CR24) 2018; 13 Wager, Hou, Verhoest, Villalobos (CR26) 2016; 7 Lyu (CR2) 2019; 566 Xiong (CR18) 2021; 17 Gathiaka (CR15) 2016; 30 Jumper (CR6) 2021; 596 Irwin (CR19) 2020; 60 Lovering, Bikker, Humblet (CR30) 2009; 52 Walters, Wang (CR3) 2020; 60 Jansen, Amaro, Cornell, Tseng, Walters (CR14) 2012; 4 von Delft (CR20) 2021; 594 Müller (CR22) 2022; 13 Humphreys (CR9) 2021; 374 Wilkinson (CR32) 2016; 3 Gorgulla (CR1) 2020; 580 Parks (CR11) 2020; 34 CR8 Baek (CR7) 2021; 373 Gaieb (CR12) 2018; 32 Grebner (CR4) 2020; 60 Yin (CR16) 2017; 31 Cummins, Bell (CR27) 2016; 59 Gaieb (CR10) 2019; 33 Ertl, Rohde, Selzer (CR29) 2000; 43 Muchmore (CR31) 2008; 48 Edwards, Bountra, Kerr, Willson (CR21) 2009; 5 J Lyu (363_CR2) 2019; 566 JM Jansen (363_CR14) 2012; 4 C Grebner (363_CR4) 2020; 60 CC Bannan (363_CR17) 2016; 30 P Ertl (363_CR29) 2000; 43 JM Jansen (363_CR13) 2012; 38 S Müller (363_CR22) 2022; 13 F Lovering (363_CR30) 2009; 52 Z Gaieb (363_CR12) 2018; 32 SL McGovern (363_CR23) 2003; 46 AM Edwards (363_CR21) 2009; 5 M Lobell (363_CR28) 2006; 1 F von Delft (363_CR20) 2021; 594 MD Wilkinson (363_CR32) 2016; 3 J Moult (363_CR5) 1995; 23 M Baek (363_CR7) 2021; 373 JJ Irwin (363_CR19) 2020; 60 363_CR8 S Gathiaka (363_CR15) 2016; 30 JJ Yang (363_CR25) 2016; 8 C Gorgulla (363_CR1) 2020; 580 WP Walters (363_CR3) 2020; 60 J Jumper (363_CR6) 2021; 596 DJ Cummins (363_CR27) 2016; 59 SW Muchmore (363_CR31) 2008; 48 Z Gaieb (363_CR10) 2019; 33 IR Humphreys (363_CR9) 2021; 374 TT Wager (363_CR26) 2016; 7 Z Xiong (363_CR18) 2021; 17 JB Baell (363_CR24) 2018; 13 J Yin (363_CR16) 2017; 31 CD Parks (363_CR11) 2020; 34 |
| References_xml | – volume: 17 year: 2021 ident: CR18 article-title: Crowdsourced identification of multi-target kinase inhibitors for RET- and TAU-based disease: the Multi-Targeting Drug DREAM Challenge publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009302 – volume: 594 start-page: 330 year: 2021 end-page: 332 ident: CR20 article-title: A white-knuckle ride of open COVID drug discovery publication-title: Nature doi: 10.1038/d41586-021-01571-1 – volume: 13 start-page: 36 year: 2018 end-page: 44 ident: CR24 article-title: Seven year itch: pan-assay interference compounds (PAINS) in 2017 — utility and limitations publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00903 – volume: 373 start-page: 871 year: 2021 end-page: 876 ident: CR7 article-title: Accurate prediction of protein structures and interactions using a three-track neural network publication-title: Science doi: 10.1126/science.abj8754 – volume: 4 start-page: 1893 year: 2012 end-page: 1896 ident: CR14 article-title: Computational chemistry and drug discovery: a call to action publication-title: Future Med. Chem. doi: 10.4155/fmc.12.137 – volume: 374 start-page: eabm4805 year: 2021 ident: CR9 article-title: Computed structures of core eukaryotic protein complexes publication-title: Science doi: 10.1126/science.abm4805 – volume: 31 start-page: 1 year: 2017 end-page: 19 ident: CR16 article-title: Overview of the SAMPL5 host–guest challenge: Are we doing better? publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9974-4 – volume: 566 start-page: 224 year: 2019 end-page: 229 ident: CR2 article-title: Ultra-large library docking for discovering new chemotypes publication-title: Nature doi: 10.1038/s41586-019-0917-9 – volume: 8 start-page: 29 year: 2016 ident: CR25 article-title: Badapple: promiscuity patterns from noisy evidence publication-title: J. Cheminformatics doi: 10.1186/s13321-016-0137-3 – volume: 1 start-page: 1229 year: 2006 end-page: 1236 ident: CR28 article-title: In silico ADMET traffic lights as a tool for the prioritization of HTS hits publication-title: ChemMedChem doi: 10.1002/cmdc.200600168 – volume: 43 start-page: 3714 year: 2000 end-page: 3717 ident: CR29 article-title: Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties publication-title: J. Med. Chem. doi: 10.1021/jm000942e – volume: 60 start-page: 4109 year: 2020 end-page: 4111 ident: CR3 article-title: New trends in virtual screening publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c01009 – volume: 38 start-page: 360 year: 2012 end-page: 362 ident: CR13 article-title: Teach–Discover–Treat (TDT): collaborative computational drug discovery for neglected diseases publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2012.07.007 – volume: 30 start-page: 927 year: 2016 end-page: 944 ident: CR17 article-title: Blind prediction of cyclohexane–water distribution coefficients from the SAMPL5 challenge publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9954-8 – volume: 48 start-page: 941 year: 2008 end-page: 948 ident: CR31 article-title: Application of belief theory to similarity data fusion for use in analog searching and lead hopping publication-title: J. Chem. Inf. Model. doi: 10.1021/ci7004498 – volume: 13 start-page: 13 year: 2022 end-page: 21 ident: CR22 article-title: Target 2035–update on the quest for a probe for every protein publication-title: RSC Med. Chem. doi: 10.1039/D1MD00228G – ident: CR8 – volume: 46 start-page: 4265 year: 2003 end-page: 4272 ident: CR23 article-title: A specific mechanism of nonspecific inhibition publication-title: J. Med. Chem. doi: 10.1021/jm030266r – volume: 52 start-page: 6752 year: 2009 end-page: 6756 ident: CR30 article-title: Escape from flatland: increasing saturation as an approach to improving clinical success publication-title: J. Med. Chem. doi: 10.1021/jm901241e – volume: 32 start-page: 1 year: 2018 end-page: 20 ident: CR12 article-title: D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-017-0088-4 – volume: 60 start-page: 4274 year: 2020 end-page: 4282 ident: CR4 article-title: Virtual screening in the cloud: how big is big enough? publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00779 – volume: 33 start-page: 1 year: 2019 end-page: 18 ident: CR10 article-title: D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-018-0180-4 – volume: 60 start-page: 6065 year: 2020 end-page: 6073 ident: CR19 article-title: ZINC20 — a free ultralarge-scale chemical database for ligand discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00675 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR6 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 3 year: 2016 ident: CR32 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 580 start-page: 663 year: 2020 end-page: 668 ident: CR1 article-title: An open-source drug discovery platform enables ultra-large virtual screens publication-title: Nature doi: 10.1038/s41586-020-2117-z – volume: 23 start-page: ii year: 1995 end-page: iv ident: CR5 article-title: A large-scale experiment to assess protein structure prediction methods publication-title: Proteins doi: 10.1002/prot.340230303 – volume: 34 start-page: 99 year: 2020 end-page: 119 ident: CR11 article-title: D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-020-00289-y – volume: 7 start-page: 767 year: 2016 end-page: 775 ident: CR26 article-title: Central nervous system multiparameter optimization desirability: application in drug discovery publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.6b00029 – volume: 59 start-page: 6999 year: 2016 end-page: 7010 ident: CR27 article-title: Integrating everything: the molecule selection toolkit, a system for compound prioritization in drug discovery publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01338 – volume: 5 start-page: 436 year: 2009 end-page: 440 ident: CR21 article-title: Open access chemical and clinical probes to support drug discovery publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio0709-436 – volume: 30 start-page: 651 year: 2016 end-page: 668 ident: CR15 article-title: D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9946-8 – volume: 30 start-page: 651 year: 2016 ident: 363_CR15 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9946-8 – volume: 17 year: 2021 ident: 363_CR18 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009302 – volume: 5 start-page: 436 year: 2009 ident: 363_CR21 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio0709-436 – volume: 23 start-page: ii year: 1995 ident: 363_CR5 publication-title: Proteins doi: 10.1002/prot.340230303 – volume: 48 start-page: 941 year: 2008 ident: 363_CR31 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci7004498 – volume: 59 start-page: 6999 year: 2016 ident: 363_CR27 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01338 – volume: 4 start-page: 1893 year: 2012 ident: 363_CR14 publication-title: Future Med. Chem. doi: 10.4155/fmc.12.137 – volume: 594 start-page: 330 year: 2021 ident: 363_CR20 publication-title: Nature doi: 10.1038/d41586-021-01571-1 – volume: 3 year: 2016 ident: 363_CR32 publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 580 start-page: 663 year: 2020 ident: 363_CR1 publication-title: Nature doi: 10.1038/s41586-020-2117-z – volume: 596 start-page: 583 year: 2021 ident: 363_CR6 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 33 start-page: 1 year: 2019 ident: 363_CR10 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-018-0180-4 – volume: 7 start-page: 767 year: 2016 ident: 363_CR26 publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.6b00029 – volume: 60 start-page: 4274 year: 2020 ident: 363_CR4 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00779 – volume: 60 start-page: 6065 year: 2020 ident: 363_CR19 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00675 – volume: 13 start-page: 36 year: 2018 ident: 363_CR24 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00903 – volume: 43 start-page: 3714 year: 2000 ident: 363_CR29 publication-title: J. Med. Chem. doi: 10.1021/jm000942e – volume: 60 start-page: 4109 year: 2020 ident: 363_CR3 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c01009 – volume: 373 start-page: 871 year: 2021 ident: 363_CR7 publication-title: Science doi: 10.1126/science.abj8754 – volume: 52 start-page: 6752 year: 2009 ident: 363_CR30 publication-title: J. Med. Chem. doi: 10.1021/jm901241e – volume: 34 start-page: 99 year: 2020 ident: 363_CR11 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-020-00289-y – volume: 1 start-page: 1229 year: 2006 ident: 363_CR28 publication-title: ChemMedChem doi: 10.1002/cmdc.200600168 – volume: 566 start-page: 224 year: 2019 ident: 363_CR2 publication-title: Nature doi: 10.1038/s41586-019-0917-9 – volume: 31 start-page: 1 year: 2017 ident: 363_CR16 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9974-4 – volume: 374 start-page: eabm4805 year: 2021 ident: 363_CR9 publication-title: Science doi: 10.1126/science.abm4805 – volume: 30 start-page: 927 year: 2016 ident: 363_CR17 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9954-8 – volume: 46 start-page: 4265 year: 2003 ident: 363_CR23 publication-title: J. Med. Chem. doi: 10.1021/jm030266r – volume: 13 start-page: 13 year: 2022 ident: 363_CR22 publication-title: RSC Med. Chem. doi: 10.1039/D1MD00228G – volume: 38 start-page: 360 year: 2012 ident: 363_CR13 publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2012.07.007 – volume: 8 start-page: 29 year: 2016 ident: 363_CR25 publication-title: J. Cheminformatics doi: 10.1186/s13321-016-0137-3 – volume: 32 start-page: 1 year: 2018 ident: 363_CR12 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-017-0088-4 – ident: 363_CR8 doi: 10.1101/2021.10.04.463034 |
| SSID | ssj0001934979 |
| Score | 2.4615746 |
| SecondaryResourceType | review_article |
| Snippet | One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In... Not provided. |
| SourceID | pubmedcentral osti proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 287 |
| SubjectTerms | 631/154 639/638 Algorithms Analytical Chemistry Benchmarks Biochemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Computational chemistry Experiments Inorganic Chemistry Organic Chemistry Physical Chemistry Predictions Proteins Roadmap |
| Title | CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding |
| URI | https://link.springer.com/article/10.1038/s41570-022-00363-z https://www.ncbi.nlm.nih.gov/pubmed/35783295 https://www.proquest.com/docview/2649215792 https://www.proquest.com/docview/2685034439 https://www.osti.gov/biblio/1982142 https://pubmed.ncbi.nlm.nih.gov/PMC9246350 |
| Volume | 6 |
| WOSCitedRecordID | wos000755390100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 2397-3358 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001934979 issn: 2397-3358 databaseCode: M7S dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2397-3358 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001934979 issn: 2397-3358 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2397-3358 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001934979 issn: 2397-3358 databaseCode: M2P dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWYDgs2PMQrzFAZiQUIonHipLHZoFJ11A1VxUPqzvIrtBIkZZKZxaz4Bz6If-FLuHZeKo_ZsKziKrZyru-J7805CD01QDpiJvMwVXYSJjrOQ66MDg2Qe5lFPDNKebOJbLlk6zVftQduVdtW2e2JfqM2pXZn5CeQuDmkp4zHr3dfQ-ca5aqrrYXGATp0Kgmxb917P5yxcJrwjLffyhDKTirIV85pBd7AiC9hXu7lo1EJcfU3rvlny-RvdVOfjk5v_e9CbqObLRHF0wY5d9A1W9xFP2bT2WKOn3UGCHjaC3fiMseNBUR7fIgX2zr0Je_iE573RgHV81d4ihv17J_fvsP0L4DO4h1AtGh6prGCyNh8kf6UHm9d95JXH8d1ia3_lAsDK8VmaGdy99Z7926MrysMlBtvhnncQx9P5x9mi7C1eAh1SnkdQm40zGqe8pTkKpaGJRIoS56qZMLyCdcySYghOWGamUxZRqmMGKG5cY_PJvQ-GhVlYR8iHCtuiJIRMBydMEU41Skz1HDKrJzINEBR96CFbvXPnQ3HZ-Hr8JSJBhwCwCE8OMRlgF70_9k16h9Xjj5y-BHAXZwAr3adSroWEWdO1y5Axx0eRLtPVGIAQ4Ce9Jchwl3ZRha2PHdjWOqEGSkP0IMGhf1knFYRjTksLtvDZz_AqYfvXym2G68iDi_eQDZJgF52SB6m9e81Prp6FUfoRuyDy7U2HaNRfXZuH6Pr-qLeVmdjdJCt2RgdvpkvV-_g19t4NfYR-wsbZ0uz |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtQwGLbKgAQXFrGFFjASSCCImrGTiY2E0GiYaqq2ox6K1JvxFmYkSIYmLaIn3oH34BV4F56E384yGpbeeuAcJ17yb_b_-_sQemwg6CBMZmGi7CCMNclCrowODQT3Mu3z1CjlySbS6ZQdHvL9NfS9vQvjyipbm-gNtSm0OyPfBMfNwT2lnLxefAoda5TLrrYUGrVY7Ngvn2HLVr7afgP_9wkhW-OD0SRsWAVCnVBehWCODbOaJzyJMkWkYbEEL5klKh6wbMC1jOPIRFnENDOpsoxS2WcRzYzDbrExhe9eQBehUer0ao_sL890OI15ypu7ORFlmyX4R8fsAju-yKdMT1f8X68APf5bbPtnieZveVrv_rau_W8Ldx1dbQJtPKw14wZas_lN9GM0HE3G-GlL8ICHHTApLjJcU1w0x6N4Mq9Cn9LP3-NxR4RQPnuJh7hGB__59Rss1wmE63gBKpjXNeFYgebPPkqfhcBzV53l0dVxVWDrr6phiLqxWZZrub71St81sXeJYUuBZ8tx3EJvz2XNbqNeXuT2LsJEcRMp2YcITsdMRZzqhBlqOGVWDmQSoH4rWEI3-O6OZuSD8HUGlIlaGAUIo_DCKE4D9Lx7Z1Gjm5zZet3Jq4DYzAEMa1eJpSvR58zh9gVoo5U_0djBUiyFL0CPusdgwVxaSua2OHZtWOKAJykP0J1a6rvBOCwmSjhMLl3Rh66BQ0dffZLPZx4lnZMYgukoQC9azVkO699zvHf2LB6iy5ODvV2xuz3dWUdXiFdsV8a1gXrV0bG9jy7pk2peHj3wlgGjd-etUb8AcmikdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CACHE+%28Critical+Assessment+of+Computational+Hit-finding+Experiments%29%3A+A+public%E2%80%93private+partnership+benchmarking+initiative+to+enable+the+development+of+computational+methods+for+hit-finding&rft.jtitle=Nature+reviews.+Chemistry&rft.au=Ackloo%2C+Suzanne&rft.au=Al-awar%2C+Rima&rft.au=Amaro%2C+Rommie+E.&rft.au=Arrowsmith%2C+Cheryl+H.&rft.date=2022-04-01&rft.pub=Springer+Nature&rft.issn=2397-3358&rft.eissn=2397-3358&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1038%2Fs41570-022-00363-z&rft.externalDocID=1982142 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3358&client=summon |