Variational Inference: A Review for Statisticians
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review va...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 112; číslo 518; s. 859 - 877 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Alexandria
Taylor & Francis
03.04.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback–Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms. Supplementary materials for this article are available online. One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms. |
| Author | Blei, David M. Kucukelbir, Alp McAuliffe, Jon D. |
| Author_xml | – sequence: 1 givenname: David M. surname: Blei fullname: Blei, David M. organization: Department of Computer Science and Statistics, Columbia University – sequence: 2 givenname: Alp surname: Kucukelbir fullname: Kucukelbir, Alp email: alp@cs.columbia.edu organization: Department of Computer Science, Columbia University – sequence: 3 givenname: Jon D. surname: McAuliffe fullname: McAuliffe, Jon D. organization: Department of Statistics, University of California |
| BookMark | eNqFkMFKJDEQhoO44Oj6CEKDFy89JulkkuhFEXUFYWF3FW8hna5Ahp5Ek4yDb2_GcT140FCQQ31_FfXtou0QAyB0QPCUYImPMZlRwriaUkzElFDJhei20ITwTrRUsIdtNFkz7RraQbs5z3F9QsoJIvcmeVN8DGZsboKDBMHCSXPe_IFnD6vGxdT8LZXIxVtvQv6JfjgzZth___fQ3dXlv4tf7e3v65uL89vW8k6VlttBGCJY30sn1TAAVoMiw8wIw2zHwUgHHPoZOEsIhYr12PWWKzpQAb3q9tDRZu5jik9LyEUvfLYwjiZAXGZN6wlMMKpwRQ8_ofO4TPWiSkmppBK1KsU3lE0x5wROPya_MOlFE6zXIvV_kXotUr-LrLnTTznry5uykowfv00fbNLzXGL6WMk4ppIRVvtnm74PVfXCrGIaB13MyxiTSyZYn3X39YpXFqOXEA |
| CitedBy_id | crossref_primary_10_1162_imag_a_00408 crossref_primary_10_1109_JSAC_2021_3087249 crossref_primary_10_1190_geo2022_0472_1 crossref_primary_10_1002_hbm_26763 crossref_primary_10_1016_j_compbiomed_2024_108785 crossref_primary_10_1007_s11277_022_09852_2 crossref_primary_10_1186_s13059_019_1745_9 crossref_primary_10_1109_TAES_2023_3262595 crossref_primary_10_1177_11769351221105776 crossref_primary_10_1016_j_rcim_2024_102765 crossref_primary_10_1016_j_csi_2024_103897 crossref_primary_10_1016_j_media_2025_103580 crossref_primary_10_1007_s11222_023_10317_0 crossref_primary_10_1016_j_ijforecast_2021_11_001 crossref_primary_10_1109_ACCESS_2020_2972055 crossref_primary_10_1007_s00190_023_01701_9 crossref_primary_10_1080_10618600_2025_2554680 crossref_primary_10_1016_j_cma_2021_114087 crossref_primary_10_1016_j_ress_2025_111169 crossref_primary_10_1515_lingty_2025_0030 crossref_primary_10_1080_01621459_2020_1847121 crossref_primary_10_1080_01621459_2020_1847120 crossref_primary_10_1146_annurev_statistics_122121_040905 crossref_primary_10_1002_sam_11649 crossref_primary_10_1016_j_irfa_2024_103621 crossref_primary_10_1109_TIM_2025_3591870 crossref_primary_10_1002_wics_1535 crossref_primary_10_1214_19_BA1175 crossref_primary_10_1145_3615660 crossref_primary_10_1371_journal_pcbi_1005645 crossref_primary_10_1186_s13059_019_1865_2 crossref_primary_10_1007_s00466_022_02214_6 crossref_primary_10_1080_10618600_2019_1637747 crossref_primary_10_1038_s41467_023_42016_9 crossref_primary_10_1109_JBHI_2024_3360002 crossref_primary_10_3390_e23070815 crossref_primary_10_3390_app15084363 crossref_primary_10_3233_MAS_231456 crossref_primary_10_1016_j_jmp_2025_102921 crossref_primary_10_1016_j_patcog_2024_111058 crossref_primary_10_1109_TPAMI_2020_3025390 crossref_primary_10_1137_22M1529427 crossref_primary_10_1016_j_jmp_2020_102348 crossref_primary_10_1080_01621459_2023_2216909 crossref_primary_10_1088_2632_2153_ad7226 crossref_primary_10_1038_s41467_022_28153_7 crossref_primary_10_1371_journal_pone_0237724 crossref_primary_10_3389_fcomp_2023_1071174 crossref_primary_10_15252_msb_20199198 crossref_primary_10_1088_1361_6587_ad48b7 crossref_primary_10_1177_17456916231186964 crossref_primary_10_1016_j_isprsjprs_2020_04_014 crossref_primary_10_15302_J_QB_020_0228 crossref_primary_10_3390_plants10122674 crossref_primary_10_1016_j_jcp_2018_04_018 crossref_primary_10_1109_TSP_2025_3530149 crossref_primary_10_1016_j_ijforecast_2021_11_012 crossref_primary_10_3390_s25010217 crossref_primary_10_1007_s11280_021_00970_8 crossref_primary_10_1155_2020_8810753 crossref_primary_10_1109_TNNLS_2019_2934729 crossref_primary_10_1111_bmsp_12197 crossref_primary_10_1016_j_jcp_2024_113293 crossref_primary_10_1049_rsn2_12391 crossref_primary_10_1007_s00439_021_02417_6 crossref_primary_10_1145_3672275 crossref_primary_10_1016_j_cma_2022_115236 crossref_primary_10_1109_TAI_2021_3086046 crossref_primary_10_1109_TGRS_2023_3265657 crossref_primary_10_1109_TBME_2019_2895663 crossref_primary_10_1016_j_rse_2022_113388 crossref_primary_10_1080_0952813X_2021_1871970 crossref_primary_10_1109_TII_2025_3528580 crossref_primary_10_1111_sjos_12335 crossref_primary_10_1016_j_isatra_2021_02_024 crossref_primary_10_1137_23M1624981 crossref_primary_10_1016_j_knosys_2025_114409 crossref_primary_10_1016_j_soildyn_2025_109308 crossref_primary_10_1137_21M1430005 crossref_primary_10_1186_s40104_024_01044_1 crossref_primary_10_1016_j_neunet_2025_107135 crossref_primary_10_1080_10705511_2024_2432612 crossref_primary_10_1121_10_0016876 crossref_primary_10_1016_j_neuroimage_2019_06_064 crossref_primary_10_1016_j_media_2023_102914 crossref_primary_10_1016_j_eswa_2021_115968 crossref_primary_10_1002_asmb_2890 crossref_primary_10_3390_e24010133 crossref_primary_10_1007_s13571_020_00245_8 crossref_primary_10_1109_TNNLS_2022_3208202 crossref_primary_10_1145_3626756 crossref_primary_10_1093_bib_bbab229 crossref_primary_10_1109_ACCESS_2020_3048154 crossref_primary_10_3390_aerospace9060329 crossref_primary_10_3390_s22082886 crossref_primary_10_1109_TCCN_2020_2990773 crossref_primary_10_3390_e23070853 crossref_primary_10_1002_sam_11632 crossref_primary_10_1016_j_sigpro_2025_110097 crossref_primary_10_1016_j_ress_2023_109547 crossref_primary_10_1016_j_ijforecast_2023_07_001 crossref_primary_10_1038_s41587_021_01044_w crossref_primary_10_1109_TITS_2025_3544264 crossref_primary_10_1109_TNNLS_2021_3080238 crossref_primary_10_1287_mksc_2023_0017 crossref_primary_10_1111_ele_14117 crossref_primary_10_1093_biostatistics_kxz034 crossref_primary_10_1109_LGRS_2024_3383749 crossref_primary_10_1016_j_jmp_2020_102383 crossref_primary_10_1016_j_cma_2025_117894 crossref_primary_10_1016_j_ins_2021_01_083 crossref_primary_10_1016_j_artint_2021_103580 crossref_primary_10_1002_jae_3125 crossref_primary_10_1002_mgea_79 crossref_primary_10_1088_2632_2153_ad9af9 crossref_primary_10_26443_seismica_v3i1_1143 crossref_primary_10_1109_TVCG_2024_3406959 crossref_primary_10_1016_j_knosys_2025_114438 crossref_primary_10_1109_TNNLS_2019_2957843 crossref_primary_10_1287_mnsc_2022_00261 crossref_primary_10_3847_1538_3881_ab557d crossref_primary_10_1109_TGRS_2024_3357589 crossref_primary_10_6339_25_JDS1161F crossref_primary_10_1007_s10182_024_00497_z crossref_primary_10_1190_geo2023_0035_1 crossref_primary_10_1029_2019JB018589 crossref_primary_10_1186_s40323_022_00237_5 crossref_primary_10_1093_biomet_asz069 crossref_primary_10_1016_j_srs_2025_100237 crossref_primary_10_1111_2041_210X_13836 crossref_primary_10_1111_2041_210X_13833 crossref_primary_10_3389_fgene_2023_1112914 crossref_primary_10_1016_j_ress_2021_107624 crossref_primary_10_1109_ACCESS_2019_2927781 crossref_primary_10_1109_JIOT_2021_3113679 crossref_primary_10_1007_JHEP03_2022_066 crossref_primary_10_1007_s10994_025_06760_x crossref_primary_10_1016_j_ymssp_2025_112586 crossref_primary_10_1162_neco_a_01182 crossref_primary_10_1051_0004_6361_202039435 crossref_primary_10_1109_TMC_2024_3415661 crossref_primary_10_3390_e23030313 crossref_primary_10_1016_j_bspc_2024_107393 crossref_primary_10_1007_s11053_025_10521_x crossref_primary_10_1080_02664763_2023_2197587 crossref_primary_10_1016_j_csda_2022_107626 crossref_primary_10_1002_adem_202101176 crossref_primary_10_1109_TSMC_2022_3185102 crossref_primary_10_1109_TSP_2023_3278867 crossref_primary_10_3390_s23052416 crossref_primary_10_1016_j_ins_2025_122535 crossref_primary_10_1109_TGRS_2023_3264777 crossref_primary_10_1109_TMM_2021_3128254 crossref_primary_10_1287_ijoc_2023_0440 crossref_primary_10_1016_j_energy_2022_123923 crossref_primary_10_1190_geo2021_0118_1 crossref_primary_10_1038_s41587_021_01075_3 crossref_primary_10_1002_bimj_202000366 crossref_primary_10_1029_2022JB024703 crossref_primary_10_1109_TAC_2023_3242344 crossref_primary_10_1145_3659206 crossref_primary_10_1073_pnas_1916012117 crossref_primary_10_1029_2018WR024461 crossref_primary_10_1051_swsc_2025029 crossref_primary_10_3390_signals2040045 crossref_primary_10_1109_TSP_2021_3122296 crossref_primary_10_1109_ACCESS_2021_3096387 crossref_primary_10_1109_TASLP_2020_3037487 crossref_primary_10_1007_s00158_018_2169_y crossref_primary_10_1186_s13059_019_1665_8 crossref_primary_10_1016_j_ins_2020_02_050 crossref_primary_10_1177_14759217211062099 crossref_primary_10_1137_23M1544738 crossref_primary_10_1016_j_cja_2021_08_033 crossref_primary_10_1016_j_knosys_2022_110043 crossref_primary_10_1016_j_aei_2025_103280 crossref_primary_10_1155_2019_8458016 crossref_primary_10_7554_eLife_92595_3 crossref_primary_10_3390_s20215991 crossref_primary_10_1016_j_bspc_2024_107371 crossref_primary_10_1016_j_jhydrol_2023_130498 crossref_primary_10_1038_s41598_018_29725_8 crossref_primary_10_1080_01621459_2020_1811100 crossref_primary_10_1007_s42952_021_00147_z crossref_primary_10_1109_ACCESS_2022_3197603 crossref_primary_10_1111_jiec_13399 crossref_primary_10_1088_1674_1137_acf7b5 crossref_primary_10_1214_24_AOS2429 crossref_primary_10_1007_s11222_023_10210_w crossref_primary_10_1016_j_dsp_2025_105286 crossref_primary_10_1007_s11263_022_01621_9 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1061__ASCE_CP_1943_5487_0000805 crossref_primary_10_1109_TII_2022_3156965 crossref_primary_10_1016_j_compfluid_2024_106443 crossref_primary_10_1016_j_srs_2025_100264 crossref_primary_10_1007_s10845_025_02665_7 crossref_primary_10_1002_apj_3014 crossref_primary_10_1016_j_patrec_2022_10_024 crossref_primary_10_1016_j_ascom_2020_100424 crossref_primary_10_1017_apr_2020_72 crossref_primary_10_1017_jfm_2024_270 crossref_primary_10_1016_j_compag_2025_110560 crossref_primary_10_3390_a17010024 crossref_primary_10_1016_j_neuroimage_2021_118635 crossref_primary_10_1145_3729263 crossref_primary_10_1002_sam_11699 crossref_primary_10_1090_mcom_3906 crossref_primary_10_1088_1742_6596_2767_8_082001 crossref_primary_10_1016_j_ress_2023_109181 crossref_primary_10_1038_s41467_023_39257_z crossref_primary_10_1016_j_csda_2025_108146 crossref_primary_10_1109_TBME_2021_3103141 crossref_primary_10_1109_TITS_2023_3240185 crossref_primary_10_1007_s11634_023_00569_z crossref_primary_10_1109_TITS_2022_3171730 crossref_primary_10_2139_ssrn_3113288 crossref_primary_10_1016_j_neucom_2023_126553 crossref_primary_10_1080_10485252_2023_2219783 crossref_primary_10_1007_s11336_024_09955_8 crossref_primary_10_1038_s41592_023_01955_3 crossref_primary_10_1088_1361_6420_ad22e7 crossref_primary_10_1038_s41598_024_61687_y crossref_primary_10_1214_24_AOS2481 crossref_primary_10_3847_1538_4357_ac7a3c crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_3390_math10060898 crossref_primary_10_1016_j_knosys_2023_110313 crossref_primary_10_1080_00949655_2025_2538116 crossref_primary_10_1016_j_geoen_2025_214170 crossref_primary_10_1038_s41467_023_43317_9 crossref_primary_10_3390_app9102055 crossref_primary_10_1016_j_envsoft_2019_01_014 crossref_primary_10_1016_j_sigpro_2019_107413 crossref_primary_10_1007_s42952_023_00217_4 crossref_primary_10_1016_j_csda_2020_107012 crossref_primary_10_1002_sta4_310 crossref_primary_10_1016_j_joule_2021_06_005 crossref_primary_10_1080_01621459_2019_1691563 crossref_primary_10_1088_1742_5468_ab371f crossref_primary_10_3389_fmedt_2022_919046 crossref_primary_10_1063_5_0245365 crossref_primary_10_1371_journal_pcbi_1010591 crossref_primary_10_1016_j_cma_2024_117195 crossref_primary_10_1109_TEC_2025_3546347 crossref_primary_10_1162_neco_a_01108 crossref_primary_10_1016_j_neucom_2021_04_085 crossref_primary_10_1016_j_csbj_2021_08_006 crossref_primary_10_1016_j_csda_2018_08_025 crossref_primary_10_1007_s10114_025_3390_4 crossref_primary_10_1016_j_eswa_2023_121588 crossref_primary_10_1109_ACCESS_2024_3507773 crossref_primary_10_1007_s12046_022_01980_6 crossref_primary_10_1371_journal_pcbi_1008270 crossref_primary_10_3390_e22111263 crossref_primary_10_1016_j_cageo_2022_105056 crossref_primary_10_1016_j_compchemeng_2023_108181 crossref_primary_10_1109_TSIPN_2018_2889579 crossref_primary_10_1093_nargab_lqaf040 crossref_primary_10_1051_0004_6361_202451736 crossref_primary_10_1109_TNNLS_2021_3054407 crossref_primary_10_1214_23_STS915 crossref_primary_10_1007_s00180_020_01008_9 crossref_primary_10_1214_23_STS919 crossref_primary_10_1109_TII_2022_3158615 crossref_primary_10_1038_s43586_020_00001_2 crossref_primary_10_3390_fi16010008 crossref_primary_10_1088_1402_4896_adb52a crossref_primary_10_1093_gji_ggaf198 crossref_primary_10_3390_e22111272 crossref_primary_10_1007_s11222_020_09924_y crossref_primary_10_1109_TSP_2023_3326650 crossref_primary_10_1007_JHEP10_2020_206 crossref_primary_10_1016_j_heliyon_2024_e24188 crossref_primary_10_1088_1361_6420_ad2f63 crossref_primary_10_1017_asb_2024_7 crossref_primary_10_1111_biom_13074 crossref_primary_10_1002_sta4_685 crossref_primary_10_1007_s10182_018_00334_0 crossref_primary_10_1287_ijds_2022_0018 crossref_primary_10_1016_j_cognition_2020_104370 crossref_primary_10_1016_j_cviu_2020_102920 crossref_primary_10_1109_JSTSP_2019_2913330 crossref_primary_10_1016_j_neucom_2025_130281 crossref_primary_10_1016_j_geoen_2023_212154 crossref_primary_10_1109_TBME_2023_3241957 crossref_primary_10_1109_TCYB_2021_3107292 crossref_primary_10_1108_ECAM_12_2022_1197 crossref_primary_10_1088_1741_2552_ace932 crossref_primary_10_3390_math11153345 crossref_primary_10_1007_s11222_021_10069_9 crossref_primary_10_1109_TIP_2025_3564829 crossref_primary_10_1016_j_nima_2025_170281 crossref_primary_10_1080_01621459_2023_2169150 crossref_primary_10_1093_gji_ggaf176 crossref_primary_10_1093_ismeco_ycaf062 crossref_primary_10_1016_j_ijbiomac_2023_127884 crossref_primary_10_1073_pnas_2114021119 crossref_primary_10_1186_s13059_020_1950_6 crossref_primary_10_1109_TII_2023_3240591 crossref_primary_10_1109_TSP_2019_2954504 crossref_primary_10_1371_journal_pgen_1010539 crossref_primary_10_1109_TWC_2020_3028989 crossref_primary_10_1080_17421772_2025_2482071 crossref_primary_10_1145_3715876 crossref_primary_10_1007_s10208_025_09721_x crossref_primary_10_1016_j_jsv_2022_117227 crossref_primary_10_1007_s00285_024_02144_2 crossref_primary_10_1016_j_neucom_2025_131119 crossref_primary_10_1093_bib_bbaf132 crossref_primary_10_1145_3578932 crossref_primary_10_1109_TKDE_2021_3093350 crossref_primary_10_1080_10618600_2025_2527925 crossref_primary_10_1080_01621459_2025_2529025 crossref_primary_10_1093_nargab_lqae152 crossref_primary_10_1109_TWC_2023_3241178 crossref_primary_10_1088_1741_4326_ade8fd crossref_primary_10_3390_a15060204 crossref_primary_10_1016_j_cviu_2021_103244 crossref_primary_10_1109_TWC_2022_3191118 crossref_primary_10_1007_s11004_022_09994_w crossref_primary_10_1080_17499518_2025_2466174 crossref_primary_10_1002_gepi_22445 crossref_primary_10_1287_mksc_2019_1212 crossref_primary_10_1016_j_spasta_2023_100746 crossref_primary_10_3390_math8111942 crossref_primary_10_1002_bimj_202200095 crossref_primary_10_1038_s41598_023_40278_3 crossref_primary_10_1186_s13059_021_02329_8 crossref_primary_10_1016_j_jprocont_2024_103173 crossref_primary_10_1214_20_AOS1958 crossref_primary_10_1109_ACCESS_2020_2995641 crossref_primary_10_1016_j_neubiorev_2020_12_021 crossref_primary_10_1016_j_jeconom_2025_106072 crossref_primary_10_1016_j_celrep_2021_109992 crossref_primary_10_3390_en18184867 crossref_primary_10_1016_j_crmeth_2023_100581 crossref_primary_10_1016_j_sste_2019_100302 crossref_primary_10_1016_j_patrec_2020_07_023 crossref_primary_10_1109_TMECH_2021_3109344 crossref_primary_10_1016_j_drudis_2020_11_027 crossref_primary_10_1016_j_psep_2024_05_011 crossref_primary_10_1109_TG_2022_3186386 crossref_primary_10_1038_s41467_018_03402_w crossref_primary_10_3847_1538_4357_ac3a6b crossref_primary_10_1109_TPAMI_2020_3001433 crossref_primary_10_1109_TCST_2023_3240980 crossref_primary_10_1109_TSP_2022_3229633 crossref_primary_10_1016_j_knosys_2024_112741 crossref_primary_10_1051_0004_6361_202449447 crossref_primary_10_1088_1361_6501_ad5905 crossref_primary_10_1146_annurev_statistics_040722_053607 crossref_primary_10_1080_01621459_2022_2044827 crossref_primary_10_3390_app12063158 crossref_primary_10_1109_TKDE_2022_3199570 crossref_primary_10_1029_2022WR033149 crossref_primary_10_1080_10618600_2023_2262080 crossref_primary_10_1109_LSP_2021_3060316 crossref_primary_10_1109_TBME_2022_3222745 crossref_primary_10_1080_24725854_2021_2024925 crossref_primary_10_3390_electronics14101908 crossref_primary_10_1080_01621459_2023_2287773 crossref_primary_10_1109_TSMC_2025_3538854 crossref_primary_10_1016_j_neunet_2025_107956 crossref_primary_10_1109_TAFFC_2021_3064940 crossref_primary_10_1109_TSP_2017_2725226 crossref_primary_10_1007_s11004_023_10129_y crossref_primary_10_1016_j_jpowsour_2024_235359 crossref_primary_10_1111_2041_210X_13941 crossref_primary_10_3390_computation13060134 crossref_primary_10_1038_s41540_024_00386_w crossref_primary_10_1371_journal_pcbi_1011839 crossref_primary_10_1080_00401706_2019_1635532 crossref_primary_10_1016_j_cma_2022_114712 crossref_primary_10_1093_bioadv_vbaf055 crossref_primary_10_5194_ascmo_8_1_2022 crossref_primary_10_1145_3472621 crossref_primary_10_1051_jnwpu_20183650942 crossref_primary_10_1016_j_conengprac_2024_106005 crossref_primary_10_1214_22_BA1332 crossref_primary_10_3390_axioms13120849 crossref_primary_10_3390_vehicles3040042 crossref_primary_10_1177_20592043241291661 crossref_primary_10_1214_22_BA1329 crossref_primary_10_3390_electronics13244972 crossref_primary_10_1016_j_neucom_2024_127339 crossref_primary_10_1371_journal_pcbi_1007770 crossref_primary_10_1109_TSP_2021_3096804 crossref_primary_10_1109_TIM_2021_3130675 crossref_primary_10_1080_10618600_2021_1880921 crossref_primary_10_1016_j_apenergy_2023_120889 crossref_primary_10_1016_j_dsp_2020_102829 crossref_primary_10_1016_j_neucom_2025_130219 crossref_primary_10_3390_e25091310 crossref_primary_10_3390_math12203288 crossref_primary_10_1007_s40857_022_00277_2 crossref_primary_10_1109_TKDE_2024_3466291 crossref_primary_10_1109_JOE_2025_3538948 crossref_primary_10_1109_TCI_2025_3541934 crossref_primary_10_1093_erae_jbz033 crossref_primary_10_1109_ACCESS_2024_3417219 crossref_primary_10_1016_j_inffus_2024_102886 crossref_primary_10_1109_TAES_2023_3314703 crossref_primary_10_1016_j_ces_2024_120780 crossref_primary_10_1049_iet_ipr_2019_1029 crossref_primary_10_5194_wes_10_857_2025 crossref_primary_10_1109_ACCESS_2022_3218636 crossref_primary_10_1109_TCAD_2022_3215071 crossref_primary_10_1080_03610918_2025_2479848 crossref_primary_10_1109_TKDE_2021_3093773 crossref_primary_10_1007_s41237_020_00104_w crossref_primary_10_1177_1471082X20930894 crossref_primary_10_1016_j_ipm_2025_104336 crossref_primary_10_1007_s00338_019_01766_z crossref_primary_10_1145_3600231 crossref_primary_10_1148_ryai_2021210031 crossref_primary_10_3390_app8020300 crossref_primary_10_3389_fevo_2021_588292 crossref_primary_10_1007_s11424_022_2085_5 crossref_primary_10_1111_insr_12502 crossref_primary_10_1214_22_BA1313 crossref_primary_10_1109_TSP_2021_3093792 crossref_primary_10_1038_s41467_023_44363_z crossref_primary_10_1109_TKDE_2023_3326365 crossref_primary_10_1214_22_BA1309 crossref_primary_10_1111_2041_210X_14389 crossref_primary_10_1016_j_cma_2023_116304 crossref_primary_10_1007_s10489_020_02049_9 crossref_primary_10_1007_s11222_020_09928_8 crossref_primary_10_1016_j_cmpb_2024_108231 crossref_primary_10_1016_j_media_2020_101939 crossref_primary_10_3390_e23121673 crossref_primary_10_1109_TGRS_2023_3234527 crossref_primary_10_1109_TII_2022_3172995 crossref_primary_10_3390_app14041393 crossref_primary_10_1007_s10115_024_02172_w crossref_primary_10_1007_s11222_024_10430_8 crossref_primary_10_1109_JSEN_2024_3440829 crossref_primary_10_3390_su12072897 crossref_primary_10_1016_j_neucom_2023_127065 crossref_primary_10_3390_sym14061188 crossref_primary_10_1002_sim_10015 crossref_primary_10_1016_j_automatica_2023_110897 crossref_primary_10_1029_2025JB031129 crossref_primary_10_1080_01621459_2021_1887741 crossref_primary_10_1111_rssc_12339 crossref_primary_10_3390_s18124222 crossref_primary_10_5194_gmd_18_2609_2025 crossref_primary_10_1145_3748334 crossref_primary_10_1016_j_cej_2024_158667 crossref_primary_10_1016_j_cma_2021_113976 crossref_primary_10_1145_3527579_3527580 crossref_primary_10_3390_e23060683 crossref_primary_10_1109_TAP_2022_3211732 crossref_primary_10_1109_TCYB_2021_3125106 crossref_primary_10_1088_1361_6560_acc71d crossref_primary_10_1080_10618600_2024_2374962 crossref_primary_10_1007_s10278_023_00897_8 crossref_primary_10_1109_ACCESS_2024_3479913 crossref_primary_10_1109_TAES_2025_3559523 crossref_primary_10_1016_j_nimb_2019_07_005 crossref_primary_10_3390_e26080679 crossref_primary_10_1007_s10115_024_02315_z crossref_primary_10_1109_ACCESS_2019_2920264 crossref_primary_10_1016_j_knosys_2021_107335 crossref_primary_10_1016_j_scitotenv_2023_168067 crossref_primary_10_1214_19_STS710 crossref_primary_10_1002_bimj_202100105 crossref_primary_10_3390_e27070679 crossref_primary_10_1214_19_STS712 crossref_primary_10_3846_jcem_2021_14907 crossref_primary_10_1049_sil2_12129 crossref_primary_10_1007_s11634_025_00634_9 crossref_primary_10_1109_TSP_2021_3120512 crossref_primary_10_1186_s12859_024_05886_4 crossref_primary_10_1109_TASE_2020_3042158 crossref_primary_10_1109_TIM_2021_3054025 crossref_primary_10_1016_j_jeconom_2024_105741 crossref_primary_10_1007_s41237_022_00164_0 crossref_primary_10_1080_24725854_2021_1931572 crossref_primary_10_3390_e23060693 crossref_primary_10_1115_1_4066390 crossref_primary_10_1080_10618600_2025_2505725 crossref_primary_10_1109_JBHI_2020_2996300 crossref_primary_10_3389_fimmu_2023_1228873 crossref_primary_10_3390_bs10100161 crossref_primary_10_1016_j_jcp_2024_113670 crossref_primary_10_1007_s11222_025_10729_0 crossref_primary_10_1287_mksc_2021_1326 crossref_primary_10_1115_1_4066394 crossref_primary_10_3390_e26080697 crossref_primary_10_1016_j_nucengdes_2025_114433 crossref_primary_10_1063_5_0147316 crossref_primary_10_1007_s40192_022_00262_7 crossref_primary_10_1080_07350015_2024_2396956 crossref_primary_10_1016_j_engappai_2023_106270 crossref_primary_10_1088_2632_2153_acd5aa crossref_primary_10_1016_j_rse_2023_113718 crossref_primary_10_1016_j_media_2023_102889 crossref_primary_10_1140_epjds_s13688_025_00544_y crossref_primary_10_1177_20552076241234619 crossref_primary_10_1109_JSEN_2021_3112177 crossref_primary_10_1016_j_istruc_2023_03_017 crossref_primary_10_1038_s41598_021_88875_4 crossref_primary_10_1007_s11222_021_10021_x crossref_primary_10_1109_TIT_2025_3535923 crossref_primary_10_1093_bib_bbad358 crossref_primary_10_1093_bib_bbae689 crossref_primary_10_1016_j_imavis_2023_104897 crossref_primary_10_1080_00401706_2023_2238834 crossref_primary_10_1080_07350015_2024_2429468 crossref_primary_10_1177_1475921720921256 crossref_primary_10_1016_j_chemolab_2024_105088 crossref_primary_10_1016_j_inffus_2024_102417 crossref_primary_10_1360_SSM_2024_0100 crossref_primary_10_1371_journal_pcbi_1010902 crossref_primary_10_1016_j_ins_2021_06_020 crossref_primary_10_1177_1687814020936031 crossref_primary_10_1016_j_jbusres_2024_114719 crossref_primary_10_1177_17581559251334950 crossref_primary_10_1007_s10994_021_05971_2 crossref_primary_10_1016_j_rineng_2024_102504 crossref_primary_10_1190_geo2021_0766_1 crossref_primary_10_1177_09622802231158811 crossref_primary_10_3390_s24144585 crossref_primary_10_1093_nargab_lqaa028 crossref_primary_10_1088_1742_6596_1955_1_012062 crossref_primary_10_1145_3641859 crossref_primary_10_3390_s25185788 crossref_primary_10_1287_mksc_2022_1429 crossref_primary_10_1007_s13349_024_00879_6 crossref_primary_10_1007_s11749_022_00832_z crossref_primary_10_1109_TSG_2022_3208606 crossref_primary_10_2514_1_J059315 crossref_primary_10_1016_j_csda_2022_107596 crossref_primary_10_1007_s13171_018_0153_7 crossref_primary_10_1214_24_AOS2393 crossref_primary_10_1109_TMTT_2024_3518913 crossref_primary_10_3389_fninf_2024_1459970 crossref_primary_10_1016_j_plrev_2021_04_005 crossref_primary_10_3389_fbioe_2020_00349 crossref_primary_10_1111_1365_2745_70035 crossref_primary_10_1109_TWC_2024_3371703 crossref_primary_10_3390_info14100571 crossref_primary_10_1016_j_sigpro_2022_108692 crossref_primary_10_1109_ACCESS_2021_3110049 crossref_primary_10_3390_e23101306 crossref_primary_10_1016_j_jcp_2022_111454 crossref_primary_10_1038_s41598_025_96215_z crossref_primary_10_3389_frai_2020_509354 crossref_primary_10_1109_OJSP_2025_3585440 crossref_primary_10_1186_s42400_025_00364_7 crossref_primary_10_1038_s42003_021_02994_2 crossref_primary_10_1016_j_heliyon_2024_e36998 crossref_primary_10_1007_s00357_023_09452_0 crossref_primary_10_1109_TAI_2023_3268609 crossref_primary_10_1111_insr_12466 crossref_primary_10_1145_3749165 crossref_primary_10_1017_S0263574722001497 crossref_primary_10_1016_j_sigpro_2019_107339 crossref_primary_10_1109_TASLP_2020_3039390 crossref_primary_10_1088_1475_7516_2023_03_059 crossref_primary_10_1007_s10994_023_06382_1 crossref_primary_10_1371_journal_pone_0283548 crossref_primary_10_3390_biom13050767 crossref_primary_10_1109_TAFFC_2019_2955949 crossref_primary_10_1080_10618600_2023_2301072 crossref_primary_10_1016_j_sigpro_2019_107334 crossref_primary_10_1109_ACCESS_2021_3069990 crossref_primary_10_1109_ACCESS_2020_3001184 crossref_primary_10_1016_j_ins_2023_01_133 crossref_primary_10_1080_07350015_2024_2395423 crossref_primary_10_1109_TAI_2024_3432857 crossref_primary_10_1111_rssb_12388 crossref_primary_10_1111_rssb_12385 crossref_primary_10_1016_j_jcp_2022_111008 crossref_primary_10_3390_e24010055 crossref_primary_10_1016_j_cma_2023_116721 crossref_primary_10_1016_j_econlet_2020_109120 crossref_primary_10_1016_j_neucom_2023_01_069 crossref_primary_10_1002_sim_9619 crossref_primary_10_1080_03610926_2024_2370920 crossref_primary_10_1007_s10894_020_00258_1 crossref_primary_10_1007_s11242_024_02137_1 crossref_primary_10_1080_00295639_2022_2123203 crossref_primary_10_1007_s10237_024_01817_7 crossref_primary_10_1111_rssb_12399 crossref_primary_10_1007_s11222_025_10628_4 crossref_primary_10_1007_s11222_025_10606_w crossref_primary_10_1140_epjc_s10052_024_12473_7 crossref_primary_10_1016_j_cels_2020_05_006 crossref_primary_10_1016_j_cels_2020_05_007 crossref_primary_10_1080_10618600_2024_2319159 crossref_primary_10_1002_jae_3018 crossref_primary_10_1109_TMI_2022_3150853 crossref_primary_10_1007_s10539_020_09746_2 crossref_primary_10_1007_s00357_019_09351_3 crossref_primary_10_3390_math12081198 crossref_primary_10_1016_j_csda_2023_107836 crossref_primary_10_1680_jsmic_19_00022 crossref_primary_10_1016_j_asoc_2025_113903 crossref_primary_10_1016_j_compstruct_2023_117257 crossref_primary_10_26508_lsa_201900517 crossref_primary_10_1049_iet_ipr_2020_0496 crossref_primary_10_1080_01621459_2023_2296704 crossref_primary_10_1080_10618600_2018_1497511 crossref_primary_10_1016_j_eswa_2023_120542 crossref_primary_10_1080_10618600_2024_2319160 crossref_primary_10_1109_TNNLS_2024_3409379 crossref_primary_10_1093_mnras_stac596 crossref_primary_10_1016_j_cma_2022_115594 crossref_primary_10_1109_TKDE_2021_3079836 crossref_primary_10_1016_j_trc_2021_103326 crossref_primary_10_1007_s11280_019_00751_4 crossref_primary_10_1016_j_cma_2024_117493 crossref_primary_10_1080_07421222_2021_1990619 crossref_primary_10_1007_s10489_024_05595_8 crossref_primary_10_1007_s00180_022_01246_z crossref_primary_10_1016_j_patcog_2025_111416 crossref_primary_10_1016_j_anucene_2020_108046 crossref_primary_10_3389_fams_2024_1302825 crossref_primary_10_3390_cancers14153809 crossref_primary_10_3390_e23060727 crossref_primary_10_1002_cjs_11570 crossref_primary_10_1039_D5DD00018A crossref_primary_10_1080_00949655_2023_2277885 crossref_primary_10_1109_TITS_2021_3096943 crossref_primary_10_3389_fpubh_2020_00425 crossref_primary_10_1088_2632_2153_acc8b7 crossref_primary_10_1109_TRO_2024_3428428 crossref_primary_10_1214_24_AOAS2003 crossref_primary_10_1214_24_AOAS2004 crossref_primary_10_1016_j_jhydrol_2024_130627 crossref_primary_10_1785_0220240305 crossref_primary_10_1016_j_jcp_2024_113395 crossref_primary_10_1109_TAES_2020_3044109 crossref_primary_10_1007_s10844_023_00828_7 crossref_primary_10_1038_s41576_025_00869_4 crossref_primary_10_1214_23_BA1393 crossref_primary_10_1016_j_jag_2025_104759 crossref_primary_10_1007_s00477_022_02257_4 crossref_primary_10_1002_eng2_12669 crossref_primary_10_1007_s40295_025_00505_7 crossref_primary_10_1002_rnc_5916 crossref_primary_10_1186_s12874_024_02304_4 crossref_primary_10_1007_s11222_024_10392_x crossref_primary_10_2139_ssrn_4727171 crossref_primary_10_1109_TSIPN_2019_2914610 crossref_primary_10_1016_j_patcog_2022_109129 crossref_primary_10_1038_s43588_024_00683_8 crossref_primary_10_3390_axioms14060408 crossref_primary_10_1007_s00180_024_01516_y crossref_primary_10_1007_s11222_022_10189_w crossref_primary_10_1016_j_jfranklin_2025_107547 crossref_primary_10_1016_j_jksuci_2023_101883 crossref_primary_10_1177_1475921720904543 crossref_primary_10_1016_j_physa_2025_130536 crossref_primary_10_1088_1742_6596_2265_3_032070 crossref_primary_10_1111_2041_210X_13380 crossref_primary_10_1016_j_trc_2021_103347 crossref_primary_10_1016_j_ijhydene_2023_03_373 crossref_primary_10_1038_s41467_023_40141_z crossref_primary_10_1007_s10115_023_01955_x crossref_primary_10_1109_TAES_2024_3394464 crossref_primary_10_1029_2024JB029557 crossref_primary_10_1016_j_neucom_2020_07_135 crossref_primary_10_1080_01621459_2024_2392904 crossref_primary_10_1089_soro_2024_0044 crossref_primary_10_1007_s11222_022_10132_z crossref_primary_10_1002_qj_4913 crossref_primary_10_1515_sagmb_2018_0065 crossref_primary_10_1088_1742_5468_ab43d3 crossref_primary_10_1038_s42003_024_06504_y crossref_primary_10_1063_5_0039617 crossref_primary_10_1016_j_eswa_2025_128624 crossref_primary_10_1080_24725854_2023_2210629 crossref_primary_10_1080_00031305_2022_2164054 crossref_primary_10_1016_j_csl_2025_101806 crossref_primary_10_1109_TSIPN_2020_3016478 crossref_primary_10_1080_00207179_2023_2212814 crossref_primary_10_1002_qre_3220 crossref_primary_10_1016_j_cels_2023_12_002 crossref_primary_10_1051_0004_6361_202141000 crossref_primary_10_1080_10618600_2021_1935971 crossref_primary_10_1109_TSMC_2024_3427345 crossref_primary_10_3390_su16166892 crossref_primary_10_1002_rnc_6856 crossref_primary_10_1016_j_robot_2018_12_009 crossref_primary_10_1093_jrsssa_qnae105 crossref_primary_10_1049_joe_2019_0389 crossref_primary_10_1002_wics_70044 crossref_primary_10_1016_j_csda_2022_107506 crossref_primary_10_1002_wics_70045 crossref_primary_10_1016_j_artint_2018_12_005 crossref_primary_10_3390_en15072647 crossref_primary_10_1016_j_jcp_2019_05_053 crossref_primary_10_1029_2021JB022320 crossref_primary_10_1109_ACCESS_2025_3533878 crossref_primary_10_1109_TSP_2025_3554876 crossref_primary_10_1007_s11222_024_10535_0 crossref_primary_10_1016_j_eswa_2023_122771 crossref_primary_10_1109_JIOT_2024_3503616 crossref_primary_10_3390_a14030098 crossref_primary_10_1109_TITS_2022_3155381 crossref_primary_10_3389_fneur_2021_721491 crossref_primary_10_1080_10618600_2021_1923516 crossref_primary_10_1080_10618600_2024_2434181 crossref_primary_10_1109_MCI_2022_3155327 crossref_primary_10_1002_sam_11396 crossref_primary_10_1109_ACCESS_2022_3174860 crossref_primary_10_1088_1361_6420_ad847b crossref_primary_10_1103_PhysRevApplied_16_044057 crossref_primary_10_1007_s10922_022_09690_4 crossref_primary_10_1088_1757_899X_1292_1_012018 crossref_primary_10_1016_j_physa_2024_129691 crossref_primary_10_1093_jrsssb_qkad016 crossref_primary_10_1088_1361_6420_ad5eb4 crossref_primary_10_1190_geo2023_0737_1 crossref_primary_10_1016_j_anucene_2025_111418 crossref_primary_10_1080_03610926_2020_1749664 crossref_primary_10_1088_1741_2552_ac88a0 crossref_primary_10_1109_JOE_2022_3162023 crossref_primary_10_1109_TAFFC_2024_3405584 crossref_primary_10_2139_ssrn_4261182 crossref_primary_10_1016_j_knosys_2025_114116 crossref_primary_10_1016_j_ijhydene_2023_04_126 crossref_primary_10_1080_01621459_2020_1782222 crossref_primary_10_1093_biostatistics_kxac042 crossref_primary_10_3390_app10103413 crossref_primary_10_1109_TPAMI_2023_3234291 crossref_primary_10_1016_j_eswa_2025_128667 crossref_primary_10_1016_j_jcp_2019_05_027 crossref_primary_10_3390_e21111096 crossref_primary_10_1093_biomet_asy054 crossref_primary_10_1007_s42952_019_00001_3 crossref_primary_10_1214_21_STS834 crossref_primary_10_1214_21_STS840 crossref_primary_10_1016_j_neubiorev_2022_104649 crossref_primary_10_3390_econometrics13010002 crossref_primary_10_1038_s41592_023_01943_7 crossref_primary_10_3390_math12213319 crossref_primary_10_1016_j_ecosta_2025_01_001 crossref_primary_10_1016_j_neucom_2018_09_083 crossref_primary_10_1214_21_AOAS1540 crossref_primary_10_3390_e25020336 crossref_primary_10_1016_j_jcp_2019_05_015 crossref_primary_10_1016_j_cpc_2025_109730 crossref_primary_10_3389_fpsyg_2022_935419 crossref_primary_10_1080_10691898_2020_1848486 crossref_primary_10_1007_s13349_024_00848_z crossref_primary_10_1109_TII_2020_3043226 crossref_primary_10_3390_fi13020037 crossref_primary_10_3390_psych4010007 crossref_primary_10_3390_math12213311 crossref_primary_10_3390_computation9120146 crossref_primary_10_3390_electronics13030655 crossref_primary_10_1016_j_ijresmar_2020_04_005 crossref_primary_10_1002_wics_70005 crossref_primary_10_1016_j_meomic_2025_100046 crossref_primary_10_1063_5_0226735 crossref_primary_10_1109_TNNLS_2021_3129160 crossref_primary_10_1109_TPWRS_2023_3254909 crossref_primary_10_1162_neco_a_01236 crossref_primary_10_59277_PRA_SER_A_26_1_04 crossref_primary_10_1007_s00357_022_09417_9 crossref_primary_10_1038_s42256_019_0038_z crossref_primary_10_1109_TCAD_2024_3523426 crossref_primary_10_1109_TCOMM_2024_3388496 crossref_primary_10_1109_TAES_2021_3103582 crossref_primary_10_1007_s00466_019_01718_y crossref_primary_10_1016_j_joi_2024_101633 crossref_primary_10_1016_j_oceaneng_2025_122303 crossref_primary_10_1016_j_neuroimage_2020_117366 crossref_primary_10_1016_j_neucom_2019_08_019 crossref_primary_10_1080_01621459_2024_2395586 crossref_primary_10_1080_24725854_2023_2219468 crossref_primary_10_1137_23M1581807 crossref_primary_10_1007_s13042_018_0900_z crossref_primary_10_1080_23249935_2024_2318621 crossref_primary_10_1007_s12065_023_00900_9 crossref_primary_10_1088_1361_6501_aca496 crossref_primary_10_1093_comnet_cnac009 crossref_primary_10_1109_JSTARS_2018_2803198 crossref_primary_10_1007_s11222_021_10017_7 crossref_primary_10_1016_j_sigpro_2020_107624 crossref_primary_10_1016_j_csda_2017_12_004 crossref_primary_10_1016_j_fsigen_2023_102890 crossref_primary_10_1016_j_jcp_2022_111438 crossref_primary_10_1080_07350015_2021_1933502 crossref_primary_10_1103_PhysRevD_111_063065 crossref_primary_10_1088_1361_6420_abc962 crossref_primary_10_1109_TSP_2022_3158588 crossref_primary_10_1016_j_jcp_2025_114127 crossref_primary_10_1016_j_jbi_2018_08_011 crossref_primary_10_1007_s10959_024_01349_x crossref_primary_10_1016_j_apm_2025_116224 crossref_primary_10_1109_TSG_2019_2931160 crossref_primary_10_1016_j_compchemeng_2020_107123 crossref_primary_10_1108_DTA_06_2021_0160 crossref_primary_10_1109_TASE_2024_3510432 crossref_primary_10_1016_j_radphyschem_2024_112389 crossref_primary_10_1371_journal_pcbi_1010651 crossref_primary_10_1080_01621459_2017_1388244 crossref_primary_10_1016_j_neucom_2025_131268 crossref_primary_10_1371_journal_pcbi_1011509 crossref_primary_10_1016_j_energy_2024_131375 crossref_primary_10_1093_bib_bbaf287 crossref_primary_10_1109_TCOMM_2019_2907623 crossref_primary_10_1162_neco_a_01686 crossref_primary_10_1016_j_inffus_2021_05_008 crossref_primary_10_3389_fpsyg_2025_1506320 crossref_primary_10_1109_TIP_2025_3551648 crossref_primary_10_3390_e24020301 crossref_primary_10_1017_pan_2025_10021 crossref_primary_10_1093_bib_bbaf283 crossref_primary_10_1016_j_cageo_2024_105622 crossref_primary_10_1063_4_0000269 crossref_primary_10_1002_andp_202500057 crossref_primary_10_1080_01621459_2021_2003201 crossref_primary_10_1038_s43586_022_00095_w crossref_primary_10_1111_rssc_12489 crossref_primary_10_1002_andp_202000508 crossref_primary_10_1016_j_ymssp_2023_110573 crossref_primary_10_1017_jfm_2025_10253 crossref_primary_10_1080_02664763_2025_2519139 crossref_primary_10_1007_s10479_025_06693_7 crossref_primary_10_1016_j_oceaneng_2023_116658 crossref_primary_10_1109_TSP_2025_3584248 crossref_primary_10_1016_j_jspi_2020_05_009 crossref_primary_10_1007_s11336_020_09739_w crossref_primary_10_1016_j_compstruct_2023_116815 crossref_primary_10_3390_modelling2010001 crossref_primary_10_2139_ssrn_3915874 crossref_primary_10_1016_j_aei_2024_102612 crossref_primary_10_1371_journal_pgen_1011519 crossref_primary_10_1073_pnas_2214414119 crossref_primary_10_1162_imag_a_00184 crossref_primary_10_1016_j_ymssp_2024_111713 crossref_primary_10_3847_1538_3881_acdcfb crossref_primary_10_1016_j_ipm_2024_103914 crossref_primary_10_3390_app12052571 crossref_primary_10_1002_sim_9164 crossref_primary_10_1016_j_eswa_2023_120042 crossref_primary_10_3390_sci7020054 crossref_primary_10_1109_TKDE_2021_3139469 crossref_primary_10_1016_j_spasta_2018_03_002 crossref_primary_10_1038_s41588_025_02262_7 crossref_primary_10_3390_app9204475 crossref_primary_10_1007_s11222_025_10730_7 crossref_primary_10_1007_s11222_025_10654_2 crossref_primary_10_1007_s13042_022_01579_7 crossref_primary_10_1109_ACCESS_2023_3306593 crossref_primary_10_1214_25_BA1542 crossref_primary_10_6339_21_JDS1018 crossref_primary_10_1016_j_quascirev_2018_10_032 crossref_primary_10_1016_j_jpdc_2018_12_008 crossref_primary_10_1016_j_ajhg_2025_07_016 crossref_primary_10_1128_msystems_00132_22 crossref_primary_10_3390_app15126418 crossref_primary_10_1109_LSP_2022_3167335 crossref_primary_10_1007_s10518_022_01485_x crossref_primary_10_1007_s11336_022_09884_4 crossref_primary_10_1109_ACCESS_2020_3033138 crossref_primary_10_3390_e26080707 crossref_primary_10_1016_j_marpolbul_2023_115098 crossref_primary_10_1093_biomet_asac026 crossref_primary_10_1093_gji_ggaf067 crossref_primary_10_1109_TIP_2022_3202092 crossref_primary_10_1109_LGRS_2021_3090743 crossref_primary_10_3390_s23020757 crossref_primary_10_1093_bib_bbad073 crossref_primary_10_1016_j_spasta_2022_100593 crossref_primary_10_1016_j_compstruc_2023_107163 crossref_primary_10_1214_25_BA1537 crossref_primary_10_1016_j_apenergy_2019_01_024 crossref_primary_10_1016_j_automatica_2024_111907 crossref_primary_10_1109_TAC_2025_3530878 crossref_primary_10_1214_25_BA1533 crossref_primary_10_1016_j_ecoinf_2023_102449 crossref_primary_10_1016_j_jcp_2021_110218 crossref_primary_10_1109_TIP_2018_2858553 crossref_primary_10_1016_j_est_2023_107443 crossref_primary_10_1016_j_geoen_2024_213615 crossref_primary_10_1162_artl_a_00416 crossref_primary_10_1109_TCYB_2021_3079906 crossref_primary_10_1016_j_ecoinf_2025_103097 crossref_primary_10_1016_j_triboint_2024_110219 crossref_primary_10_1162_neco_a_01642 crossref_primary_10_1016_j_trb_2022_01_005 crossref_primary_10_1016_j_cam_2024_116454 crossref_primary_10_1162_neco_a_01646 crossref_primary_10_1007_s10044_024_01325_5 crossref_primary_10_1016_j_sna_2024_116178 crossref_primary_10_1016_j_taml_2025_100609 crossref_primary_10_1109_TKDE_2022_3155408 crossref_primary_10_1029_2022MS003058 crossref_primary_10_1038_s41598_024_82406_7 crossref_primary_10_1080_10618600_2019_1609977 crossref_primary_10_1016_j_inffus_2025_103300 crossref_primary_10_1109_TGRS_2022_3201436 crossref_primary_10_6339_25_JDS1172 crossref_primary_10_1162_neco_a_01630 crossref_primary_10_3390_electronics14142780 crossref_primary_10_1109_JSAC_2022_3143234 crossref_primary_10_1016_j_compstruc_2024_107462 crossref_primary_10_1103_PhysRevC_110_054609 crossref_primary_10_1016_j_jprocont_2023_02_004 crossref_primary_10_1109_TIP_2023_3318953 crossref_primary_10_1177_14759217241260254 crossref_primary_10_1029_2021WR029772 crossref_primary_10_1029_2024MS004547 crossref_primary_10_1016_j_ijfatigue_2023_107734 crossref_primary_10_1109_JOE_2023_3252624 crossref_primary_10_1137_21M1427541 crossref_primary_10_1021_acs_iecr_5c00077 crossref_primary_10_1016_j_eswa_2025_128165 crossref_primary_10_15252_msb_20188557 crossref_primary_10_1103_PhysRevA_98_022330 crossref_primary_10_1109_TGRS_2023_3333962 crossref_primary_10_1002_nme_7207 crossref_primary_10_3390_s24103143 crossref_primary_10_1007_s10489_023_04488_6 crossref_primary_10_1093_bioadv_vbae082 crossref_primary_10_1109_TNNLS_2021_3111824 crossref_primary_10_1109_TBDATA_2021_3131707 crossref_primary_10_1002_bimj_70023 crossref_primary_10_1007_s40471_019_00205_5 crossref_primary_10_1016_j_ecosta_2021_12_002 crossref_primary_10_1002_aic_17753 crossref_primary_10_1093_bioadv_vbae086 crossref_primary_10_1214_22_AAP1874 crossref_primary_10_1080_13658816_2023_2229894 crossref_primary_10_1080_2150704X_2021_1884916 crossref_primary_10_1109_LGRS_2024_3416343 crossref_primary_10_3390_math10030463 crossref_primary_10_1093_jrsssc_qlae006 crossref_primary_10_3390_e27010062 crossref_primary_10_1038_s41467_024_45227_w crossref_primary_10_1016_j_ymssp_2021_108530 crossref_primary_10_12677_SA_2023_122030 crossref_primary_10_1038_s41524_025_01743_x crossref_primary_10_2478_jos_2023_0005 crossref_primary_10_2514_1_J064617 crossref_primary_10_1109_TMC_2025_3551315 crossref_primary_10_1007_s11030_024_10942_5 crossref_primary_10_1137_23M1545379 crossref_primary_10_1109_ACCESS_2024_3443646 crossref_primary_10_1115_1_4065378 crossref_primary_10_1080_02664763_2023_2172143 crossref_primary_10_1016_j_ijforecast_2023_05_002 crossref_primary_10_1016_j_inffus_2023_102215 crossref_primary_10_1109_ACCESS_2019_2943249 crossref_primary_10_1016_j_artmed_2019_101783 crossref_primary_10_1162_imag_a_00132 crossref_primary_10_1109_ACCESS_2025_3581151 crossref_primary_10_1016_j_jcp_2023_112100 crossref_primary_10_1109_TPAMI_2022_3160539 crossref_primary_10_1109_TVLSI_2021_3077408 crossref_primary_10_1007_s11129_021_09241_2 crossref_primary_10_1007_s00330_025_11525_0 crossref_primary_10_1214_24_STS936 crossref_primary_10_1088_1742_5468_ab39d9 crossref_primary_10_1111_biom_13580 crossref_primary_10_1287_mksc_2019_1162 crossref_primary_10_1016_j_ecolind_2024_111828 crossref_primary_10_1002_hbm_70179 crossref_primary_10_3390_en14144235 crossref_primary_10_1007_s11336_024_09984_3 crossref_primary_10_1016_j_cma_2023_116682 crossref_primary_10_1103_PhysRevResearch_2_023266 crossref_primary_10_1109_TMI_2025_3528402 crossref_primary_10_1016_j_asoc_2021_107776 crossref_primary_10_1093_bib_bbaf223 crossref_primary_10_1016_j_eswa_2024_124315 crossref_primary_10_1145_3450963 crossref_primary_10_1002_nme_7648 crossref_primary_10_1007_s10015_025_01030_4 crossref_primary_10_1088_1742_6596_2362_1_012005 crossref_primary_10_1093_jrsssc_qlae014 crossref_primary_10_1177_01423312211060576 crossref_primary_10_1007_s11634_024_00582_w crossref_primary_10_1016_j_trb_2019_12_001 crossref_primary_10_1080_00207179_2022_2029945 crossref_primary_10_1186_s12859_023_05219_x crossref_primary_10_1109_JSTARS_2021_3119419 crossref_primary_10_1080_10618600_2021_1984929 crossref_primary_10_1016_j_inffus_2018_12_008 crossref_primary_10_1080_00031305_2023_2232006 crossref_primary_10_1016_j_eswa_2024_123460 crossref_primary_10_1093_gji_ggaf040 crossref_primary_10_1016_j_cma_2024_117423 crossref_primary_10_1080_10618600_2022_2099403 crossref_primary_10_1016_j_cma_2023_116214 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024054008 crossref_primary_10_1007_s11222_023_10225_3 crossref_primary_10_3389_fnano_2022_1021943 crossref_primary_10_1109_TNNLS_2021_3105570 crossref_primary_10_1002_widm_1450 crossref_primary_10_1007_s11222_023_10238_y crossref_primary_10_1111_rssc_12454 crossref_primary_10_1146_annurev_statistics_031219_041131 crossref_primary_10_1080_10618600_2024_2356173 crossref_primary_10_1109_TCYB_2022_3230048 crossref_primary_10_2139_ssrn_3923075 crossref_primary_10_1007_s12021_020_09472_w crossref_primary_10_1016_j_cma_2023_116207 crossref_primary_10_1016_j_softx_2025_102187 crossref_primary_10_1016_j_sigpro_2025_110116 crossref_primary_10_1109_JSAC_2022_3191346 crossref_primary_10_1016_j_neuroimage_2020_116839 crossref_primary_10_1093_jrsssc_qlad102 crossref_primary_10_1115_1_4066266 crossref_primary_10_1093_jrsssc_qlad100 crossref_primary_10_1098_rsos_221414 crossref_primary_10_1007_s42113_024_00228_2 crossref_primary_10_1021_acs_est_5c00841 crossref_primary_10_1109_TIM_2021_3067242 crossref_primary_10_1007_s11082_023_06244_z crossref_primary_10_1111_bmsp_12219 crossref_primary_10_1109_TSP_2019_2907265 crossref_primary_10_3390_app121910078 crossref_primary_10_1007_s11222_023_10327_y crossref_primary_10_1016_j_ajhg_2019_05_018 crossref_primary_10_1038_s41561_019_0353_3 crossref_primary_10_3982_QE1825 crossref_primary_10_1145_3377850 crossref_primary_10_1017_dce_2025_8 crossref_primary_10_1111_anzs_12257 crossref_primary_10_1098_rsos_231697 crossref_primary_10_1111_anzs_12265 crossref_primary_10_3390_e22050513 crossref_primary_10_1109_TCSVT_2023_3238804 crossref_primary_10_1093_mnras_stab320 crossref_primary_10_3390_app9122551 crossref_primary_10_1016_j_commatsci_2022_111590 crossref_primary_10_3390_e26010063 crossref_primary_10_1109_TIE_2019_2907440 crossref_primary_10_1145_3688573 crossref_primary_10_1007_s12559_022_10069_5 crossref_primary_10_1109_TNNLS_2023_3339470 crossref_primary_10_1016_j_measen_2021_100365 crossref_primary_10_1111_bmsp_12234 crossref_primary_10_1002_env_2683 crossref_primary_10_1111_rssb_12476 crossref_primary_10_1038_s41592_024_02415_2 crossref_primary_10_1002_eqe_3877 crossref_primary_10_1093_mnras_stac3727 crossref_primary_10_1089_big_2022_0281 crossref_primary_10_1177_0081175020967392 crossref_primary_10_1371_journal_pone_0247795 crossref_primary_10_2139_ssrn_5368329 crossref_primary_10_1002_sim_9705 crossref_primary_10_1140_epjc_s10052_025_14091_3 crossref_primary_10_1007_s10035_021_01137_y crossref_primary_10_1088_1361_6420_ab15a3 crossref_primary_10_1109_JIOT_2025_3545739 crossref_primary_10_1016_j_neunet_2023_04_001 crossref_primary_10_1016_j_neuroimage_2020_117226 crossref_primary_10_1017_S0140525X21002351 crossref_primary_10_1016_j_trc_2024_104585 crossref_primary_10_1029_2023JB027789 crossref_primary_10_1103_PhysRevD_111_062003 crossref_primary_10_3390_rs10030369 crossref_primary_10_1080_10618600_2025_2505018 crossref_primary_10_1016_j_ifacol_2021_08_448 crossref_primary_10_1016_j_csda_2022_107474 crossref_primary_10_1371_journal_pcbi_1006707 crossref_primary_10_1016_j_jeconom_2022_06_004 crossref_primary_10_1109_TIP_2022_3224322 crossref_primary_10_1016_j_neunet_2024_107075 crossref_primary_10_1121_10_0005517 crossref_primary_10_1007_s11222_021_10018_6 crossref_primary_10_1038_s41587_024_02173_8 crossref_primary_10_1146_annurev_statistics_033021_111803 crossref_primary_10_1016_j_csda_2023_107763 crossref_primary_10_1109_TRO_2021_3060335 crossref_primary_10_1109_ACCESS_2021_3091328 crossref_primary_10_1002_bimj_202300060 crossref_primary_10_3390_forecast7020022 crossref_primary_10_1016_j_patcog_2021_108073 crossref_primary_10_1016_j_neunet_2025_107363 crossref_primary_10_1016_j_knosys_2021_108076 crossref_primary_10_3390_aerospace6110117 crossref_primary_10_1007_s10472_025_09966_w crossref_primary_10_1088_1741_2552_ad4f19 crossref_primary_10_1111_sjos_70012 crossref_primary_10_1109_TRO_2025_3600155 crossref_primary_10_1016_j_ijar_2018_11_002 crossref_primary_10_1016_j_knosys_2025_113798 crossref_primary_10_1109_TCBB_2023_3297388 crossref_primary_10_1016_j_jhydrol_2021_126888 crossref_primary_10_1016_j_csda_2021_107179 crossref_primary_10_1007_s11135_022_01460_3 crossref_primary_10_1088_1741_2552_ad038d crossref_primary_10_1038_s41467_024_54931_6 crossref_primary_10_1109_TIP_2018_2877939 crossref_primary_10_1007_s12559_018_9587_4 crossref_primary_10_3390_jimaging11020066 crossref_primary_10_1016_j_ajhg_2019_06_002 crossref_primary_10_1088_1742_6596_2762_1_012075 crossref_primary_10_1190_geo2024_0774_1 crossref_primary_10_1016_j_knosys_2020_105990 crossref_primary_10_1038_s41598_025_87641_0 crossref_primary_10_1186_s40537_019_0188_1 crossref_primary_10_1002_adfm_202307675 crossref_primary_10_1007_s10928_024_09931_w crossref_primary_10_1007_s11203_024_09312_7 crossref_primary_10_1007_s10462_022_10178_5 crossref_primary_10_1038_s41562_021_01177_7 crossref_primary_10_1093_jrsssb_qkad164 crossref_primary_10_1016_j_cam_2023_115659 crossref_primary_10_1007_s11222_021_10009_7 crossref_primary_10_1016_j_automatica_2021_109827 crossref_primary_10_1109_TCYB_2021_3106660 crossref_primary_10_1021_acs_jctc_5c00243 crossref_primary_10_1109_TSP_2022_3224642 crossref_primary_10_1371_journal_pone_0281669 crossref_primary_10_1093_biostatistics_kxab021 crossref_primary_10_1016_j_sigpro_2021_108034 crossref_primary_10_1007_s00180_024_01470_9 crossref_primary_10_1093_bib_bbab443 crossref_primary_10_1109_JSAC_2024_3431521 crossref_primary_10_1186_s13059_022_02657_3 crossref_primary_10_1061__ASCE_WR_1943_5452_0001007 crossref_primary_10_1109_LRA_2023_3256134 crossref_primary_10_1093_biostatistics_kxab011 crossref_primary_10_1109_JSAC_2023_3288252 crossref_primary_10_1016_j_patcog_2025_112410 crossref_primary_10_1016_j_kscej_2024_100139 crossref_primary_10_1109_TAC_2024_3524270 crossref_primary_10_1109_TNNLS_2024_3436850 crossref_primary_10_1080_10618600_2025_2484011 crossref_primary_10_1007_s11634_021_00440_z crossref_primary_10_3897_rio_7_e63850 crossref_primary_10_1039_D4MH00432A crossref_primary_10_1016_j_engstruct_2022_115139 crossref_primary_10_1109_TSP_2020_3023823 crossref_primary_10_1098_rsta_2024_0324 crossref_primary_10_1016_j_ijresmar_2024_11_002 crossref_primary_10_3233_JIFS_211471 crossref_primary_10_1002_cjs_11668 crossref_primary_10_1109_TED_2024_3378223 crossref_primary_10_3390_e23010123 crossref_primary_10_7554_eLife_68046 crossref_primary_10_1016_j_ifacol_2022_11_279 crossref_primary_10_1016_j_ejmech_2024_116735 crossref_primary_10_1016_j_neucom_2025_130910 crossref_primary_10_1109_TAES_2024_3491053 crossref_primary_10_1007_s11263_025_02527_y crossref_primary_10_1007_s11222_021_10062_2 crossref_primary_10_1016_j_cma_2024_117359 crossref_primary_10_1137_20M1323151 crossref_primary_10_1016_j_neucom_2023_126726 crossref_primary_10_1111_rssc_12509 crossref_primary_10_1080_21680566_2023_2231159 crossref_primary_10_1017_dce_2024_51 crossref_primary_10_1098_rsos_190139 crossref_primary_10_1007_s00158_023_03610_z crossref_primary_10_1038_s41386_020_0767_z crossref_primary_10_1016_j_csda_2019_02_004 crossref_primary_10_1016_j_comnet_2021_108399 crossref_primary_10_1109_TNNLS_2021_3116943 crossref_primary_10_1007_s40747_021_00428_4 crossref_primary_10_1111_1755_0998_13128 crossref_primary_10_1109_TMM_2021_3120537 crossref_primary_10_1109_TASLP_2018_2813011 crossref_primary_10_1146_annurev_statistics_040220_112019 crossref_primary_10_1109_TPAMI_2024_3489030 crossref_primary_10_3390_s22145408 crossref_primary_10_1088_2632_2153_ad9a39 crossref_primary_10_1038_s42256_022_00460_0 crossref_primary_10_1057_s41272_021_00311_4 crossref_primary_10_1186_s13059_019_1645_z crossref_primary_10_1109_TCBB_2022_3144418 crossref_primary_10_1186_s12890_024_03210_7 crossref_primary_10_1109_TPAMI_2018_2889774 crossref_primary_10_1109_TRO_2024_3370026 crossref_primary_10_1038_s41467_022_35418_8 crossref_primary_10_1007_s10707_023_00504_6 crossref_primary_10_1002_adom_202302564 crossref_primary_10_1007_s10489_021_02382_7 crossref_primary_10_3390_en18143764 crossref_primary_10_1016_j_ijforecast_2021_05_001 crossref_primary_10_1016_j_apm_2018_04_013 crossref_primary_10_1016_j_ress_2024_110657 crossref_primary_10_1190_geo2019_0650_1 crossref_primary_10_1016_j_chemolab_2024_105201 crossref_primary_10_1007_s10994_025_06816_y crossref_primary_10_1038_s41598_024_83109_9 crossref_primary_10_1109_ACCESS_2023_3341690 crossref_primary_10_1080_10618600_2025_2530048 crossref_primary_10_1109_TPWRS_2024_3449032 crossref_primary_10_3389_fgene_2023_1178508 crossref_primary_10_1145_3464308 crossref_primary_10_1007_s10489_023_05178_z crossref_primary_10_1109_ACCESS_2021_3127448 crossref_primary_10_3390_su14042436 crossref_primary_10_1016_j_neunet_2024_106112 crossref_primary_10_3390_e24030423 crossref_primary_10_1103_PhysRevD_111_103012 crossref_primary_10_1007_s00180_024_01533_x crossref_primary_10_1016_j_apenergy_2022_119711 crossref_primary_10_1109_ACCESS_2021_3087697 crossref_primary_10_3390_math12070995 crossref_primary_10_1093_sysbio_syaf047 crossref_primary_10_1109_TIM_2022_3193719 crossref_primary_10_1145_3577032 crossref_primary_10_3389_fpsyt_2022_1100266 crossref_primary_10_1080_00401706_2025_2560344 crossref_primary_10_1002_for_2955 crossref_primary_10_3390_electronics13153073 crossref_primary_10_1039_D1SC07210B crossref_primary_10_1080_07350015_2022_2139267 crossref_primary_10_1002_bimj_201900371 crossref_primary_10_1080_03610918_2020_1743858 crossref_primary_10_1016_j_ijrefrig_2024_05_018 crossref_primary_10_1109_TAES_2022_3213634 crossref_primary_10_1080_1206212X_2024_2400148 crossref_primary_10_1214_21_AOAS1478 crossref_primary_10_1016_j_ymssp_2025_112394 crossref_primary_10_1016_j_csda_2024_108094 crossref_primary_10_1002_sam_11459 crossref_primary_10_1137_19M1267246 crossref_primary_10_1029_2020WR029339 crossref_primary_10_1038_s41598_021_84854_x crossref_primary_10_1103_PhysRevD_111_086013 crossref_primary_10_1016_j_ifacol_2021_08_406 crossref_primary_10_1080_01621459_2019_1585253 crossref_primary_10_1016_j_compchemeng_2024_108659 crossref_primary_10_1016_j_ress_2025_110962 crossref_primary_10_1109_LCOMM_2019_2912382 crossref_primary_10_1109_TVT_2023_3313909 crossref_primary_10_1007_s13042_025_02780_0 crossref_primary_10_1080_10618600_2021_1882467 crossref_primary_10_1016_j_cageo_2022_105263 crossref_primary_10_1101_gr_276813_122 crossref_primary_10_1214_20_AOP1443 crossref_primary_10_3390_s22093372 crossref_primary_10_1093_jrsssa_qnac004 crossref_primary_10_1016_j_trc_2018_10_017 crossref_primary_10_3390_app12094482 crossref_primary_10_1007_s11042_024_19361_y crossref_primary_10_1007_s40687_023_00395_x crossref_primary_10_1038_s41467_017_00470_2 crossref_primary_10_1080_00295639_2025_2528506 crossref_primary_10_1177_0309524X231206723 crossref_primary_10_1016_j_ins_2023_118975 crossref_primary_10_1016_j_ress_2023_109392 crossref_primary_10_1162_neco_a_01354 crossref_primary_10_1145_3299871 crossref_primary_10_1162_neco_a_01357 crossref_primary_10_1016_j_neuroimage_2019_03_042 crossref_primary_10_1109_ACCESS_2024_3483839 crossref_primary_10_3390_jimaging8040083 crossref_primary_10_1109_LRA_2024_3371260 crossref_primary_10_1137_22M1506122 crossref_primary_10_1038_s41598_021_91035_3 crossref_primary_10_1109_TIE_2024_3440496 crossref_primary_10_1002_sam_11477 crossref_primary_10_1016_j_anucene_2025_111502 crossref_primary_10_3390_risks10030054 crossref_primary_10_1016_j_jclepro_2022_133201 crossref_primary_10_1137_23M1618922 crossref_primary_10_3390_computers13080214 crossref_primary_10_1214_21_AOAS1441 crossref_primary_10_3390_en14175556 crossref_primary_10_1088_1741_2552_ab5d5c crossref_primary_10_1016_j_engappai_2022_105685 crossref_primary_10_1080_01621459_2025_2498088 crossref_primary_10_1103_xk1z_fxnm crossref_primary_10_3390_w15203600 crossref_primary_10_1016_j_compstruc_2022_106742 crossref_primary_10_1109_TPAMI_2023_3305381 crossref_primary_10_1109_TNNLS_2020_3027761 crossref_primary_10_1007_s10618_022_00849_w crossref_primary_10_1109_ACCESS_2020_3027064 crossref_primary_10_1080_10618600_2022_2107532 crossref_primary_10_1016_j_ress_2023_109393 crossref_primary_10_1080_29979676_2025_2497555 crossref_primary_10_1051_0004_6361_202142262 crossref_primary_10_1364_AO_461288 crossref_primary_10_1016_j_cageo_2022_105292 crossref_primary_10_1145_3451528 crossref_primary_10_1177_14759217221117478 crossref_primary_10_3390_s18103563 crossref_primary_10_1109_TGRS_2025_3566417 crossref_primary_10_1080_10803548_2025_2482317 crossref_primary_10_1109_ACCESS_2025_3592797 crossref_primary_10_1109_TASE_2022_3160420 crossref_primary_10_1145_3656432 crossref_primary_10_1016_j_chemolab_2022_104616 crossref_primary_10_1109_TIE_2017_2786253 crossref_primary_10_1109_TGRS_2021_3134198 crossref_primary_10_1016_j_neunet_2023_08_029 crossref_primary_10_1109_TCOMM_2024_3386577 crossref_primary_10_1214_22_STS876 crossref_primary_10_1016_j_jcp_2022_111902 crossref_primary_10_1016_j_ymssp_2023_110446 crossref_primary_10_1016_j_rsase_2025_101670 crossref_primary_10_1109_LCSYS_2020_3005429 crossref_primary_10_3390_e24030361 crossref_primary_10_1016_j_robot_2020_103449 crossref_primary_10_1080_10618600_2023_2252023 crossref_primary_10_1109_TNNLS_2020_3027773 crossref_primary_10_1029_2022JB024098 crossref_primary_10_1111_bmsp_12308 crossref_primary_10_1016_j_knosys_2019_04_009 crossref_primary_10_1109_TMM_2022_3232022 crossref_primary_10_1016_j_neubiorev_2021_06_016 crossref_primary_10_1080_01621459_2023_2260053 crossref_primary_10_1214_22_STS875 crossref_primary_10_1007_s11222_025_10668_w crossref_primary_10_1016_j_specom_2024_103092 crossref_primary_10_1051_meca_2023027 crossref_primary_10_1214_22_STS867 crossref_primary_10_3390_e27020143 crossref_primary_10_1186_s13059_025_03682_8 crossref_primary_10_1016_j_etran_2023_100230 crossref_primary_10_1016_j_chemolab_2020_104071 crossref_primary_10_1016_j_is_2020_101582 crossref_primary_10_1038_s41467_020_15378_7 crossref_primary_10_1016_j_patcog_2023_110113 crossref_primary_10_1109_TCSVT_2023_3292285 crossref_primary_10_1080_10618600_2025_2490264 crossref_primary_10_1162_neco_a_01315 crossref_primary_10_1109_TR_2025_3528256 crossref_primary_10_1038_s41598_022_18874_6 crossref_primary_10_1190_geo2023_0669_1 crossref_primary_10_1016_j_knosys_2024_112942 crossref_primary_10_1109_TBCAS_2019_2957087 crossref_primary_10_1109_JSYST_2021_3083103 crossref_primary_10_3390_e25010142 crossref_primary_10_1007_s11222_020_09944_8 crossref_primary_10_1146_annurev_statistics_033121_110254 crossref_primary_10_1111_jedm_12378 crossref_primary_10_1038_s41593_022_01165_8 crossref_primary_10_1109_TSMC_2023_3252079 crossref_primary_10_3847_1538_4357_addd1c crossref_primary_10_1016_j_jcp_2019_108997 crossref_primary_10_1016_j_neucom_2025_131364 crossref_primary_10_1016_j_anucene_2023_109813 crossref_primary_10_1371_journal_pone_0216129 crossref_primary_10_1016_j_engappai_2020_103700 crossref_primary_10_1016_j_ijforecast_2024_05_005 crossref_primary_10_1214_22_STS853 crossref_primary_10_1080_01621459_2018_1473776 crossref_primary_10_1080_10618600_2022_2036614 crossref_primary_10_1111_tops_12704 crossref_primary_10_2139_ssrn_3774254 crossref_primary_10_1038_s41592_023_01909_9 crossref_primary_10_1016_j_knosys_2024_111669 crossref_primary_10_1016_j_compchemeng_2021_107322 crossref_primary_10_1007_s00245_025_10299_7 crossref_primary_10_1016_j_ecoinf_2024_102853 crossref_primary_10_1371_journal_pcbi_1009746 crossref_primary_10_1093_jrsssc_qlad075 crossref_primary_10_1007_s11222_025_10709_4 crossref_primary_10_1080_10618600_2025_2510494 crossref_primary_10_1109_TCE_2024_3464566 crossref_primary_10_1016_j_egyai_2025_100549 crossref_primary_10_3390_electronics14173343 crossref_primary_10_1016_j_knosys_2022_110183 crossref_primary_10_1007_s10791_021_09397_1 crossref_primary_10_1016_j_geoen_2024_212640 crossref_primary_10_3847_1538_3881_ab2390 crossref_primary_10_1109_TPAMI_2022_3153225 crossref_primary_10_1016_j_jhydrol_2021_127221 crossref_primary_10_1016_j_knosys_2020_106341 crossref_primary_10_1109_TCSVT_2024_3435858 crossref_primary_10_1109_TMM_2020_2984091 crossref_primary_10_1088_1681_7575_abc97b crossref_primary_10_3390_pr13030861 crossref_primary_10_1007_s11269_025_04176_9 crossref_primary_10_1080_10618600_2024_2341899 crossref_primary_10_1111_coin_12641 crossref_primary_10_1016_j_jcp_2024_112982 crossref_primary_10_1109_TCDS_2024_3404061 crossref_primary_10_1080_03610926_2020_1846747 crossref_primary_10_1088_2632_2153_ab8241 crossref_primary_10_3758_s13428_024_02589_9 crossref_primary_10_1093_pnasnexus_pgaf005 crossref_primary_10_1016_j_sigpro_2021_107994 crossref_primary_10_1287_isre_2024_1071 crossref_primary_10_1016_j_engappai_2022_105736 crossref_primary_10_1109_TAES_2019_2941103 crossref_primary_10_1016_j_cam_2023_115190 crossref_primary_10_1088_1361_6420_acc129 crossref_primary_10_1109_JAS_2021_1004108 crossref_primary_10_1109_LSP_2022_3165466 crossref_primary_10_1080_07350015_2020_1802285 crossref_primary_10_1111_deci_12660 crossref_primary_10_1016_j_jmp_2022_102728 crossref_primary_10_1038_s41598_023_41318_8 crossref_primary_10_1109_TSP_2022_3159029 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126618 crossref_primary_10_1016_j_comnet_2025_111436 crossref_primary_10_1002_qj_4481 crossref_primary_10_1093_jrsssc_qlad085 crossref_primary_10_1093_erae_jbae016 crossref_primary_10_1080_01621459_2018_1518235 crossref_primary_10_1214_18_BA1108 crossref_primary_10_1371_journal_pcbi_1008435 crossref_primary_10_1016_j_neuron_2021_12_019 crossref_primary_10_1190_tle44080620_1 crossref_primary_10_1088_2632_2153_ace2aa crossref_primary_10_1016_j_combustflame_2020_06_033 crossref_primary_10_1109_TASLP_2021_3130980 crossref_primary_10_25300_MISQ_2022_16526 crossref_primary_10_1016_j_cma_2024_117342 crossref_primary_10_1214_21_BA1293 crossref_primary_10_1093_mnras_staa1412 crossref_primary_10_1016_j_jmp_2022_102712 crossref_primary_10_1088_1751_8121_ab7f65 crossref_primary_10_1038_s41746_024_01244_z crossref_primary_10_1137_24M1642202 crossref_primary_10_1109_TSP_2021_3095711 crossref_primary_10_3390_app15010272 crossref_primary_10_1016_j_neunet_2023_02_005 crossref_primary_10_3389_fnbot_2021_752752 crossref_primary_10_3390_genes10010057 crossref_primary_10_1093_jrsssc_qlad029 crossref_primary_10_1109_TITS_2024_3510515 crossref_primary_10_1016_j_ress_2025_111339 crossref_primary_10_1080_10618600_2025_2549110 crossref_primary_10_1016_j_ress_2025_111337 crossref_primary_10_1098_rsta_2024_0221 crossref_primary_10_1109_TGRS_2022_3152516 crossref_primary_10_1109_TITS_2025_3563584 crossref_primary_10_1016_j_jcp_2024_113006 crossref_primary_10_1109_ACCESS_2024_3451373 crossref_primary_10_1088_1361_6501_ad6624 crossref_primary_10_1007_s11263_025_02460_0 crossref_primary_10_3389_fnbeh_2022_962494 crossref_primary_10_3390_s23042051 crossref_primary_10_1109_LSP_2021_3113279 crossref_primary_10_3390_aerospace11110934 crossref_primary_10_1016_j_engappai_2024_109874 crossref_primary_10_1007_s11063_018_9841_5 crossref_primary_10_1007_s11749_018_0608_0 crossref_primary_10_1080_10618600_2024_2442000 crossref_primary_10_1080_01621459_2021_2023550 crossref_primary_10_1016_j_jcp_2022_111095 crossref_primary_10_1080_07350015_2024_2360592 crossref_primary_10_1109_ACCESS_2021_3120017 crossref_primary_10_3102_10769986231173594 crossref_primary_10_1093_bib_bbaf355 crossref_primary_10_3390_s23031390 crossref_primary_10_1016_j_dsp_2023_104021 crossref_primary_10_1111_jori_12436 crossref_primary_10_1140_epjc_s10052_024_13146_1 crossref_primary_10_1109_ACCESS_2023_3327820 crossref_primary_10_1007_s11634_020_00403_w crossref_primary_10_1016_j_patcog_2022_108751 crossref_primary_10_1016_j_ipm_2021_102864 crossref_primary_10_3390_s23208619 crossref_primary_10_1016_j_media_2022_102398 crossref_primary_10_1093_nar_gkaf246 crossref_primary_10_1137_24M1678659 crossref_primary_10_1016_j_nucengdes_2023_112712 crossref_primary_10_1109_TSM_2020_3004483 crossref_primary_10_1111_sapm_70062 crossref_primary_10_1038_s41598_022_14396_3 crossref_primary_10_1109_TSP_2023_3256041 crossref_primary_10_1002_sim_9219 crossref_primary_10_1214_21_BA1266 crossref_primary_10_1109_TNNLS_2022_3213315 crossref_primary_10_1016_j_media_2022_102382 crossref_primary_10_1109_TSP_2023_3309464 crossref_primary_10_1145_3291044 crossref_primary_10_1080_01621459_2020_1722134 crossref_primary_10_1007_s40747_023_01314_x crossref_primary_10_1109_TBME_2020_3008707 crossref_primary_10_1109_TAFFC_2020_3004114 crossref_primary_10_1080_10705511_2022_2053857 crossref_primary_10_1109_ACCESS_2021_3062747 crossref_primary_10_1145_3469654 crossref_primary_10_1016_j_neucom_2025_130420 crossref_primary_10_1109_TNNLS_2020_3008496 crossref_primary_10_1242_bio_059001 crossref_primary_10_1016_j_apm_2021_05_021 crossref_primary_10_1016_j_earscirev_2021_103828 crossref_primary_10_1109_TAC_2020_3042480 crossref_primary_10_1186_s13059_025_03701_8 crossref_primary_10_1371_journal_pcbi_1008814 crossref_primary_10_3847_2041_8213_ac09ef crossref_primary_10_1007_s11538_024_01301_4 crossref_primary_10_1038_s43588_022_00369_z crossref_primary_10_1007_s10994_021_06004_8 crossref_primary_10_1109_TSMC_2025_3564984 crossref_primary_10_1109_TED_2024_3497917 crossref_primary_10_1007_s11222_025_10695_7 crossref_primary_10_3390_a18050254 crossref_primary_10_1093_mnras_stac2790 crossref_primary_10_1016_j_trc_2022_103571 crossref_primary_10_1038_s41598_022_12730_3 crossref_primary_10_1111_iere_12623 crossref_primary_10_1109_TSP_2025_3587260 crossref_primary_10_3390_computers13060151 crossref_primary_10_1007_s00521_021_06799_6 crossref_primary_10_1016_j_ijar_2025_109506 crossref_primary_10_1002_mp_15098 crossref_primary_10_1186_s13321_025_00986_6 crossref_primary_10_1007_s11634_024_00590_w crossref_primary_10_1016_j_spasta_2022_100644 crossref_primary_10_11361_journalcpij_58_1662 crossref_primary_10_1109_ACCESS_2019_2956477 crossref_primary_10_1109_ACCESS_2023_3265725 crossref_primary_10_1177_14759217211073301 crossref_primary_10_3847_1538_3881_ab74cf crossref_primary_10_1177_00222437251349798 crossref_primary_10_1007_s00365_022_09569_2 crossref_primary_10_1038_s44296_024_00011_1 crossref_primary_10_1088_2632_2153_ad1a4f crossref_primary_10_1080_00224065_2020_1801366 crossref_primary_10_1109_TMM_2022_3158072 crossref_primary_10_1007_s11336_021_09748_3 crossref_primary_10_1080_10618600_2023_2256802 crossref_primary_10_1371_journal_pgen_1009754 crossref_primary_10_1111_bmsp_12363 crossref_primary_10_1002_bimj_202100381 crossref_primary_10_1002_cjs_11707 crossref_primary_10_1016_j_cviu_2024_103967 crossref_primary_10_1007_s40300_021_00208_7 crossref_primary_10_1016_j_neunet_2021_01_027 crossref_primary_10_1016_j_ssresearch_2022_102798 crossref_primary_10_1093_bib_bbaf300 crossref_primary_10_1109_LCSYS_2022_3220188 crossref_primary_10_1109_TTE_2024_3500072 crossref_primary_10_1029_2018WR023857 crossref_primary_10_1101_gr_279126_124 crossref_primary_10_1177_0954406220960764 crossref_primary_10_1038_s41593_025_02053_7 crossref_primary_10_1088_1361_6501_ade5c2 crossref_primary_10_1093_sysbio_syz047 crossref_primary_10_1007_s12065_024_00993_w crossref_primary_10_3389_fpsyg_2020_00417 crossref_primary_10_1109_JIOT_2024_3470321 crossref_primary_10_1109_JSTARS_2025_3577690 crossref_primary_10_1007_s10994_022_06243_3 crossref_primary_10_1515_jaa_2024_0110 crossref_primary_10_1109_TKDE_2025_3531469 crossref_primary_10_1145_3609225 crossref_primary_10_1007_s12551_019_00499_1 crossref_primary_10_1002_eqe_3759 crossref_primary_10_1016_j_ijar_2022_05_002 crossref_primary_10_1016_j_compag_2025_110406 crossref_primary_10_1016_j_energy_2023_127286 crossref_primary_10_1016_j_neucom_2022_05_038 crossref_primary_10_1080_00401706_2024_2336542 crossref_primary_10_1109_TASE_2025_3574162 crossref_primary_10_1080_0952813X_2017_1409277 crossref_primary_10_1016_j_ecosta_2022_10_001 crossref_primary_10_15252_msb_20178124 crossref_primary_10_1016_j_jtbi_2025_112157 crossref_primary_10_1007_s00521_021_05839_5 crossref_primary_10_1007_s11222_024_10422_8 crossref_primary_10_1007_s00366_021_01362_2 crossref_primary_10_1177_00811750251357950 crossref_primary_10_1109_TCCN_2023_3261300 crossref_primary_10_1109_TAC_2019_2959998 crossref_primary_10_1002_wics_1645 crossref_primary_10_1080_03610926_2021_1921214 crossref_primary_10_1109_ACCESS_2022_3187991 crossref_primary_10_1016_j_jimonfin_2023_102993 crossref_primary_10_1002_rsa_70016 crossref_primary_10_1109_JSEN_2023_3246595 crossref_primary_10_1007_s42985_021_00102_x crossref_primary_10_1016_j_jmp_2020_102447 crossref_primary_10_1007_s10479_023_05545_6 crossref_primary_10_1162_tacl_a_00325 crossref_primary_10_1002_asmb_2741 crossref_primary_10_1002_sim_8985 crossref_primary_10_1016_j_matdes_2023_112550 crossref_primary_10_3390_rs12213657 crossref_primary_10_1016_j_tsep_2024_102637 crossref_primary_10_1080_01621459_2023_2169701 crossref_primary_10_3390_e24091291 crossref_primary_10_1088_1757_899X_1098_2_022051 crossref_primary_10_1109_ACCESS_2023_3289068 crossref_primary_10_1007_s12559_025_10455_9 crossref_primary_10_1007_s11837_020_04436_6 crossref_primary_10_1080_00401706_2019_1623076 crossref_primary_10_1109_TPAMI_2023_3314670 crossref_primary_10_1016_j_jcp_2019_06_010 crossref_primary_10_1016_j_jpdc_2024_104916 crossref_primary_10_1109_ACCESS_2019_2935900 crossref_primary_10_1016_j_ijengsci_2019_05_011 crossref_primary_10_1016_j_epidem_2019_100367 crossref_primary_10_1016_j_conbuildmat_2023_133671 crossref_primary_10_1007_s11030_021_10266_8 crossref_primary_10_3390_e23080990 crossref_primary_10_1016_j_jclepro_2023_139944 crossref_primary_10_1109_TITS_2024_3505237 crossref_primary_10_1007_s10994_021_06028_0 crossref_primary_10_1109_TNNLS_2021_3112045 crossref_primary_10_1002_asmb_2736 crossref_primary_10_1016_j_strusafe_2019_101918 crossref_primary_10_1089_big_2021_0343 crossref_primary_10_1080_00031305_2022_2058611 crossref_primary_10_1155_2020_8495264 crossref_primary_10_1016_j_jmsy_2020_11_005 crossref_primary_10_1109_LRA_2024_3505782 crossref_primary_10_1007_s00362_024_01627_0 crossref_primary_10_1016_j_jhydrol_2022_127909 crossref_primary_10_1016_j_media_2025_103697 crossref_primary_10_1109_TSP_2023_3338046 crossref_primary_10_1126_science_aaz5900 crossref_primary_10_1038_s41588_025_02323_x crossref_primary_10_1109_LWC_2019_2941878 crossref_primary_10_1016_j_jocm_2020_100229 crossref_primary_10_3390_info14020137 crossref_primary_10_1016_j_jhydrol_2024_131737 crossref_primary_10_3390_math13132205 crossref_primary_10_1017_S0962492919000059 crossref_primary_10_1109_JSTARS_2024_3359636 crossref_primary_10_1371_journal_pcbi_1011392 crossref_primary_10_1137_25M1722548 crossref_primary_10_1007_s00466_020_01894_2 crossref_primary_10_1109_TGRS_2023_3301717 crossref_primary_10_1016_j_csda_2024_107957 crossref_primary_10_1016_j_compbiolchem_2024_108257 crossref_primary_10_3389_fpubh_2024_1375731 crossref_primary_10_1111_2041_210X_14447 crossref_primary_10_1016_j_addma_2023_103861 crossref_primary_10_1371_journal_pone_0317430 crossref_primary_10_1016_j_neunet_2019_12_023 crossref_primary_10_1038_s41467_024_53818_w crossref_primary_10_1002_pc_29998 crossref_primary_10_3390_e25040560 crossref_primary_10_1088_1361_6471_ad9296 crossref_primary_10_1109_TIM_2023_3275997 crossref_primary_10_1007_s00180_022_01200_z crossref_primary_10_1038_s41467_025_62415_4 crossref_primary_10_1109_TWC_2024_3485991 crossref_primary_10_3390_sym13071167 crossref_primary_10_3390_biology12101313 crossref_primary_10_1016_j_spasta_2021_100502 crossref_primary_10_1007_s10044_021_01023_6 crossref_primary_10_1016_j_knosys_2022_108488 crossref_primary_10_1016_j_jcp_2019_06_007 crossref_primary_10_1016_j_jhydrol_2018_06_080 crossref_primary_10_1016_j_csda_2024_107946 crossref_primary_10_1093_bib_bbaa226 crossref_primary_10_1007_s00180_023_01350_8 crossref_primary_10_1080_01621459_2023_2257367 crossref_primary_10_1109_ACCESS_2024_3513253 crossref_primary_10_1109_TITS_2021_3095408 crossref_primary_10_1051_0004_6361_202452299 crossref_primary_10_3390_rs17111826 crossref_primary_10_1098_rsif_2024_0880 crossref_primary_10_25300_MISQ_2023_17885 crossref_primary_10_1109_TIP_2022_3152004 crossref_primary_10_3390_e26020129 crossref_primary_10_1109_ACCESS_2022_3218331 crossref_primary_10_1038_s41598_020_77589_8 crossref_primary_10_1038_s42005_025_02139_5 crossref_primary_10_1016_j_jclepro_2020_122242 crossref_primary_10_1145_3654988 crossref_primary_10_1080_01691864_2024_2384425 crossref_primary_10_1109_MGRS_2022_3198244 crossref_primary_10_1109_TR_2023_3277332 crossref_primary_10_1016_j_ymssp_2022_109868 crossref_primary_10_1002_sim_70105 crossref_primary_10_1093_gji_ggaf303 crossref_primary_10_1016_j_conb_2021_04_004 crossref_primary_10_1080_10618600_2022_2096622 crossref_primary_10_1177_1471082X251355682 crossref_primary_10_3389_fpls_2025_1610443 crossref_primary_10_1093_mnras_staf891 crossref_primary_10_1109_TNNLS_2024_3485529 crossref_primary_10_3847_1538_4357_ac6de4 crossref_primary_10_1007_s41060_023_00397_6 crossref_primary_10_1186_s12859_020_03919_2 crossref_primary_10_1016_j_neucom_2022_03_024 crossref_primary_10_1214_20_AOS2035 crossref_primary_10_1214_24_BA1458 crossref_primary_10_1080_19427867_2021_1991554 crossref_primary_10_1007_s11336_023_09939_0 crossref_primary_10_1016_j_amar_2025_100405 crossref_primary_10_1016_j_chaos_2025_116440 crossref_primary_10_1109_TGRS_2023_3286438 crossref_primary_10_1080_03610926_2022_2053864 crossref_primary_10_1016_j_patrec_2025_08_002 crossref_primary_10_3389_fpsyg_2025_1574650 crossref_primary_10_1214_24_BA1461 crossref_primary_10_1016_j_automatica_2024_112108 crossref_primary_10_1016_j_ajhg_2023_09_015 crossref_primary_10_1002_sta4_604 crossref_primary_10_1080_08982112_2022_2089854 crossref_primary_10_1016_j_jprocont_2020_01_009 crossref_primary_10_1016_j_jhealeco_2024_102900 crossref_primary_10_1109_TPAMI_2025_3550032 crossref_primary_10_1371_journal_pcbi_1008172 crossref_primary_10_1109_TMC_2022_3197416 crossref_primary_10_1080_17499518_2024_2422498 crossref_primary_10_3390_a16090429 crossref_primary_10_1146_annurev_statistics_040120_030919 crossref_primary_10_1016_j_eswa_2025_129739 crossref_primary_10_1109_TMC_2024_3362912 crossref_primary_10_1016_j_jairtraman_2024_102709 crossref_primary_10_1177_10943420231166365 crossref_primary_10_1080_01621459_2023_2231577 crossref_primary_10_1017_asb_2024_34 crossref_primary_10_3389_fgene_2019_00549 crossref_primary_10_1002_wcms_1608 crossref_primary_10_1016_j_patcog_2019_107169 crossref_primary_10_1007_s00477_024_02858_1 crossref_primary_10_1016_j_trc_2025_105215 crossref_primary_10_1214_17_BA1091 crossref_primary_10_1145_3495161 crossref_primary_10_3390_en14175232 crossref_primary_10_1080_00949655_2023_2212313 crossref_primary_10_3390_mi14101840 crossref_primary_10_5194_wes_9_1885_2024 crossref_primary_10_1016_j_probengmech_2023_103540 crossref_primary_10_1007_s00180_023_01417_6 crossref_primary_10_1016_j_knosys_2025_114356 crossref_primary_10_1177_00187208241295932 crossref_primary_10_1587_nolta_11_16 crossref_primary_10_1007_s11222_025_10590_1 crossref_primary_10_1007_s41060_019_00190_4 crossref_primary_10_1016_j_neunet_2019_01_005 crossref_primary_10_1007_s40295_022_00353_9 crossref_primary_10_1177_09622802231155100 crossref_primary_10_1162_neco_a_01497 crossref_primary_10_1093_biostatistics_kxae005 crossref_primary_10_1137_24M1637295 crossref_primary_10_1016_j_dsp_2021_103310 crossref_primary_10_1002_asna_20250017 crossref_primary_10_1016_j_csda_2020_107159 crossref_primary_10_1017_jog_2023_8 crossref_primary_10_1007_s11336_023_09926_5 crossref_primary_10_1002_bimj_202000076 crossref_primary_10_3390_fluids7100334 crossref_primary_10_1002_sam_11576 crossref_primary_10_1016_j_csda_2020_107152 crossref_primary_10_1016_j_engappai_2025_110549 crossref_primary_10_7554_eLife_65074 crossref_primary_10_1016_j_jeconom_2021_05_002 crossref_primary_10_2139_ssrn_3816411 crossref_primary_10_3847_1538_4365_ac14b7 crossref_primary_10_1016_j_csda_2025_108246 crossref_primary_10_1146_annurev_control_042920_015119 crossref_primary_10_1007_s00500_018_3349_9 crossref_primary_10_1088_1681_7575_ace3c2 crossref_primary_10_1002_qre_3424 crossref_primary_10_3389_fbinf_2025_1507448 crossref_primary_10_1016_j_automatica_2020_109017 crossref_primary_10_1109_ACCESS_2024_3401234 crossref_primary_10_1016_j_cmpb_2022_107056 crossref_primary_10_1016_j_eswa_2020_114020 crossref_primary_10_1109_TCYB_2020_3027724 crossref_primary_10_1016_j_jlp_2024_105396 crossref_primary_10_1109_TIT_2023_3323346 crossref_primary_10_1016_j_epidem_2025_100855 crossref_primary_10_1016_j_inffus_2025_103108 crossref_primary_10_1016_j_ocecoaman_2021_106015 crossref_primary_10_1109_TNSE_2022_3145572 crossref_primary_10_1016_j_engappai_2025_111887 crossref_primary_10_1080_10618600_2025_2520581 crossref_primary_10_1080_01621459_2023_2278201 crossref_primary_10_1109_TNNLS_2019_2957109 crossref_primary_10_1007_s11071_021_06626_6 crossref_primary_10_1007_s11222_023_10342_z crossref_primary_10_1186_s13059_023_03152_z crossref_primary_10_1016_j_neucom_2022_05_055 crossref_primary_10_1109_ACCESS_2021_3068867 crossref_primary_10_1109_TAES_2019_2942706 crossref_primary_10_1111_biom_13811 crossref_primary_10_1002_sim_9809 crossref_primary_10_1049_iet_ipr_2018_0043 crossref_primary_10_3389_fnbot_2018_00045 crossref_primary_10_1016_j_aml_2021_107465 crossref_primary_10_1088_1748_0221_19_08_C08003 crossref_primary_10_1093_icesjms_fsad102 crossref_primary_10_1016_j_jprocont_2025_103500 crossref_primary_10_1109_TNNLS_2019_2938830 crossref_primary_10_1016_j_eng_2024_12_034 crossref_primary_10_1007_s11222_022_10125_y crossref_primary_10_1021_acs_jcim_5c00367 crossref_primary_10_1007_s11192_020_03640_0 crossref_primary_10_1016_j_jocs_2025_102690 crossref_primary_10_1109_TKDE_2023_3288628 crossref_primary_10_1109_TNNLS_2023_3295168 crossref_primary_10_1109_TIP_2024_3459647 crossref_primary_10_1109_TIT_2022_3176056 crossref_primary_10_1523_JNEUROSCI_1412_22_2022 crossref_primary_10_1016_j_probengmech_2020_103082 crossref_primary_10_3102_1076998620911934 crossref_primary_10_1016_j_est_2023_107180 crossref_primary_10_1016_j_neucom_2025_130191 crossref_primary_10_1109_TBME_2023_3246599 crossref_primary_10_3390_app13074547 crossref_primary_10_1093_mnras_staa2498 crossref_primary_10_1051_0004_6361_202141298 crossref_primary_10_1109_TNNLS_2021_3119026 crossref_primary_10_1177_00222437241276736 crossref_primary_10_1121_10_0009569 crossref_primary_10_1016_j_dsp_2021_103230 crossref_primary_10_1007_s10182_024_00492_4 crossref_primary_10_1007_s41060_024_00580_3 crossref_primary_10_1080_10618600_2020_1741378 crossref_primary_10_1016_j_ajhg_2023_03_009 crossref_primary_10_1002_sim_70198 crossref_primary_10_1016_j_neucom_2021_01_090 crossref_primary_10_1109_TCYB_2022_3172790 crossref_primary_10_1109_TCSVT_2024_3523049 crossref_primary_10_1109_TVT_2019_2950474 crossref_primary_10_2139_ssrn_3178053 crossref_primary_10_1093_biomtc_ujae048 crossref_primary_10_1016_j_comcom_2020_02_060 crossref_primary_10_1109_TSP_2021_3075146 crossref_primary_10_1007_s00477_025_02954_w crossref_primary_10_1002_jrsm_1567 crossref_primary_10_1016_j_automatica_2022_110687 crossref_primary_10_1109_TASLP_2020_3000593 crossref_primary_10_1016_j_cma_2024_116760 crossref_primary_10_1109_TCOMM_2018_2890245 crossref_primary_10_1002_sta4_563 crossref_primary_10_3847_1538_3881_ad01b5 crossref_primary_10_1515_ijb_2018_0023 crossref_primary_10_1016_j_csda_2019_106817 crossref_primary_10_1137_24M1670627 crossref_primary_10_1109_LCSYS_2022_3164965 crossref_primary_10_1111_jiec_70034 crossref_primary_10_3390_e26110890 crossref_primary_10_1093_biostatistics_kxae045 crossref_primary_10_1016_j_ebiom_2023_104632 crossref_primary_10_1002_int_22770 crossref_primary_10_29220_CSAM_2025_32_4_417 crossref_primary_10_1111_coin_12558 crossref_primary_10_3847_1538_4357_ab93cb crossref_primary_10_1017_pasa_2021_64 crossref_primary_10_1038_s41467_019_13633_0 crossref_primary_10_1016_j_ijggc_2025_104433 crossref_primary_10_1109_TSP_2024_3385576 crossref_primary_10_3389_fnins_2018_00598 crossref_primary_10_3390_en16227664 crossref_primary_10_1016_j_engappai_2022_105644 crossref_primary_10_1515_jqas_2018_0106 crossref_primary_10_1093_imrn_rnad302 crossref_primary_10_1162_neco_a_01422 crossref_primary_10_1016_j_oceaneng_2023_114244 crossref_primary_10_1038_s41592_018_0229_2 crossref_primary_10_1109_TAFFC_2024_3406710 crossref_primary_10_1109_TR_2023_3263940 crossref_primary_10_1016_j_ecoinf_2020_101209 crossref_primary_10_1080_01621459_2024_2347667 crossref_primary_10_1016_j_engappai_2025_111500 crossref_primary_10_1186_s40537_024_01005_5 crossref_primary_10_1016_j_ymssp_2023_110796 crossref_primary_10_1016_j_ress_2023_109199 crossref_primary_10_1016_j_retrec_2021_101177 crossref_primary_10_1007_s11222_023_10365_6 crossref_primary_10_1109_TASLP_2021_3076863 crossref_primary_10_1186_s13059_024_03226_6 crossref_primary_10_3389_frai_2020_00002 crossref_primary_10_1016_j_cels_2022_05_007 crossref_primary_10_3390_sym14040806 crossref_primary_10_1016_j_engappai_2019_103437 crossref_primary_10_1111_mice_12830 crossref_primary_10_1109_TIM_2020_3035579 crossref_primary_10_1371_journal_pone_0195024 crossref_primary_10_1007_s00362_025_01702_0 crossref_primary_10_1002_cyto_a_23701 crossref_primary_10_1021_acs_jpca_4c08360 crossref_primary_10_1109_TIE_2020_3021607 crossref_primary_10_7717_peerj_cs_2286 crossref_primary_10_1515_jiip_2024_0048 crossref_primary_10_1007_s10260_025_00788_y crossref_primary_10_1038_s41592_020_01050_x crossref_primary_10_1080_10618600_2020_1740097 crossref_primary_10_1016_j_lfs_2025_123821 crossref_primary_10_1109_TITS_2024_3377813 crossref_primary_10_1109_TR_2022_3190639 crossref_primary_10_1016_j_envsoft_2023_105654 crossref_primary_10_1088_1478_3975_ac885e crossref_primary_10_1080_01621459_2025_2464270 crossref_primary_10_1061__ASCE_BE_1943_5592_0001744 crossref_primary_10_1088_1742_6596_2352_1_012002 crossref_primary_10_1016_j_microrel_2024_115366 crossref_primary_10_1016_j_spl_2018_02_023 crossref_primary_10_1007_s11432_020_3204_y crossref_primary_10_1016_j_sigpro_2022_108805 crossref_primary_10_1007_s00180_025_01656_9 crossref_primary_10_1007_s00180_020_00970_8 crossref_primary_10_1029_2024MS004308 crossref_primary_10_1007_s10915_023_02328_w crossref_primary_10_1017_S0008423921000652 crossref_primary_10_1016_j_geoen_2023_212229 crossref_primary_10_1214_19_AOS1827 crossref_primary_10_1146_annurev_chembioeng_092220_025342 crossref_primary_10_1109_TCDS_2022_3193398 crossref_primary_10_1080_10618600_2024_2402278 crossref_primary_10_1016_j_ymssp_2022_110060 crossref_primary_10_1145_3551388 crossref_primary_10_1109_TAES_2022_3184283 crossref_primary_10_4271_2022_01_0941 crossref_primary_10_1038_s41746_020_00367_3 crossref_primary_10_7554_eLife_92595 crossref_primary_10_1007_s44272_025_00042_2 crossref_primary_10_1088_2632_2153_ad2e18 crossref_primary_10_1093_biomtc_ujae031 crossref_primary_10_1109_JPROC_2024_3435012 crossref_primary_10_1002_rnc_6560 crossref_primary_10_1016_j_ress_2018_07_012 crossref_primary_10_1007_s10845_021_01791_2 crossref_primary_10_1093_biostatistics_kxz062 crossref_primary_10_1214_23_STS886 crossref_primary_10_1371_journal_pcbi_1007650 crossref_primary_10_1093_gji_ggaf239 crossref_primary_10_1109_ACCESS_2020_3004409 crossref_primary_10_1214_23_AOS2257 crossref_primary_10_3390_e23121565 crossref_primary_10_1016_j_compbiomed_2025_110985 crossref_primary_10_1109_TPAMI_2021_3128271 crossref_primary_10_1214_19_AOS1883 crossref_primary_10_1007_s11263_024_02028_4 crossref_primary_10_1051_itmconf_20246101010 crossref_primary_10_1287_ijoc_2020_1007 crossref_primary_10_1515_ijb_2019_0120 crossref_primary_10_1016_j_enconman_2024_118665 crossref_primary_10_1090_mcom_4013 crossref_primary_10_3390_e26090794 crossref_primary_10_1016_j_ijar_2023_109022 crossref_primary_10_1186_s13059_020_02015_1 crossref_primary_10_1002_sdr_1798 crossref_primary_10_1109_TCCN_2020_2985371 crossref_primary_10_1214_23_STS897 crossref_primary_10_3847_1538_4365_ad833c crossref_primary_10_1016_j_fluid_2025_114454 crossref_primary_10_1093_gji_ggaf249 crossref_primary_10_1155_2023_3203065 crossref_primary_10_1038_s42005_025_02122_0 crossref_primary_10_1007_s10651_022_00531_w crossref_primary_10_1007_s10712_024_09847_7 crossref_primary_10_1016_j_jcp_2024_113117 crossref_primary_10_3390_s24206538 crossref_primary_10_1080_10618600_2022_2134875 crossref_primary_10_1016_j_jfranklin_2020_10_046 crossref_primary_10_1107_S2059798323005776 crossref_primary_10_1109_TIM_2021_3091511 crossref_primary_10_1109_TNNLS_2023_3281473 crossref_primary_10_1016_j_sigpro_2018_07_017 crossref_primary_10_1007_s10845_022_01937_w crossref_primary_10_1093_nar_gkab1065 crossref_primary_10_1016_j_oceaneng_2025_122065 crossref_primary_10_1186_s13059_021_02419_7 crossref_primary_10_1016_j_patrec_2021_08_026 crossref_primary_10_1016_j_jobe_2025_113759 crossref_primary_10_1080_00031305_2025_2539999 crossref_primary_10_1093_mnras_staa278 crossref_primary_10_1016_j_eswa_2023_122071 crossref_primary_10_1016_j_cma_2025_117970 crossref_primary_10_1016_j_dsp_2024_104691 crossref_primary_10_1016_j_patcog_2021_108103 crossref_primary_10_1109_TNNLS_2024_3376530 crossref_primary_10_1016_j_cma_2024_117670 crossref_primary_10_1016_j_aap_2022_106570 crossref_primary_10_1016_j_ijar_2024_109301 crossref_primary_10_1109_TKDE_2019_2953721 crossref_primary_10_1214_19_AOS1855 crossref_primary_10_1007_s10462_023_10443_1 crossref_primary_10_1109_TGRS_2020_3049012 crossref_primary_10_1109_TKDE_2019_2953728 crossref_primary_10_3390_signals4020016 crossref_primary_10_1021_acs_jpcb_5c03825 crossref_primary_10_1016_j_procs_2023_08_148 crossref_primary_10_1109_ACCESS_2024_3491914 crossref_primary_10_1038_s41598_019_54653_6 crossref_primary_10_1177_0165551519857590 crossref_primary_10_3934_fods_2025001 crossref_primary_10_1109_TSTE_2024_3435936 crossref_primary_10_1190_geo2021_0497_1 crossref_primary_10_1038_s41467_025_60269_4 crossref_primary_10_1103_jv8h_4ggy crossref_primary_10_1109_JIOT_2021_3114165 crossref_primary_10_1007_s41060_023_00443_3 crossref_primary_10_1007_s00180_021_01063_w crossref_primary_10_1155_mmce_6622761 crossref_primary_10_1093_mnras_stac2425 crossref_primary_10_3390_app10186317 crossref_primary_10_1007_s11222_024_10488_4 crossref_primary_10_1098_rsos_200734 crossref_primary_10_1109_TGRS_2022_3232784 crossref_primary_10_1080_00401706_2024_2320211 crossref_primary_10_1007_s11207_020_01609_z crossref_primary_10_1007_s10489_022_03668_0 crossref_primary_10_1038_s41592_023_01994_w crossref_primary_10_1002_sim_9359 crossref_primary_10_1002_sim_10151 crossref_primary_10_1177_1475921718788299 crossref_primary_10_1093_biomet_asae067 crossref_primary_10_1109_TIM_2024_3373098 crossref_primary_10_1016_j_cma_2024_116793 crossref_primary_10_1088_1742_6596_2438_1_012094 crossref_primary_10_1016_j_yofte_2024_104047 crossref_primary_10_3389_fphy_2020_00134 crossref_primary_10_1007_s42979_024_02842_0 crossref_primary_10_1016_j_ymssp_2020_107141 crossref_primary_10_1038_s41467_022_35280_8 crossref_primary_10_1016_j_neucom_2025_129535 crossref_primary_10_1007_s10462_023_10661_7 crossref_primary_10_1007_s10851_024_01194_x crossref_primary_10_1186_s13007_023_01038_6 crossref_primary_10_1038_s42005_025_02059_4 crossref_primary_10_1146_annurev_economics_081020_044812 crossref_primary_10_1109_JBHI_2020_2972694 crossref_primary_10_1016_j_knosys_2020_106081 crossref_primary_10_1016_j_csbj_2024_09_027 crossref_primary_10_1016_j_patcog_2021_108141 crossref_primary_10_1016_j_conengprac_2021_104974 crossref_primary_10_1016_j_csbj_2024_09_021 crossref_primary_10_1214_19_AOS1898 crossref_primary_10_1109_ACCESS_2020_3001371 crossref_primary_10_1016_j_energy_2020_119572 |
| Cites_doi | 10.1162/tacl_a_00175 10.1016/j.jtbi.2003.07.002 10.1214/aoms/1177729586 10.1016/j.neuroimage.2006.10.005 10.1109/TSP.2004.831119 10.1109/TPAMI.2009.110 10.1016/j.neuroimage.2007.04.054 10.1371/journal.pcbi.1000770 10.1214/13-AOS1124 10.1063/1.1699114 10.1162/jmlr.2003.3.4-5.993 10.1561/2200000001 10.1111/biom.12126 10.1534/genetics.114.164350 10.1093/pan/mpq027 10.1214/07-AOAS126 10.1214/11-AOS908 10.1371/journal.pone.0094914 10.1109/TBME.2004.824128 10.1214/06-BA104 10.1198/jasa.2009.tm08030 10.1080/01621459.1990.10476213 10.1109/TPAMI.2009.43 10.1007/978-1-4419-9017-4_6 10.1093/bioinformatics/btl473 10.1080/10618600.2012.679897 10.1145/2133806.2133826 10.1016/j.neuroimage.2011.08.031 10.1016/j.neuroimage.2014.04.055 10.1103/PhysRevLett.100.258701 10.1613/jair.251 10.1109/TPAMI.1984.4767596 10.1177/0278364908090961 10.1023/A:1007665907178 10.1016/j.neuroimage.2009.12.042 10.1214/aoms/1177729694 10.1080/10618600.2014.983642 10.1016/j.robot.2011.11.002 10.1214/13-STS418 10.1002/0471722138 10.1214/07-AOAS114 10.1111/j.2517-6161.1977.tb01600.x 10.1111/anzs.12063 10.1007/11872436_8 10.1007/s11222-017-9729-7 10.1007/978-3-540-69162-4_32 10.1016/j.neuroimage.2004.08.034 10.1145/2124295.2124312 10.1007/978-94-011-5014-9_12 10.1111/j.2517-6161.1988.tb01721.x 10.1016/j.csda.2006.07.020 10.1214/14-EJS910 10.1162/089976601750399344 10.1162/089976601750265045 10.1613/jair.2473 10.1093/biomet/57.1.97 10.1016/j.spl.2011.02.029 10.1214/aos/1176345779 10.1002/9780470316870 10.1214/12-BA703 10.1016/j.neuroimage.2003.12.023 10.1007/978-1-4757-4145-2 10.1023/A:1007425814087 10.1109/TSP.2002.801921 10.1017/CBO9780511804779 10.1371/journal.pcbi.1003441 10.1214/12-EJS729 10.1023/A:1008932416310 10.1016/j.neucom.2005.02.016 10.1016/j.neuroimage.2004.06.037 10.1016/S1053-8119(03)00071-5 10.1214/06-BA121 10.1007/978-1-4899-2696-8 10.1214/11-BA631 10.1214/aos/1176344611 10.1016/j.neuroimage.2007.09.005 10.1109/TPAMI.2008.157 10.1162/089976698300017746 10.1016/j.neuroimage.2008.02.059 10.1093/bioinformatics/bth917 10.1186/1471-2105-11-58 10.1016/S0893-6080(02)00040-0 10.1613/jair.567 10.1142/S0219720004000508 |
| ContentType | Journal Article |
| Copyright | 2017 American Statistical Association 2017 Copyright © 2017 American Statistical Association 2017 American Statistical Association |
| Copyright_xml | – notice: 2017 American Statistical Association 2017 – notice: Copyright © 2017 American Statistical Association – notice: 2017 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2017.1285773 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 877 |
| ExternalDocumentID | 10_1080_01621459_2017_1285773 45028414 1285773 |
| Genre | Review Article |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LJTGL LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c539t-5cd7a174bb8f89dde09d91d6a7a4c35ea8fe5eb6efc112ebb8b0fbc592d27eb93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411424400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Fri Oct 03 00:13:59 EDT 2025 Sun Nov 16 01:11:00 EST 2025 Sat Nov 29 03:56:42 EST 2025 Tue Nov 18 21:11:32 EST 2025 Thu May 29 09:14:42 EDT 2025 Mon Oct 20 23:45:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 518 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c539t-5cd7a174bb8f89dde09d91d6a7a4c35ea8fe5eb6efc112ebb8b0fbc592d27eb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1285773?needAccess=true |
| PQID | 2889897897 |
| PQPubID | 41715 |
| PageCount | 19 |
| ParticipantIDs | jstor_primary_45028414 proquest_miscellaneous_2000474290 crossref_primary_10_1080_01621459_2017_1285773 proquest_journals_2889897897 informaworld_taylorfrancis_310_1080_01621459_2017_1285773 crossref_citationtrail_10_1080_01621459_2017_1285773 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-03 |
| PublicationDateYYYYMMDD | 2017-04-03 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | e_1_3_2_28_1 Armagan A. (e_1_3_2_8_1) 2011 Winn J. (e_1_3_2_160_1) 2005; 6 e_1_3_2_66_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_47_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_146_1 Brown L. (e_1_3_2_26_1) 1986 Hinton G. (e_1_3_2_58_1) 1993 e_1_3_2_142_1 e_1_3_2_81_1 e_1_3_2_123_1 e_1_3_2_165_1 Opper M. (e_1_3_2_102_1) 2005; 6 e_1_3_2_108_1 (e_1_3_2_65_1) 1997 e_1_3_2_16_1 e_1_3_2_39_1 Sudderth E. B. (e_1_3_2_132_1) 2009 Airoldi E. (e_1_3_2_3_1) 2008; 9 Wang C. (e_1_3_2_152_1) 2015; 14 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 Saul L. (e_1_3_2_127_1) 1996 e_1_3_2_161_1 e_1_3_2_92_1 Barber D. (e_1_3_2_12_1) 2006 e_1_3_2_135_1 e_1_3_2_158_1 e_1_3_2_73_1 e_1_3_2_131_1 Archambeau C. (e_1_3_2_6_1) 2007; 1 Barber D. (e_1_3_2_14_1) 1999 de Freitas N. D. (e_1_3_2_34_1) 2001 e_1_3_2_154_1 Dempster A. (e_1_3_2_37_1) 1977; 39 Beal M. (e_1_3_2_15_1) 2003 Titsias M. (e_1_3_2_139_1) 2010 Kingma D. (e_1_3_2_74_1) 2014 e_1_3_2_29_1 Salimans T. (e_1_3_2_122_1) 2015 Welling M. (e_1_3_2_156_1) 2011 Ranganath R. (e_1_3_2_113_1) 2016 e_1_3_2_21_1 e_1_3_2_63_1 Yu T. (e_1_3_2_167_1) 2005 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 Tran D. (e_1_3_2_141_1) 2016 Rezende D. J. (e_1_3_2_116_1) 2014 e_1_3_2_126_1 e_1_3_2_168_1 Stan Development Team (e_1_3_2_130_1) 2015 e_1_3_2_103_1 Hensman J. (e_1_3_2_56_1) 2013 Wang C. (e_1_3_2_151_1) 2013; 14 Hoffman M. D. (e_1_3_2_62_1) 2014; 15 Hoffman M. (e_1_3_2_59_1) 2012 e_1_3_2_107_1 Wang P. (e_1_3_2_153_1) 2013 Minka T. (e_1_3_2_96_1) 2014 Naseem T. (e_1_3_2_97_1) 2010 Vermaak J. (e_1_3_2_144_1) 2003 e_1_3_2_17_1 e_1_3_2_2_1 Barber D. (e_1_3_2_11_1) 1998 e_1_3_2_55_1 Jojic N. (e_1_3_2_69_1) 2001 Liang P. (e_1_3_2_86_1) 2007 Giordano R. J. (e_1_3_2_50_1) 2015 e_1_3_2_13_1 Reyes-Gomez M. (e_1_3_2_115_1) 2004 Waterhouse S. (e_1_3_2_155_1) 1996 e_1_3_2_36_1 e_1_3_2_78_1 e_1_3_2_93_1 e_1_3_2_138_1 e_1_3_2_157_1 e_1_3_2_51_1 e_1_3_2_111_1 e_1_3_2_134_1 e_1_3_2_70_1 Khan M. E. (e_1_3_2_72_1) 2010 Pearl J. (e_1_3_2_106_1) 1988 Bishop C. (e_1_3_2_20_1) 2000 Hall P. (e_1_3_2_52_1) 2011; 21 e_1_3_2_119_1 e_1_3_2_49_1 e_1_3_2_87_1 e_1_3_2_22_1 Ranganath R. (e_1_3_2_112_1) 2014 Yedidia J. S. (e_1_3_2_164_1) 2001 e_1_3_2_125_1 Hensman J. (e_1_3_2_57_1) 2012 e_1_3_2_148_1 Furmston T. (e_1_3_2_45_1) 2010; 9 e_1_3_2_121_1 Archambeau C. (e_1_3_2_7_1) 2007 e_1_3_2_129_1 Tan L. (e_1_3_2_136_1) 2014; 9 e_1_3_2_9_1 Kucukelbir A. (e_1_3_2_76_1) 2015 Parisi G. (e_1_3_2_105_1) 1988 Knowles D. (e_1_3_2_75_1) 2011 e_1_3_2_163_1 e_1_3_2_10_1 e_1_3_2_33_1 Hoffman M. D. (e_1_3_2_60_1) 2013; 14 e_1_3_2_5_1 Marlin B. M. (e_1_3_2_91_1) 2011 Peterson C. (e_1_3_2_109_1) 1987; 1 Du L. (e_1_3_2_40_1) 2009 e_1_3_2_79_1 e_1_3_2_98_1 Liang P. (e_1_3_2_85_1) 2009 Bishop C. (e_1_3_2_18_1) 2006 Titsias M. (e_1_3_2_140_1) 2014 e_1_3_2_137_1 Wang B. (e_1_3_2_149_1) 2005 e_1_3_2_110_1 Ermis B. (e_1_3_2_41_1) 2014 e_1_3_2_71_1 e_1_3_2_90_1 e_1_3_2_133_1 e_1_3_2_118_1 e_1_3_2_27_1 Cohen S. (e_1_3_2_32_1) 2010; 11 Villegas M. (e_1_3_2_145_1) 2013 e_1_3_2_42_1 e_1_3_2_88_1 Johnson M. (e_1_3_2_68_1) 2014 e_1_3_2_150_1 e_1_3_2_23_1 e_1_3_2_46_1 Regier J. (e_1_3_2_114_1) 2015 e_1_3_2_80_1 e_1_3_2_101_1 e_1_3_2_124_1 e_1_3_2_84_1 e_1_3_2_120_1 e_1_3_2_143_1 e_1_3_2_166_1 e_1_3_2_128_1 Damianou A. (e_1_3_2_35_1) 2011 e_1_3_2_38_1 Challis E. (e_1_3_2_30_1) 2013; 14 Le Cun Y. (e_1_3_2_83_1) 2004 e_1_3_2_162_1 Wand M. (e_1_3_2_147_1) 2014; 15 Paisley J. (e_1_3_2_104_1) 2012 e_1_3_2_53_1 Jaakkola T. (e_1_3_2_64_1) 1996 e_1_3_2_4_1 e_1_3_2_99_1 e_1_3_2_159_1 Bishop C. (e_1_3_2_19_1) 1998 Foti N. (e_1_3_2_44_1) 2014 e_1_3_2_95_1 Lauritzen S. (e_1_3_2_82_1) 1988; 50 Minka T. P. (e_1_3_2_94_1) 2001 Hoffman M. D. (e_1_3_2_61_1) 2015 e_1_3_2_117_1 |
| References_xml | – start-page: 1234 year: 2010 ident: e_1_3_2_97_1 article-title: Using Universal Linguistic Knowledge to Guide Grammar Induction publication-title: Empirical Methods in Natural Language Processing – volume-title: Statistical Field Theory year: 1988 ident: e_1_3_2_105_1 – start-page: 416 year: 1998 ident: e_1_3_2_19_1 article-title: Approximating Posterior Distributions in Belief Networks using Mixtures publication-title: Neural Information Processing Systems – ident: e_1_3_2_165_1 doi: 10.1162/tacl_a_00175 – start-page: 192 year: 2014 ident: e_1_3_2_41_1 article-title: Iterative Splits of Quadratic Bounds for Scalable Binary Tensor Factorization publication-title: Uncertainty in Artificial Intelligence – ident: e_1_3_2_89_1 – start-page: 361 year: 2015 ident: e_1_3_2_61_1 article-title: Structured Stochastic Variational Inference publication-title: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics (Vol. 38), eds. G. Lebanon and S. V. N. Vishwanathan, San Diego, CA: Proceedings of Machine Learning Research – ident: e_1_3_2_119_1 doi: 10.1016/j.jtbi.2003.07.002 – ident: e_1_3_2_117_1 doi: 10.1214/aoms/1177729586 – ident: e_1_3_2_43_1 doi: 10.1016/j.neuroimage.2006.10.005 – start-page: 776 volume-title: The Handbook of Applied Bayesian Analysis year: 2009 ident: e_1_3_2_85_1 – ident: e_1_3_2_121_1 – ident: e_1_3_2_87_1 doi: 10.1109/TSP.2004.831119 – ident: e_1_3_2_31_1 doi: 10.1109/TPAMI.2009.110 – ident: e_1_3_2_168_1 doi: 10.1016/j.neuroimage.2007.04.054 – start-page: 1108 year: 2010 ident: e_1_3_2_72_1 article-title: Variational Bounds for Mixed-Data Factor Analysis publication-title: Neural Information Processing Systems – ident: e_1_3_2_131_1 doi: 10.1371/journal.pcbi.1000770 – volume-title: Fundamentals of Statistical Exponential Families year: 1986 ident: e_1_3_2_26_1 – ident: e_1_3_2_17_1 doi: 10.1214/13-AOS1124 – ident: e_1_3_2_93_1 doi: 10.1063/1.1699114 – ident: e_1_3_2_24_1 doi: 10.1162/jmlr.2003.3.4-5.993 – ident: e_1_3_2_146_1 doi: 10.1561/2200000001 – ident: e_1_3_2_98_1 doi: 10.1111/biom.12126 – volume: 15 start-page: 1351 year: 2014 ident: e_1_3_2_147_1 article-title: Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing publication-title: Journal of Machine Learning Research – ident: e_1_3_2_110_1 doi: 10.1534/genetics.114.164350 – ident: e_1_3_2_51_1 doi: 10.1093/pan/mpq027 – start-page: 486 year: 2009 ident: e_1_3_2_40_1 article-title: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation publication-title: Neural Information Processing Systems – ident: e_1_3_2_42_1 doi: 10.1214/07-AOAS126 – ident: e_1_3_2_53_1 doi: 10.1214/11-AOS908 – ident: e_1_3_2_90_1 doi: 10.1371/journal.pone.0094914 – start-page: 453 volume-title: Bayesian Statistics year: 2003 ident: e_1_3_2_15_1 – ident: e_1_3_2_134_1 doi: 10.1109/TBME.2004.824128 – volume: 6 start-page: 2177 year: 2005 ident: e_1_3_2_102_1 article-title: Expectation Consistent Approximate Inference publication-title: The Journal of Machine Learning Research – ident: e_1_3_2_22_1 doi: 10.1214/06-BA104 – ident: e_1_3_2_25_1 doi: 10.1198/jasa.2009.tm08030 – ident: e_1_3_2_46_1 doi: 10.1080/01621459.1990.10476213 – start-page: 1599 year: 2012 ident: e_1_3_2_59_1 article-title: Sparse Stochastic Inference for Latent Dirichlet Allocation publication-title: Proceedings of the 29th International Conference on Machine Learning (ICML-12), eds. J. Langford and J. Pineau, New York: ACM – ident: e_1_3_2_154_1 doi: 10.1109/TPAMI.2009.43 – ident: e_1_3_2_38_1 doi: 10.1007/978-1-4419-9017-4_6 – ident: e_1_3_2_124_1 doi: 10.1093/bioinformatics/btl473 – year: 2014 ident: e_1_3_2_74_1 article-title: Auto-Encoding Variational Bayes publication-title: Proceedings of the 2nd International Conference on Learning Representations (ICLR) – ident: e_1_3_2_101_1 doi: 10.1080/10618600.2012.679897 – start-page: 1585 year: 2009 ident: e_1_3_2_132_1 article-title: Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes publication-title: Neural Information Processing Systems – ident: e_1_3_2_21_1 doi: 10.1145/2133806.2133826 – volume: 1 start-page: 1 year: 2007 ident: e_1_3_2_6_1 article-title: Gaussian Process Approximations of Stochastic Differential Equations publication-title: Workshop on Gaussian Processes in Practice – volume: 11 start-page: 3017 year: 2010 ident: e_1_3_2_32_1 article-title: Covariance in Unsupervised Learning of Probabilistic Grammars publication-title: The Journal of Machine Learning Research – ident: e_1_3_2_81_1 doi: 10.1016/j.neuroimage.2011.08.031 – start-page: 183 year: 1999 ident: e_1_3_2_14_1 article-title: Tractable Variational Structures for Approximating Graphical Models publication-title: Neural Information Processing Systems – ident: e_1_3_2_48_1 doi: 10.1016/j.neuroimage.2014.04.055 – ident: e_1_3_2_158_1 doi: 10.1103/PhysRevLett.100.258701 – start-page: 215 volume-title: Generalization in Neural Networks and Machine Learning year: 1998 ident: e_1_3_2_11_1 – ident: e_1_3_2_128_1 doi: 10.1613/jair.251 – start-page: 939 year: 2005 ident: e_1_3_2_167_1 article-title: Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers publication-title: Computer Vision and Pattern Recognition – ident: e_1_3_2_47_1 doi: 10.1109/TPAMI.1984.4767596 – start-page: 340 year: 1996 ident: e_1_3_2_64_1 article-title: Computing Upper and Lower Bounds on Likelihoods in Intractable Networks publication-title: Uncertainty in Artificial Intelligence – start-page: 373 year: 2005 ident: e_1_3_2_149_1 article-title: Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations publication-title: Artificial Intelligence and Statistics – ident: e_1_3_2_103_1 – ident: e_1_3_2_33_1 doi: 10.1177/0278364908090961 – start-page: 1701 year: 2011 ident: e_1_3_2_75_1 article-title: Non-Conjugate Variational Message Passing for Multinomial and Binary Regression publication-title: Neural Information Processing Systems – start-page: 523 year: 2011 ident: e_1_3_2_8_1 article-title: Generalized Beta Mixtures of Gaussians publication-title: Neural Information Processing Systems – ident: e_1_3_2_71_1 doi: 10.1023/A:1007665907178 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: e_1_3_2_18_1 – start-page: 362 year: 2001 ident: e_1_3_2_94_1 article-title: Expectation Propagation for Approximate Bayesian Inference publication-title: Uncertainty in Artificial Intelligence – ident: e_1_3_2_54_1 doi: 10.1016/j.neuroimage.2009.12.042 – ident: e_1_3_2_78_1 doi: 10.1214/aoms/1177729694 – start-page: 1 year: 2016 ident: e_1_3_2_141_1 article-title: The Variational Gaussian Process publication-title: International Conference on Learning Representations – start-page: 681 year: 2011 ident: e_1_3_2_156_1 article-title: Bayesian Learning via Stochastic Gradient Langevin Dynamics publication-title: International Conference on Machine Learning – ident: e_1_3_2_27_1 doi: 10.1080/10618600.2014.983642 – start-page: 120 year: 2001 ident: e_1_3_2_34_1 article-title: Variational MCMC publication-title: Uncertainty in Artificial Intelligence – start-page: 3599 year: 2014 ident: e_1_3_2_44_1 article-title: Stochastic Variational Inference for Hidden Markov Models publication-title: Neural Information Processing Systems – volume: 14 start-page: 1005 year: 2015 ident: e_1_3_2_152_1 article-title: A General Method for Robust Bayesian Modeling publication-title: Journal of Machine Learning Research – ident: e_1_3_2_111_1 doi: 10.1016/j.robot.2011.11.002 – ident: e_1_3_2_135_1 doi: 10.1214/13-STS418 – ident: e_1_3_2_129_1 doi: 10.1002/0471722138 – ident: e_1_3_2_23_1 doi: 10.1214/07-AOAS114 – year: 2014 ident: e_1_3_2_96_1 publication-title: Infer.NET 2.6. Cambridge, MA: Microsoft Research. – volume: 9 start-page: 241 year: 2010 ident: e_1_3_2_45_1 article-title: Variational Methods for Reinforcement Learning publication-title: Artificial Intelligence and Statistics – volume: 39 start-page: 1 year: 1977 ident: e_1_3_2_37_1 article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_3_2_166_1 doi: 10.1111/anzs.12063 – start-page: 1 year: 1997 ident: e_1_3_2_65_1 article-title: A Variational Approach to Bayesian Logistic Regression Models and their Extensions publication-title: Artificial Intelligence and Statistics – volume: 14 start-page: 1005 year: 2013 ident: e_1_3_2_151_1 article-title: Variational Inference in Nonconjugate Models publication-title: Journal of Machine Learning Research – volume: 15 start-page: 1593 year: 2014 ident: e_1_3_2_62_1 article-title: The No-U-turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo publication-title: The Journal of Machine Learning Research – start-page: 81 year: 2006 ident: e_1_3_2_12_1 article-title: Unified Inference for Variational Bayesian Linear Gaussian State-Space Models publication-title: Neural Information Processing Systems – start-page: 689 year: 2001 ident: e_1_3_2_164_1 article-title: Generalized Belief Propagation publication-title: Neural Information Processing Systems – ident: e_1_3_2_95_1 – ident: e_1_3_2_79_1 doi: 10.1007/11872436_8 – ident: e_1_3_2_67_1 – start-page: 5 year: 1993 ident: e_1_3_2_58_1 article-title: Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights publication-title: Computational Learning Theory – ident: e_1_3_2_137_1 doi: 10.1007/s11222-017-9729-7 – ident: e_1_3_2_63_1 doi: 10.1007/978-3-540-69162-4_32 – ident: e_1_3_2_108_1 doi: 10.1016/j.neuroimage.2004.08.034 – start-page: 1 year: 2003 ident: e_1_3_2_144_1 article-title: Variational Inference for Visual Tracking publication-title: Computer Vision and Pattern Recognition – ident: e_1_3_2_2_1 doi: 10.1145/2124295.2124312 – start-page: 486 year: 1996 ident: e_1_3_2_127_1 article-title: Exploiting Tractable Substructures in Intractable Networks publication-title: Neural Information Processing Systems – ident: e_1_3_2_159_1 – start-page: 688 year: 2007 ident: e_1_3_2_86_1 article-title: The Infinite PCFG using Hierarchical Dirichlet Processes publication-title: Empirical Methods in Natural Language Processing – start-page: 1218 year: 2015 ident: e_1_3_2_122_1 article-title: Markov Chain Monte Carlo and Variational Inference: Bridging the Gap publication-title: International Conference on Machine Learning – ident: e_1_3_2_99_1 doi: 10.1007/978-94-011-5014-9_12 – volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference year: 1988 ident: e_1_3_2_106_1 – volume: 50 start-page: 157 year: 1988 ident: e_1_3_2_82_1 article-title: Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1988.tb01721.x – start-page: 217 year: 2004 ident: e_1_3_2_83_1 article-title: Large Scale Online Learning publication-title: Neural Information Processing Systems – start-page: 308 year: 2013 ident: e_1_3_2_145_1 article-title: Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask publication-title: CLEF Evaluation Labs and Workshop – start-page: 1854 year: 2014 ident: e_1_3_2_68_1 article-title: Stochastic Variational Inference for Bayesian Time Series Models publication-title: International Conference on Machine Learning – ident: e_1_3_2_92_1 doi: 10.1016/j.csda.2006.07.020 – ident: e_1_3_2_100_1 doi: 10.1214/14-EJS910 – volume: 1 start-page: 995 year: 1987 ident: e_1_3_2_109_1 article-title: A Mean Field Theory Learning Algorithm for Neural Networks publication-title: Complex Systems – volume: 6 start-page: 661 year: 2005 ident: e_1_3_2_160_1 article-title: Variational Message Passing publication-title: Journal of Machine Learning Research – ident: e_1_3_2_157_1 – volume: 14 start-page: 1303 year: 2013 ident: e_1_3_2_60_1 article-title: Stochastic Variational Inference publication-title: Journal of Machine Learning Research – ident: e_1_3_2_84_1 doi: 10.1162/089976601750399344 – ident: e_1_3_2_125_1 doi: 10.1162/089976601750265045 – ident: e_1_3_2_143_1 doi: 10.1613/jair.2473 – ident: e_1_3_2_55_1 doi: 10.1093/biomet/57.1.97 – start-page: 282 year: 2013 ident: e_1_3_2_56_1 article-title: Gaussian Processes for Big Data publication-title: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence – volume: 9 start-page: 963 year: 2014 ident: e_1_3_2_136_1 article-title: A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models publication-title: Bayesian Analysis – volume: 9 start-page: 1981 year: 2008 ident: e_1_3_2_3_1 article-title: Mixed Membership Stochastic Blockmodels publication-title: Journal of Machine Learning Research – ident: e_1_3_2_9_1 doi: 10.1016/j.spl.2011.02.029 – ident: e_1_3_2_4_1 doi: 10.1214/aos/1176345779 – ident: e_1_3_2_16_1 doi: 10.1002/9780470316870 – start-page: 2510 year: 2011 ident: e_1_3_2_35_1 article-title: Variational Gaussian Process Dynamical Systems publication-title: Neural Information Processing Systems – ident: e_1_3_2_28_1 doi: 10.1214/12-BA703 – ident: e_1_3_2_162_1 doi: 10.1016/j.neuroimage.2003.12.023 – ident: e_1_3_2_118_1 doi: 10.1007/978-1-4757-4145-2 – start-page: 1971 year: 2014 ident: e_1_3_2_140_1 article-title: Doubly Stochastic Variational Bayes for Non-Conjugate Inference publication-title: International Conference on Machine Learning – ident: e_1_3_2_49_1 doi: 10.1023/A:1007425814087 – start-page: 633 year: 2011 ident: e_1_3_2_91_1 article-title: Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models publication-title: International Conference on Machine Learning – start-page: 1278 year: 2014 ident: e_1_3_2_116_1 article-title: Stochastic Backpropagation and Approximate Inference in Deep Generative Models publication-title: Proceedings of the 31st International Conference on Machine Learning (Vol. 32), eds. E. P. Xing and T. Jebara, Beijing, China: Proceedings of Machine Learning Research – ident: e_1_3_2_120_1 doi: 10.1109/TSP.2002.801921 – ident: e_1_3_2_10_1 doi: 10.1017/CBO9780511804779 – ident: e_1_3_2_36_1 doi: 10.1371/journal.pcbi.1003441 – ident: e_1_3_2_29_1 doi: 10.1214/12-EJS729 – ident: e_1_3_2_66_1 doi: 10.1023/A:1008932416310 – ident: e_1_3_2_138_1 doi: 10.1016/j.neucom.2005.02.016 – start-page: 814 year: 2014 ident: e_1_3_2_112_1 article-title: Black Box Variational Inference publication-title: Artificial Intelligence and Statistics – ident: e_1_3_2_126_1 doi: 10.1016/j.neuroimage.2004.06.037 – ident: e_1_3_2_107_1 doi: 10.1016/S1053-8119(03)00071-5 – start-page: 641 year: 2004 ident: e_1_3_2_115_1 article-title: Multiband Audio Modeling for Single-Channel Acoustic Source Separation publication-title: Acoustics, Speech, and Signal Processing – ident: e_1_3_2_77_1 – ident: e_1_3_2_150_1 doi: 10.1214/06-BA121 – start-page: 351 year: 1996 ident: e_1_3_2_155_1 article-title: Bayesian Methods for Mixtures of Experts publication-title: Neural Information Processing Systems – start-page: 1363 year: 2012 ident: e_1_3_2_104_1 article-title: Variational Bayesian Inference with Stochastic Search publication-title: Proceedings of the 29th International Conference on International Conference on Machine Learning – start-page: 17 year: 2007 ident: e_1_3_2_7_1 article-title: Variational Inference for Diffusion Processes publication-title: Neural Information Processing Systems – start-page: 599 year: 2013 ident: e_1_3_2_153_1 article-title: Collapsed Variational Bayesian Inference for Hidden Markov Models publication-title: Artificial Intelligence and Statistics – start-page: 3 year: 2000 ident: e_1_3_2_20_1 article-title: Non-linear Bayesian Image Modelling publication-title: European Conference on Computer Vision – volume: 21 start-page: 369 year: 2011 ident: e_1_3_2_52_1 article-title: Theory of Gaussian Variational Approximation for a Poisson Mixed Model publication-title: Statistica Sinica – start-page: 568 year: 2015 ident: e_1_3_2_76_1 article-title: Automatic Variational Inference in Stan publication-title: Neural Information Processing Systems – ident: e_1_3_2_80_1 doi: 10.1007/978-1-4899-2696-8 – year: 2015 ident: e_1_3_2_130_1 publication-title: Stan Modeling Language Users Guide and Reference Manual, Version 2.8.0. New York: Columbia University – start-page: 844 year: 2010 ident: e_1_3_2_139_1 article-title: Bayesian Gaussian Process Latent Variable Model publication-title: Artificial Intelligence and Statistics – ident: e_1_3_2_148_1 doi: 10.1214/11-BA631 – start-page: 2095 year: 2015 ident: e_1_3_2_114_1 article-title: Celeste: Variational Inference for a Generative Model of Astronomical Images publication-title: International Conference on Machine Learning – start-page: 1441 year: 2015 ident: e_1_3_2_50_1 article-title: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes publication-title: Neural Information Processing Systems – ident: e_1_3_2_39_1 doi: 10.1214/aos/1176344611 – ident: e_1_3_2_73_1 doi: 10.1016/j.neuroimage.2007.09.005 – ident: e_1_3_2_133_1 doi: 10.1109/TPAMI.2008.157 – ident: e_1_3_2_5_1 doi: 10.1162/089976698300017746 – ident: e_1_3_2_161_1 doi: 10.1016/j.neuroimage.2008.02.059 – ident: e_1_3_2_70_1 doi: 10.1093/bioinformatics/bth917 – start-page: 324 year: 2016 ident: e_1_3_2_113_1 article-title: Hierarchical Variational Models publication-title: International Conference on Machine Learning – ident: e_1_3_2_88_1 doi: 10.1186/1471-2105-11-58 – ident: e_1_3_2_142_1 doi: 10.1016/S0893-6080(02)00040-0 – volume: 14 start-page: 2239 year: 2013 ident: e_1_3_2_30_1 article-title: Gaussian Kullback-Leibler Approximate Inference publication-title: The Journal of Machine Learning Research – start-page: 1 year: 2001 ident: e_1_3_2_69_1 article-title: Learning Flexible Sprites in Video Layers publication-title: Computer Vision and Pattern Recognition – ident: e_1_3_2_13_1 doi: 10.1613/jair.567 – start-page: 2888 year: 2012 ident: e_1_3_2_57_1 article-title: Fast Variational Inference in the Conjugate Exponential Family publication-title: Neural Information Processing Systems – ident: e_1_3_2_163_1 doi: 10.1142/S0219720004000508 – ident: e_1_3_2_123_1 |
| SSID | ssj0000788 |
| Score | 2.7059495 |
| SecondaryResourceType | review_article |
| Snippet | One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 859 |
| SubjectTerms | Algorithms Americans artificial intelligence Bayesian analysis Bayesian theory catalytic activity Closeness Computationally intensive methods Density Families & family life Inference Machine learning Markov analysis Markov chain Markov chains mixtures Optimization Probability probability distribution Review Sampling Scholarship Statistical analysis Statistical computing Statistical inference Statistics |
| Title | Variational Inference: A Review for Statisticians |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1285773 https://www.jstor.org/stable/45028414 https://www.proquest.com/docview/2889897897 https://www.proquest.com/docview/2000474290 |
| Volume | 112 |
| WOSCitedRecordID | wos000411424400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4rAL74nBQEXi2tGsSdNwmxATSGjiMGC3qkmTE-rQuvH7sdO0MCG0A6inqnWb2I7tJM5nQq5UbGxOpQ4p1UnImMUkACHCJGWgH7SItXKSfhSTSTqbySefTVj5tEqcQ9saKMLZahzcuaqajLhriFIQXxuPmVAxAAPLhUC8T4jsUcen49cvWyxc5UmkCJGkOcPz21fWvNMadmmTr_jDZjtHNN77hy7sk10fhQajWm0OyJYpD0kHA88at_mI0BeYRPuFwuChORV4E4yCejchgDYHLQHoWHVMnsd309v70JdXCDWP5TLkuhA5TEiUSm0qwcxFspC0SHKRMx1zk6fWcKMSYzUEZQZeU5FVmsthMRRGybhLtst5aU5IYNETcl4wBREOxahBsiIZ2ryAi0rRI6xha6Y99jiWwHjLaANR6hmSIUMyz5AeGbRk7zX4xiYC-V1m2dKteti6REkWb6DtOgG3f2IcYi9GWY_0G4lnfoBX2TDFupsixb5dto9haOJ-S16a-arCCp8RE-Dwo9M_tOuMdPDWZQvFfbK9XKzMOdnRHyDgxYVT90-PM_gy |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LTsMwzIKBBBfeiPEsEtfCsiZNw21CTJsYO43HLWrS5IQ6xAbfj93HGEJoB1CPqdvEdvxI_AC4MJHzKVM2ZMzGIeeeggCkDOOEI3-wLLKmoPRADofJ87Oaz4WhsEryoX1ZKKKQ1bS56TC6Dom7QjOFCmxTngmTlyhhhZTRMqwI1LUU1jfqPn1JY1n0niSQkGDqLJ7fPvNNP32rXlpHLP6Q2oUq6m7-xyK2YKMyRINOyTnbsOTyHVgn27Ms3bwL7BH96OqsMOjXiYHXQScoLxQCnHQwA0A2m-zBQ_d2dNMLqw4LoRWRmobCZjJFn8SYxCcKJV1LZYplcSpTbiPh0sQ74UzsvEW7zOFrpuWNFaqdtaUzKtqHRj7O3QEEnpShEBk3aOQwMhwUz-K2TzN8mJJN4DVeta3Kj1MXjBfN6iqlFUI0IURXCGnC5Qzstay_sQhAzRNNT4uDD192KdHRAtj9gsKzP3GB5hdnvAnHNcl1tccnup1Q602Z0NrOZ8O4O-nKJc3d-H1CTT5bXKLObx3-YV5nsNYb3Q_0oD-8O4J1GiqCh6JjaEzf3t0JrNoPJPbbacH7nzuk_FM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDLZYWKG58FgWMTy7Eteyk2nSNNwQMAKBRhx43aLmdUIDYmb4_dhpOgtCiAOrHlO3ie3YTuJ8Btg3hQ81UzZnzJY554GSAKTMy4qjfjBXWBMlfSmHw-r-Xl2lbMJxSqukNXRogCKirabJ_eRCmxH3F6MUwtemayZMHqCBFVIWP2AhgmOhSl8P7v4ZYxlLTxJJTjTtJZ7PPvPOPb0DL20TFj8Y7eiJBsv_YQwrsJTC0Oyo0ZtVmPOjX9ChyLMBbl4Ddour6LRTmJ231wIPs6OsOU7IsM_ZjACVbPwbbgan18dneaqvkFtRqEkurJM1rkiMqUKl0M71lFPMlbWsuS2Er6vghTelDxajMo-vmV4wVqi-60tvVLEO86PHkd-ALJArFMJxgyEOo7BBcVf2Q-3wYUp2gbds1TaBj1MNjAfNWozSxBBNDNGJIV04mJE9NegbXxGotzLTk7jtEZoaJbr4gnY9Cnj2Jy4w-OKMd2G7lbhOM3ys-xUV3pQVje3PrBnnJh241CP_OB1Tic8el-jxe5vf6NceLF6dDPTl-fBiCzrUEjOHim2YnzxP_Q78tC8o6-fdqPmvDpz69w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Inference%3A+A+Review+for+Statisticians&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Blei%2C+David+M.&rft.au=Kucukelbir%2C+Alp&rft.au=McAuliffe%2C+Jon+D.&rft.date=2017-04-03&rft.pub=Taylor+%26+Francis+Group%2CLLC&rft.issn=0162-1459&rft.volume=112&rft.issue=518&rft.spage=859&rft.epage=877&rft_id=info:doi/10.1080%2F01621459.2017.1285773&rft.externalDocID=45028414 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |