Variational Inference: A Review for Statisticians

One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review va...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 112; číslo 518; s. 859 - 877
Hlavní autoři: Blei, David M., Kucukelbir, Alp, McAuliffe, Jon D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 03.04.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms. Supplementary materials for this article are available online.
AbstractList One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback–Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms. Supplementary materials for this article are available online.
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze statistical research on this class of algorithms.
Author Blei, David M.
Kucukelbir, Alp
McAuliffe, Jon D.
Author_xml – sequence: 1
  givenname: David M.
  surname: Blei
  fullname: Blei, David M.
  organization: Department of Computer Science and Statistics, Columbia University
– sequence: 2
  givenname: Alp
  surname: Kucukelbir
  fullname: Kucukelbir, Alp
  email: alp@cs.columbia.edu
  organization: Department of Computer Science, Columbia University
– sequence: 3
  givenname: Jon D.
  surname: McAuliffe
  fullname: McAuliffe, Jon D.
  organization: Department of Statistics, University of California
BookMark eNqFkMFKJDEQhoO44Oj6CEKDFy89JulkkuhFEXUFYWF3FW8hna5Ahp5Ek4yDb2_GcT140FCQQ31_FfXtou0QAyB0QPCUYImPMZlRwriaUkzElFDJhei20ITwTrRUsIdtNFkz7RraQbs5z3F9QsoJIvcmeVN8DGZsboKDBMHCSXPe_IFnD6vGxdT8LZXIxVtvQv6JfjgzZth___fQ3dXlv4tf7e3v65uL89vW8k6VlttBGCJY30sn1TAAVoMiw8wIw2zHwUgHHPoZOEsIhYr12PWWKzpQAb3q9tDRZu5jik9LyEUvfLYwjiZAXGZN6wlMMKpwRQ8_ofO4TPWiSkmppBK1KsU3lE0x5wROPya_MOlFE6zXIvV_kXotUr-LrLnTTznry5uykowfv00fbNLzXGL6WMk4ppIRVvtnm74PVfXCrGIaB13MyxiTSyZYn3X39YpXFqOXEA
CitedBy_id crossref_primary_10_1162_imag_a_00408
crossref_primary_10_1109_JSAC_2021_3087249
crossref_primary_10_1190_geo2022_0472_1
crossref_primary_10_1002_hbm_26763
crossref_primary_10_1016_j_compbiomed_2024_108785
crossref_primary_10_1007_s11277_022_09852_2
crossref_primary_10_1186_s13059_019_1745_9
crossref_primary_10_1109_TAES_2023_3262595
crossref_primary_10_1177_11769351221105776
crossref_primary_10_1016_j_rcim_2024_102765
crossref_primary_10_1016_j_csi_2024_103897
crossref_primary_10_1016_j_media_2025_103580
crossref_primary_10_1007_s11222_023_10317_0
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1109_ACCESS_2020_2972055
crossref_primary_10_1007_s00190_023_01701_9
crossref_primary_10_1080_10618600_2025_2554680
crossref_primary_10_1016_j_cma_2021_114087
crossref_primary_10_1016_j_ress_2025_111169
crossref_primary_10_1515_lingty_2025_0030
crossref_primary_10_1080_01621459_2020_1847121
crossref_primary_10_1080_01621459_2020_1847120
crossref_primary_10_1146_annurev_statistics_122121_040905
crossref_primary_10_1002_sam_11649
crossref_primary_10_1016_j_irfa_2024_103621
crossref_primary_10_1109_TIM_2025_3591870
crossref_primary_10_1002_wics_1535
crossref_primary_10_1214_19_BA1175
crossref_primary_10_1145_3615660
crossref_primary_10_1371_journal_pcbi_1005645
crossref_primary_10_1186_s13059_019_1865_2
crossref_primary_10_1007_s00466_022_02214_6
crossref_primary_10_1080_10618600_2019_1637747
crossref_primary_10_1038_s41467_023_42016_9
crossref_primary_10_1109_JBHI_2024_3360002
crossref_primary_10_3390_e23070815
crossref_primary_10_3390_app15084363
crossref_primary_10_3233_MAS_231456
crossref_primary_10_1016_j_jmp_2025_102921
crossref_primary_10_1016_j_patcog_2024_111058
crossref_primary_10_1109_TPAMI_2020_3025390
crossref_primary_10_1137_22M1529427
crossref_primary_10_1016_j_jmp_2020_102348
crossref_primary_10_1080_01621459_2023_2216909
crossref_primary_10_1088_2632_2153_ad7226
crossref_primary_10_1038_s41467_022_28153_7
crossref_primary_10_1371_journal_pone_0237724
crossref_primary_10_3389_fcomp_2023_1071174
crossref_primary_10_15252_msb_20199198
crossref_primary_10_1088_1361_6587_ad48b7
crossref_primary_10_1177_17456916231186964
crossref_primary_10_1016_j_isprsjprs_2020_04_014
crossref_primary_10_15302_J_QB_020_0228
crossref_primary_10_3390_plants10122674
crossref_primary_10_1016_j_jcp_2018_04_018
crossref_primary_10_1109_TSP_2025_3530149
crossref_primary_10_1016_j_ijforecast_2021_11_012
crossref_primary_10_3390_s25010217
crossref_primary_10_1007_s11280_021_00970_8
crossref_primary_10_1155_2020_8810753
crossref_primary_10_1109_TNNLS_2019_2934729
crossref_primary_10_1111_bmsp_12197
crossref_primary_10_1016_j_jcp_2024_113293
crossref_primary_10_1049_rsn2_12391
crossref_primary_10_1007_s00439_021_02417_6
crossref_primary_10_1145_3672275
crossref_primary_10_1016_j_cma_2022_115236
crossref_primary_10_1109_TAI_2021_3086046
crossref_primary_10_1109_TGRS_2023_3265657
crossref_primary_10_1109_TBME_2019_2895663
crossref_primary_10_1016_j_rse_2022_113388
crossref_primary_10_1080_0952813X_2021_1871970
crossref_primary_10_1109_TII_2025_3528580
crossref_primary_10_1111_sjos_12335
crossref_primary_10_1016_j_isatra_2021_02_024
crossref_primary_10_1137_23M1624981
crossref_primary_10_1016_j_knosys_2025_114409
crossref_primary_10_1016_j_soildyn_2025_109308
crossref_primary_10_1137_21M1430005
crossref_primary_10_1186_s40104_024_01044_1
crossref_primary_10_1016_j_neunet_2025_107135
crossref_primary_10_1080_10705511_2024_2432612
crossref_primary_10_1121_10_0016876
crossref_primary_10_1016_j_neuroimage_2019_06_064
crossref_primary_10_1016_j_media_2023_102914
crossref_primary_10_1016_j_eswa_2021_115968
crossref_primary_10_1002_asmb_2890
crossref_primary_10_3390_e24010133
crossref_primary_10_1007_s13571_020_00245_8
crossref_primary_10_1109_TNNLS_2022_3208202
crossref_primary_10_1145_3626756
crossref_primary_10_1093_bib_bbab229
crossref_primary_10_1109_ACCESS_2020_3048154
crossref_primary_10_3390_aerospace9060329
crossref_primary_10_3390_s22082886
crossref_primary_10_1109_TCCN_2020_2990773
crossref_primary_10_3390_e23070853
crossref_primary_10_1002_sam_11632
crossref_primary_10_1016_j_sigpro_2025_110097
crossref_primary_10_1016_j_ress_2023_109547
crossref_primary_10_1016_j_ijforecast_2023_07_001
crossref_primary_10_1038_s41587_021_01044_w
crossref_primary_10_1109_TITS_2025_3544264
crossref_primary_10_1109_TNNLS_2021_3080238
crossref_primary_10_1287_mksc_2023_0017
crossref_primary_10_1111_ele_14117
crossref_primary_10_1093_biostatistics_kxz034
crossref_primary_10_1109_LGRS_2024_3383749
crossref_primary_10_1016_j_jmp_2020_102383
crossref_primary_10_1016_j_cma_2025_117894
crossref_primary_10_1016_j_ins_2021_01_083
crossref_primary_10_1016_j_artint_2021_103580
crossref_primary_10_1002_jae_3125
crossref_primary_10_1002_mgea_79
crossref_primary_10_1088_2632_2153_ad9af9
crossref_primary_10_26443_seismica_v3i1_1143
crossref_primary_10_1109_TVCG_2024_3406959
crossref_primary_10_1016_j_knosys_2025_114438
crossref_primary_10_1109_TNNLS_2019_2957843
crossref_primary_10_1287_mnsc_2022_00261
crossref_primary_10_3847_1538_3881_ab557d
crossref_primary_10_1109_TGRS_2024_3357589
crossref_primary_10_6339_25_JDS1161F
crossref_primary_10_1007_s10182_024_00497_z
crossref_primary_10_1190_geo2023_0035_1
crossref_primary_10_1029_2019JB018589
crossref_primary_10_1186_s40323_022_00237_5
crossref_primary_10_1093_biomet_asz069
crossref_primary_10_1016_j_srs_2025_100237
crossref_primary_10_1111_2041_210X_13836
crossref_primary_10_1111_2041_210X_13833
crossref_primary_10_3389_fgene_2023_1112914
crossref_primary_10_1016_j_ress_2021_107624
crossref_primary_10_1109_ACCESS_2019_2927781
crossref_primary_10_1109_JIOT_2021_3113679
crossref_primary_10_1007_JHEP03_2022_066
crossref_primary_10_1007_s10994_025_06760_x
crossref_primary_10_1016_j_ymssp_2025_112586
crossref_primary_10_1162_neco_a_01182
crossref_primary_10_1051_0004_6361_202039435
crossref_primary_10_1109_TMC_2024_3415661
crossref_primary_10_3390_e23030313
crossref_primary_10_1016_j_bspc_2024_107393
crossref_primary_10_1007_s11053_025_10521_x
crossref_primary_10_1080_02664763_2023_2197587
crossref_primary_10_1016_j_csda_2022_107626
crossref_primary_10_1002_adem_202101176
crossref_primary_10_1109_TSMC_2022_3185102
crossref_primary_10_1109_TSP_2023_3278867
crossref_primary_10_3390_s23052416
crossref_primary_10_1016_j_ins_2025_122535
crossref_primary_10_1109_TGRS_2023_3264777
crossref_primary_10_1109_TMM_2021_3128254
crossref_primary_10_1287_ijoc_2023_0440
crossref_primary_10_1016_j_energy_2022_123923
crossref_primary_10_1190_geo2021_0118_1
crossref_primary_10_1038_s41587_021_01075_3
crossref_primary_10_1002_bimj_202000366
crossref_primary_10_1029_2022JB024703
crossref_primary_10_1109_TAC_2023_3242344
crossref_primary_10_1145_3659206
crossref_primary_10_1073_pnas_1916012117
crossref_primary_10_1029_2018WR024461
crossref_primary_10_1051_swsc_2025029
crossref_primary_10_3390_signals2040045
crossref_primary_10_1109_TSP_2021_3122296
crossref_primary_10_1109_ACCESS_2021_3096387
crossref_primary_10_1109_TASLP_2020_3037487
crossref_primary_10_1007_s00158_018_2169_y
crossref_primary_10_1186_s13059_019_1665_8
crossref_primary_10_1016_j_ins_2020_02_050
crossref_primary_10_1177_14759217211062099
crossref_primary_10_1137_23M1544738
crossref_primary_10_1016_j_cja_2021_08_033
crossref_primary_10_1016_j_knosys_2022_110043
crossref_primary_10_1016_j_aei_2025_103280
crossref_primary_10_1155_2019_8458016
crossref_primary_10_7554_eLife_92595_3
crossref_primary_10_3390_s20215991
crossref_primary_10_1016_j_bspc_2024_107371
crossref_primary_10_1016_j_jhydrol_2023_130498
crossref_primary_10_1038_s41598_018_29725_8
crossref_primary_10_1080_01621459_2020_1811100
crossref_primary_10_1007_s42952_021_00147_z
crossref_primary_10_1109_ACCESS_2022_3197603
crossref_primary_10_1111_jiec_13399
crossref_primary_10_1088_1674_1137_acf7b5
crossref_primary_10_1214_24_AOS2429
crossref_primary_10_1007_s11222_023_10210_w
crossref_primary_10_1016_j_dsp_2025_105286
crossref_primary_10_1007_s11263_022_01621_9
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1061__ASCE_CP_1943_5487_0000805
crossref_primary_10_1109_TII_2022_3156965
crossref_primary_10_1016_j_compfluid_2024_106443
crossref_primary_10_1016_j_srs_2025_100264
crossref_primary_10_1007_s10845_025_02665_7
crossref_primary_10_1002_apj_3014
crossref_primary_10_1016_j_patrec_2022_10_024
crossref_primary_10_1016_j_ascom_2020_100424
crossref_primary_10_1017_apr_2020_72
crossref_primary_10_1017_jfm_2024_270
crossref_primary_10_1016_j_compag_2025_110560
crossref_primary_10_3390_a17010024
crossref_primary_10_1016_j_neuroimage_2021_118635
crossref_primary_10_1145_3729263
crossref_primary_10_1002_sam_11699
crossref_primary_10_1090_mcom_3906
crossref_primary_10_1088_1742_6596_2767_8_082001
crossref_primary_10_1016_j_ress_2023_109181
crossref_primary_10_1038_s41467_023_39257_z
crossref_primary_10_1016_j_csda_2025_108146
crossref_primary_10_1109_TBME_2021_3103141
crossref_primary_10_1109_TITS_2023_3240185
crossref_primary_10_1007_s11634_023_00569_z
crossref_primary_10_1109_TITS_2022_3171730
crossref_primary_10_2139_ssrn_3113288
crossref_primary_10_1016_j_neucom_2023_126553
crossref_primary_10_1080_10485252_2023_2219783
crossref_primary_10_1007_s11336_024_09955_8
crossref_primary_10_1038_s41592_023_01955_3
crossref_primary_10_1088_1361_6420_ad22e7
crossref_primary_10_1038_s41598_024_61687_y
crossref_primary_10_1214_24_AOS2481
crossref_primary_10_3847_1538_4357_ac7a3c
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_3390_math10060898
crossref_primary_10_1016_j_knosys_2023_110313
crossref_primary_10_1080_00949655_2025_2538116
crossref_primary_10_1016_j_geoen_2025_214170
crossref_primary_10_1038_s41467_023_43317_9
crossref_primary_10_3390_app9102055
crossref_primary_10_1016_j_envsoft_2019_01_014
crossref_primary_10_1016_j_sigpro_2019_107413
crossref_primary_10_1007_s42952_023_00217_4
crossref_primary_10_1016_j_csda_2020_107012
crossref_primary_10_1002_sta4_310
crossref_primary_10_1016_j_joule_2021_06_005
crossref_primary_10_1080_01621459_2019_1691563
crossref_primary_10_1088_1742_5468_ab371f
crossref_primary_10_3389_fmedt_2022_919046
crossref_primary_10_1063_5_0245365
crossref_primary_10_1371_journal_pcbi_1010591
crossref_primary_10_1016_j_cma_2024_117195
crossref_primary_10_1109_TEC_2025_3546347
crossref_primary_10_1162_neco_a_01108
crossref_primary_10_1016_j_neucom_2021_04_085
crossref_primary_10_1016_j_csbj_2021_08_006
crossref_primary_10_1016_j_csda_2018_08_025
crossref_primary_10_1007_s10114_025_3390_4
crossref_primary_10_1016_j_eswa_2023_121588
crossref_primary_10_1109_ACCESS_2024_3507773
crossref_primary_10_1007_s12046_022_01980_6
crossref_primary_10_1371_journal_pcbi_1008270
crossref_primary_10_3390_e22111263
crossref_primary_10_1016_j_cageo_2022_105056
crossref_primary_10_1016_j_compchemeng_2023_108181
crossref_primary_10_1109_TSIPN_2018_2889579
crossref_primary_10_1093_nargab_lqaf040
crossref_primary_10_1051_0004_6361_202451736
crossref_primary_10_1109_TNNLS_2021_3054407
crossref_primary_10_1214_23_STS915
crossref_primary_10_1007_s00180_020_01008_9
crossref_primary_10_1214_23_STS919
crossref_primary_10_1109_TII_2022_3158615
crossref_primary_10_1038_s43586_020_00001_2
crossref_primary_10_3390_fi16010008
crossref_primary_10_1088_1402_4896_adb52a
crossref_primary_10_1093_gji_ggaf198
crossref_primary_10_3390_e22111272
crossref_primary_10_1007_s11222_020_09924_y
crossref_primary_10_1109_TSP_2023_3326650
crossref_primary_10_1007_JHEP10_2020_206
crossref_primary_10_1016_j_heliyon_2024_e24188
crossref_primary_10_1088_1361_6420_ad2f63
crossref_primary_10_1017_asb_2024_7
crossref_primary_10_1111_biom_13074
crossref_primary_10_1002_sta4_685
crossref_primary_10_1007_s10182_018_00334_0
crossref_primary_10_1287_ijds_2022_0018
crossref_primary_10_1016_j_cognition_2020_104370
crossref_primary_10_1016_j_cviu_2020_102920
crossref_primary_10_1109_JSTSP_2019_2913330
crossref_primary_10_1016_j_neucom_2025_130281
crossref_primary_10_1016_j_geoen_2023_212154
crossref_primary_10_1109_TBME_2023_3241957
crossref_primary_10_1109_TCYB_2021_3107292
crossref_primary_10_1108_ECAM_12_2022_1197
crossref_primary_10_1088_1741_2552_ace932
crossref_primary_10_3390_math11153345
crossref_primary_10_1007_s11222_021_10069_9
crossref_primary_10_1109_TIP_2025_3564829
crossref_primary_10_1016_j_nima_2025_170281
crossref_primary_10_1080_01621459_2023_2169150
crossref_primary_10_1093_gji_ggaf176
crossref_primary_10_1093_ismeco_ycaf062
crossref_primary_10_1016_j_ijbiomac_2023_127884
crossref_primary_10_1073_pnas_2114021119
crossref_primary_10_1186_s13059_020_1950_6
crossref_primary_10_1109_TII_2023_3240591
crossref_primary_10_1109_TSP_2019_2954504
crossref_primary_10_1371_journal_pgen_1010539
crossref_primary_10_1109_TWC_2020_3028989
crossref_primary_10_1080_17421772_2025_2482071
crossref_primary_10_1145_3715876
crossref_primary_10_1007_s10208_025_09721_x
crossref_primary_10_1016_j_jsv_2022_117227
crossref_primary_10_1007_s00285_024_02144_2
crossref_primary_10_1016_j_neucom_2025_131119
crossref_primary_10_1093_bib_bbaf132
crossref_primary_10_1145_3578932
crossref_primary_10_1109_TKDE_2021_3093350
crossref_primary_10_1080_10618600_2025_2527925
crossref_primary_10_1080_01621459_2025_2529025
crossref_primary_10_1093_nargab_lqae152
crossref_primary_10_1109_TWC_2023_3241178
crossref_primary_10_1088_1741_4326_ade8fd
crossref_primary_10_3390_a15060204
crossref_primary_10_1016_j_cviu_2021_103244
crossref_primary_10_1109_TWC_2022_3191118
crossref_primary_10_1007_s11004_022_09994_w
crossref_primary_10_1080_17499518_2025_2466174
crossref_primary_10_1002_gepi_22445
crossref_primary_10_1287_mksc_2019_1212
crossref_primary_10_1016_j_spasta_2023_100746
crossref_primary_10_3390_math8111942
crossref_primary_10_1002_bimj_202200095
crossref_primary_10_1038_s41598_023_40278_3
crossref_primary_10_1186_s13059_021_02329_8
crossref_primary_10_1016_j_jprocont_2024_103173
crossref_primary_10_1214_20_AOS1958
crossref_primary_10_1109_ACCESS_2020_2995641
crossref_primary_10_1016_j_neubiorev_2020_12_021
crossref_primary_10_1016_j_jeconom_2025_106072
crossref_primary_10_1016_j_celrep_2021_109992
crossref_primary_10_3390_en18184867
crossref_primary_10_1016_j_crmeth_2023_100581
crossref_primary_10_1016_j_sste_2019_100302
crossref_primary_10_1016_j_patrec_2020_07_023
crossref_primary_10_1109_TMECH_2021_3109344
crossref_primary_10_1016_j_drudis_2020_11_027
crossref_primary_10_1016_j_psep_2024_05_011
crossref_primary_10_1109_TG_2022_3186386
crossref_primary_10_1038_s41467_018_03402_w
crossref_primary_10_3847_1538_4357_ac3a6b
crossref_primary_10_1109_TPAMI_2020_3001433
crossref_primary_10_1109_TCST_2023_3240980
crossref_primary_10_1109_TSP_2022_3229633
crossref_primary_10_1016_j_knosys_2024_112741
crossref_primary_10_1051_0004_6361_202449447
crossref_primary_10_1088_1361_6501_ad5905
crossref_primary_10_1146_annurev_statistics_040722_053607
crossref_primary_10_1080_01621459_2022_2044827
crossref_primary_10_3390_app12063158
crossref_primary_10_1109_TKDE_2022_3199570
crossref_primary_10_1029_2022WR033149
crossref_primary_10_1080_10618600_2023_2262080
crossref_primary_10_1109_LSP_2021_3060316
crossref_primary_10_1109_TBME_2022_3222745
crossref_primary_10_1080_24725854_2021_2024925
crossref_primary_10_3390_electronics14101908
crossref_primary_10_1080_01621459_2023_2287773
crossref_primary_10_1109_TSMC_2025_3538854
crossref_primary_10_1016_j_neunet_2025_107956
crossref_primary_10_1109_TAFFC_2021_3064940
crossref_primary_10_1109_TSP_2017_2725226
crossref_primary_10_1007_s11004_023_10129_y
crossref_primary_10_1016_j_jpowsour_2024_235359
crossref_primary_10_1111_2041_210X_13941
crossref_primary_10_3390_computation13060134
crossref_primary_10_1038_s41540_024_00386_w
crossref_primary_10_1371_journal_pcbi_1011839
crossref_primary_10_1080_00401706_2019_1635532
crossref_primary_10_1016_j_cma_2022_114712
crossref_primary_10_1093_bioadv_vbaf055
crossref_primary_10_5194_ascmo_8_1_2022
crossref_primary_10_1145_3472621
crossref_primary_10_1051_jnwpu_20183650942
crossref_primary_10_1016_j_conengprac_2024_106005
crossref_primary_10_1214_22_BA1332
crossref_primary_10_3390_axioms13120849
crossref_primary_10_3390_vehicles3040042
crossref_primary_10_1177_20592043241291661
crossref_primary_10_1214_22_BA1329
crossref_primary_10_3390_electronics13244972
crossref_primary_10_1016_j_neucom_2024_127339
crossref_primary_10_1371_journal_pcbi_1007770
crossref_primary_10_1109_TSP_2021_3096804
crossref_primary_10_1109_TIM_2021_3130675
crossref_primary_10_1080_10618600_2021_1880921
crossref_primary_10_1016_j_apenergy_2023_120889
crossref_primary_10_1016_j_dsp_2020_102829
crossref_primary_10_1016_j_neucom_2025_130219
crossref_primary_10_3390_e25091310
crossref_primary_10_3390_math12203288
crossref_primary_10_1007_s40857_022_00277_2
crossref_primary_10_1109_TKDE_2024_3466291
crossref_primary_10_1109_JOE_2025_3538948
crossref_primary_10_1109_TCI_2025_3541934
crossref_primary_10_1093_erae_jbz033
crossref_primary_10_1109_ACCESS_2024_3417219
crossref_primary_10_1016_j_inffus_2024_102886
crossref_primary_10_1109_TAES_2023_3314703
crossref_primary_10_1016_j_ces_2024_120780
crossref_primary_10_1049_iet_ipr_2019_1029
crossref_primary_10_5194_wes_10_857_2025
crossref_primary_10_1109_ACCESS_2022_3218636
crossref_primary_10_1109_TCAD_2022_3215071
crossref_primary_10_1080_03610918_2025_2479848
crossref_primary_10_1109_TKDE_2021_3093773
crossref_primary_10_1007_s41237_020_00104_w
crossref_primary_10_1177_1471082X20930894
crossref_primary_10_1016_j_ipm_2025_104336
crossref_primary_10_1007_s00338_019_01766_z
crossref_primary_10_1145_3600231
crossref_primary_10_1148_ryai_2021210031
crossref_primary_10_3390_app8020300
crossref_primary_10_3389_fevo_2021_588292
crossref_primary_10_1007_s11424_022_2085_5
crossref_primary_10_1111_insr_12502
crossref_primary_10_1214_22_BA1313
crossref_primary_10_1109_TSP_2021_3093792
crossref_primary_10_1038_s41467_023_44363_z
crossref_primary_10_1109_TKDE_2023_3326365
crossref_primary_10_1214_22_BA1309
crossref_primary_10_1111_2041_210X_14389
crossref_primary_10_1016_j_cma_2023_116304
crossref_primary_10_1007_s10489_020_02049_9
crossref_primary_10_1007_s11222_020_09928_8
crossref_primary_10_1016_j_cmpb_2024_108231
crossref_primary_10_1016_j_media_2020_101939
crossref_primary_10_3390_e23121673
crossref_primary_10_1109_TGRS_2023_3234527
crossref_primary_10_1109_TII_2022_3172995
crossref_primary_10_3390_app14041393
crossref_primary_10_1007_s10115_024_02172_w
crossref_primary_10_1007_s11222_024_10430_8
crossref_primary_10_1109_JSEN_2024_3440829
crossref_primary_10_3390_su12072897
crossref_primary_10_1016_j_neucom_2023_127065
crossref_primary_10_3390_sym14061188
crossref_primary_10_1002_sim_10015
crossref_primary_10_1016_j_automatica_2023_110897
crossref_primary_10_1029_2025JB031129
crossref_primary_10_1080_01621459_2021_1887741
crossref_primary_10_1111_rssc_12339
crossref_primary_10_3390_s18124222
crossref_primary_10_5194_gmd_18_2609_2025
crossref_primary_10_1145_3748334
crossref_primary_10_1016_j_cej_2024_158667
crossref_primary_10_1016_j_cma_2021_113976
crossref_primary_10_1145_3527579_3527580
crossref_primary_10_3390_e23060683
crossref_primary_10_1109_TAP_2022_3211732
crossref_primary_10_1109_TCYB_2021_3125106
crossref_primary_10_1088_1361_6560_acc71d
crossref_primary_10_1080_10618600_2024_2374962
crossref_primary_10_1007_s10278_023_00897_8
crossref_primary_10_1109_ACCESS_2024_3479913
crossref_primary_10_1109_TAES_2025_3559523
crossref_primary_10_1016_j_nimb_2019_07_005
crossref_primary_10_3390_e26080679
crossref_primary_10_1007_s10115_024_02315_z
crossref_primary_10_1109_ACCESS_2019_2920264
crossref_primary_10_1016_j_knosys_2021_107335
crossref_primary_10_1016_j_scitotenv_2023_168067
crossref_primary_10_1214_19_STS710
crossref_primary_10_1002_bimj_202100105
crossref_primary_10_3390_e27070679
crossref_primary_10_1214_19_STS712
crossref_primary_10_3846_jcem_2021_14907
crossref_primary_10_1049_sil2_12129
crossref_primary_10_1007_s11634_025_00634_9
crossref_primary_10_1109_TSP_2021_3120512
crossref_primary_10_1186_s12859_024_05886_4
crossref_primary_10_1109_TASE_2020_3042158
crossref_primary_10_1109_TIM_2021_3054025
crossref_primary_10_1016_j_jeconom_2024_105741
crossref_primary_10_1007_s41237_022_00164_0
crossref_primary_10_1080_24725854_2021_1931572
crossref_primary_10_3390_e23060693
crossref_primary_10_1115_1_4066390
crossref_primary_10_1080_10618600_2025_2505725
crossref_primary_10_1109_JBHI_2020_2996300
crossref_primary_10_3389_fimmu_2023_1228873
crossref_primary_10_3390_bs10100161
crossref_primary_10_1016_j_jcp_2024_113670
crossref_primary_10_1007_s11222_025_10729_0
crossref_primary_10_1287_mksc_2021_1326
crossref_primary_10_1115_1_4066394
crossref_primary_10_3390_e26080697
crossref_primary_10_1016_j_nucengdes_2025_114433
crossref_primary_10_1063_5_0147316
crossref_primary_10_1007_s40192_022_00262_7
crossref_primary_10_1080_07350015_2024_2396956
crossref_primary_10_1016_j_engappai_2023_106270
crossref_primary_10_1088_2632_2153_acd5aa
crossref_primary_10_1016_j_rse_2023_113718
crossref_primary_10_1016_j_media_2023_102889
crossref_primary_10_1140_epjds_s13688_025_00544_y
crossref_primary_10_1177_20552076241234619
crossref_primary_10_1109_JSEN_2021_3112177
crossref_primary_10_1016_j_istruc_2023_03_017
crossref_primary_10_1038_s41598_021_88875_4
crossref_primary_10_1007_s11222_021_10021_x
crossref_primary_10_1109_TIT_2025_3535923
crossref_primary_10_1093_bib_bbad358
crossref_primary_10_1093_bib_bbae689
crossref_primary_10_1016_j_imavis_2023_104897
crossref_primary_10_1080_00401706_2023_2238834
crossref_primary_10_1080_07350015_2024_2429468
crossref_primary_10_1177_1475921720921256
crossref_primary_10_1016_j_chemolab_2024_105088
crossref_primary_10_1016_j_inffus_2024_102417
crossref_primary_10_1360_SSM_2024_0100
crossref_primary_10_1371_journal_pcbi_1010902
crossref_primary_10_1016_j_ins_2021_06_020
crossref_primary_10_1177_1687814020936031
crossref_primary_10_1016_j_jbusres_2024_114719
crossref_primary_10_1177_17581559251334950
crossref_primary_10_1007_s10994_021_05971_2
crossref_primary_10_1016_j_rineng_2024_102504
crossref_primary_10_1190_geo2021_0766_1
crossref_primary_10_1177_09622802231158811
crossref_primary_10_3390_s24144585
crossref_primary_10_1093_nargab_lqaa028
crossref_primary_10_1088_1742_6596_1955_1_012062
crossref_primary_10_1145_3641859
crossref_primary_10_3390_s25185788
crossref_primary_10_1287_mksc_2022_1429
crossref_primary_10_1007_s13349_024_00879_6
crossref_primary_10_1007_s11749_022_00832_z
crossref_primary_10_1109_TSG_2022_3208606
crossref_primary_10_2514_1_J059315
crossref_primary_10_1016_j_csda_2022_107596
crossref_primary_10_1007_s13171_018_0153_7
crossref_primary_10_1214_24_AOS2393
crossref_primary_10_1109_TMTT_2024_3518913
crossref_primary_10_3389_fninf_2024_1459970
crossref_primary_10_1016_j_plrev_2021_04_005
crossref_primary_10_3389_fbioe_2020_00349
crossref_primary_10_1111_1365_2745_70035
crossref_primary_10_1109_TWC_2024_3371703
crossref_primary_10_3390_info14100571
crossref_primary_10_1016_j_sigpro_2022_108692
crossref_primary_10_1109_ACCESS_2021_3110049
crossref_primary_10_3390_e23101306
crossref_primary_10_1016_j_jcp_2022_111454
crossref_primary_10_1038_s41598_025_96215_z
crossref_primary_10_3389_frai_2020_509354
crossref_primary_10_1109_OJSP_2025_3585440
crossref_primary_10_1186_s42400_025_00364_7
crossref_primary_10_1038_s42003_021_02994_2
crossref_primary_10_1016_j_heliyon_2024_e36998
crossref_primary_10_1007_s00357_023_09452_0
crossref_primary_10_1109_TAI_2023_3268609
crossref_primary_10_1111_insr_12466
crossref_primary_10_1145_3749165
crossref_primary_10_1017_S0263574722001497
crossref_primary_10_1016_j_sigpro_2019_107339
crossref_primary_10_1109_TASLP_2020_3039390
crossref_primary_10_1088_1475_7516_2023_03_059
crossref_primary_10_1007_s10994_023_06382_1
crossref_primary_10_1371_journal_pone_0283548
crossref_primary_10_3390_biom13050767
crossref_primary_10_1109_TAFFC_2019_2955949
crossref_primary_10_1080_10618600_2023_2301072
crossref_primary_10_1016_j_sigpro_2019_107334
crossref_primary_10_1109_ACCESS_2021_3069990
crossref_primary_10_1109_ACCESS_2020_3001184
crossref_primary_10_1016_j_ins_2023_01_133
crossref_primary_10_1080_07350015_2024_2395423
crossref_primary_10_1109_TAI_2024_3432857
crossref_primary_10_1111_rssb_12388
crossref_primary_10_1111_rssb_12385
crossref_primary_10_1016_j_jcp_2022_111008
crossref_primary_10_3390_e24010055
crossref_primary_10_1016_j_cma_2023_116721
crossref_primary_10_1016_j_econlet_2020_109120
crossref_primary_10_1016_j_neucom_2023_01_069
crossref_primary_10_1002_sim_9619
crossref_primary_10_1080_03610926_2024_2370920
crossref_primary_10_1007_s10894_020_00258_1
crossref_primary_10_1007_s11242_024_02137_1
crossref_primary_10_1080_00295639_2022_2123203
crossref_primary_10_1007_s10237_024_01817_7
crossref_primary_10_1111_rssb_12399
crossref_primary_10_1007_s11222_025_10628_4
crossref_primary_10_1007_s11222_025_10606_w
crossref_primary_10_1140_epjc_s10052_024_12473_7
crossref_primary_10_1016_j_cels_2020_05_006
crossref_primary_10_1016_j_cels_2020_05_007
crossref_primary_10_1080_10618600_2024_2319159
crossref_primary_10_1002_jae_3018
crossref_primary_10_1109_TMI_2022_3150853
crossref_primary_10_1007_s10539_020_09746_2
crossref_primary_10_1007_s00357_019_09351_3
crossref_primary_10_3390_math12081198
crossref_primary_10_1016_j_csda_2023_107836
crossref_primary_10_1680_jsmic_19_00022
crossref_primary_10_1016_j_asoc_2025_113903
crossref_primary_10_1016_j_compstruct_2023_117257
crossref_primary_10_26508_lsa_201900517
crossref_primary_10_1049_iet_ipr_2020_0496
crossref_primary_10_1080_01621459_2023_2296704
crossref_primary_10_1080_10618600_2018_1497511
crossref_primary_10_1016_j_eswa_2023_120542
crossref_primary_10_1080_10618600_2024_2319160
crossref_primary_10_1109_TNNLS_2024_3409379
crossref_primary_10_1093_mnras_stac596
crossref_primary_10_1016_j_cma_2022_115594
crossref_primary_10_1109_TKDE_2021_3079836
crossref_primary_10_1016_j_trc_2021_103326
crossref_primary_10_1007_s11280_019_00751_4
crossref_primary_10_1016_j_cma_2024_117493
crossref_primary_10_1080_07421222_2021_1990619
crossref_primary_10_1007_s10489_024_05595_8
crossref_primary_10_1007_s00180_022_01246_z
crossref_primary_10_1016_j_patcog_2025_111416
crossref_primary_10_1016_j_anucene_2020_108046
crossref_primary_10_3389_fams_2024_1302825
crossref_primary_10_3390_cancers14153809
crossref_primary_10_3390_e23060727
crossref_primary_10_1002_cjs_11570
crossref_primary_10_1039_D5DD00018A
crossref_primary_10_1080_00949655_2023_2277885
crossref_primary_10_1109_TITS_2021_3096943
crossref_primary_10_3389_fpubh_2020_00425
crossref_primary_10_1088_2632_2153_acc8b7
crossref_primary_10_1109_TRO_2024_3428428
crossref_primary_10_1214_24_AOAS2003
crossref_primary_10_1214_24_AOAS2004
crossref_primary_10_1016_j_jhydrol_2024_130627
crossref_primary_10_1785_0220240305
crossref_primary_10_1016_j_jcp_2024_113395
crossref_primary_10_1109_TAES_2020_3044109
crossref_primary_10_1007_s10844_023_00828_7
crossref_primary_10_1038_s41576_025_00869_4
crossref_primary_10_1214_23_BA1393
crossref_primary_10_1016_j_jag_2025_104759
crossref_primary_10_1007_s00477_022_02257_4
crossref_primary_10_1002_eng2_12669
crossref_primary_10_1007_s40295_025_00505_7
crossref_primary_10_1002_rnc_5916
crossref_primary_10_1186_s12874_024_02304_4
crossref_primary_10_1007_s11222_024_10392_x
crossref_primary_10_2139_ssrn_4727171
crossref_primary_10_1109_TSIPN_2019_2914610
crossref_primary_10_1016_j_patcog_2022_109129
crossref_primary_10_1038_s43588_024_00683_8
crossref_primary_10_3390_axioms14060408
crossref_primary_10_1007_s00180_024_01516_y
crossref_primary_10_1007_s11222_022_10189_w
crossref_primary_10_1016_j_jfranklin_2025_107547
crossref_primary_10_1016_j_jksuci_2023_101883
crossref_primary_10_1177_1475921720904543
crossref_primary_10_1016_j_physa_2025_130536
crossref_primary_10_1088_1742_6596_2265_3_032070
crossref_primary_10_1111_2041_210X_13380
crossref_primary_10_1016_j_trc_2021_103347
crossref_primary_10_1016_j_ijhydene_2023_03_373
crossref_primary_10_1038_s41467_023_40141_z
crossref_primary_10_1007_s10115_023_01955_x
crossref_primary_10_1109_TAES_2024_3394464
crossref_primary_10_1029_2024JB029557
crossref_primary_10_1016_j_neucom_2020_07_135
crossref_primary_10_1080_01621459_2024_2392904
crossref_primary_10_1089_soro_2024_0044
crossref_primary_10_1007_s11222_022_10132_z
crossref_primary_10_1002_qj_4913
crossref_primary_10_1515_sagmb_2018_0065
crossref_primary_10_1088_1742_5468_ab43d3
crossref_primary_10_1038_s42003_024_06504_y
crossref_primary_10_1063_5_0039617
crossref_primary_10_1016_j_eswa_2025_128624
crossref_primary_10_1080_24725854_2023_2210629
crossref_primary_10_1080_00031305_2022_2164054
crossref_primary_10_1016_j_csl_2025_101806
crossref_primary_10_1109_TSIPN_2020_3016478
crossref_primary_10_1080_00207179_2023_2212814
crossref_primary_10_1002_qre_3220
crossref_primary_10_1016_j_cels_2023_12_002
crossref_primary_10_1051_0004_6361_202141000
crossref_primary_10_1080_10618600_2021_1935971
crossref_primary_10_1109_TSMC_2024_3427345
crossref_primary_10_3390_su16166892
crossref_primary_10_1002_rnc_6856
crossref_primary_10_1016_j_robot_2018_12_009
crossref_primary_10_1093_jrsssa_qnae105
crossref_primary_10_1049_joe_2019_0389
crossref_primary_10_1002_wics_70044
crossref_primary_10_1016_j_csda_2022_107506
crossref_primary_10_1002_wics_70045
crossref_primary_10_1016_j_artint_2018_12_005
crossref_primary_10_3390_en15072647
crossref_primary_10_1016_j_jcp_2019_05_053
crossref_primary_10_1029_2021JB022320
crossref_primary_10_1109_ACCESS_2025_3533878
crossref_primary_10_1109_TSP_2025_3554876
crossref_primary_10_1007_s11222_024_10535_0
crossref_primary_10_1016_j_eswa_2023_122771
crossref_primary_10_1109_JIOT_2024_3503616
crossref_primary_10_3390_a14030098
crossref_primary_10_1109_TITS_2022_3155381
crossref_primary_10_3389_fneur_2021_721491
crossref_primary_10_1080_10618600_2021_1923516
crossref_primary_10_1080_10618600_2024_2434181
crossref_primary_10_1109_MCI_2022_3155327
crossref_primary_10_1002_sam_11396
crossref_primary_10_1109_ACCESS_2022_3174860
crossref_primary_10_1088_1361_6420_ad847b
crossref_primary_10_1103_PhysRevApplied_16_044057
crossref_primary_10_1007_s10922_022_09690_4
crossref_primary_10_1088_1757_899X_1292_1_012018
crossref_primary_10_1016_j_physa_2024_129691
crossref_primary_10_1093_jrsssb_qkad016
crossref_primary_10_1088_1361_6420_ad5eb4
crossref_primary_10_1190_geo2023_0737_1
crossref_primary_10_1016_j_anucene_2025_111418
crossref_primary_10_1080_03610926_2020_1749664
crossref_primary_10_1088_1741_2552_ac88a0
crossref_primary_10_1109_JOE_2022_3162023
crossref_primary_10_1109_TAFFC_2024_3405584
crossref_primary_10_2139_ssrn_4261182
crossref_primary_10_1016_j_knosys_2025_114116
crossref_primary_10_1016_j_ijhydene_2023_04_126
crossref_primary_10_1080_01621459_2020_1782222
crossref_primary_10_1093_biostatistics_kxac042
crossref_primary_10_3390_app10103413
crossref_primary_10_1109_TPAMI_2023_3234291
crossref_primary_10_1016_j_eswa_2025_128667
crossref_primary_10_1016_j_jcp_2019_05_027
crossref_primary_10_3390_e21111096
crossref_primary_10_1093_biomet_asy054
crossref_primary_10_1007_s42952_019_00001_3
crossref_primary_10_1214_21_STS834
crossref_primary_10_1214_21_STS840
crossref_primary_10_1016_j_neubiorev_2022_104649
crossref_primary_10_3390_econometrics13010002
crossref_primary_10_1038_s41592_023_01943_7
crossref_primary_10_3390_math12213319
crossref_primary_10_1016_j_ecosta_2025_01_001
crossref_primary_10_1016_j_neucom_2018_09_083
crossref_primary_10_1214_21_AOAS1540
crossref_primary_10_3390_e25020336
crossref_primary_10_1016_j_jcp_2019_05_015
crossref_primary_10_1016_j_cpc_2025_109730
crossref_primary_10_3389_fpsyg_2022_935419
crossref_primary_10_1080_10691898_2020_1848486
crossref_primary_10_1007_s13349_024_00848_z
crossref_primary_10_1109_TII_2020_3043226
crossref_primary_10_3390_fi13020037
crossref_primary_10_3390_psych4010007
crossref_primary_10_3390_math12213311
crossref_primary_10_3390_computation9120146
crossref_primary_10_3390_electronics13030655
crossref_primary_10_1016_j_ijresmar_2020_04_005
crossref_primary_10_1002_wics_70005
crossref_primary_10_1016_j_meomic_2025_100046
crossref_primary_10_1063_5_0226735
crossref_primary_10_1109_TNNLS_2021_3129160
crossref_primary_10_1109_TPWRS_2023_3254909
crossref_primary_10_1162_neco_a_01236
crossref_primary_10_59277_PRA_SER_A_26_1_04
crossref_primary_10_1007_s00357_022_09417_9
crossref_primary_10_1038_s42256_019_0038_z
crossref_primary_10_1109_TCAD_2024_3523426
crossref_primary_10_1109_TCOMM_2024_3388496
crossref_primary_10_1109_TAES_2021_3103582
crossref_primary_10_1007_s00466_019_01718_y
crossref_primary_10_1016_j_joi_2024_101633
crossref_primary_10_1016_j_oceaneng_2025_122303
crossref_primary_10_1016_j_neuroimage_2020_117366
crossref_primary_10_1016_j_neucom_2019_08_019
crossref_primary_10_1080_01621459_2024_2395586
crossref_primary_10_1080_24725854_2023_2219468
crossref_primary_10_1137_23M1581807
crossref_primary_10_1007_s13042_018_0900_z
crossref_primary_10_1080_23249935_2024_2318621
crossref_primary_10_1007_s12065_023_00900_9
crossref_primary_10_1088_1361_6501_aca496
crossref_primary_10_1093_comnet_cnac009
crossref_primary_10_1109_JSTARS_2018_2803198
crossref_primary_10_1007_s11222_021_10017_7
crossref_primary_10_1016_j_sigpro_2020_107624
crossref_primary_10_1016_j_csda_2017_12_004
crossref_primary_10_1016_j_fsigen_2023_102890
crossref_primary_10_1016_j_jcp_2022_111438
crossref_primary_10_1080_07350015_2021_1933502
crossref_primary_10_1103_PhysRevD_111_063065
crossref_primary_10_1088_1361_6420_abc962
crossref_primary_10_1109_TSP_2022_3158588
crossref_primary_10_1016_j_jcp_2025_114127
crossref_primary_10_1016_j_jbi_2018_08_011
crossref_primary_10_1007_s10959_024_01349_x
crossref_primary_10_1016_j_apm_2025_116224
crossref_primary_10_1109_TSG_2019_2931160
crossref_primary_10_1016_j_compchemeng_2020_107123
crossref_primary_10_1108_DTA_06_2021_0160
crossref_primary_10_1109_TASE_2024_3510432
crossref_primary_10_1016_j_radphyschem_2024_112389
crossref_primary_10_1371_journal_pcbi_1010651
crossref_primary_10_1080_01621459_2017_1388244
crossref_primary_10_1016_j_neucom_2025_131268
crossref_primary_10_1371_journal_pcbi_1011509
crossref_primary_10_1016_j_energy_2024_131375
crossref_primary_10_1093_bib_bbaf287
crossref_primary_10_1109_TCOMM_2019_2907623
crossref_primary_10_1162_neco_a_01686
crossref_primary_10_1016_j_inffus_2021_05_008
crossref_primary_10_3389_fpsyg_2025_1506320
crossref_primary_10_1109_TIP_2025_3551648
crossref_primary_10_3390_e24020301
crossref_primary_10_1017_pan_2025_10021
crossref_primary_10_1093_bib_bbaf283
crossref_primary_10_1016_j_cageo_2024_105622
crossref_primary_10_1063_4_0000269
crossref_primary_10_1002_andp_202500057
crossref_primary_10_1080_01621459_2021_2003201
crossref_primary_10_1038_s43586_022_00095_w
crossref_primary_10_1111_rssc_12489
crossref_primary_10_1002_andp_202000508
crossref_primary_10_1016_j_ymssp_2023_110573
crossref_primary_10_1017_jfm_2025_10253
crossref_primary_10_1080_02664763_2025_2519139
crossref_primary_10_1007_s10479_025_06693_7
crossref_primary_10_1016_j_oceaneng_2023_116658
crossref_primary_10_1109_TSP_2025_3584248
crossref_primary_10_1016_j_jspi_2020_05_009
crossref_primary_10_1007_s11336_020_09739_w
crossref_primary_10_1016_j_compstruct_2023_116815
crossref_primary_10_3390_modelling2010001
crossref_primary_10_2139_ssrn_3915874
crossref_primary_10_1016_j_aei_2024_102612
crossref_primary_10_1371_journal_pgen_1011519
crossref_primary_10_1073_pnas_2214414119
crossref_primary_10_1162_imag_a_00184
crossref_primary_10_1016_j_ymssp_2024_111713
crossref_primary_10_3847_1538_3881_acdcfb
crossref_primary_10_1016_j_ipm_2024_103914
crossref_primary_10_3390_app12052571
crossref_primary_10_1002_sim_9164
crossref_primary_10_1016_j_eswa_2023_120042
crossref_primary_10_3390_sci7020054
crossref_primary_10_1109_TKDE_2021_3139469
crossref_primary_10_1016_j_spasta_2018_03_002
crossref_primary_10_1038_s41588_025_02262_7
crossref_primary_10_3390_app9204475
crossref_primary_10_1007_s11222_025_10730_7
crossref_primary_10_1007_s11222_025_10654_2
crossref_primary_10_1007_s13042_022_01579_7
crossref_primary_10_1109_ACCESS_2023_3306593
crossref_primary_10_1214_25_BA1542
crossref_primary_10_6339_21_JDS1018
crossref_primary_10_1016_j_quascirev_2018_10_032
crossref_primary_10_1016_j_jpdc_2018_12_008
crossref_primary_10_1016_j_ajhg_2025_07_016
crossref_primary_10_1128_msystems_00132_22
crossref_primary_10_3390_app15126418
crossref_primary_10_1109_LSP_2022_3167335
crossref_primary_10_1007_s10518_022_01485_x
crossref_primary_10_1007_s11336_022_09884_4
crossref_primary_10_1109_ACCESS_2020_3033138
crossref_primary_10_3390_e26080707
crossref_primary_10_1016_j_marpolbul_2023_115098
crossref_primary_10_1093_biomet_asac026
crossref_primary_10_1093_gji_ggaf067
crossref_primary_10_1109_TIP_2022_3202092
crossref_primary_10_1109_LGRS_2021_3090743
crossref_primary_10_3390_s23020757
crossref_primary_10_1093_bib_bbad073
crossref_primary_10_1016_j_spasta_2022_100593
crossref_primary_10_1016_j_compstruc_2023_107163
crossref_primary_10_1214_25_BA1537
crossref_primary_10_1016_j_apenergy_2019_01_024
crossref_primary_10_1016_j_automatica_2024_111907
crossref_primary_10_1109_TAC_2025_3530878
crossref_primary_10_1214_25_BA1533
crossref_primary_10_1016_j_ecoinf_2023_102449
crossref_primary_10_1016_j_jcp_2021_110218
crossref_primary_10_1109_TIP_2018_2858553
crossref_primary_10_1016_j_est_2023_107443
crossref_primary_10_1016_j_geoen_2024_213615
crossref_primary_10_1162_artl_a_00416
crossref_primary_10_1109_TCYB_2021_3079906
crossref_primary_10_1016_j_ecoinf_2025_103097
crossref_primary_10_1016_j_triboint_2024_110219
crossref_primary_10_1162_neco_a_01642
crossref_primary_10_1016_j_trb_2022_01_005
crossref_primary_10_1016_j_cam_2024_116454
crossref_primary_10_1162_neco_a_01646
crossref_primary_10_1007_s10044_024_01325_5
crossref_primary_10_1016_j_sna_2024_116178
crossref_primary_10_1016_j_taml_2025_100609
crossref_primary_10_1109_TKDE_2022_3155408
crossref_primary_10_1029_2022MS003058
crossref_primary_10_1038_s41598_024_82406_7
crossref_primary_10_1080_10618600_2019_1609977
crossref_primary_10_1016_j_inffus_2025_103300
crossref_primary_10_1109_TGRS_2022_3201436
crossref_primary_10_6339_25_JDS1172
crossref_primary_10_1162_neco_a_01630
crossref_primary_10_3390_electronics14142780
crossref_primary_10_1109_JSAC_2022_3143234
crossref_primary_10_1016_j_compstruc_2024_107462
crossref_primary_10_1103_PhysRevC_110_054609
crossref_primary_10_1016_j_jprocont_2023_02_004
crossref_primary_10_1109_TIP_2023_3318953
crossref_primary_10_1177_14759217241260254
crossref_primary_10_1029_2021WR029772
crossref_primary_10_1029_2024MS004547
crossref_primary_10_1016_j_ijfatigue_2023_107734
crossref_primary_10_1109_JOE_2023_3252624
crossref_primary_10_1137_21M1427541
crossref_primary_10_1021_acs_iecr_5c00077
crossref_primary_10_1016_j_eswa_2025_128165
crossref_primary_10_15252_msb_20188557
crossref_primary_10_1103_PhysRevA_98_022330
crossref_primary_10_1109_TGRS_2023_3333962
crossref_primary_10_1002_nme_7207
crossref_primary_10_3390_s24103143
crossref_primary_10_1007_s10489_023_04488_6
crossref_primary_10_1093_bioadv_vbae082
crossref_primary_10_1109_TNNLS_2021_3111824
crossref_primary_10_1109_TBDATA_2021_3131707
crossref_primary_10_1002_bimj_70023
crossref_primary_10_1007_s40471_019_00205_5
crossref_primary_10_1016_j_ecosta_2021_12_002
crossref_primary_10_1002_aic_17753
crossref_primary_10_1093_bioadv_vbae086
crossref_primary_10_1214_22_AAP1874
crossref_primary_10_1080_13658816_2023_2229894
crossref_primary_10_1080_2150704X_2021_1884916
crossref_primary_10_1109_LGRS_2024_3416343
crossref_primary_10_3390_math10030463
crossref_primary_10_1093_jrsssc_qlae006
crossref_primary_10_3390_e27010062
crossref_primary_10_1038_s41467_024_45227_w
crossref_primary_10_1016_j_ymssp_2021_108530
crossref_primary_10_12677_SA_2023_122030
crossref_primary_10_1038_s41524_025_01743_x
crossref_primary_10_2478_jos_2023_0005
crossref_primary_10_2514_1_J064617
crossref_primary_10_1109_TMC_2025_3551315
crossref_primary_10_1007_s11030_024_10942_5
crossref_primary_10_1137_23M1545379
crossref_primary_10_1109_ACCESS_2024_3443646
crossref_primary_10_1115_1_4065378
crossref_primary_10_1080_02664763_2023_2172143
crossref_primary_10_1016_j_ijforecast_2023_05_002
crossref_primary_10_1016_j_inffus_2023_102215
crossref_primary_10_1109_ACCESS_2019_2943249
crossref_primary_10_1016_j_artmed_2019_101783
crossref_primary_10_1162_imag_a_00132
crossref_primary_10_1109_ACCESS_2025_3581151
crossref_primary_10_1016_j_jcp_2023_112100
crossref_primary_10_1109_TPAMI_2022_3160539
crossref_primary_10_1109_TVLSI_2021_3077408
crossref_primary_10_1007_s11129_021_09241_2
crossref_primary_10_1007_s00330_025_11525_0
crossref_primary_10_1214_24_STS936
crossref_primary_10_1088_1742_5468_ab39d9
crossref_primary_10_1111_biom_13580
crossref_primary_10_1287_mksc_2019_1162
crossref_primary_10_1016_j_ecolind_2024_111828
crossref_primary_10_1002_hbm_70179
crossref_primary_10_3390_en14144235
crossref_primary_10_1007_s11336_024_09984_3
crossref_primary_10_1016_j_cma_2023_116682
crossref_primary_10_1103_PhysRevResearch_2_023266
crossref_primary_10_1109_TMI_2025_3528402
crossref_primary_10_1016_j_asoc_2021_107776
crossref_primary_10_1093_bib_bbaf223
crossref_primary_10_1016_j_eswa_2024_124315
crossref_primary_10_1145_3450963
crossref_primary_10_1002_nme_7648
crossref_primary_10_1007_s10015_025_01030_4
crossref_primary_10_1088_1742_6596_2362_1_012005
crossref_primary_10_1093_jrsssc_qlae014
crossref_primary_10_1177_01423312211060576
crossref_primary_10_1007_s11634_024_00582_w
crossref_primary_10_1016_j_trb_2019_12_001
crossref_primary_10_1080_00207179_2022_2029945
crossref_primary_10_1186_s12859_023_05219_x
crossref_primary_10_1109_JSTARS_2021_3119419
crossref_primary_10_1080_10618600_2021_1984929
crossref_primary_10_1016_j_inffus_2018_12_008
crossref_primary_10_1080_00031305_2023_2232006
crossref_primary_10_1016_j_eswa_2024_123460
crossref_primary_10_1093_gji_ggaf040
crossref_primary_10_1016_j_cma_2024_117423
crossref_primary_10_1080_10618600_2022_2099403
crossref_primary_10_1016_j_cma_2023_116214
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024054008
crossref_primary_10_1007_s11222_023_10225_3
crossref_primary_10_3389_fnano_2022_1021943
crossref_primary_10_1109_TNNLS_2021_3105570
crossref_primary_10_1002_widm_1450
crossref_primary_10_1007_s11222_023_10238_y
crossref_primary_10_1111_rssc_12454
crossref_primary_10_1146_annurev_statistics_031219_041131
crossref_primary_10_1080_10618600_2024_2356173
crossref_primary_10_1109_TCYB_2022_3230048
crossref_primary_10_2139_ssrn_3923075
crossref_primary_10_1007_s12021_020_09472_w
crossref_primary_10_1016_j_cma_2023_116207
crossref_primary_10_1016_j_softx_2025_102187
crossref_primary_10_1016_j_sigpro_2025_110116
crossref_primary_10_1109_JSAC_2022_3191346
crossref_primary_10_1016_j_neuroimage_2020_116839
crossref_primary_10_1093_jrsssc_qlad102
crossref_primary_10_1115_1_4066266
crossref_primary_10_1093_jrsssc_qlad100
crossref_primary_10_1098_rsos_221414
crossref_primary_10_1007_s42113_024_00228_2
crossref_primary_10_1021_acs_est_5c00841
crossref_primary_10_1109_TIM_2021_3067242
crossref_primary_10_1007_s11082_023_06244_z
crossref_primary_10_1111_bmsp_12219
crossref_primary_10_1109_TSP_2019_2907265
crossref_primary_10_3390_app121910078
crossref_primary_10_1007_s11222_023_10327_y
crossref_primary_10_1016_j_ajhg_2019_05_018
crossref_primary_10_1038_s41561_019_0353_3
crossref_primary_10_3982_QE1825
crossref_primary_10_1145_3377850
crossref_primary_10_1017_dce_2025_8
crossref_primary_10_1111_anzs_12257
crossref_primary_10_1098_rsos_231697
crossref_primary_10_1111_anzs_12265
crossref_primary_10_3390_e22050513
crossref_primary_10_1109_TCSVT_2023_3238804
crossref_primary_10_1093_mnras_stab320
crossref_primary_10_3390_app9122551
crossref_primary_10_1016_j_commatsci_2022_111590
crossref_primary_10_3390_e26010063
crossref_primary_10_1109_TIE_2019_2907440
crossref_primary_10_1145_3688573
crossref_primary_10_1007_s12559_022_10069_5
crossref_primary_10_1109_TNNLS_2023_3339470
crossref_primary_10_1016_j_measen_2021_100365
crossref_primary_10_1111_bmsp_12234
crossref_primary_10_1002_env_2683
crossref_primary_10_1111_rssb_12476
crossref_primary_10_1038_s41592_024_02415_2
crossref_primary_10_1002_eqe_3877
crossref_primary_10_1093_mnras_stac3727
crossref_primary_10_1089_big_2022_0281
crossref_primary_10_1177_0081175020967392
crossref_primary_10_1371_journal_pone_0247795
crossref_primary_10_2139_ssrn_5368329
crossref_primary_10_1002_sim_9705
crossref_primary_10_1140_epjc_s10052_025_14091_3
crossref_primary_10_1007_s10035_021_01137_y
crossref_primary_10_1088_1361_6420_ab15a3
crossref_primary_10_1109_JIOT_2025_3545739
crossref_primary_10_1016_j_neunet_2023_04_001
crossref_primary_10_1016_j_neuroimage_2020_117226
crossref_primary_10_1017_S0140525X21002351
crossref_primary_10_1016_j_trc_2024_104585
crossref_primary_10_1029_2023JB027789
crossref_primary_10_1103_PhysRevD_111_062003
crossref_primary_10_3390_rs10030369
crossref_primary_10_1080_10618600_2025_2505018
crossref_primary_10_1016_j_ifacol_2021_08_448
crossref_primary_10_1016_j_csda_2022_107474
crossref_primary_10_1371_journal_pcbi_1006707
crossref_primary_10_1016_j_jeconom_2022_06_004
crossref_primary_10_1109_TIP_2022_3224322
crossref_primary_10_1016_j_neunet_2024_107075
crossref_primary_10_1121_10_0005517
crossref_primary_10_1007_s11222_021_10018_6
crossref_primary_10_1038_s41587_024_02173_8
crossref_primary_10_1146_annurev_statistics_033021_111803
crossref_primary_10_1016_j_csda_2023_107763
crossref_primary_10_1109_TRO_2021_3060335
crossref_primary_10_1109_ACCESS_2021_3091328
crossref_primary_10_1002_bimj_202300060
crossref_primary_10_3390_forecast7020022
crossref_primary_10_1016_j_patcog_2021_108073
crossref_primary_10_1016_j_neunet_2025_107363
crossref_primary_10_1016_j_knosys_2021_108076
crossref_primary_10_3390_aerospace6110117
crossref_primary_10_1007_s10472_025_09966_w
crossref_primary_10_1088_1741_2552_ad4f19
crossref_primary_10_1111_sjos_70012
crossref_primary_10_1109_TRO_2025_3600155
crossref_primary_10_1016_j_ijar_2018_11_002
crossref_primary_10_1016_j_knosys_2025_113798
crossref_primary_10_1109_TCBB_2023_3297388
crossref_primary_10_1016_j_jhydrol_2021_126888
crossref_primary_10_1016_j_csda_2021_107179
crossref_primary_10_1007_s11135_022_01460_3
crossref_primary_10_1088_1741_2552_ad038d
crossref_primary_10_1038_s41467_024_54931_6
crossref_primary_10_1109_TIP_2018_2877939
crossref_primary_10_1007_s12559_018_9587_4
crossref_primary_10_3390_jimaging11020066
crossref_primary_10_1016_j_ajhg_2019_06_002
crossref_primary_10_1088_1742_6596_2762_1_012075
crossref_primary_10_1190_geo2024_0774_1
crossref_primary_10_1016_j_knosys_2020_105990
crossref_primary_10_1038_s41598_025_87641_0
crossref_primary_10_1186_s40537_019_0188_1
crossref_primary_10_1002_adfm_202307675
crossref_primary_10_1007_s10928_024_09931_w
crossref_primary_10_1007_s11203_024_09312_7
crossref_primary_10_1007_s10462_022_10178_5
crossref_primary_10_1038_s41562_021_01177_7
crossref_primary_10_1093_jrsssb_qkad164
crossref_primary_10_1016_j_cam_2023_115659
crossref_primary_10_1007_s11222_021_10009_7
crossref_primary_10_1016_j_automatica_2021_109827
crossref_primary_10_1109_TCYB_2021_3106660
crossref_primary_10_1021_acs_jctc_5c00243
crossref_primary_10_1109_TSP_2022_3224642
crossref_primary_10_1371_journal_pone_0281669
crossref_primary_10_1093_biostatistics_kxab021
crossref_primary_10_1016_j_sigpro_2021_108034
crossref_primary_10_1007_s00180_024_01470_9
crossref_primary_10_1093_bib_bbab443
crossref_primary_10_1109_JSAC_2024_3431521
crossref_primary_10_1186_s13059_022_02657_3
crossref_primary_10_1061__ASCE_WR_1943_5452_0001007
crossref_primary_10_1109_LRA_2023_3256134
crossref_primary_10_1093_biostatistics_kxab011
crossref_primary_10_1109_JSAC_2023_3288252
crossref_primary_10_1016_j_patcog_2025_112410
crossref_primary_10_1016_j_kscej_2024_100139
crossref_primary_10_1109_TAC_2024_3524270
crossref_primary_10_1109_TNNLS_2024_3436850
crossref_primary_10_1080_10618600_2025_2484011
crossref_primary_10_1007_s11634_021_00440_z
crossref_primary_10_3897_rio_7_e63850
crossref_primary_10_1039_D4MH00432A
crossref_primary_10_1016_j_engstruct_2022_115139
crossref_primary_10_1109_TSP_2020_3023823
crossref_primary_10_1098_rsta_2024_0324
crossref_primary_10_1016_j_ijresmar_2024_11_002
crossref_primary_10_3233_JIFS_211471
crossref_primary_10_1002_cjs_11668
crossref_primary_10_1109_TED_2024_3378223
crossref_primary_10_3390_e23010123
crossref_primary_10_7554_eLife_68046
crossref_primary_10_1016_j_ifacol_2022_11_279
crossref_primary_10_1016_j_ejmech_2024_116735
crossref_primary_10_1016_j_neucom_2025_130910
crossref_primary_10_1109_TAES_2024_3491053
crossref_primary_10_1007_s11263_025_02527_y
crossref_primary_10_1007_s11222_021_10062_2
crossref_primary_10_1016_j_cma_2024_117359
crossref_primary_10_1137_20M1323151
crossref_primary_10_1016_j_neucom_2023_126726
crossref_primary_10_1111_rssc_12509
crossref_primary_10_1080_21680566_2023_2231159
crossref_primary_10_1017_dce_2024_51
crossref_primary_10_1098_rsos_190139
crossref_primary_10_1007_s00158_023_03610_z
crossref_primary_10_1038_s41386_020_0767_z
crossref_primary_10_1016_j_csda_2019_02_004
crossref_primary_10_1016_j_comnet_2021_108399
crossref_primary_10_1109_TNNLS_2021_3116943
crossref_primary_10_1007_s40747_021_00428_4
crossref_primary_10_1111_1755_0998_13128
crossref_primary_10_1109_TMM_2021_3120537
crossref_primary_10_1109_TASLP_2018_2813011
crossref_primary_10_1146_annurev_statistics_040220_112019
crossref_primary_10_1109_TPAMI_2024_3489030
crossref_primary_10_3390_s22145408
crossref_primary_10_1088_2632_2153_ad9a39
crossref_primary_10_1038_s42256_022_00460_0
crossref_primary_10_1057_s41272_021_00311_4
crossref_primary_10_1186_s13059_019_1645_z
crossref_primary_10_1109_TCBB_2022_3144418
crossref_primary_10_1186_s12890_024_03210_7
crossref_primary_10_1109_TPAMI_2018_2889774
crossref_primary_10_1109_TRO_2024_3370026
crossref_primary_10_1038_s41467_022_35418_8
crossref_primary_10_1007_s10707_023_00504_6
crossref_primary_10_1002_adom_202302564
crossref_primary_10_1007_s10489_021_02382_7
crossref_primary_10_3390_en18143764
crossref_primary_10_1016_j_ijforecast_2021_05_001
crossref_primary_10_1016_j_apm_2018_04_013
crossref_primary_10_1016_j_ress_2024_110657
crossref_primary_10_1190_geo2019_0650_1
crossref_primary_10_1016_j_chemolab_2024_105201
crossref_primary_10_1007_s10994_025_06816_y
crossref_primary_10_1038_s41598_024_83109_9
crossref_primary_10_1109_ACCESS_2023_3341690
crossref_primary_10_1080_10618600_2025_2530048
crossref_primary_10_1109_TPWRS_2024_3449032
crossref_primary_10_3389_fgene_2023_1178508
crossref_primary_10_1145_3464308
crossref_primary_10_1007_s10489_023_05178_z
crossref_primary_10_1109_ACCESS_2021_3127448
crossref_primary_10_3390_su14042436
crossref_primary_10_1016_j_neunet_2024_106112
crossref_primary_10_3390_e24030423
crossref_primary_10_1103_PhysRevD_111_103012
crossref_primary_10_1007_s00180_024_01533_x
crossref_primary_10_1016_j_apenergy_2022_119711
crossref_primary_10_1109_ACCESS_2021_3087697
crossref_primary_10_3390_math12070995
crossref_primary_10_1093_sysbio_syaf047
crossref_primary_10_1109_TIM_2022_3193719
crossref_primary_10_1145_3577032
crossref_primary_10_3389_fpsyt_2022_1100266
crossref_primary_10_1080_00401706_2025_2560344
crossref_primary_10_1002_for_2955
crossref_primary_10_3390_electronics13153073
crossref_primary_10_1039_D1SC07210B
crossref_primary_10_1080_07350015_2022_2139267
crossref_primary_10_1002_bimj_201900371
crossref_primary_10_1080_03610918_2020_1743858
crossref_primary_10_1016_j_ijrefrig_2024_05_018
crossref_primary_10_1109_TAES_2022_3213634
crossref_primary_10_1080_1206212X_2024_2400148
crossref_primary_10_1214_21_AOAS1478
crossref_primary_10_1016_j_ymssp_2025_112394
crossref_primary_10_1016_j_csda_2024_108094
crossref_primary_10_1002_sam_11459
crossref_primary_10_1137_19M1267246
crossref_primary_10_1029_2020WR029339
crossref_primary_10_1038_s41598_021_84854_x
crossref_primary_10_1103_PhysRevD_111_086013
crossref_primary_10_1016_j_ifacol_2021_08_406
crossref_primary_10_1080_01621459_2019_1585253
crossref_primary_10_1016_j_compchemeng_2024_108659
crossref_primary_10_1016_j_ress_2025_110962
crossref_primary_10_1109_LCOMM_2019_2912382
crossref_primary_10_1109_TVT_2023_3313909
crossref_primary_10_1007_s13042_025_02780_0
crossref_primary_10_1080_10618600_2021_1882467
crossref_primary_10_1016_j_cageo_2022_105263
crossref_primary_10_1101_gr_276813_122
crossref_primary_10_1214_20_AOP1443
crossref_primary_10_3390_s22093372
crossref_primary_10_1093_jrsssa_qnac004
crossref_primary_10_1016_j_trc_2018_10_017
crossref_primary_10_3390_app12094482
crossref_primary_10_1007_s11042_024_19361_y
crossref_primary_10_1007_s40687_023_00395_x
crossref_primary_10_1038_s41467_017_00470_2
crossref_primary_10_1080_00295639_2025_2528506
crossref_primary_10_1177_0309524X231206723
crossref_primary_10_1016_j_ins_2023_118975
crossref_primary_10_1016_j_ress_2023_109392
crossref_primary_10_1162_neco_a_01354
crossref_primary_10_1145_3299871
crossref_primary_10_1162_neco_a_01357
crossref_primary_10_1016_j_neuroimage_2019_03_042
crossref_primary_10_1109_ACCESS_2024_3483839
crossref_primary_10_3390_jimaging8040083
crossref_primary_10_1109_LRA_2024_3371260
crossref_primary_10_1137_22M1506122
crossref_primary_10_1038_s41598_021_91035_3
crossref_primary_10_1109_TIE_2024_3440496
crossref_primary_10_1002_sam_11477
crossref_primary_10_1016_j_anucene_2025_111502
crossref_primary_10_3390_risks10030054
crossref_primary_10_1016_j_jclepro_2022_133201
crossref_primary_10_1137_23M1618922
crossref_primary_10_3390_computers13080214
crossref_primary_10_1214_21_AOAS1441
crossref_primary_10_3390_en14175556
crossref_primary_10_1088_1741_2552_ab5d5c
crossref_primary_10_1016_j_engappai_2022_105685
crossref_primary_10_1080_01621459_2025_2498088
crossref_primary_10_1103_xk1z_fxnm
crossref_primary_10_3390_w15203600
crossref_primary_10_1016_j_compstruc_2022_106742
crossref_primary_10_1109_TPAMI_2023_3305381
crossref_primary_10_1109_TNNLS_2020_3027761
crossref_primary_10_1007_s10618_022_00849_w
crossref_primary_10_1109_ACCESS_2020_3027064
crossref_primary_10_1080_10618600_2022_2107532
crossref_primary_10_1016_j_ress_2023_109393
crossref_primary_10_1080_29979676_2025_2497555
crossref_primary_10_1051_0004_6361_202142262
crossref_primary_10_1364_AO_461288
crossref_primary_10_1016_j_cageo_2022_105292
crossref_primary_10_1145_3451528
crossref_primary_10_1177_14759217221117478
crossref_primary_10_3390_s18103563
crossref_primary_10_1109_TGRS_2025_3566417
crossref_primary_10_1080_10803548_2025_2482317
crossref_primary_10_1109_ACCESS_2025_3592797
crossref_primary_10_1109_TASE_2022_3160420
crossref_primary_10_1145_3656432
crossref_primary_10_1016_j_chemolab_2022_104616
crossref_primary_10_1109_TIE_2017_2786253
crossref_primary_10_1109_TGRS_2021_3134198
crossref_primary_10_1016_j_neunet_2023_08_029
crossref_primary_10_1109_TCOMM_2024_3386577
crossref_primary_10_1214_22_STS876
crossref_primary_10_1016_j_jcp_2022_111902
crossref_primary_10_1016_j_ymssp_2023_110446
crossref_primary_10_1016_j_rsase_2025_101670
crossref_primary_10_1109_LCSYS_2020_3005429
crossref_primary_10_3390_e24030361
crossref_primary_10_1016_j_robot_2020_103449
crossref_primary_10_1080_10618600_2023_2252023
crossref_primary_10_1109_TNNLS_2020_3027773
crossref_primary_10_1029_2022JB024098
crossref_primary_10_1111_bmsp_12308
crossref_primary_10_1016_j_knosys_2019_04_009
crossref_primary_10_1109_TMM_2022_3232022
crossref_primary_10_1016_j_neubiorev_2021_06_016
crossref_primary_10_1080_01621459_2023_2260053
crossref_primary_10_1214_22_STS875
crossref_primary_10_1007_s11222_025_10668_w
crossref_primary_10_1016_j_specom_2024_103092
crossref_primary_10_1051_meca_2023027
crossref_primary_10_1214_22_STS867
crossref_primary_10_3390_e27020143
crossref_primary_10_1186_s13059_025_03682_8
crossref_primary_10_1016_j_etran_2023_100230
crossref_primary_10_1016_j_chemolab_2020_104071
crossref_primary_10_1016_j_is_2020_101582
crossref_primary_10_1038_s41467_020_15378_7
crossref_primary_10_1016_j_patcog_2023_110113
crossref_primary_10_1109_TCSVT_2023_3292285
crossref_primary_10_1080_10618600_2025_2490264
crossref_primary_10_1162_neco_a_01315
crossref_primary_10_1109_TR_2025_3528256
crossref_primary_10_1038_s41598_022_18874_6
crossref_primary_10_1190_geo2023_0669_1
crossref_primary_10_1016_j_knosys_2024_112942
crossref_primary_10_1109_TBCAS_2019_2957087
crossref_primary_10_1109_JSYST_2021_3083103
crossref_primary_10_3390_e25010142
crossref_primary_10_1007_s11222_020_09944_8
crossref_primary_10_1146_annurev_statistics_033121_110254
crossref_primary_10_1111_jedm_12378
crossref_primary_10_1038_s41593_022_01165_8
crossref_primary_10_1109_TSMC_2023_3252079
crossref_primary_10_3847_1538_4357_addd1c
crossref_primary_10_1016_j_jcp_2019_108997
crossref_primary_10_1016_j_neucom_2025_131364
crossref_primary_10_1016_j_anucene_2023_109813
crossref_primary_10_1371_journal_pone_0216129
crossref_primary_10_1016_j_engappai_2020_103700
crossref_primary_10_1016_j_ijforecast_2024_05_005
crossref_primary_10_1214_22_STS853
crossref_primary_10_1080_01621459_2018_1473776
crossref_primary_10_1080_10618600_2022_2036614
crossref_primary_10_1111_tops_12704
crossref_primary_10_2139_ssrn_3774254
crossref_primary_10_1038_s41592_023_01909_9
crossref_primary_10_1016_j_knosys_2024_111669
crossref_primary_10_1016_j_compchemeng_2021_107322
crossref_primary_10_1007_s00245_025_10299_7
crossref_primary_10_1016_j_ecoinf_2024_102853
crossref_primary_10_1371_journal_pcbi_1009746
crossref_primary_10_1093_jrsssc_qlad075
crossref_primary_10_1007_s11222_025_10709_4
crossref_primary_10_1080_10618600_2025_2510494
crossref_primary_10_1109_TCE_2024_3464566
crossref_primary_10_1016_j_egyai_2025_100549
crossref_primary_10_3390_electronics14173343
crossref_primary_10_1016_j_knosys_2022_110183
crossref_primary_10_1007_s10791_021_09397_1
crossref_primary_10_1016_j_geoen_2024_212640
crossref_primary_10_3847_1538_3881_ab2390
crossref_primary_10_1109_TPAMI_2022_3153225
crossref_primary_10_1016_j_jhydrol_2021_127221
crossref_primary_10_1016_j_knosys_2020_106341
crossref_primary_10_1109_TCSVT_2024_3435858
crossref_primary_10_1109_TMM_2020_2984091
crossref_primary_10_1088_1681_7575_abc97b
crossref_primary_10_3390_pr13030861
crossref_primary_10_1007_s11269_025_04176_9
crossref_primary_10_1080_10618600_2024_2341899
crossref_primary_10_1111_coin_12641
crossref_primary_10_1016_j_jcp_2024_112982
crossref_primary_10_1109_TCDS_2024_3404061
crossref_primary_10_1080_03610926_2020_1846747
crossref_primary_10_1088_2632_2153_ab8241
crossref_primary_10_3758_s13428_024_02589_9
crossref_primary_10_1093_pnasnexus_pgaf005
crossref_primary_10_1016_j_sigpro_2021_107994
crossref_primary_10_1287_isre_2024_1071
crossref_primary_10_1016_j_engappai_2022_105736
crossref_primary_10_1109_TAES_2019_2941103
crossref_primary_10_1016_j_cam_2023_115190
crossref_primary_10_1088_1361_6420_acc129
crossref_primary_10_1109_JAS_2021_1004108
crossref_primary_10_1109_LSP_2022_3165466
crossref_primary_10_1080_07350015_2020_1802285
crossref_primary_10_1111_deci_12660
crossref_primary_10_1016_j_jmp_2022_102728
crossref_primary_10_1038_s41598_023_41318_8
crossref_primary_10_1109_TSP_2022_3159029
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126618
crossref_primary_10_1016_j_comnet_2025_111436
crossref_primary_10_1002_qj_4481
crossref_primary_10_1093_jrsssc_qlad085
crossref_primary_10_1093_erae_jbae016
crossref_primary_10_1080_01621459_2018_1518235
crossref_primary_10_1214_18_BA1108
crossref_primary_10_1371_journal_pcbi_1008435
crossref_primary_10_1016_j_neuron_2021_12_019
crossref_primary_10_1190_tle44080620_1
crossref_primary_10_1088_2632_2153_ace2aa
crossref_primary_10_1016_j_combustflame_2020_06_033
crossref_primary_10_1109_TASLP_2021_3130980
crossref_primary_10_25300_MISQ_2022_16526
crossref_primary_10_1016_j_cma_2024_117342
crossref_primary_10_1214_21_BA1293
crossref_primary_10_1093_mnras_staa1412
crossref_primary_10_1016_j_jmp_2022_102712
crossref_primary_10_1088_1751_8121_ab7f65
crossref_primary_10_1038_s41746_024_01244_z
crossref_primary_10_1137_24M1642202
crossref_primary_10_1109_TSP_2021_3095711
crossref_primary_10_3390_app15010272
crossref_primary_10_1016_j_neunet_2023_02_005
crossref_primary_10_3389_fnbot_2021_752752
crossref_primary_10_3390_genes10010057
crossref_primary_10_1093_jrsssc_qlad029
crossref_primary_10_1109_TITS_2024_3510515
crossref_primary_10_1016_j_ress_2025_111339
crossref_primary_10_1080_10618600_2025_2549110
crossref_primary_10_1016_j_ress_2025_111337
crossref_primary_10_1098_rsta_2024_0221
crossref_primary_10_1109_TGRS_2022_3152516
crossref_primary_10_1109_TITS_2025_3563584
crossref_primary_10_1016_j_jcp_2024_113006
crossref_primary_10_1109_ACCESS_2024_3451373
crossref_primary_10_1088_1361_6501_ad6624
crossref_primary_10_1007_s11263_025_02460_0
crossref_primary_10_3389_fnbeh_2022_962494
crossref_primary_10_3390_s23042051
crossref_primary_10_1109_LSP_2021_3113279
crossref_primary_10_3390_aerospace11110934
crossref_primary_10_1016_j_engappai_2024_109874
crossref_primary_10_1007_s11063_018_9841_5
crossref_primary_10_1007_s11749_018_0608_0
crossref_primary_10_1080_10618600_2024_2442000
crossref_primary_10_1080_01621459_2021_2023550
crossref_primary_10_1016_j_jcp_2022_111095
crossref_primary_10_1080_07350015_2024_2360592
crossref_primary_10_1109_ACCESS_2021_3120017
crossref_primary_10_3102_10769986231173594
crossref_primary_10_1093_bib_bbaf355
crossref_primary_10_3390_s23031390
crossref_primary_10_1016_j_dsp_2023_104021
crossref_primary_10_1111_jori_12436
crossref_primary_10_1140_epjc_s10052_024_13146_1
crossref_primary_10_1109_ACCESS_2023_3327820
crossref_primary_10_1007_s11634_020_00403_w
crossref_primary_10_1016_j_patcog_2022_108751
crossref_primary_10_1016_j_ipm_2021_102864
crossref_primary_10_3390_s23208619
crossref_primary_10_1016_j_media_2022_102398
crossref_primary_10_1093_nar_gkaf246
crossref_primary_10_1137_24M1678659
crossref_primary_10_1016_j_nucengdes_2023_112712
crossref_primary_10_1109_TSM_2020_3004483
crossref_primary_10_1111_sapm_70062
crossref_primary_10_1038_s41598_022_14396_3
crossref_primary_10_1109_TSP_2023_3256041
crossref_primary_10_1002_sim_9219
crossref_primary_10_1214_21_BA1266
crossref_primary_10_1109_TNNLS_2022_3213315
crossref_primary_10_1016_j_media_2022_102382
crossref_primary_10_1109_TSP_2023_3309464
crossref_primary_10_1145_3291044
crossref_primary_10_1080_01621459_2020_1722134
crossref_primary_10_1007_s40747_023_01314_x
crossref_primary_10_1109_TBME_2020_3008707
crossref_primary_10_1109_TAFFC_2020_3004114
crossref_primary_10_1080_10705511_2022_2053857
crossref_primary_10_1109_ACCESS_2021_3062747
crossref_primary_10_1145_3469654
crossref_primary_10_1016_j_neucom_2025_130420
crossref_primary_10_1109_TNNLS_2020_3008496
crossref_primary_10_1242_bio_059001
crossref_primary_10_1016_j_apm_2021_05_021
crossref_primary_10_1016_j_earscirev_2021_103828
crossref_primary_10_1109_TAC_2020_3042480
crossref_primary_10_1186_s13059_025_03701_8
crossref_primary_10_1371_journal_pcbi_1008814
crossref_primary_10_3847_2041_8213_ac09ef
crossref_primary_10_1007_s11538_024_01301_4
crossref_primary_10_1038_s43588_022_00369_z
crossref_primary_10_1007_s10994_021_06004_8
crossref_primary_10_1109_TSMC_2025_3564984
crossref_primary_10_1109_TED_2024_3497917
crossref_primary_10_1007_s11222_025_10695_7
crossref_primary_10_3390_a18050254
crossref_primary_10_1093_mnras_stac2790
crossref_primary_10_1016_j_trc_2022_103571
crossref_primary_10_1038_s41598_022_12730_3
crossref_primary_10_1111_iere_12623
crossref_primary_10_1109_TSP_2025_3587260
crossref_primary_10_3390_computers13060151
crossref_primary_10_1007_s00521_021_06799_6
crossref_primary_10_1016_j_ijar_2025_109506
crossref_primary_10_1002_mp_15098
crossref_primary_10_1186_s13321_025_00986_6
crossref_primary_10_1007_s11634_024_00590_w
crossref_primary_10_1016_j_spasta_2022_100644
crossref_primary_10_11361_journalcpij_58_1662
crossref_primary_10_1109_ACCESS_2019_2956477
crossref_primary_10_1109_ACCESS_2023_3265725
crossref_primary_10_1177_14759217211073301
crossref_primary_10_3847_1538_3881_ab74cf
crossref_primary_10_1177_00222437251349798
crossref_primary_10_1007_s00365_022_09569_2
crossref_primary_10_1038_s44296_024_00011_1
crossref_primary_10_1088_2632_2153_ad1a4f
crossref_primary_10_1080_00224065_2020_1801366
crossref_primary_10_1109_TMM_2022_3158072
crossref_primary_10_1007_s11336_021_09748_3
crossref_primary_10_1080_10618600_2023_2256802
crossref_primary_10_1371_journal_pgen_1009754
crossref_primary_10_1111_bmsp_12363
crossref_primary_10_1002_bimj_202100381
crossref_primary_10_1002_cjs_11707
crossref_primary_10_1016_j_cviu_2024_103967
crossref_primary_10_1007_s40300_021_00208_7
crossref_primary_10_1016_j_neunet_2021_01_027
crossref_primary_10_1016_j_ssresearch_2022_102798
crossref_primary_10_1093_bib_bbaf300
crossref_primary_10_1109_LCSYS_2022_3220188
crossref_primary_10_1109_TTE_2024_3500072
crossref_primary_10_1029_2018WR023857
crossref_primary_10_1101_gr_279126_124
crossref_primary_10_1177_0954406220960764
crossref_primary_10_1038_s41593_025_02053_7
crossref_primary_10_1088_1361_6501_ade5c2
crossref_primary_10_1093_sysbio_syz047
crossref_primary_10_1007_s12065_024_00993_w
crossref_primary_10_3389_fpsyg_2020_00417
crossref_primary_10_1109_JIOT_2024_3470321
crossref_primary_10_1109_JSTARS_2025_3577690
crossref_primary_10_1007_s10994_022_06243_3
crossref_primary_10_1515_jaa_2024_0110
crossref_primary_10_1109_TKDE_2025_3531469
crossref_primary_10_1145_3609225
crossref_primary_10_1007_s12551_019_00499_1
crossref_primary_10_1002_eqe_3759
crossref_primary_10_1016_j_ijar_2022_05_002
crossref_primary_10_1016_j_compag_2025_110406
crossref_primary_10_1016_j_energy_2023_127286
crossref_primary_10_1016_j_neucom_2022_05_038
crossref_primary_10_1080_00401706_2024_2336542
crossref_primary_10_1109_TASE_2025_3574162
crossref_primary_10_1080_0952813X_2017_1409277
crossref_primary_10_1016_j_ecosta_2022_10_001
crossref_primary_10_15252_msb_20178124
crossref_primary_10_1016_j_jtbi_2025_112157
crossref_primary_10_1007_s00521_021_05839_5
crossref_primary_10_1007_s11222_024_10422_8
crossref_primary_10_1007_s00366_021_01362_2
crossref_primary_10_1177_00811750251357950
crossref_primary_10_1109_TCCN_2023_3261300
crossref_primary_10_1109_TAC_2019_2959998
crossref_primary_10_1002_wics_1645
crossref_primary_10_1080_03610926_2021_1921214
crossref_primary_10_1109_ACCESS_2022_3187991
crossref_primary_10_1016_j_jimonfin_2023_102993
crossref_primary_10_1002_rsa_70016
crossref_primary_10_1109_JSEN_2023_3246595
crossref_primary_10_1007_s42985_021_00102_x
crossref_primary_10_1016_j_jmp_2020_102447
crossref_primary_10_1007_s10479_023_05545_6
crossref_primary_10_1162_tacl_a_00325
crossref_primary_10_1002_asmb_2741
crossref_primary_10_1002_sim_8985
crossref_primary_10_1016_j_matdes_2023_112550
crossref_primary_10_3390_rs12213657
crossref_primary_10_1016_j_tsep_2024_102637
crossref_primary_10_1080_01621459_2023_2169701
crossref_primary_10_3390_e24091291
crossref_primary_10_1088_1757_899X_1098_2_022051
crossref_primary_10_1109_ACCESS_2023_3289068
crossref_primary_10_1007_s12559_025_10455_9
crossref_primary_10_1007_s11837_020_04436_6
crossref_primary_10_1080_00401706_2019_1623076
crossref_primary_10_1109_TPAMI_2023_3314670
crossref_primary_10_1016_j_jcp_2019_06_010
crossref_primary_10_1016_j_jpdc_2024_104916
crossref_primary_10_1109_ACCESS_2019_2935900
crossref_primary_10_1016_j_ijengsci_2019_05_011
crossref_primary_10_1016_j_epidem_2019_100367
crossref_primary_10_1016_j_conbuildmat_2023_133671
crossref_primary_10_1007_s11030_021_10266_8
crossref_primary_10_3390_e23080990
crossref_primary_10_1016_j_jclepro_2023_139944
crossref_primary_10_1109_TITS_2024_3505237
crossref_primary_10_1007_s10994_021_06028_0
crossref_primary_10_1109_TNNLS_2021_3112045
crossref_primary_10_1002_asmb_2736
crossref_primary_10_1016_j_strusafe_2019_101918
crossref_primary_10_1089_big_2021_0343
crossref_primary_10_1080_00031305_2022_2058611
crossref_primary_10_1155_2020_8495264
crossref_primary_10_1016_j_jmsy_2020_11_005
crossref_primary_10_1109_LRA_2024_3505782
crossref_primary_10_1007_s00362_024_01627_0
crossref_primary_10_1016_j_jhydrol_2022_127909
crossref_primary_10_1016_j_media_2025_103697
crossref_primary_10_1109_TSP_2023_3338046
crossref_primary_10_1126_science_aaz5900
crossref_primary_10_1038_s41588_025_02323_x
crossref_primary_10_1109_LWC_2019_2941878
crossref_primary_10_1016_j_jocm_2020_100229
crossref_primary_10_3390_info14020137
crossref_primary_10_1016_j_jhydrol_2024_131737
crossref_primary_10_3390_math13132205
crossref_primary_10_1017_S0962492919000059
crossref_primary_10_1109_JSTARS_2024_3359636
crossref_primary_10_1371_journal_pcbi_1011392
crossref_primary_10_1137_25M1722548
crossref_primary_10_1007_s00466_020_01894_2
crossref_primary_10_1109_TGRS_2023_3301717
crossref_primary_10_1016_j_csda_2024_107957
crossref_primary_10_1016_j_compbiolchem_2024_108257
crossref_primary_10_3389_fpubh_2024_1375731
crossref_primary_10_1111_2041_210X_14447
crossref_primary_10_1016_j_addma_2023_103861
crossref_primary_10_1371_journal_pone_0317430
crossref_primary_10_1016_j_neunet_2019_12_023
crossref_primary_10_1038_s41467_024_53818_w
crossref_primary_10_1002_pc_29998
crossref_primary_10_3390_e25040560
crossref_primary_10_1088_1361_6471_ad9296
crossref_primary_10_1109_TIM_2023_3275997
crossref_primary_10_1007_s00180_022_01200_z
crossref_primary_10_1038_s41467_025_62415_4
crossref_primary_10_1109_TWC_2024_3485991
crossref_primary_10_3390_sym13071167
crossref_primary_10_3390_biology12101313
crossref_primary_10_1016_j_spasta_2021_100502
crossref_primary_10_1007_s10044_021_01023_6
crossref_primary_10_1016_j_knosys_2022_108488
crossref_primary_10_1016_j_jcp_2019_06_007
crossref_primary_10_1016_j_jhydrol_2018_06_080
crossref_primary_10_1016_j_csda_2024_107946
crossref_primary_10_1093_bib_bbaa226
crossref_primary_10_1007_s00180_023_01350_8
crossref_primary_10_1080_01621459_2023_2257367
crossref_primary_10_1109_ACCESS_2024_3513253
crossref_primary_10_1109_TITS_2021_3095408
crossref_primary_10_1051_0004_6361_202452299
crossref_primary_10_3390_rs17111826
crossref_primary_10_1098_rsif_2024_0880
crossref_primary_10_25300_MISQ_2023_17885
crossref_primary_10_1109_TIP_2022_3152004
crossref_primary_10_3390_e26020129
crossref_primary_10_1109_ACCESS_2022_3218331
crossref_primary_10_1038_s41598_020_77589_8
crossref_primary_10_1038_s42005_025_02139_5
crossref_primary_10_1016_j_jclepro_2020_122242
crossref_primary_10_1145_3654988
crossref_primary_10_1080_01691864_2024_2384425
crossref_primary_10_1109_MGRS_2022_3198244
crossref_primary_10_1109_TR_2023_3277332
crossref_primary_10_1016_j_ymssp_2022_109868
crossref_primary_10_1002_sim_70105
crossref_primary_10_1093_gji_ggaf303
crossref_primary_10_1016_j_conb_2021_04_004
crossref_primary_10_1080_10618600_2022_2096622
crossref_primary_10_1177_1471082X251355682
crossref_primary_10_3389_fpls_2025_1610443
crossref_primary_10_1093_mnras_staf891
crossref_primary_10_1109_TNNLS_2024_3485529
crossref_primary_10_3847_1538_4357_ac6de4
crossref_primary_10_1007_s41060_023_00397_6
crossref_primary_10_1186_s12859_020_03919_2
crossref_primary_10_1016_j_neucom_2022_03_024
crossref_primary_10_1214_20_AOS2035
crossref_primary_10_1214_24_BA1458
crossref_primary_10_1080_19427867_2021_1991554
crossref_primary_10_1007_s11336_023_09939_0
crossref_primary_10_1016_j_amar_2025_100405
crossref_primary_10_1016_j_chaos_2025_116440
crossref_primary_10_1109_TGRS_2023_3286438
crossref_primary_10_1080_03610926_2022_2053864
crossref_primary_10_1016_j_patrec_2025_08_002
crossref_primary_10_3389_fpsyg_2025_1574650
crossref_primary_10_1214_24_BA1461
crossref_primary_10_1016_j_automatica_2024_112108
crossref_primary_10_1016_j_ajhg_2023_09_015
crossref_primary_10_1002_sta4_604
crossref_primary_10_1080_08982112_2022_2089854
crossref_primary_10_1016_j_jprocont_2020_01_009
crossref_primary_10_1016_j_jhealeco_2024_102900
crossref_primary_10_1109_TPAMI_2025_3550032
crossref_primary_10_1371_journal_pcbi_1008172
crossref_primary_10_1109_TMC_2022_3197416
crossref_primary_10_1080_17499518_2024_2422498
crossref_primary_10_3390_a16090429
crossref_primary_10_1146_annurev_statistics_040120_030919
crossref_primary_10_1016_j_eswa_2025_129739
crossref_primary_10_1109_TMC_2024_3362912
crossref_primary_10_1016_j_jairtraman_2024_102709
crossref_primary_10_1177_10943420231166365
crossref_primary_10_1080_01621459_2023_2231577
crossref_primary_10_1017_asb_2024_34
crossref_primary_10_3389_fgene_2019_00549
crossref_primary_10_1002_wcms_1608
crossref_primary_10_1016_j_patcog_2019_107169
crossref_primary_10_1007_s00477_024_02858_1
crossref_primary_10_1016_j_trc_2025_105215
crossref_primary_10_1214_17_BA1091
crossref_primary_10_1145_3495161
crossref_primary_10_3390_en14175232
crossref_primary_10_1080_00949655_2023_2212313
crossref_primary_10_3390_mi14101840
crossref_primary_10_5194_wes_9_1885_2024
crossref_primary_10_1016_j_probengmech_2023_103540
crossref_primary_10_1007_s00180_023_01417_6
crossref_primary_10_1016_j_knosys_2025_114356
crossref_primary_10_1177_00187208241295932
crossref_primary_10_1587_nolta_11_16
crossref_primary_10_1007_s11222_025_10590_1
crossref_primary_10_1007_s41060_019_00190_4
crossref_primary_10_1016_j_neunet_2019_01_005
crossref_primary_10_1007_s40295_022_00353_9
crossref_primary_10_1177_09622802231155100
crossref_primary_10_1162_neco_a_01497
crossref_primary_10_1093_biostatistics_kxae005
crossref_primary_10_1137_24M1637295
crossref_primary_10_1016_j_dsp_2021_103310
crossref_primary_10_1002_asna_20250017
crossref_primary_10_1016_j_csda_2020_107159
crossref_primary_10_1017_jog_2023_8
crossref_primary_10_1007_s11336_023_09926_5
crossref_primary_10_1002_bimj_202000076
crossref_primary_10_3390_fluids7100334
crossref_primary_10_1002_sam_11576
crossref_primary_10_1016_j_csda_2020_107152
crossref_primary_10_1016_j_engappai_2025_110549
crossref_primary_10_7554_eLife_65074
crossref_primary_10_1016_j_jeconom_2021_05_002
crossref_primary_10_2139_ssrn_3816411
crossref_primary_10_3847_1538_4365_ac14b7
crossref_primary_10_1016_j_csda_2025_108246
crossref_primary_10_1146_annurev_control_042920_015119
crossref_primary_10_1007_s00500_018_3349_9
crossref_primary_10_1088_1681_7575_ace3c2
crossref_primary_10_1002_qre_3424
crossref_primary_10_3389_fbinf_2025_1507448
crossref_primary_10_1016_j_automatica_2020_109017
crossref_primary_10_1109_ACCESS_2024_3401234
crossref_primary_10_1016_j_cmpb_2022_107056
crossref_primary_10_1016_j_eswa_2020_114020
crossref_primary_10_1109_TCYB_2020_3027724
crossref_primary_10_1016_j_jlp_2024_105396
crossref_primary_10_1109_TIT_2023_3323346
crossref_primary_10_1016_j_epidem_2025_100855
crossref_primary_10_1016_j_inffus_2025_103108
crossref_primary_10_1016_j_ocecoaman_2021_106015
crossref_primary_10_1109_TNSE_2022_3145572
crossref_primary_10_1016_j_engappai_2025_111887
crossref_primary_10_1080_10618600_2025_2520581
crossref_primary_10_1080_01621459_2023_2278201
crossref_primary_10_1109_TNNLS_2019_2957109
crossref_primary_10_1007_s11071_021_06626_6
crossref_primary_10_1007_s11222_023_10342_z
crossref_primary_10_1186_s13059_023_03152_z
crossref_primary_10_1016_j_neucom_2022_05_055
crossref_primary_10_1109_ACCESS_2021_3068867
crossref_primary_10_1109_TAES_2019_2942706
crossref_primary_10_1111_biom_13811
crossref_primary_10_1002_sim_9809
crossref_primary_10_1049_iet_ipr_2018_0043
crossref_primary_10_3389_fnbot_2018_00045
crossref_primary_10_1016_j_aml_2021_107465
crossref_primary_10_1088_1748_0221_19_08_C08003
crossref_primary_10_1093_icesjms_fsad102
crossref_primary_10_1016_j_jprocont_2025_103500
crossref_primary_10_1109_TNNLS_2019_2938830
crossref_primary_10_1016_j_eng_2024_12_034
crossref_primary_10_1007_s11222_022_10125_y
crossref_primary_10_1021_acs_jcim_5c00367
crossref_primary_10_1007_s11192_020_03640_0
crossref_primary_10_1016_j_jocs_2025_102690
crossref_primary_10_1109_TKDE_2023_3288628
crossref_primary_10_1109_TNNLS_2023_3295168
crossref_primary_10_1109_TIP_2024_3459647
crossref_primary_10_1109_TIT_2022_3176056
crossref_primary_10_1523_JNEUROSCI_1412_22_2022
crossref_primary_10_1016_j_probengmech_2020_103082
crossref_primary_10_3102_1076998620911934
crossref_primary_10_1016_j_est_2023_107180
crossref_primary_10_1016_j_neucom_2025_130191
crossref_primary_10_1109_TBME_2023_3246599
crossref_primary_10_3390_app13074547
crossref_primary_10_1093_mnras_staa2498
crossref_primary_10_1051_0004_6361_202141298
crossref_primary_10_1109_TNNLS_2021_3119026
crossref_primary_10_1177_00222437241276736
crossref_primary_10_1121_10_0009569
crossref_primary_10_1016_j_dsp_2021_103230
crossref_primary_10_1007_s10182_024_00492_4
crossref_primary_10_1007_s41060_024_00580_3
crossref_primary_10_1080_10618600_2020_1741378
crossref_primary_10_1016_j_ajhg_2023_03_009
crossref_primary_10_1002_sim_70198
crossref_primary_10_1016_j_neucom_2021_01_090
crossref_primary_10_1109_TCYB_2022_3172790
crossref_primary_10_1109_TCSVT_2024_3523049
crossref_primary_10_1109_TVT_2019_2950474
crossref_primary_10_2139_ssrn_3178053
crossref_primary_10_1093_biomtc_ujae048
crossref_primary_10_1016_j_comcom_2020_02_060
crossref_primary_10_1109_TSP_2021_3075146
crossref_primary_10_1007_s00477_025_02954_w
crossref_primary_10_1002_jrsm_1567
crossref_primary_10_1016_j_automatica_2022_110687
crossref_primary_10_1109_TASLP_2020_3000593
crossref_primary_10_1016_j_cma_2024_116760
crossref_primary_10_1109_TCOMM_2018_2890245
crossref_primary_10_1002_sta4_563
crossref_primary_10_3847_1538_3881_ad01b5
crossref_primary_10_1515_ijb_2018_0023
crossref_primary_10_1016_j_csda_2019_106817
crossref_primary_10_1137_24M1670627
crossref_primary_10_1109_LCSYS_2022_3164965
crossref_primary_10_1111_jiec_70034
crossref_primary_10_3390_e26110890
crossref_primary_10_1093_biostatistics_kxae045
crossref_primary_10_1016_j_ebiom_2023_104632
crossref_primary_10_1002_int_22770
crossref_primary_10_29220_CSAM_2025_32_4_417
crossref_primary_10_1111_coin_12558
crossref_primary_10_3847_1538_4357_ab93cb
crossref_primary_10_1017_pasa_2021_64
crossref_primary_10_1038_s41467_019_13633_0
crossref_primary_10_1016_j_ijggc_2025_104433
crossref_primary_10_1109_TSP_2024_3385576
crossref_primary_10_3389_fnins_2018_00598
crossref_primary_10_3390_en16227664
crossref_primary_10_1016_j_engappai_2022_105644
crossref_primary_10_1515_jqas_2018_0106
crossref_primary_10_1093_imrn_rnad302
crossref_primary_10_1162_neco_a_01422
crossref_primary_10_1016_j_oceaneng_2023_114244
crossref_primary_10_1038_s41592_018_0229_2
crossref_primary_10_1109_TAFFC_2024_3406710
crossref_primary_10_1109_TR_2023_3263940
crossref_primary_10_1016_j_ecoinf_2020_101209
crossref_primary_10_1080_01621459_2024_2347667
crossref_primary_10_1016_j_engappai_2025_111500
crossref_primary_10_1186_s40537_024_01005_5
crossref_primary_10_1016_j_ymssp_2023_110796
crossref_primary_10_1016_j_ress_2023_109199
crossref_primary_10_1016_j_retrec_2021_101177
crossref_primary_10_1007_s11222_023_10365_6
crossref_primary_10_1109_TASLP_2021_3076863
crossref_primary_10_1186_s13059_024_03226_6
crossref_primary_10_3389_frai_2020_00002
crossref_primary_10_1016_j_cels_2022_05_007
crossref_primary_10_3390_sym14040806
crossref_primary_10_1016_j_engappai_2019_103437
crossref_primary_10_1111_mice_12830
crossref_primary_10_1109_TIM_2020_3035579
crossref_primary_10_1371_journal_pone_0195024
crossref_primary_10_1007_s00362_025_01702_0
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_1021_acs_jpca_4c08360
crossref_primary_10_1109_TIE_2020_3021607
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1515_jiip_2024_0048
crossref_primary_10_1007_s10260_025_00788_y
crossref_primary_10_1038_s41592_020_01050_x
crossref_primary_10_1080_10618600_2020_1740097
crossref_primary_10_1016_j_lfs_2025_123821
crossref_primary_10_1109_TITS_2024_3377813
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_1016_j_envsoft_2023_105654
crossref_primary_10_1088_1478_3975_ac885e
crossref_primary_10_1080_01621459_2025_2464270
crossref_primary_10_1061__ASCE_BE_1943_5592_0001744
crossref_primary_10_1088_1742_6596_2352_1_012002
crossref_primary_10_1016_j_microrel_2024_115366
crossref_primary_10_1016_j_spl_2018_02_023
crossref_primary_10_1007_s11432_020_3204_y
crossref_primary_10_1016_j_sigpro_2022_108805
crossref_primary_10_1007_s00180_025_01656_9
crossref_primary_10_1007_s00180_020_00970_8
crossref_primary_10_1029_2024MS004308
crossref_primary_10_1007_s10915_023_02328_w
crossref_primary_10_1017_S0008423921000652
crossref_primary_10_1016_j_geoen_2023_212229
crossref_primary_10_1214_19_AOS1827
crossref_primary_10_1146_annurev_chembioeng_092220_025342
crossref_primary_10_1109_TCDS_2022_3193398
crossref_primary_10_1080_10618600_2024_2402278
crossref_primary_10_1016_j_ymssp_2022_110060
crossref_primary_10_1145_3551388
crossref_primary_10_1109_TAES_2022_3184283
crossref_primary_10_4271_2022_01_0941
crossref_primary_10_1038_s41746_020_00367_3
crossref_primary_10_7554_eLife_92595
crossref_primary_10_1007_s44272_025_00042_2
crossref_primary_10_1088_2632_2153_ad2e18
crossref_primary_10_1093_biomtc_ujae031
crossref_primary_10_1109_JPROC_2024_3435012
crossref_primary_10_1002_rnc_6560
crossref_primary_10_1016_j_ress_2018_07_012
crossref_primary_10_1007_s10845_021_01791_2
crossref_primary_10_1093_biostatistics_kxz062
crossref_primary_10_1214_23_STS886
crossref_primary_10_1371_journal_pcbi_1007650
crossref_primary_10_1093_gji_ggaf239
crossref_primary_10_1109_ACCESS_2020_3004409
crossref_primary_10_1214_23_AOS2257
crossref_primary_10_3390_e23121565
crossref_primary_10_1016_j_compbiomed_2025_110985
crossref_primary_10_1109_TPAMI_2021_3128271
crossref_primary_10_1214_19_AOS1883
crossref_primary_10_1007_s11263_024_02028_4
crossref_primary_10_1051_itmconf_20246101010
crossref_primary_10_1287_ijoc_2020_1007
crossref_primary_10_1515_ijb_2019_0120
crossref_primary_10_1016_j_enconman_2024_118665
crossref_primary_10_1090_mcom_4013
crossref_primary_10_3390_e26090794
crossref_primary_10_1016_j_ijar_2023_109022
crossref_primary_10_1186_s13059_020_02015_1
crossref_primary_10_1002_sdr_1798
crossref_primary_10_1109_TCCN_2020_2985371
crossref_primary_10_1214_23_STS897
crossref_primary_10_3847_1538_4365_ad833c
crossref_primary_10_1016_j_fluid_2025_114454
crossref_primary_10_1093_gji_ggaf249
crossref_primary_10_1155_2023_3203065
crossref_primary_10_1038_s42005_025_02122_0
crossref_primary_10_1007_s10651_022_00531_w
crossref_primary_10_1007_s10712_024_09847_7
crossref_primary_10_1016_j_jcp_2024_113117
crossref_primary_10_3390_s24206538
crossref_primary_10_1080_10618600_2022_2134875
crossref_primary_10_1016_j_jfranklin_2020_10_046
crossref_primary_10_1107_S2059798323005776
crossref_primary_10_1109_TIM_2021_3091511
crossref_primary_10_1109_TNNLS_2023_3281473
crossref_primary_10_1016_j_sigpro_2018_07_017
crossref_primary_10_1007_s10845_022_01937_w
crossref_primary_10_1093_nar_gkab1065
crossref_primary_10_1016_j_oceaneng_2025_122065
crossref_primary_10_1186_s13059_021_02419_7
crossref_primary_10_1016_j_patrec_2021_08_026
crossref_primary_10_1016_j_jobe_2025_113759
crossref_primary_10_1080_00031305_2025_2539999
crossref_primary_10_1093_mnras_staa278
crossref_primary_10_1016_j_eswa_2023_122071
crossref_primary_10_1016_j_cma_2025_117970
crossref_primary_10_1016_j_dsp_2024_104691
crossref_primary_10_1016_j_patcog_2021_108103
crossref_primary_10_1109_TNNLS_2024_3376530
crossref_primary_10_1016_j_cma_2024_117670
crossref_primary_10_1016_j_aap_2022_106570
crossref_primary_10_1016_j_ijar_2024_109301
crossref_primary_10_1109_TKDE_2019_2953721
crossref_primary_10_1214_19_AOS1855
crossref_primary_10_1007_s10462_023_10443_1
crossref_primary_10_1109_TGRS_2020_3049012
crossref_primary_10_1109_TKDE_2019_2953728
crossref_primary_10_3390_signals4020016
crossref_primary_10_1021_acs_jpcb_5c03825
crossref_primary_10_1016_j_procs_2023_08_148
crossref_primary_10_1109_ACCESS_2024_3491914
crossref_primary_10_1038_s41598_019_54653_6
crossref_primary_10_1177_0165551519857590
crossref_primary_10_3934_fods_2025001
crossref_primary_10_1109_TSTE_2024_3435936
crossref_primary_10_1190_geo2021_0497_1
crossref_primary_10_1038_s41467_025_60269_4
crossref_primary_10_1103_jv8h_4ggy
crossref_primary_10_1109_JIOT_2021_3114165
crossref_primary_10_1007_s41060_023_00443_3
crossref_primary_10_1007_s00180_021_01063_w
crossref_primary_10_1155_mmce_6622761
crossref_primary_10_1093_mnras_stac2425
crossref_primary_10_3390_app10186317
crossref_primary_10_1007_s11222_024_10488_4
crossref_primary_10_1098_rsos_200734
crossref_primary_10_1109_TGRS_2022_3232784
crossref_primary_10_1080_00401706_2024_2320211
crossref_primary_10_1007_s11207_020_01609_z
crossref_primary_10_1007_s10489_022_03668_0
crossref_primary_10_1038_s41592_023_01994_w
crossref_primary_10_1002_sim_9359
crossref_primary_10_1002_sim_10151
crossref_primary_10_1177_1475921718788299
crossref_primary_10_1093_biomet_asae067
crossref_primary_10_1109_TIM_2024_3373098
crossref_primary_10_1016_j_cma_2024_116793
crossref_primary_10_1088_1742_6596_2438_1_012094
crossref_primary_10_1016_j_yofte_2024_104047
crossref_primary_10_3389_fphy_2020_00134
crossref_primary_10_1007_s42979_024_02842_0
crossref_primary_10_1016_j_ymssp_2020_107141
crossref_primary_10_1038_s41467_022_35280_8
crossref_primary_10_1016_j_neucom_2025_129535
crossref_primary_10_1007_s10462_023_10661_7
crossref_primary_10_1007_s10851_024_01194_x
crossref_primary_10_1186_s13007_023_01038_6
crossref_primary_10_1038_s42005_025_02059_4
crossref_primary_10_1146_annurev_economics_081020_044812
crossref_primary_10_1109_JBHI_2020_2972694
crossref_primary_10_1016_j_knosys_2020_106081
crossref_primary_10_1016_j_csbj_2024_09_027
crossref_primary_10_1016_j_patcog_2021_108141
crossref_primary_10_1016_j_conengprac_2021_104974
crossref_primary_10_1016_j_csbj_2024_09_021
crossref_primary_10_1214_19_AOS1898
crossref_primary_10_1109_ACCESS_2020_3001371
crossref_primary_10_1016_j_energy_2020_119572
Cites_doi 10.1162/tacl_a_00175
10.1016/j.jtbi.2003.07.002
10.1214/aoms/1177729586
10.1016/j.neuroimage.2006.10.005
10.1109/TSP.2004.831119
10.1109/TPAMI.2009.110
10.1016/j.neuroimage.2007.04.054
10.1371/journal.pcbi.1000770
10.1214/13-AOS1124
10.1063/1.1699114
10.1162/jmlr.2003.3.4-5.993
10.1561/2200000001
10.1111/biom.12126
10.1534/genetics.114.164350
10.1093/pan/mpq027
10.1214/07-AOAS126
10.1214/11-AOS908
10.1371/journal.pone.0094914
10.1109/TBME.2004.824128
10.1214/06-BA104
10.1198/jasa.2009.tm08030
10.1080/01621459.1990.10476213
10.1109/TPAMI.2009.43
10.1007/978-1-4419-9017-4_6
10.1093/bioinformatics/btl473
10.1080/10618600.2012.679897
10.1145/2133806.2133826
10.1016/j.neuroimage.2011.08.031
10.1016/j.neuroimage.2014.04.055
10.1103/PhysRevLett.100.258701
10.1613/jair.251
10.1109/TPAMI.1984.4767596
10.1177/0278364908090961
10.1023/A:1007665907178
10.1016/j.neuroimage.2009.12.042
10.1214/aoms/1177729694
10.1080/10618600.2014.983642
10.1016/j.robot.2011.11.002
10.1214/13-STS418
10.1002/0471722138
10.1214/07-AOAS114
10.1111/j.2517-6161.1977.tb01600.x
10.1111/anzs.12063
10.1007/11872436_8
10.1007/s11222-017-9729-7
10.1007/978-3-540-69162-4_32
10.1016/j.neuroimage.2004.08.034
10.1145/2124295.2124312
10.1007/978-94-011-5014-9_12
10.1111/j.2517-6161.1988.tb01721.x
10.1016/j.csda.2006.07.020
10.1214/14-EJS910
10.1162/089976601750399344
10.1162/089976601750265045
10.1613/jair.2473
10.1093/biomet/57.1.97
10.1016/j.spl.2011.02.029
10.1214/aos/1176345779
10.1002/9780470316870
10.1214/12-BA703
10.1016/j.neuroimage.2003.12.023
10.1007/978-1-4757-4145-2
10.1023/A:1007425814087
10.1109/TSP.2002.801921
10.1017/CBO9780511804779
10.1371/journal.pcbi.1003441
10.1214/12-EJS729
10.1023/A:1008932416310
10.1016/j.neucom.2005.02.016
10.1016/j.neuroimage.2004.06.037
10.1016/S1053-8119(03)00071-5
10.1214/06-BA121
10.1007/978-1-4899-2696-8
10.1214/11-BA631
10.1214/aos/1176344611
10.1016/j.neuroimage.2007.09.005
10.1109/TPAMI.2008.157
10.1162/089976698300017746
10.1016/j.neuroimage.2008.02.059
10.1093/bioinformatics/bth917
10.1186/1471-2105-11-58
10.1016/S0893-6080(02)00040-0
10.1613/jair.567
10.1142/S0219720004000508
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2017.1285773
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 877
ExternalDocumentID 10_1080_01621459_2017_1285773
45028414
1285773
Genre Review Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c539t-5cd7a174bb8f89dde09d91d6a7a4c35ea8fe5eb6efc112ebb8b0fbc592d27eb93
IEDL.DBID TFW
ISICitedReferencesCount 3122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411424400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Fri Oct 03 00:13:59 EDT 2025
Sun Nov 16 01:11:00 EST 2025
Sat Nov 29 03:56:42 EST 2025
Tue Nov 18 21:11:32 EST 2025
Thu May 29 09:14:42 EDT 2025
Mon Oct 20 23:45:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 518
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-5cd7a174bb8f89dde09d91d6a7a4c35ea8fe5eb6efc112ebb8b0fbc592d27eb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1285773?needAccess=true
PQID 2889897897
PQPubID 41715
PageCount 19
ParticipantIDs jstor_primary_45028414
proquest_miscellaneous_2000474290
crossref_primary_10_1080_01621459_2017_1285773
proquest_journals_2889897897
informaworld_taylorfrancis_310_1080_01621459_2017_1285773
crossref_citationtrail_10_1080_01621459_2017_1285773
PublicationCentury 2000
PublicationDate 2017-04-03
PublicationDateYYYYMMDD 2017-04-03
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-03
  day: 03
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
Armagan A. (e_1_3_2_8_1) 2011
Winn J. (e_1_3_2_160_1) 2005; 6
e_1_3_2_66_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_47_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_146_1
Brown L. (e_1_3_2_26_1) 1986
Hinton G. (e_1_3_2_58_1) 1993
e_1_3_2_142_1
e_1_3_2_81_1
e_1_3_2_123_1
e_1_3_2_165_1
Opper M. (e_1_3_2_102_1) 2005; 6
e_1_3_2_108_1
(e_1_3_2_65_1) 1997
e_1_3_2_16_1
e_1_3_2_39_1
Sudderth E. B. (e_1_3_2_132_1) 2009
Airoldi E. (e_1_3_2_3_1) 2008; 9
Wang C. (e_1_3_2_152_1) 2015; 14
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
Saul L. (e_1_3_2_127_1) 1996
e_1_3_2_161_1
e_1_3_2_92_1
Barber D. (e_1_3_2_12_1) 2006
e_1_3_2_135_1
e_1_3_2_158_1
e_1_3_2_73_1
e_1_3_2_131_1
Archambeau C. (e_1_3_2_6_1) 2007; 1
Barber D. (e_1_3_2_14_1) 1999
de Freitas N. D. (e_1_3_2_34_1) 2001
e_1_3_2_154_1
Dempster A. (e_1_3_2_37_1) 1977; 39
Beal M. (e_1_3_2_15_1) 2003
Titsias M. (e_1_3_2_139_1) 2010
Kingma D. (e_1_3_2_74_1) 2014
e_1_3_2_29_1
Salimans T. (e_1_3_2_122_1) 2015
Welling M. (e_1_3_2_156_1) 2011
Ranganath R. (e_1_3_2_113_1) 2016
e_1_3_2_21_1
e_1_3_2_63_1
Yu T. (e_1_3_2_167_1) 2005
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
Tran D. (e_1_3_2_141_1) 2016
Rezende D. J. (e_1_3_2_116_1) 2014
e_1_3_2_126_1
e_1_3_2_168_1
Stan Development Team (e_1_3_2_130_1) 2015
e_1_3_2_103_1
Hensman J. (e_1_3_2_56_1) 2013
Wang C. (e_1_3_2_151_1) 2013; 14
Hoffman M. D. (e_1_3_2_62_1) 2014; 15
Hoffman M. (e_1_3_2_59_1) 2012
e_1_3_2_107_1
Wang P. (e_1_3_2_153_1) 2013
Minka T. (e_1_3_2_96_1) 2014
Naseem T. (e_1_3_2_97_1) 2010
Vermaak J. (e_1_3_2_144_1) 2003
e_1_3_2_17_1
e_1_3_2_2_1
Barber D. (e_1_3_2_11_1) 1998
e_1_3_2_55_1
Jojic N. (e_1_3_2_69_1) 2001
Liang P. (e_1_3_2_86_1) 2007
Giordano R. J. (e_1_3_2_50_1) 2015
e_1_3_2_13_1
Reyes-Gomez M. (e_1_3_2_115_1) 2004
Waterhouse S. (e_1_3_2_155_1) 1996
e_1_3_2_36_1
e_1_3_2_78_1
e_1_3_2_93_1
e_1_3_2_138_1
e_1_3_2_157_1
e_1_3_2_51_1
e_1_3_2_111_1
e_1_3_2_134_1
e_1_3_2_70_1
Khan M. E. (e_1_3_2_72_1) 2010
Pearl J. (e_1_3_2_106_1) 1988
Bishop C. (e_1_3_2_20_1) 2000
Hall P. (e_1_3_2_52_1) 2011; 21
e_1_3_2_119_1
e_1_3_2_49_1
e_1_3_2_87_1
e_1_3_2_22_1
Ranganath R. (e_1_3_2_112_1) 2014
Yedidia J. S. (e_1_3_2_164_1) 2001
e_1_3_2_125_1
Hensman J. (e_1_3_2_57_1) 2012
e_1_3_2_148_1
Furmston T. (e_1_3_2_45_1) 2010; 9
e_1_3_2_121_1
Archambeau C. (e_1_3_2_7_1) 2007
e_1_3_2_129_1
Tan L. (e_1_3_2_136_1) 2014; 9
e_1_3_2_9_1
Kucukelbir A. (e_1_3_2_76_1) 2015
Parisi G. (e_1_3_2_105_1) 1988
Knowles D. (e_1_3_2_75_1) 2011
e_1_3_2_163_1
e_1_3_2_10_1
e_1_3_2_33_1
Hoffman M. D. (e_1_3_2_60_1) 2013; 14
e_1_3_2_5_1
Marlin B. M. (e_1_3_2_91_1) 2011
Peterson C. (e_1_3_2_109_1) 1987; 1
Du L. (e_1_3_2_40_1) 2009
e_1_3_2_79_1
e_1_3_2_98_1
Liang P. (e_1_3_2_85_1) 2009
Bishop C. (e_1_3_2_18_1) 2006
Titsias M. (e_1_3_2_140_1) 2014
e_1_3_2_137_1
Wang B. (e_1_3_2_149_1) 2005
e_1_3_2_110_1
Ermis B. (e_1_3_2_41_1) 2014
e_1_3_2_71_1
e_1_3_2_90_1
e_1_3_2_133_1
e_1_3_2_118_1
e_1_3_2_27_1
Cohen S. (e_1_3_2_32_1) 2010; 11
Villegas M. (e_1_3_2_145_1) 2013
e_1_3_2_42_1
e_1_3_2_88_1
Johnson M. (e_1_3_2_68_1) 2014
e_1_3_2_150_1
e_1_3_2_23_1
e_1_3_2_46_1
Regier J. (e_1_3_2_114_1) 2015
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_124_1
e_1_3_2_84_1
e_1_3_2_120_1
e_1_3_2_143_1
e_1_3_2_166_1
e_1_3_2_128_1
Damianou A. (e_1_3_2_35_1) 2011
e_1_3_2_38_1
Challis E. (e_1_3_2_30_1) 2013; 14
Le Cun Y. (e_1_3_2_83_1) 2004
e_1_3_2_162_1
Wand M. (e_1_3_2_147_1) 2014; 15
Paisley J. (e_1_3_2_104_1) 2012
e_1_3_2_53_1
Jaakkola T. (e_1_3_2_64_1) 1996
e_1_3_2_4_1
e_1_3_2_99_1
e_1_3_2_159_1
Bishop C. (e_1_3_2_19_1) 1998
Foti N. (e_1_3_2_44_1) 2014
e_1_3_2_95_1
Lauritzen S. (e_1_3_2_82_1) 1988; 50
Minka T. P. (e_1_3_2_94_1) 2001
Hoffman M. D. (e_1_3_2_61_1) 2015
e_1_3_2_117_1
References_xml – start-page: 1234
  year: 2010
  ident: e_1_3_2_97_1
  article-title: Using Universal Linguistic Knowledge to Guide Grammar Induction
  publication-title: Empirical Methods in Natural Language Processing
– volume-title: Statistical Field Theory
  year: 1988
  ident: e_1_3_2_105_1
– start-page: 416
  year: 1998
  ident: e_1_3_2_19_1
  article-title: Approximating Posterior Distributions in Belief Networks using Mixtures
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_165_1
  doi: 10.1162/tacl_a_00175
– start-page: 192
  year: 2014
  ident: e_1_3_2_41_1
  article-title: Iterative Splits of Quadratic Bounds for Scalable Binary Tensor Factorization
  publication-title: Uncertainty in Artificial Intelligence
– ident: e_1_3_2_89_1
– start-page: 361
  year: 2015
  ident: e_1_3_2_61_1
  article-title: Structured Stochastic Variational Inference
  publication-title: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics (Vol. 38), eds. G. Lebanon and S. V. N. Vishwanathan, San Diego, CA: Proceedings of Machine Learning Research
– ident: e_1_3_2_119_1
  doi: 10.1016/j.jtbi.2003.07.002
– ident: e_1_3_2_117_1
  doi: 10.1214/aoms/1177729586
– ident: e_1_3_2_43_1
  doi: 10.1016/j.neuroimage.2006.10.005
– start-page: 776
  volume-title: The Handbook of Applied Bayesian Analysis
  year: 2009
  ident: e_1_3_2_85_1
– ident: e_1_3_2_121_1
– ident: e_1_3_2_87_1
  doi: 10.1109/TSP.2004.831119
– ident: e_1_3_2_31_1
  doi: 10.1109/TPAMI.2009.110
– ident: e_1_3_2_168_1
  doi: 10.1016/j.neuroimage.2007.04.054
– start-page: 1108
  year: 2010
  ident: e_1_3_2_72_1
  article-title: Variational Bounds for Mixed-Data Factor Analysis
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_131_1
  doi: 10.1371/journal.pcbi.1000770
– volume-title: Fundamentals of Statistical Exponential Families
  year: 1986
  ident: e_1_3_2_26_1
– ident: e_1_3_2_17_1
  doi: 10.1214/13-AOS1124
– ident: e_1_3_2_93_1
  doi: 10.1063/1.1699114
– ident: e_1_3_2_24_1
  doi: 10.1162/jmlr.2003.3.4-5.993
– ident: e_1_3_2_146_1
  doi: 10.1561/2200000001
– ident: e_1_3_2_98_1
  doi: 10.1111/biom.12126
– volume: 15
  start-page: 1351
  year: 2014
  ident: e_1_3_2_147_1
  article-title: Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_110_1
  doi: 10.1534/genetics.114.164350
– ident: e_1_3_2_51_1
  doi: 10.1093/pan/mpq027
– start-page: 486
  year: 2009
  ident: e_1_3_2_40_1
  article-title: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_42_1
  doi: 10.1214/07-AOAS126
– ident: e_1_3_2_53_1
  doi: 10.1214/11-AOS908
– ident: e_1_3_2_90_1
  doi: 10.1371/journal.pone.0094914
– start-page: 453
  volume-title: Bayesian Statistics
  year: 2003
  ident: e_1_3_2_15_1
– ident: e_1_3_2_134_1
  doi: 10.1109/TBME.2004.824128
– volume: 6
  start-page: 2177
  year: 2005
  ident: e_1_3_2_102_1
  article-title: Expectation Consistent Approximate Inference
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_2_22_1
  doi: 10.1214/06-BA104
– ident: e_1_3_2_25_1
  doi: 10.1198/jasa.2009.tm08030
– ident: e_1_3_2_46_1
  doi: 10.1080/01621459.1990.10476213
– start-page: 1599
  year: 2012
  ident: e_1_3_2_59_1
  article-title: Sparse Stochastic Inference for Latent Dirichlet Allocation
  publication-title: Proceedings of the 29th International Conference on Machine Learning (ICML-12), eds. J. Langford and J. Pineau, New York: ACM
– ident: e_1_3_2_154_1
  doi: 10.1109/TPAMI.2009.43
– ident: e_1_3_2_38_1
  doi: 10.1007/978-1-4419-9017-4_6
– ident: e_1_3_2_124_1
  doi: 10.1093/bioinformatics/btl473
– year: 2014
  ident: e_1_3_2_74_1
  article-title: Auto-Encoding Variational Bayes
  publication-title: Proceedings of the 2nd International Conference on Learning Representations (ICLR)
– ident: e_1_3_2_101_1
  doi: 10.1080/10618600.2012.679897
– start-page: 1585
  year: 2009
  ident: e_1_3_2_132_1
  article-title: Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_21_1
  doi: 10.1145/2133806.2133826
– volume: 1
  start-page: 1
  year: 2007
  ident: e_1_3_2_6_1
  article-title: Gaussian Process Approximations of Stochastic Differential Equations
  publication-title: Workshop on Gaussian Processes in Practice
– volume: 11
  start-page: 3017
  year: 2010
  ident: e_1_3_2_32_1
  article-title: Covariance in Unsupervised Learning of Probabilistic Grammars
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_2_81_1
  doi: 10.1016/j.neuroimage.2011.08.031
– start-page: 183
  year: 1999
  ident: e_1_3_2_14_1
  article-title: Tractable Variational Structures for Approximating Graphical Models
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_48_1
  doi: 10.1016/j.neuroimage.2014.04.055
– ident: e_1_3_2_158_1
  doi: 10.1103/PhysRevLett.100.258701
– start-page: 215
  volume-title: Generalization in Neural Networks and Machine Learning
  year: 1998
  ident: e_1_3_2_11_1
– ident: e_1_3_2_128_1
  doi: 10.1613/jair.251
– start-page: 939
  year: 2005
  ident: e_1_3_2_167_1
  article-title: Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_3_2_47_1
  doi: 10.1109/TPAMI.1984.4767596
– start-page: 340
  year: 1996
  ident: e_1_3_2_64_1
  article-title: Computing Upper and Lower Bounds on Likelihoods in Intractable Networks
  publication-title: Uncertainty in Artificial Intelligence
– start-page: 373
  year: 2005
  ident: e_1_3_2_149_1
  article-title: Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations
  publication-title: Artificial Intelligence and Statistics
– ident: e_1_3_2_103_1
– ident: e_1_3_2_33_1
  doi: 10.1177/0278364908090961
– start-page: 1701
  year: 2011
  ident: e_1_3_2_75_1
  article-title: Non-Conjugate Variational Message Passing for Multinomial and Binary Regression
  publication-title: Neural Information Processing Systems
– start-page: 523
  year: 2011
  ident: e_1_3_2_8_1
  article-title: Generalized Beta Mixtures of Gaussians
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_71_1
  doi: 10.1023/A:1007665907178
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: e_1_3_2_18_1
– start-page: 362
  year: 2001
  ident: e_1_3_2_94_1
  article-title: Expectation Propagation for Approximate Bayesian Inference
  publication-title: Uncertainty in Artificial Intelligence
– ident: e_1_3_2_54_1
  doi: 10.1016/j.neuroimage.2009.12.042
– ident: e_1_3_2_78_1
  doi: 10.1214/aoms/1177729694
– start-page: 1
  year: 2016
  ident: e_1_3_2_141_1
  article-title: The Variational Gaussian Process
  publication-title: International Conference on Learning Representations
– start-page: 681
  year: 2011
  ident: e_1_3_2_156_1
  article-title: Bayesian Learning via Stochastic Gradient Langevin Dynamics
  publication-title: International Conference on Machine Learning
– ident: e_1_3_2_27_1
  doi: 10.1080/10618600.2014.983642
– start-page: 120
  year: 2001
  ident: e_1_3_2_34_1
  article-title: Variational MCMC
  publication-title: Uncertainty in Artificial Intelligence
– start-page: 3599
  year: 2014
  ident: e_1_3_2_44_1
  article-title: Stochastic Variational Inference for Hidden Markov Models
  publication-title: Neural Information Processing Systems
– volume: 14
  start-page: 1005
  year: 2015
  ident: e_1_3_2_152_1
  article-title: A General Method for Robust Bayesian Modeling
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_111_1
  doi: 10.1016/j.robot.2011.11.002
– ident: e_1_3_2_135_1
  doi: 10.1214/13-STS418
– ident: e_1_3_2_129_1
  doi: 10.1002/0471722138
– ident: e_1_3_2_23_1
  doi: 10.1214/07-AOAS114
– year: 2014
  ident: e_1_3_2_96_1
  publication-title: Infer.NET 2.6. Cambridge, MA: Microsoft Research.
– volume: 9
  start-page: 241
  year: 2010
  ident: e_1_3_2_45_1
  article-title: Variational Methods for Reinforcement Learning
  publication-title: Artificial Intelligence and Statistics
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_3_2_37_1
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_3_2_166_1
  doi: 10.1111/anzs.12063
– start-page: 1
  year: 1997
  ident: e_1_3_2_65_1
  article-title: A Variational Approach to Bayesian Logistic Regression Models and their Extensions
  publication-title: Artificial Intelligence and Statistics
– volume: 14
  start-page: 1005
  year: 2013
  ident: e_1_3_2_151_1
  article-title: Variational Inference in Nonconjugate Models
  publication-title: Journal of Machine Learning Research
– volume: 15
  start-page: 1593
  year: 2014
  ident: e_1_3_2_62_1
  article-title: The No-U-turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
  publication-title: The Journal of Machine Learning Research
– start-page: 81
  year: 2006
  ident: e_1_3_2_12_1
  article-title: Unified Inference for Variational Bayesian Linear Gaussian State-Space Models
  publication-title: Neural Information Processing Systems
– start-page: 689
  year: 2001
  ident: e_1_3_2_164_1
  article-title: Generalized Belief Propagation
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_95_1
– ident: e_1_3_2_79_1
  doi: 10.1007/11872436_8
– ident: e_1_3_2_67_1
– start-page: 5
  year: 1993
  ident: e_1_3_2_58_1
  article-title: Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights
  publication-title: Computational Learning Theory
– ident: e_1_3_2_137_1
  doi: 10.1007/s11222-017-9729-7
– ident: e_1_3_2_63_1
  doi: 10.1007/978-3-540-69162-4_32
– ident: e_1_3_2_108_1
  doi: 10.1016/j.neuroimage.2004.08.034
– start-page: 1
  year: 2003
  ident: e_1_3_2_144_1
  article-title: Variational Inference for Visual Tracking
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_3_2_2_1
  doi: 10.1145/2124295.2124312
– start-page: 486
  year: 1996
  ident: e_1_3_2_127_1
  article-title: Exploiting Tractable Substructures in Intractable Networks
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_159_1
– start-page: 688
  year: 2007
  ident: e_1_3_2_86_1
  article-title: The Infinite PCFG using Hierarchical Dirichlet Processes
  publication-title: Empirical Methods in Natural Language Processing
– start-page: 1218
  year: 2015
  ident: e_1_3_2_122_1
  article-title: Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
  publication-title: International Conference on Machine Learning
– ident: e_1_3_2_99_1
  doi: 10.1007/978-94-011-5014-9_12
– volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
  year: 1988
  ident: e_1_3_2_106_1
– volume: 50
  start-page: 157
  year: 1988
  ident: e_1_3_2_82_1
  article-title: Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1988.tb01721.x
– start-page: 217
  year: 2004
  ident: e_1_3_2_83_1
  article-title: Large Scale Online Learning
  publication-title: Neural Information Processing Systems
– start-page: 308
  year: 2013
  ident: e_1_3_2_145_1
  article-title: Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask
  publication-title: CLEF Evaluation Labs and Workshop
– start-page: 1854
  year: 2014
  ident: e_1_3_2_68_1
  article-title: Stochastic Variational Inference for Bayesian Time Series Models
  publication-title: International Conference on Machine Learning
– ident: e_1_3_2_92_1
  doi: 10.1016/j.csda.2006.07.020
– ident: e_1_3_2_100_1
  doi: 10.1214/14-EJS910
– volume: 1
  start-page: 995
  year: 1987
  ident: e_1_3_2_109_1
  article-title: A Mean Field Theory Learning Algorithm for Neural Networks
  publication-title: Complex Systems
– volume: 6
  start-page: 661
  year: 2005
  ident: e_1_3_2_160_1
  article-title: Variational Message Passing
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_157_1
– volume: 14
  start-page: 1303
  year: 2013
  ident: e_1_3_2_60_1
  article-title: Stochastic Variational Inference
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_84_1
  doi: 10.1162/089976601750399344
– ident: e_1_3_2_125_1
  doi: 10.1162/089976601750265045
– ident: e_1_3_2_143_1
  doi: 10.1613/jair.2473
– ident: e_1_3_2_55_1
  doi: 10.1093/biomet/57.1.97
– start-page: 282
  year: 2013
  ident: e_1_3_2_56_1
  article-title: Gaussian Processes for Big Data
  publication-title: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence
– volume: 9
  start-page: 963
  year: 2014
  ident: e_1_3_2_136_1
  article-title: A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models
  publication-title: Bayesian Analysis
– volume: 9
  start-page: 1981
  year: 2008
  ident: e_1_3_2_3_1
  article-title: Mixed Membership Stochastic Blockmodels
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_9_1
  doi: 10.1016/j.spl.2011.02.029
– ident: e_1_3_2_4_1
  doi: 10.1214/aos/1176345779
– ident: e_1_3_2_16_1
  doi: 10.1002/9780470316870
– start-page: 2510
  year: 2011
  ident: e_1_3_2_35_1
  article-title: Variational Gaussian Process Dynamical Systems
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_28_1
  doi: 10.1214/12-BA703
– ident: e_1_3_2_162_1
  doi: 10.1016/j.neuroimage.2003.12.023
– ident: e_1_3_2_118_1
  doi: 10.1007/978-1-4757-4145-2
– start-page: 1971
  year: 2014
  ident: e_1_3_2_140_1
  article-title: Doubly Stochastic Variational Bayes for Non-Conjugate Inference
  publication-title: International Conference on Machine Learning
– ident: e_1_3_2_49_1
  doi: 10.1023/A:1007425814087
– start-page: 633
  year: 2011
  ident: e_1_3_2_91_1
  article-title: Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models
  publication-title: International Conference on Machine Learning
– start-page: 1278
  year: 2014
  ident: e_1_3_2_116_1
  article-title: Stochastic Backpropagation and Approximate Inference in Deep Generative Models
  publication-title: Proceedings of the 31st International Conference on Machine Learning (Vol. 32), eds. E. P. Xing and T. Jebara, Beijing, China: Proceedings of Machine Learning Research
– ident: e_1_3_2_120_1
  doi: 10.1109/TSP.2002.801921
– ident: e_1_3_2_10_1
  doi: 10.1017/CBO9780511804779
– ident: e_1_3_2_36_1
  doi: 10.1371/journal.pcbi.1003441
– ident: e_1_3_2_29_1
  doi: 10.1214/12-EJS729
– ident: e_1_3_2_66_1
  doi: 10.1023/A:1008932416310
– ident: e_1_3_2_138_1
  doi: 10.1016/j.neucom.2005.02.016
– start-page: 814
  year: 2014
  ident: e_1_3_2_112_1
  article-title: Black Box Variational Inference
  publication-title: Artificial Intelligence and Statistics
– ident: e_1_3_2_126_1
  doi: 10.1016/j.neuroimage.2004.06.037
– ident: e_1_3_2_107_1
  doi: 10.1016/S1053-8119(03)00071-5
– start-page: 641
  year: 2004
  ident: e_1_3_2_115_1
  article-title: Multiband Audio Modeling for Single-Channel Acoustic Source Separation
  publication-title: Acoustics, Speech, and Signal Processing
– ident: e_1_3_2_77_1
– ident: e_1_3_2_150_1
  doi: 10.1214/06-BA121
– start-page: 351
  year: 1996
  ident: e_1_3_2_155_1
  article-title: Bayesian Methods for Mixtures of Experts
  publication-title: Neural Information Processing Systems
– start-page: 1363
  year: 2012
  ident: e_1_3_2_104_1
  article-title: Variational Bayesian Inference with Stochastic Search
  publication-title: Proceedings of the 29th International Conference on International Conference on Machine Learning
– start-page: 17
  year: 2007
  ident: e_1_3_2_7_1
  article-title: Variational Inference for Diffusion Processes
  publication-title: Neural Information Processing Systems
– start-page: 599
  year: 2013
  ident: e_1_3_2_153_1
  article-title: Collapsed Variational Bayesian Inference for Hidden Markov Models
  publication-title: Artificial Intelligence and Statistics
– start-page: 3
  year: 2000
  ident: e_1_3_2_20_1
  article-title: Non-linear Bayesian Image Modelling
  publication-title: European Conference on Computer Vision
– volume: 21
  start-page: 369
  year: 2011
  ident: e_1_3_2_52_1
  article-title: Theory of Gaussian Variational Approximation for a Poisson Mixed Model
  publication-title: Statistica Sinica
– start-page: 568
  year: 2015
  ident: e_1_3_2_76_1
  article-title: Automatic Variational Inference in Stan
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_80_1
  doi: 10.1007/978-1-4899-2696-8
– year: 2015
  ident: e_1_3_2_130_1
  publication-title: Stan Modeling Language Users Guide and Reference Manual, Version 2.8.0. New York: Columbia University
– start-page: 844
  year: 2010
  ident: e_1_3_2_139_1
  article-title: Bayesian Gaussian Process Latent Variable Model
  publication-title: Artificial Intelligence and Statistics
– ident: e_1_3_2_148_1
  doi: 10.1214/11-BA631
– start-page: 2095
  year: 2015
  ident: e_1_3_2_114_1
  article-title: Celeste: Variational Inference for a Generative Model of Astronomical Images
  publication-title: International Conference on Machine Learning
– start-page: 1441
  year: 2015
  ident: e_1_3_2_50_1
  article-title: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_39_1
  doi: 10.1214/aos/1176344611
– ident: e_1_3_2_73_1
  doi: 10.1016/j.neuroimage.2007.09.005
– ident: e_1_3_2_133_1
  doi: 10.1109/TPAMI.2008.157
– ident: e_1_3_2_5_1
  doi: 10.1162/089976698300017746
– ident: e_1_3_2_161_1
  doi: 10.1016/j.neuroimage.2008.02.059
– ident: e_1_3_2_70_1
  doi: 10.1093/bioinformatics/bth917
– start-page: 324
  year: 2016
  ident: e_1_3_2_113_1
  article-title: Hierarchical Variational Models
  publication-title: International Conference on Machine Learning
– ident: e_1_3_2_88_1
  doi: 10.1186/1471-2105-11-58
– ident: e_1_3_2_142_1
  doi: 10.1016/S0893-6080(02)00040-0
– volume: 14
  start-page: 2239
  year: 2013
  ident: e_1_3_2_30_1
  article-title: Gaussian Kullback-Leibler Approximate Inference
  publication-title: The Journal of Machine Learning Research
– start-page: 1
  year: 2001
  ident: e_1_3_2_69_1
  article-title: Learning Flexible Sprites in Video Layers
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_3_2_13_1
  doi: 10.1613/jair.567
– start-page: 2888
  year: 2012
  ident: e_1_3_2_57_1
  article-title: Fast Variational Inference in the Conjugate Exponential Family
  publication-title: Neural Information Processing Systems
– ident: e_1_3_2_163_1
  doi: 10.1142/S0219720004000508
– ident: e_1_3_2_123_1
SSID ssj0000788
Score 2.7059495
SecondaryResourceType review_article
Snippet One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 859
SubjectTerms Algorithms
Americans
artificial intelligence
Bayesian analysis
Bayesian theory
catalytic activity
Closeness
Computationally intensive methods
Density
Families & family life
Inference
Machine learning
Markov analysis
Markov chain
Markov chains
mixtures
Optimization
Probability
probability distribution
Review
Sampling
Scholarship
Statistical analysis
Statistical computing
Statistical inference
Statistics
Title Variational Inference: A Review for Statisticians
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1285773
https://www.jstor.org/stable/45028414
https://www.proquest.com/docview/2889897897
https://www.proquest.com/docview/2000474290
Volume 112
WOSCitedRecordID wos000411424400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4rAL74nBQEXi2tGsSdNwmxATSGjiMGC3qkmTE-rQuvH7sdO0MCG0A6inqnWb2I7tJM5nQq5UbGxOpQ4p1UnImMUkACHCJGWgH7SItXKSfhSTSTqbySefTVj5tEqcQ9saKMLZahzcuaqajLhriFIQXxuPmVAxAAPLhUC8T4jsUcen49cvWyxc5UmkCJGkOcPz21fWvNMadmmTr_jDZjtHNN77hy7sk10fhQajWm0OyJYpD0kHA88at_mI0BeYRPuFwuChORV4E4yCejchgDYHLQHoWHVMnsd309v70JdXCDWP5TLkuhA5TEiUSm0qwcxFspC0SHKRMx1zk6fWcKMSYzUEZQZeU5FVmsthMRRGybhLtst5aU5IYNETcl4wBREOxahBsiIZ2ryAi0rRI6xha6Y99jiWwHjLaANR6hmSIUMyz5AeGbRk7zX4xiYC-V1m2dKteti6REkWb6DtOgG3f2IcYi9GWY_0G4lnfoBX2TDFupsixb5dto9haOJ-S16a-arCCp8RE-Dwo9M_tOuMdPDWZQvFfbK9XKzMOdnRHyDgxYVT90-PM_gy
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LTsMwzIKBBBfeiPEsEtfCsiZNw21CTJsYO43HLWrS5IQ6xAbfj93HGEJoB1CPqdvEdvxI_AC4MJHzKVM2ZMzGIeeeggCkDOOEI3-wLLKmoPRADofJ87Oaz4WhsEryoX1ZKKKQ1bS56TC6Dom7QjOFCmxTngmTlyhhhZTRMqwI1LUU1jfqPn1JY1n0niSQkGDqLJ7fPvNNP32rXlpHLP6Q2oUq6m7-xyK2YKMyRINOyTnbsOTyHVgn27Ms3bwL7BH96OqsMOjXiYHXQScoLxQCnHQwA0A2m-zBQ_d2dNMLqw4LoRWRmobCZjJFn8SYxCcKJV1LZYplcSpTbiPh0sQ74UzsvEW7zOFrpuWNFaqdtaUzKtqHRj7O3QEEnpShEBk3aOQwMhwUz-K2TzN8mJJN4DVeta3Kj1MXjBfN6iqlFUI0IURXCGnC5Qzstay_sQhAzRNNT4uDD192KdHRAtj9gsKzP3GB5hdnvAnHNcl1tccnup1Q602Z0NrOZ8O4O-nKJc3d-H1CTT5bXKLObx3-YV5nsNYb3Q_0oD-8O4J1GiqCh6JjaEzf3t0JrNoPJPbbacH7nzuk_FM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDLZYWKG58FgWMTy7Eteyk2nSNNwQMAKBRhx43aLmdUIDYmb4_dhpOgtCiAOrHlO3ie3YTuJ8Btg3hQ81UzZnzJY554GSAKTMy4qjfjBXWBMlfSmHw-r-Xl2lbMJxSqukNXRogCKirabJ_eRCmxH3F6MUwtemayZMHqCBFVIWP2AhgmOhSl8P7v4ZYxlLTxJJTjTtJZ7PPvPOPb0DL20TFj8Y7eiJBsv_YQwrsJTC0Oyo0ZtVmPOjX9ChyLMBbl4Ddour6LRTmJ231wIPs6OsOU7IsM_ZjACVbPwbbgan18dneaqvkFtRqEkurJM1rkiMqUKl0M71lFPMlbWsuS2Er6vghTelDxajMo-vmV4wVqi-60tvVLEO86PHkd-ALJArFMJxgyEOo7BBcVf2Q-3wYUp2gbds1TaBj1MNjAfNWozSxBBNDNGJIV04mJE9NegbXxGotzLTk7jtEZoaJbr4gnY9Cnj2Jy4w-OKMd2G7lbhOM3ys-xUV3pQVje3PrBnnJh241CP_OB1Tic8el-jxe5vf6NceLF6dDPTl-fBiCzrUEjOHim2YnzxP_Q78tC8o6-fdqPmvDpz69w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Inference%3A+A+Review+for+Statisticians&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Blei%2C+David+M.&rft.au=Kucukelbir%2C+Alp&rft.au=McAuliffe%2C+Jon+D.&rft.date=2017-04-03&rft.pub=Taylor+%26+Francis+Group%2CLLC&rft.issn=0162-1459&rft.volume=112&rft.issue=518&rft.spage=859&rft.epage=877&rft_id=info:doi/10.1080%2F01621459.2017.1285773&rft.externalDocID=45028414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon