Evolutionary algorithms guided by Erdős–Rényi complex networks

This article proposes an evolutionary algorithm integrating Erdős–Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science Jg. 10; S. e1773
Hauptverfasser: Bucheli, Víctor A., Solarte Pabón, Oswaldo, Ordoñez, Hugo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 09.01.2024
PeerJ, Inc
PeerJ Inc
Schlagworte:
ISSN:2376-5992, 2376-5992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article proposes an evolutionary algorithm integrating Erdős–Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network. The algorithm enhances solutions by introducing new connections between them, thereby influencing population dynamics and optimizing the problem-solving process. The study conducts experiments comparing four instances of the traditional optimization problem known as the Traveling Salesman Problem (TSP). These experiments employ the traditional evolutionary algorithm, alternative algorithms utilizing different types of complex networks, and the proposed algorithm. The findings suggest that the approach guided by an Erdős–Rényi dynamic network surpasses the performance of the other algorithms. The proposed model exhibits improved convergence rates and shorter execution times. Thus, strategies based on complex networks reveal that network characteristics provide valuable information for solving optimization problems. Therefore, complex networks can regulate the decision-making process, similar to optimizing problems. This work emphasizes that the network structure is crucial in adding value to decision-making.
AbstractList This article proposes an evolutionary algorithm integrating Erdős-Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network. The algorithm enhances solutions by introducing new connections between them, thereby influencing population dynamics and optimizing the problem-solving process. The study conducts experiments comparing four instances of the traditional optimization problem known as the Traveling Salesman Problem (TSP). These experiments employ the traditional evolutionary algorithm, alternative algorithms utilizing different types of complex networks, and the proposed algorithm. The findings suggest that the approach guided by an Erdős-Rényi dynamic network surpasses the performance of the other algorithms. The proposed model exhibits improved convergence rates and shorter execution times. Thus, strategies based on complex networks reveal that network characteristics provide valuable information for solving optimization problems. Therefore, complex networks can regulate the decision-making process, similar to optimizing problems. This work emphasizes that the network structure is crucial in adding value to decision-making.
This article proposes an evolutionary algorithm integrating Erdos-Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network. The algorithm enhances solutions by introducing new connections between them, thereby influencing population dynamics and optimizing the problem-solving process. The study conducts experiments comparing four instances of the traditional optimization problem known as the Traveling Salesman Problem (TSP). These experiments employ the traditional evolutionary algorithm, alternative algorithms utilizing different types of complex networks, and the proposed algorithm. The findings suggest that the approach guided by an Erdos-Rényi dynamic network surpasses the performance of the other algorithms. The proposed model exhibits improved convergence rates and shorter execution times. Thus, strategies based on complex networks reveal that network characteristics provide valuable information for solving optimization problems. Therefore, complex networks can regulate the decision-making process, similar to optimizing problems. This work emphasizes that the network structure is crucial in adding value to decision-making.
This article proposes an evolutionary algorithm integrating Erdős-Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network. The algorithm enhances solutions by introducing new connections between them, thereby influencing population dynamics and optimizing the problem-solving process. The study conducts experiments comparing four instances of the traditional optimization problem known as the Traveling Salesman Problem (TSP). These experiments employ the traditional evolutionary algorithm, alternative algorithms utilizing different types of complex networks, and the proposed algorithm. The findings suggest that the approach guided by an Erdős-Rényi dynamic network surpasses the performance of the other algorithms. The proposed model exhibits improved convergence rates and shorter execution times. Thus, strategies based on complex networks reveal that network characteristics provide valuable information for solving optimization problems. Therefore, complex networks can regulate the decision-making process, similar to optimizing problems. This work emphasizes that the network structure is crucial in adding value to decision-making.This article proposes an evolutionary algorithm integrating Erdős-Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network. The algorithm enhances solutions by introducing new connections between them, thereby influencing population dynamics and optimizing the problem-solving process. The study conducts experiments comparing four instances of the traditional optimization problem known as the Traveling Salesman Problem (TSP). These experiments employ the traditional evolutionary algorithm, alternative algorithms utilizing different types of complex networks, and the proposed algorithm. The findings suggest that the approach guided by an Erdős-Rényi dynamic network surpasses the performance of the other algorithms. The proposed model exhibits improved convergence rates and shorter execution times. Thus, strategies based on complex networks reveal that network characteristics provide valuable information for solving optimization problems. Therefore, complex networks can regulate the decision-making process, similar to optimizing problems. This work emphasizes that the network structure is crucial in adding value to decision-making.
ArticleNumber e1773
Audience Academic
Author Solarte Pabón, Oswaldo
Bucheli, Víctor A.
Ordoñez, Hugo
Author_xml – sequence: 1
  givenname: Víctor A.
  orcidid: 0000-0002-0885-8699
  surname: Bucheli
  fullname: Bucheli, Víctor A.
  organization: Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali, Valle, Colombia
– sequence: 2
  givenname: Oswaldo
  surname: Solarte Pabón
  fullname: Solarte Pabón, Oswaldo
  organization: Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali, Valle, Colombia
– sequence: 3
  givenname: Hugo
  surname: Ordoñez
  fullname: Ordoñez, Hugo
  organization: Departamento de Sistemas, Universidad del Cauca, Popayán, Cauca, Colombia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38259892$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAUhSNUREvpki2KxAYWGfwzie0VKtUAI1VCKt1bjn2TekjswU5KZ8crIJ6C50C8CE-Cp1NGDcJe2Lr-7rF9dB5nB847yLKnGM0Yw-zVGiCsCh1nmDH6IDsilFVFKQQ5uLc_zE5iXCGEcInTEI-yQ8pJKbggR9mbxbXvxsF6p8ImV13rgx2u-pi3ozVg8nqTL4L59S3-_vr94ucPt7G59v26g5vcwfDFh0_xSfawUV2Ek7v1OLt8u7g8e1-cf3i3PDs9L3RJxVAwRjSgCmpMoaxYqSpeUobp3Mwxx4gIwBwhrqq6ItiUXBvVpENkOIDWmh5ny52s8Wol18H26cXSKytvCz60UoXB6g6kUkoLhVMjFUme1KjCGhtDOFKYGJG0Xu-01mPdg9HghqC6iej0xNkr2fpriRFHFPEqKby4Uwj-8whxkL2NGrpOOfBjlERglrBSzBP6_B905cfgklVbiiAhRLJhT7Uq_cC6xqeL9VZUnnJMOSs54Yma_YdK00BvdQpHY1N90vBy0pCYAW6GVo0xyuXHiyn77L4rezv-piUBxQ7QwccYoNkjGMltIOVtIKWOchtI-gc3NtQL
Cites_doi 10.14483/23448350.18039
10.1038/30918
10.1007/BF00127077
10.1007/978-1-84996-129-5
10.1109/TCYB.2014.2305974
10.7551/mitpress/1090.001.0001
10.1016/j.dam.2015.01.035
10.1016/j.asoc.2015.03.038
10.25088/ComplexSystems.20.2.127
10.3233/FI-1998-35123401
10.1016/0377-2217(92)90138-Y
10.1016/j.knosys.2021.107199
10.1016/j.asoc.2018.06.047
10.1016/j.swevo.2019.04.008
10.1016/j.physa.2016.07.050
10.1016/j.mbs.2012.07.002
10.1109/TEVC.2017.2737600
ContentType Journal Article
Copyright 2024 Bucheli et al.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Bucheli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Bucheli et al. 2024 Bucheli et al.
Copyright_xml – notice: 2024 Bucheli et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Bucheli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Bucheli et al. 2024 Bucheli et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.1773
DatabaseName CrossRef
PubMed
Gale Science in Context
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_aaac9a18ee394d42b061c1dd280a12d9
PMC10803086
A813875828
38259892
10_7717_peerj_cs_1773
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
H13
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c539t-772ce06eb13e5675a68537134d4181029e18008a6b621d58cdaf34d0d8eeccc3
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146472500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:53:45 EDT 2025
Tue Nov 04 02:05:55 EST 2025
Sun Nov 09 11:14:44 EST 2025
Sun Nov 09 06:39:19 EST 2025
Tue Nov 11 10:54:08 EST 2025
Tue Nov 04 18:17:19 EST 2025
Thu Nov 13 16:11:47 EST 2025
Thu Jan 02 22:34:25 EST 2025
Sat Nov 29 05:31:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optimization problems
Complex networks
Evolutionary algorithms
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Bucheli et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-772ce06eb13e5675a68537134d4181029e18008a6b621d58cdaf34d0d8eeccc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0885-8699
OpenAccessLink https://www.proquest.com/publiccontent/docview/2912099971?pq-origsite=%requestingapplication%
PMID 38259892
PQID 2912099971
PQPubID 2045934
PageCount e1773
ParticipantIDs doaj_primary_oai_doaj_org_article_aaac9a18ee394d42b061c1dd280a12d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10803086
proquest_miscellaneous_2917863594
proquest_journals_2912099971
gale_infotracmisc_A813875828
gale_infotracacademiconefile_A813875828
gale_incontextgauss_ISR_A813875828
pubmed_primary_38259892
crossref_primary_10_7717_peerj_cs_1773
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Fogel (10.7717/peerj-cs.1773/ref-6) 1998; 35
Bremermann (10.7717/peerj-cs.1773/ref-2) 1958
Zelinka (10.7717/peerj-cs.1773/ref-31) 2014
Liu (10.7717/peerj-cs.1773/ref-14) 2014; 44
Watts (10.7717/peerj-cs.1773/ref-27) 1998; 393
Zelinka (10.7717/peerj-cs.1773/ref-33) 2010
Applegate (10.7717/peerj-cs.1773/ref-1) 2006
Yu (10.7717/peerj-cs.1773/ref-29) 2010
Shapiro (10.7717/peerj-cs.1773/ref-22) 2012; 240
Nopiah (10.7717/peerj-cs.1773/ref-17) 2010; 10
Ortiz-Astorquiza (10.7717/peerj-cs.1773/ref-18) 2015; 187
Zelinka (10.7717/peerj-cs.1773/ref-30) 2011; 1389
Zelinka (10.7717/peerj-cs.1773/ref-32) 2011; 20
Kellermayer (10.7717/peerj-cs.1773/ref-12) 1976; 7
Triana (10.7717/peerj-cs.1773/ref-24) 2022; 2
Kanna (10.7717/peerj-cs.1773/ref-11) 2021; 227
Friedman (10.7717/peerj-cs.1773/ref-7) 1956
Dao (10.7717/peerj-cs.1773/ref-3) 2013
Osaba (10.7717/peerj-cs.1773/ref-19) 2018; 71
Paul (10.7717/peerj-cs.1773/ref-20) 2015; 32
Pizzuti (10.7717/peerj-cs.1773/ref-21) 2017; 22
Llanos-Mosquera (10.7717/peerj-cs.1773/ref-15) 2022; 44
Triana (10.7717/peerj-cs.1773/ref-23) 2020; 18
Holland (10.7717/peerj-cs.1773/ref-8) 1992
Jamakovic (10.7717/peerj-cs.1773/ref-9) 2008
Wei (10.7717/peerj-cs.1773/ref-28) 2019
Erdós (10.7717/peerj-cs.1773/ref-5) 1960; 10285
Del Ser (10.7717/peerj-cs.1773/ref-4) 2019; 48
Jiang (10.7717/peerj-cs.1773/ref-10) 2016; 463
Triana (10.7717/peerj-cs.1773/ref-25) 2019
Michalewicz (10.7717/peerj-cs.1773/ref-16) 1996; 1
Vikhar (10.7717/peerj-cs.1773/ref-26) 2016
Laporte (10.7717/peerj-cs.1773/ref-13) 1992; 59
References_xml – volume: 44
  start-page: 228
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.1773/ref-15
  article-title: Algoritmos evolutivos guiados por redes complejas libres de escala
  publication-title: Revista Científica
  doi: 10.14483/23448350.18039
– volume-title: Selective feedback computers for engineering synthesis and nervous system analogy
  year: 1956
  ident: 10.7717/peerj-cs.1773/ref-7
– volume: 18
  start-page: 101
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.1773/ref-23
  article-title: Traveling salesman problem solving using evolutionary algorithms guided by complex networks
  publication-title: International Journal of Artificial Intelligence
– volume: 393
  start-page: 440
  issue: 6684
  year: 1998
  ident: 10.7717/peerj-cs.1773/ref-27
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume-title: The evolution of intelligence: the nervous system as a model of its environment
  year: 1958
  ident: 10.7717/peerj-cs.1773/ref-2
– start-page: 148
  year: 2010
  ident: 10.7717/peerj-cs.1773/ref-33
  article-title: Preliminary investigation on relations between complex networks and evolutionary algorithms dynamics
– volume-title: The traveling salesman problem: a computational study
  year: 2006
  ident: 10.7717/peerj-cs.1773/ref-1
– volume: 1
  start-page: 177
  year: 1996
  ident: 10.7717/peerj-cs.1773/ref-16
  article-title: Heuristic methods for evolutionary computation techniques
  publication-title: Journal of Heuristics
  doi: 10.1007/BF00127077
– volume-title: Introduction to evolutionary algorithms
  year: 2010
  ident: 10.7717/peerj-cs.1773/ref-29
  doi: 10.1007/978-1-84996-129-5
– volume: 44
  start-page: 2274
  issue: 12
  year: 2014
  ident: 10.7717/peerj-cs.1773/ref-14
  article-title: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2305974
– start-page: 3246
  year: 2014
  ident: 10.7717/peerj-cs.1773/ref-31
  article-title: Evolutionary algorithms dynamics and its hidden complex network structures
– volume: 10285
  start-page: 17
  issue: 1
  year: 1960
  ident: 10.7717/peerj-cs.1773/ref-5
  article-title: On the evolution of random graphs
  publication-title: Publications of the Mathematical Institute of the Hungarian Academy of Sciences
– volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1992
  ident: 10.7717/peerj-cs.1773/ref-8
  doi: 10.7551/mitpress/1090.001.0001
– volume: 187
  start-page: 140
  year: 2015
  ident: 10.7717/peerj-cs.1773/ref-18
  article-title: The minimum flow cost Hamiltonian cycle problem: a comparison of formulations
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2015.01.035
– volume: 32
  start-page: 383
  issue: 6
  year: 2015
  ident: 10.7717/peerj-cs.1773/ref-20
  article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.03.038
– volume: 20
  start-page: 127
  issue: 2
  year: 2011
  ident: 10.7717/peerj-cs.1773/ref-32
  article-title: Do evolutionary algorithm dynamics create complex network structures?
  publication-title: Complex Systems
  doi: 10.25088/ComplexSystems.20.2.127
– volume: 35
  start-page: 1
  issue: 1–4
  year: 1998
  ident: 10.7717/peerj-cs.1773/ref-6
  article-title: Unearthing a fossil from the history of evolutionary computation
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-1998-35123401
– volume: 7
  start-page: 319
  issue: 3–4
  year: 1976
  ident: 10.7717/peerj-cs.1773/ref-12
  article-title: Numerische optimierung von computer-modellen mittels der evolutionsstrategie hans-paul schwefel birkh äuser, basel and stuttgart
  publication-title: Cybernetics and System
– volume: 59
  start-page: 231
  issue: 2
  year: 1992
  ident: 10.7717/peerj-cs.1773/ref-13
  article-title: The traveling salesman problem: an overview of exact and approximate algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(92)90138-Y
– volume: 227
  start-page: 107199
  issue: 10
  year: 2021
  ident: 10.7717/peerj-cs.1773/ref-11
  article-title: Development of deer hunting linked earthworm optimization algorithm for solving large scale traveling salesman problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107199
– start-page: 261
  year: 2016
  ident: 10.7717/peerj-cs.1773/ref-26
  article-title: Evolutionary algorithms: a critical review and its future prospects
– volume: 71
  start-page: 277
  issue: 1–2
  year: 2018
  ident: 10.7717/peerj-cs.1773/ref-19
  article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.06.047
– volume: 48
  start-page: 220
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1773/ref-4
  article-title: Bio-inspired computation: where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.008
– start-page: 273
  year: 2019
  ident: 10.7717/peerj-cs.1773/ref-28
  article-title: An empirical study on evolutionary algorithms for traveling salesman problem
– volume: 10
  start-page: 171
  year: 2010
  ident: 10.7717/peerj-cs.1773/ref-17
  article-title: Time complexity analysis of the genetic algorithm clustering method
– volume: 1389
  start-page: 1011
  year: 2011
  ident: 10.7717/peerj-cs.1773/ref-30
  article-title: Investigation on relationship between complex networks and evolutionary algorithms dynamics
– start-page: 183
  year: 2008
  ident: 10.7717/peerj-cs.1773/ref-9
  article-title: On the robustness of complex networks by using the algebraic connectivity
– volume: 463
  start-page: 293
  issue: 6638
  year: 2016
  ident: 10.7717/peerj-cs.1773/ref-10
  article-title: Traveling salesman problems with PageRank distance on complex networks reveal community structure
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2016.07.050
– volume: 240
  start-page: 77
  issue: 2
  year: 2012
  ident: 10.7717/peerj-cs.1773/ref-22
  article-title: Finding the probability of infection in an SIR network is NP-Hard
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2012.07.002
– start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.1773/ref-25
  article-title: Analysis of complex networks in optimization algorithms
– volume: 22
  start-page: 464
  issue: 3
  year: 2017
  ident: 10.7717/peerj-cs.1773/ref-21
  article-title: Evolutionary computation for community detection in networks: a review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2737600
– volume: 2
  start-page: 136
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1773/ref-24
  article-title: Knapsack problem solving using evolutionary algorithms guided by complex networks
  publication-title: International Journal of Artificial Intelligence
– start-page: 65
  volume-title: Genetic algorithms for integrated optimisation of precedence-constrained production sequencing and scheduling
  year: 2013
  ident: 10.7717/peerj-cs.1773/ref-3
SSID ssj0001511119
Score 2.2503843
Snippet This article proposes an evolutionary algorithm integrating Erdős–Rényi complex networks to regulate population crossovers, enhancing candidate solution...
This article proposes an evolutionary algorithm integrating Erdős-Rényi complex networks to regulate population crossovers, enhancing candidate solution...
This article proposes an evolutionary algorithm integrating Erdos-Rényi complex networks to regulate population crossovers, enhancing candidate solution...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1773
SubjectTerms Algorithms
Algorithms and Analysis of Algorithms
Analysis
Artificial Intelligence
Cities
Complex networks
Decision making
Evolutionary algorithms
Genetic algorithms
Network Science and Online Social Networks
Networks
Optimization
Optimization problems
Optimization techniques
Population biology
Problem solving
Traveling salesman problem
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hqgcu_P-EFhQQglNo_LOJfWyrreBSodJDb5ZjO9utIFvFu1X3xisgnqLPgXgRnqRjJ7vaiAMXrplJlHzj8cwXzYwB3uZVVQhSVJnVpMh4YUVWccLR8SruMOTWMq_iYRPl8bE4O5OfN476CjVh3XjgDrg9rbWRmgjnmOSW0woDkCHWUpFrQm1s3ctLuUGmuv7gsBXIbqhmiZRl79K59iIz_gMpSzYIQnFW_9878kZIGpZLbsSfowdwr08c0_3uhR_CHdc8gvurQxnS3kcfw8H4ql9Nul2m-utkhvT__JtPJ4updTatlum4tb9_-D_ff578ummW0zSWlbvrtOlKwv0TOD0anx5-zPqDEjIzYnIeMmTj8gK3XeZGyAB0gUE4NIlajgE8p9IRzAuFLqqCEjsSxuoahblFVI0x7ClsNbPGPYe0tswYTDkErQnH3EBYLfmolvhYVkqRJ_BuBZy67MZhKKQRAWEVEVbGq4BwAgcB1rVSmGIdL6BtVW9b9S_bJvAmGEWFORVNKISZ6IX36tOXE7UvCEOqhXwxgfe9Uj1D8xjd9xXgB4XRVgPN3YEmOpIZile2V70je0VlbC6WJUng9Voc7gzFaY2bLaJOKTBxkzyBZ91SWX83QwYuhaQJiMEiGgAzlDTT8zjmO1R_MmScL_4HlDtwl2I6Fn8eyV3YmrcL9xK2zdV86ttX0XluAYHiIs8
  priority: 102
  providerName: Directory of Open Access Journals
Title Evolutionary algorithms guided by Erdős–Rényi complex networks
URI https://www.ncbi.nlm.nih.gov/pubmed/38259892
https://www.proquest.com/docview/2912099971
https://www.proquest.com/docview/2917863594
https://pubmed.ncbi.nlm.nih.gov/PMC10803086
https://doaj.org/article/aaac9a18ee394d42b061c1dd280a12d9
Volume 10
WOSCitedRecordID wos001146472500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB6xLQcuLL9LYKkCQnAKjfNrn9AWdcUK7aoqeyhcLMd2ukWQlqRd0QviFRBPwXMgXoQnYZy43Y2QOHHxIZ5YdmY8P874G4AnfpYllCSZpwRJvChR1MsiEuHGyyKNJjdnflYXm0hPTuhkwkb2enRl0yo3OrFW1A3as8nbRiXcV3NpTsz7AavvfLKUvFh88kwNKfOv1RbU2IGuAd7yO9AdHR2P3l6cucRGQbAGajPFQKa_0Lp878nqOUnTsGWaagT_v_X0JUPVTqK8ZJUOd__vem7AdeudugeNON2EK7q4Bbubyg-uVQS3YTA8tyIryrUrPkxxrOXZx8qdrmZKKzdbu8NS_fpW_f76ffzzR7GeuXXuuv7sFk3eeXUHTg-Hpy9febYagyfjkC2NGy61n6BuD3WMYYZI0NKbm6gqQi_BD5gm6HxSkWRJQFRMpRI5dvqKahQTGd6FTjEv9D1wcxVKiX4NDXISoQNClWBRnDMcNkwZ9R14uuEDXzSYGxxjFcMwXjOMy4obhjkwMFzaEhmo7PrBvJxyu_O4EEIyQXAWIcO5Bhl6MJIoFVBfkEAxBx4bHnMDhlGYbJupWFUVP3oz5geUhBjPYVDqwDNLlM-R21LYywu4IIOf1aLcb1HibpXt7o04cKstKn7BfQcebbvNmyYDrtDzVU2TUvQOWeTAXiN523WHGOYzygIHaEsmWx-m3VPMzmoscZNiGmJYe__f83oA1wL05uqzJ7YPnWW50g_hqjxfzqqyBzvphPagOxiejMa9-lgD29eph-3xlyG2o_hdz-7GP8LhQ6o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyptAgYB4nEJj52UfEGphq65aVlXpoerFcmxnuwiyS7Jb2Bt_AfErOPArEH-EX8I4j20jJG49cM1MIj--eTnjGYDHfprGjMSppyWJvTDWzEtDEqLgpaFBk5txP62aTSSDATs44LtL8KO9C2PTKludWClqPVb2jHyN8uqWJ0_Iy8lHz3aNsn9X2xYaNSy2zfwThmzli_5r3N8nlG729l9teU1XAU9FAZ9ad1IZP0YdFZgI3WUZo8WyNyp1iNbOp9wQdKKYjNOYEh0xpWWGRF8zg9NVAX72HJwPQ-rbhgm70eHJkU5k9Q-vK3kmGCetTYwp3nmqfE6SJOhYvqpBwN9m4JQd7OZonjJ6myv_2XJdgcuNd-2u1-JwFZZMfg1W2s4VbqPIrsNG77gROVnMXfl-iEOfHn0o3eFspI1207nbK_Svr-XvL9_2fn7P5yO3yr03n928zpsvb8D-WUzkJizn49zcBjfTgVLolzGaEYQBYVryMMo4fjZIOPMdeNputJjUNUMExloWEaJChFClsIhwYMPCYMFkS31XD8bFUDSaQ0gpFZcERxFwHCtN0QNTRGvKfEmo5g48siAStphHbrOFhnJWlqL_dk-sMxJgPIpBtQPPGqZsjHBSsrl8gROy9b86nKsdTtQ2qktu8SYabVeKE7A58HBBtm_aDL7cjGcVT8LQu-WhA7dqaC_mHTAMwhmnDrAO6DsL06Xko6OqFrpNkQ0wLL_z73E9gItb-292xE5_sH0XLqHshtU5Gl-F5WkxM_fggjqejsrifiXSLogzlok_YmeLLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCEulH8MBQwCejLx2o69e0CooYmIiqIo9NDbar27TlMVJ9hJITdeAfEUPAJnxIvwJMz6J62FxK0HrtmJtev9Zuab9ewMwDM3jkNKwthRgoROECrqxAEJUPHiQKPLTZgbF80mouGQHh6y0Qb8qO_CmLTK2iYWhlrNpDkjb3usuOXJItJOqrSI0V7_9fyjYzpImS-tdTuNEiL7evUJw7f81WAP9_q55_V7B2_eOlWHAUd2fLYw1FJqN0R75esOUmcRovcytytVgJ7P9ZgmSKioCOPQI6pDpRIJDrqKaly69PGxl2Az8jHmacFmtzccjc8OeDrGGrGyrmeEUVN7rnV27Mj8JYkiv-EHi3YBfzuFc16xmbF5zgX2t_7jl3cdrlW8294tFeUGbOj0JmzVPS3sysTdgm7vtFJGka1scTLBqS-OPuT2ZDlVWtnxyu5l6tfX_PeXb-Of39PV1C6y8vVnOy0z6vPbcHARC7kDrXSW6ntgJ8qXEhkb9RISILWiSrCgkzB8rB8x6lrwot50Pi-riXCMwgw6eIEOLnNu0GFB10BiLWSKgBc_zLIJr2wKF0JIJgjOwmc4Vy9GbiaJUh51BfEUs-CpARQ3ZT5Ss-cTscxzPng_5ruU-BipYrhtwU4llMwQWlJU1zJwQaYyWENyuyGJdkg2h2vs8coO5vwMeBY8WQ-bf5rcvlTPloVMRJH3ssCCuyXM1-v2KYbnlHkW0IYCNF5McySdHhVV0k3yrI8B-_1_z-sxXEFV4O8Gw_0HcNVDylocsLFtaC2ypX4Il-XpYppnjyr9toFfsFL8AV2YlS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+algorithms+guided+by+Erdos-R%C3%A9nyi+complex+networks&rft.jtitle=PeerJ.+Computer+science&rft.au=Bucheli%2C+V%C3%ADctor+A&rft.au=Solarte+Pab%C3%B3n%2C+Oswaldo&rft.au=Ordo%C3%B1ez%2C+Hugo&rft.date=2024-01-09&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e1773&rft_id=info:doi/10.7717%2Fpeerj-cs.1773&rft.externalDocID=A813875828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon