Predictive Modeling of Volume and Biomass in Pinus pseudostrobus Using Machine Learning and Allometric Approaches

This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics-stem volume, root system volume, and organ biomass (including leaves, branches, stem, and root)-for Pinus pseudostrobus var. Lindley, based on morphological measurements from the same trees....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forest science and technology Jg. 21; H. 1; S. 110 - 122
Hauptverfasser: Antúnez, Pablo, Wehenkel, Christian, Basave-Villalobos, Erickson, Calixto-Valencia, Celi Gloria, Valenzuela-Encinas, César, Ruiz-Aquino, Faustino, Sarmiento-Bustos, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Seoul Taylor & Francis 02.01.2025
Taylor & Francis Ltd
Taylor & Francis Group
한국산림과학회
Schlagworte:
ISSN:2158-0103, 2158-0715, 2158-0715
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics-stem volume, root system volume, and organ biomass (including leaves, branches, stem, and root)-for Pinus pseudostrobus var. Lindley, based on morphological measurements from the same trees. The novelty of this study lies in applying five machine learning algorithms-Random Forest, Neural Networks, Gradient Boosting Machines, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN)-to predict these metrics, using data from the destructive analysis of 98 individual trees aged from eight months to five years. For comparison, we also applied univariate allometric models, adjusted with nonlinear least squares and quantile regression. The results indicate that Random Forest, k-NN, and SVM outperformed the other algorithms, demonstrating superior predictive accuracy for both biomass and volume. A key innovation of this study is its demonstration of how machine learning, with its ability to model complex, nonlinear relationships, can serve as a powerful tool for forest management. Quantile regression, combined with nonlinear least squares, proves most effective when the relationships are well-defined, allowing for tailored parameter adjustments that enhance predictions, particularly in the presence of heteroscedasticity. Innovative use of machine learning in forest management practices Enhanced predictive accuracy for plant biomass and volume metrics Assessment of total biomass and its components (leaves, branches, stems, and roots) Leveraging machine learning to predict essential forest metrics
AbstractList This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics—stem volume, root system volume, and organ biomass (including leaves, branches, stem, and root)—for Pinus pseudostrobus var. Lindley, based on morphological measurements from the same trees. The novelty of this study lies in applying five machine learning algorithms—Random Forest, Neural Networks, Gradient Boosting Machines, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN)—to predict these metrics, using data from the destructive analysis of 98 individual trees aged from eight months to five years. For comparison, we also applied univariate allometric models, adjusted with nonlinear least squares and quantile regression. The results indicate that Random Forest, k-NN, and SVM outperformed the other algorithms, demonstrating superior predictive accuracy for both biomass and volume. A key innovation of this study is its demonstration of how machine learning, with its ability to model complex, nonlinear relationships, can serve as a powerful tool for forest management. Quantile regression, combined with nonlinear least squares, proves most effective when the relationships are well-defined, allowing for tailored parameter adjustments that enhance predictions, particularly in the presence of heteroscedasticity.
This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics-stem volume, root system volume, and organ biomass (including leaves, branches, stem, and root)-for Pinus pseudostrobus var. Lindley, based on morphological measurements from the same trees. The novelty of this study lies in applying five machine learning algorithms-Random Forest, Neural Networks, Gradient Boosting Machines, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN)-to predict these metrics, using data from the destructive analysis of 98 individual trees aged from eight months to five years. For comparison, we also applied univariate allometric models, adjusted with nonlinear least squares and quantile regression. The results indicate that Random Forest, k-NN, and SVM outperformed the other algorithms, demonstrating superior predictive accuracy for both biomass and volume. A key innovation of this study is its demonstration of how machine learning, with its ability to model complex, nonlinear relationships, can serve as a powerful tool for forest management. Quantile regression, combined with nonlinear least squares, proves most effective when the relationships are well-defined, allowing for tailored parameter adjustments that enhance predictions, particularly in the presence of heteroscedasticity. Innovative use of machine learning in forest management practices Enhanced predictive accuracy for plant biomass and volume metrics Assessment of total biomass and its components (leaves, branches, stems, and roots) Leveraging machine learning to predict essential forest metrics
This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics—stem volume, root system volume, and organ biomass (including leaves, branches, stem, and root)—for Pinus pseudostrobus var. Lindley, based on morphological measurements from the same trees. The novelty of this study lies in applying five machine learning algorithms—Random Forest, Neural Networks, Gradient Boosting Machines, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN)—to predict these metrics, using data from the destructive analysis of 98 individual trees aged from eight months to five years. For comparison, we also applied univariate allometric models, adjusted with nonlinear least squares and quantile regression. The results indicate that Random Forest, k-NN, and SVM outperformed the other algorithms, demonstrating superior predictive accuracy for both biomass and volume. A key innovation of this study is its demonstration of how machine learning, with its ability to model complex, nonlinear relationships, can serve as a powerful tool for forest management. Quantile regression, combined with nonlinear least squares, proves most effective when the relationships are well-defined, allowing for tailored parameter adjustments that enhance predictions, particularly in the presence of heteroscedasticity. KCI Citation Count: 0
Author Antúnez, Pablo
Ruiz-Aquino, Faustino
Wehenkel, Christian
Calixto-Valencia, Celi Gloria
Valenzuela-Encinas, César
Basave-Villalobos, Erickson
Sarmiento-Bustos, David
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0002-5492-0836
  surname: Antúnez
  fullname: Antúnez, Pablo
  organization: División de Estudios de Posgrado-Instituto de Estudios Ambientales, Universidad de la Sierra Juárez
– sequence: 2
  givenname: Christian
  orcidid: 0000-0002-2341-5458
  surname: Wehenkel
  fullname: Wehenkel, Christian
  organization: Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango
– sequence: 3
  givenname: Erickson
  orcidid: 0000-0002-6743-3623
  surname: Basave-Villalobos
  fullname: Basave-Villalobos, Erickson
  organization: INIFAP, CIR Norte-Centro
– sequence: 4
  givenname: Celi Gloria
  orcidid: 0000-0002-2725-0574
  surname: Calixto-Valencia
  fullname: Calixto-Valencia, Celi Gloria
  organization: INIFAP, CIR Pacífico-Sur
– sequence: 5
  givenname: César
  orcidid: 0000-0002-4241-2973
  surname: Valenzuela-Encinas
  fullname: Valenzuela-Encinas, César
  organization: División de Estudios de Posgrado-Instituto de Estudios Ambientales, Universidad de la Sierra Juárez
– sequence: 6
  givenname: Faustino
  orcidid: 0000-0001-6506-4441
  surname: Ruiz-Aquino
  fullname: Ruiz-Aquino, Faustino
  organization: División de Estudios de Posgrado-Instituto de Estudios Ambientales, Universidad de la Sierra Juárez
– sequence: 7
  givenname: David
  surname: Sarmiento-Bustos
  fullname: Sarmiento-Bustos, David
  organization: Instituto de Estudios Ambientales, Universidad de la Sierra Juárez
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003185496$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UstuEzEUHaEiUUI_AckSG4SU4Od4vCNUPCKlokItW8vP4HTGTu0ZUP8eT9KyYIE31_fqnHN9rPOyOYspuqZ5jeAKwQ6-x4h1EEGywhCzFaasxYI9a87n-RJyxM6e7hX0orkoZQ_rIUK0qDtv7q-zs8GM4ZcDV8m6PsQdSB78SP00OKCiBR9DGlQpIERwHeJUwKG4yaYy5qRrd1tmypUyP0N0YOtUjvNgZq77Pg1uzMGA9eGQU8W48qp57lVf3MVjXTS3nz_dXH5dbr992Vyut0vDiBiXjGIBKYXMM8g71SLNGdGOUtFajAn22nrBq1ndQatZNcQ0d9Uv5bZzDpNF8-6kG7OXdybIpMKx7pK8y3L9_WYjEWwFEZhW8OYEtknt5SGHQeWHI-M4SHknVR6D6Z3kkFpNifK8pdR6KnRrOs0sbxXRnIuq9fakVR3fT66McgjFuL5X0aWpSIIhxF1d3Fbom3-g-zTlWL9FEtQhxiitrhcNO6FMTqVk5_8-EEE5h0A-hUDOIZCPIai8DydeiD7lQf1OubdyVA99yj6raMK85r8SfwDHDLe4
Cites_doi 10.3389/fnagi.2017.00329
10.1002/wics.49
10.1163/9789004211810
10.1002/9781118874059.ch7
10.1016/j.foreco.2008.07.022
10.1007/978-3-540-75171-7
10.1007/s11277-017-5224-x
10.1007/s10694-020-01056-z
10.1080/21580103.2013.834277
10.1111/0272-4332.00040
10.3389/fpls.2013.00402
10.1890/07-0539.1
10.1016/j.foreco.2018.12.019
10.1038/nbt1386
10.1139/er-2018-0034
10.1007/s00226-021-01309-2
10.1016/j.jenvman.2023.117251
10.1177/1536867X20909688
10.1038/s41561-023-01274-4
10.1007/978-3-642-31537-4_13
10.3390/rs11161944
10.3390/su14127154
10.19136/era.a8n1.2616
10.4249/scholarpedia.1883
10.1007/978-1-4302-5990-9
10.1093/forsci/fxaa032
10.3389/fnbot.2013.00021
10.1007/978-1-4419-9326-7_5
10.1007/s11676-021-01425-6
10.1257/jep.15.4.143
10.1016/j.ieri.2014.03.004
10.5849/forsci.10-057
10.1007/s10208-008-9026-0
10.1214/aos/1013203451
10.1007/1-4020-4393-7
10.1890/ES14-00251.1
10.26525/jtfs2023.35.2.130
10.1007/978-3-030-89010-0_9
10.1007/s00521-019-04644-5
10.1016/j.marpetgeo.2022.105597
10.21037/atm.2016.03.37
10.1016/j.knosys.2021.106993
10.3389/fenvs.2024.1291327
10.18637/jss.v046.i07
10.1007/3-540-36755-1_24
10.1067/msy.2000.102173
10.1039/C0AN00387E
10.1016/j.neunet.2013.03.001
10.1016/j.foreco.2015.08.015
10.1007/s11749-016-0481-7
10.1038/nbt1206-1565
10.1109/CANDO-EPE60507.2023.10418014
10.1080/24749508.2018.1522837
10.1007/978-3-319-18305-3_1
10.1016/j.apgeog.2013.09.024
10.1007/978-3-642-02532-7
10.1111/j.1442-9993.1992.tb00790.x
10.1007/978-3-642-34062-8_32
10.1016/B978-0-443-19415-3.00011-6
10.3390/app13148275
10.1007/978-3-642-04274-4_96
10.1007/978-3-642-38652-7_2
ContentType Journal Article
Copyright 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025
2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025
– notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7SN
7SS
7ST
7X2
7XB
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PADUT
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOA
ACYCR
DOI 10.1080/21580103.2025.2456295
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Agricultural Science Database
Research Library
Research Library (Corporate)
Research Library China
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
Research Library China
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access (WRLC)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 2158-0715
EndPage 122
ExternalDocumentID oai_kci_go_kr_ARTI_10693924
oai_doaj_org_article_704db43af7644df49b6c8b5d76a3b779
10_1080_21580103_2025_2456295
2456295
Genre Research Article
GroupedDBID .7F
.QJ
0YH
4.4
7X2
7XC
8FE
8FH
8G5
AAHBH
ABCCY
ABFIM
ABPEM
ABTAI
ABUWG
ACGFS
ACPRK
ADBBV
ADCVX
AEUYN
AFKRA
AFRAH
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AQTUD
ATCPS
AVBZW
AZQEC
BCNDV
BENPR
BHPHI
BPHCQ
CCCUG
CCPQU
CE4
DWQXO
EBS
ECGQY
E~A
E~B
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
H13
HCIFZ
HF~
HZ~
H~P
IPNFZ
J.P
M0K
M2O
M4Z
NA5
OK1
PADUT
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
RIG
S-T
TDBHL
TEI
TFL
TFW
UT5
UU3
~S~
AAYXX
AFFHD
CITATION
3V.
7SN
7SS
7ST
7XB
8FK
C1K
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
PUEGO
ACYCR
BFWEY
CWRZV
EJD
HZB
PCLFJ
ID FETCH-LOGICAL-c539t-542904405f5078a61b753be4496d2232fbdf97629b80db50395b7e71547d8ee23
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409582000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-0103
2158-0715
IngestDate Wed Apr 02 03:25:32 EDT 2025
Fri Oct 03 12:48:31 EDT 2025
Fri Sep 05 17:13:58 EDT 2025
Mon Jun 30 12:06:40 EDT 2025
Sat Nov 29 08:06:57 EST 2025
Mon Oct 20 23:44:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-542904405f5078a61b753be4496d2232fbdf97629b80db50395b7e71547d8ee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
https://www.tandfonline.com/doi/full/10.1080/21580103.2025.2456295
ORCID 0000-0002-5492-0836
0000-0002-2725-0574
0000-0002-2341-5458
0000-0002-6743-3623
0000-0002-4241-2973
0000-0001-6506-4441
OpenAccessLink https://www.proquest.com/docview/3181554475?pq-origsite=%requestingapplication%
PQID 3181554475
PQPubID 1316355
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10693924
informaworld_taylorfrancis_310_1080_21580103_2025_2456295
proquest_journals_3181554475
doaj_primary_oai_doaj_org_article_704db43af7644df49b6c8b5d76a3b779
crossref_primary_10_1080_21580103_2025_2456295
proquest_miscellaneous_3200286936
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Forest science and technology
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
한국산림과학회
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
– name: 한국산림과학회
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_66_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_68_1
e_1_3_2_62_1
e_1_3_2_83_1
e_1_3_2_60_1
e_1_3_2_81_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_75_1
e_1_3_2_12_1
e_1_3_2_35_1
Mahesh B. (e_1_3_2_52_1) 2020; 9
e_1_3_2_58_1
Perry P.J. (e_1_3_2_61_1) 1991
e_1_3_2_5_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_3_1
Snowdon P. (e_1_3_2_74_1) 2000
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_71_1
Kuhn M. (e_1_3_2_48_1) 2024; 223
e_1_3_2_27_1
e_1_3_2_29_1
Prodan M. (e_1_3_2_64_1) 1997
Boswell D. (e_1_3_2_14_1) 2002; 11
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_25_1
e_1_3_2_67_1
e_1_3_2_80_1
e_1_3_2_40_1
e_1_3_2_82_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_55_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_13_1
Eguiluz P.T. (e_1_3_2_30_1) 1982; 71
e_1_3_2_34_1
e_1_3_2_59_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_57_1
e_1_3_2_78_1
e_1_3_2_51_1
e_1_3_2_72_1
e_1_3_2_70_1
References_xml – ident: e_1_3_2_70_1
  doi: 10.3389/fnagi.2017.00329
– ident: e_1_3_2_22_1
– ident: e_1_3_2_53_1
  doi: 10.1002/wics.49
– ident: e_1_3_2_33_1
  doi: 10.1163/9789004211810
– ident: e_1_3_2_49_1
  doi: 10.1002/9781118874059.ch7
– ident: e_1_3_2_59_1
  doi: 10.1016/j.foreco.2008.07.022
– ident: e_1_3_2_44_1
– ident: e_1_3_2_24_1
  doi: 10.1007/978-3-540-75171-7
– ident: e_1_3_2_79_1
  doi: 10.1007/s11277-017-5224-x
– ident: e_1_3_2_2_1
  doi: 10.1007/s10694-020-01056-z
– ident: e_1_3_2_19_1
  doi: 10.1080/21580103.2013.834277
– ident: e_1_3_2_69_1
  doi: 10.1111/0272-4332.00040
– ident: e_1_3_2_27_1
  doi: 10.3389/fpls.2013.00402
– ident: e_1_3_2_26_1
  doi: 10.1890/07-0539.1
– ident: e_1_3_2_83_1
  doi: 10.1016/j.foreco.2018.12.019
– ident: e_1_3_2_66_1
– ident: e_1_3_2_46_1
  doi: 10.1038/nbt1386
– ident: e_1_3_2_51_1
  doi: 10.1139/er-2018-0034
– ident: e_1_3_2_78_1
  doi: 10.1007/s00226-021-01309-2
– ident: e_1_3_2_8_1
  doi: 10.1016/j.jenvman.2023.117251
– ident: e_1_3_2_15_1
– ident: e_1_3_2_23_1
– ident: e_1_3_2_71_1
  doi: 10.1177/1536867X20909688
– ident: e_1_3_2_80_1
  doi: 10.1038/s41561-023-01274-4
– ident: e_1_3_2_60_1
  doi: 10.1007/978-3-642-31537-4_13
– ident: e_1_3_2_32_1
  doi: 10.3390/rs11161944
– ident: e_1_3_2_72_1
  doi: 10.3390/su14127154
– ident: e_1_3_2_6_1
  doi: 10.19136/era.a8n1.2616
– ident: e_1_3_2_62_1
  doi: 10.4249/scholarpedia.1883
– ident: e_1_3_2_9_1
  doi: 10.1007/978-1-4302-5990-9
– ident: e_1_3_2_28_1
  doi: 10.1093/forsci/fxaa032
– ident: e_1_3_2_57_1
  doi: 10.3389/fnbot.2013.00021
– ident: e_1_3_2_25_1
  doi: 10.1007/978-1-4419-9326-7_5
– ident: e_1_3_2_5_1
  doi: 10.1007/s11676-021-01425-6
– ident: e_1_3_2_42_1
  doi: 10.1257/jep.15.4.143
– ident: e_1_3_2_37_1
  doi: 10.1016/j.ieri.2014.03.004
– ident: e_1_3_2_67_1
  doi: 10.5849/forsci.10-057
– ident: e_1_3_2_76_1
  doi: 10.1007/s10208-008-9026-0
– ident: e_1_3_2_35_1
  doi: 10.1214/aos/1013203451
– ident: e_1_3_2_47_1
– ident: e_1_3_2_77_1
  doi: 10.1007/1-4020-4393-7
– ident: e_1_3_2_17_1
– ident: e_1_3_2_68_1
  doi: 10.1890/ES14-00251.1
– ident: e_1_3_2_7_1
  doi: 10.26525/jtfs2023.35.2.130
– ident: e_1_3_2_56_1
  doi: 10.1007/978-3-030-89010-0_9
– ident: e_1_3_2_39_1
  doi: 10.1007/s00521-019-04644-5
– ident: e_1_3_2_41_1
  doi: 10.1016/j.marpetgeo.2022.105597
– ident: e_1_3_2_82_1
  doi: 10.21037/atm.2016.03.37
– ident: e_1_3_2_43_1
  doi: 10.1016/j.knosys.2021.106993
– ident: e_1_3_2_63_1
– ident: e_1_3_2_55_1
– ident: e_1_3_2_34_1
  doi: 10.3389/fenvs.2024.1291327
– ident: e_1_3_2_11_1
  doi: 10.18637/jss.v046.i07
– ident: e_1_3_2_54_1
  doi: 10.1007/3-540-36755-1_24
– ident: e_1_3_2_29_1
  doi: 10.1067/msy.2000.102173
– volume: 9
  start-page: 381
  issue: 1
  year: 2020
  ident: e_1_3_2_52_1
  article-title: Machine learning algorithms-a review
  publication-title: International Journal of Science and Research
– ident: e_1_3_2_10_1
  doi: 10.1039/C0AN00387E
– ident: e_1_3_2_16_1
– ident: e_1_3_2_20_1
  doi: 10.1016/j.neunet.2013.03.001
– ident: e_1_3_2_3_1
  doi: 10.1016/j.foreco.2015.08.015
– ident: e_1_3_2_13_1
  doi: 10.1007/s11749-016-0481-7
– start-page: 586
  volume-title: IICA/GTZ
  year: 1997
  ident: e_1_3_2_64_1
– ident: e_1_3_2_58_1
  doi: 10.1038/nbt1206-1565
– ident: e_1_3_2_36_1
  doi: 10.1109/CANDO-EPE60507.2023.10418014
– volume: 11
  start-page: 16
  year: 2002
  ident: e_1_3_2_14_1
  article-title: Introduction to support vector machines
  publication-title: Department of Computer Science and Engineering University of California San Diego
– ident: e_1_3_2_75_1
  doi: 10.1080/24749508.2018.1522837
– ident: e_1_3_2_31_1
  doi: 10.1007/978-3-319-18305-3_1
– ident: e_1_3_2_65_1
– ident: e_1_3_2_40_1
  doi: 10.1016/j.apgeog.2013.09.024
– ident: e_1_3_2_38_1
– ident: e_1_3_2_81_1
  doi: 10.1007/978-3-642-02532-7
– ident: e_1_3_2_18_1
  doi: 10.1111/j.1442-9993.1992.tb00790.x
– ident: e_1_3_2_50_1
  doi: 10.1007/978-3-642-34062-8_32
– ident: e_1_3_2_73_1
– start-page: 133
  volume-title: Australian Greenhouse Office
  year: 2000
  ident: e_1_3_2_74_1
– volume: 71
  start-page: 30
  issue: 38
  year: 1982
  ident: e_1_3_2_30_1
  article-title: Clima y distribución del género Pinus en México
  publication-title: Ciencia Forestal
– ident: e_1_3_2_12_1
  doi: 10.1016/B978-0-443-19415-3.00011-6
– ident: e_1_3_2_4_1
  doi: 10.3390/app13148275
– volume: 223
  start-page: 48
  issue: 7
  year: 2024
  ident: e_1_3_2_48_1
  article-title: Package ‘caret’
  publication-title: The R Journal
– start-page: 231
  volume-title: The Pines of México and Central America. Timber Press
  year: 1991
  ident: e_1_3_2_61_1
– ident: e_1_3_2_21_1
  doi: 10.1007/978-3-642-04274-4_96
– ident: e_1_3_2_45_1
  doi: 10.1007/978-3-642-38652-7_2
SSID ssj0000399618
Score 2.2994514
Snippet This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics-stem volume, root system volume, and organ...
This study aims to evaluate the effectiveness of machine learning algorithms in predicting key forest metrics—stem volume, root system volume, and organ...
SourceID nrf
doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 110
SubjectTerms Algorithms
allometric modeling
allometry
Biomass
Branches
Effectiveness
Forest management
forests
heteroskedasticity
Learning algorithms
Least squares
Machine learning
machine learning algorithms in forestry
Neural networks
Pinus pseudostrobus
predicting forest biomass
Prediction models
quantile regression in forest management
Quantiles
Random Forest algorithm
regression analysis
root systems
Stems
Support vector machines
technology
Trees
임학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQhRAXxC4gCt2VEVzTh-P4cWzRVuyBVQ-A9mbFsV1FLcmStPv7d8ZJqwoOvXBq69qO47E9M_b4-wj5otNcIiB14q0QCXdMJDZnPLEhOI5cNcoXkWxC3t2p-3u9OqH6wpiwDh6467iJnHJneZoHCZrbBa6tKJTNnBR5aqWMV_fA6jlxpuIaDHpXxM09UGkYrTVND9d31HSCaZgE7iHLxnj0x5Bf4kQxRfz-v9BLQftUTfhnzY6KaPmavOotSDrvWn5BnvnqkrxAik3kbXtD_qwaPHzBZYwi0xneN6d1oL_iOkTzytFFiVFBLS0ruiqrfUsfWr93dYt3g-BXDCOg32OYpac9Aus6lpxvt_VvJOEq6LxHI_ftW_JzefPj67ekJ1ZIiizVuwQ5qpBqOgtgDapczCw4LdZzroUDc4EF6wKYKUxbNXU2g87MrPQSrC3plPcsfUcGVV3594SCQKCkxNM2y10atLIevmP1DrxuNiTjQ6-ahw4_w8x6WNKDGAyKwfRiGJIF9v0xM8JfxwQYFKYfFObcoBgSfSo5s4u7H6GjKjHpmQZ8BjGbTVHGZ-PnujabxoCDcQvlhAaTkg_J6DAMTD_rsWKF5hmXUMmn498wX_EQJq98vYc8GBWjoBLx4X-86UfyEhsfN4XYiAx2zd5fkefF465sm-s4KZ4ADdAJjA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQYgLb8RCQUZwTdk6jh_HLaIqB6o9AConK47tVdQ2Kckuv58Zr7PiIcQBTnnOxPFjHvZ4PoDXpqwVJaQugpOyEJ7LwtVcFC5GLwirRocmgU2o01N9dmaWOZpwzGGV5EPHbaKIJKtpcNdunCLi3qCW0gRPgN4drw5o5Y6b6jrc4OiaUFTX_MvJbppljgpYplk-oiqIbNrH8ydOP2molMj_lzSmqIa6If4mvJNGOr77H_7lHtzJ5ihbbPvPfbgWugdwi_A6CQTuIXxdDrSSQzKREWwabV5nfWSfk1Bj-Fl21FKI0cjaji3bbjOyqzFsfD_SRiO8SjEJ7EOK2Qwsp3NdJcrFxUV_SYheDVvk1OZhfASfjt99fHtSZJSGoqlKsy4I8Ipwq6uIpqWu5aFDD8gFIYz0aHvw6HxEm4cbp-feVdgglVNBoemmvA6Bl49hr-u78ARYFAYpFS3dOeHLaLQLeE7sPbrwfAYHU8vYq20yDnuYc5xOFWmpIm2uyBkcUfvtXqZc2ulGP6xsHppWzYV3oqyjQtvQYxmcbLSrvJJ16ZQyMzA_tr5dp6mUuMU9seVfCvAKu4o9b9r0bTquens-WPRW3iOdNGifihnsT13JZhFCjDXZekIhk5e7xzj4aUWn7kK_wXcoxEYjE_n0Hwr5DG7TZZpY4vuwtx424TncbL6t23F4kcbTd6EnGYQ
  priority: 102
  providerName: Taylor & Francis
Title Predictive Modeling of Volume and Biomass in Pinus pseudostrobus Using Machine Learning and Allometric Approaches
URI https://www.tandfonline.com/doi/abs/10.1080/21580103.2025.2456295
https://www.proquest.com/docview/3181554475
https://www.proquest.com/docview/3200286936
https://doaj.org/article/704db43af7644df49b6c8b5d76a3b779
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003185496
Volume 21
WOSCitedRecordID wos001409582000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Forest Science and Technology, 2025, 21(1), 69, pp.110-122
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: M0K
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: PATMY
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: BENPR
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: PIMPY
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: M2O
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: TFW
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access (WRLC)
  customDbUrl:
  eissn: 2158-0715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399618
  issn: 2158-0103
  databaseCode: 0YH
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdohxAvfE8ERmUEr9kyx4mTJ9SiVZtQS4QKbE9WHNtVtZF0Scvfz53rVBNI8MBLnDqx6-jsu_Pd-X6EvM_jUmBC6tCoNA25ZmmoSsZDZa3miFWTmcqBTYj5PLu8zAtvcOt8WGXPEx2j1k2FNvITmHso-rhIPqxvQ0SNQu-qh9AYkAPMVMaH5GByNi--7K0sEcjf1Bn5QLRh1FYU98d4sugE67AKtoksOUYXIEOciTsCyuXx_y2LKUihurV_8G4nkKaP__dTnpBHXhWl493ceUrumfoZeYBYnQgA95zcFi16cZAfUoRMw4PrtLH0m2NotKw1nawwvKijq5oWq3rb0XVntrrp8JAR_HLxCHTm4jUN9alcl67l-Oam-YFoXhUd-7TmpntBvk7PFh_PQ4_QEFZJnG9CBLtCzOrEglqZlempgt2PMpznqQa9g1mlLeg7LFdZpFUC1EiUMALUNqEzY1h8SIZ1U5uXhFqeQ0uBbjvFdWzzTBm4x-41bN9ZQI57ssj1LhGHPPX5TXs6SqSj9HQMyASJt38Z82i7iqZdSr8spYi4VjwurQC9UMMYVFplKtEiLWMlRB6Q_C7p5caZUewO80TG_xjAO5gn8rpauf_GctnI61bCTuUC2qU56KY8IEf9JJGefWDH_QwJyNv9Y1j46M0pa9Ns4R0Mr8mgk_TV37t4TR7isJzdiB2R4abdmjfkfvVzs-raERlEV-cjv25GziQB11n0Ca_sMzwpxovZFZYXswLKwWL6_RdIuCDu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamDgEXfiMCA4yAY7bUceL4gFAHTKu2Vj0MNE4mju0q2ki6pAXxT_E38p6bVBNIcNqBUxLHdt3ky3vPfs_vI-SVjHOBCalDq9M05Ialoc4ZD7VzhiNXTWYLTzYhptPs9FTOtsjPfi8MhlX2MtELalMXuEa-B9hD1cdF8nZxESJrFHpXewqNNSyO7I_vMGVr34zfw_t9zdjBh5N3h2HHKhAWSSyXIRI0Ic9y4sAUyvJ0qMFi15ZzmRrQlcxp40BHM6mzyOgkimWihRVgagiTWYuJDkDkb3MAezYg27PxZPZ5s6oDtZFCBRnthglGiUVxv20oi_awDItgWsqSXXQ5MuS1uKQQPW_Ab1lTQetVjftDV3gFeHD7f3t0d8itztSmo_W3cZds2eoeuY5cpEhwd59czBr0UqG8p0gJhxvzae3oJy-waV4Zul9i-FRLy4rOymrV0kVrV6ZucRMVXPl4Czrx8aiWdqlq577l6Py8_opsZQUddWnbbfuAfLySP_yQDKq6so8IdVxCS4FuSc1N7GSmLZxj90ZwxgKy28NALdaJRtSwy9_a40YhblSHm4DsI1g2lTFPuC-om7nqxI4SETeax7kTYPcaGINOi0wnRqR5rIWQAZGXoaaWfpnIrTldVPyPAbwEXKqzovS_jcd5rc4aBTOxMbRLJdjePCA7PShVJx6x4x6RAXmxuQ2CDb1VeWXrFdTB8KEMOkkf_72L5-TG4cnkWB2Pp0dPyE0col8jYztksGxW9im5Vnxblm3zrPtaKfly1Sj_BRUccm4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgoIkXxm2ibIARvGZ0juPLY7dRMQFVHwbszYpju4o2kpK0_H7OcZ2KixAP8NQ2iU9cX87FPv4-Ql7pvJQISJ15K0TGHROZLRnPbAiOI1eN8lUkm5Czmbq81POUTdintEqMocMGKCLqapzcSxeGjLjXYKUU0hNAdMeKI9y5Y7q4SW5FcCwY0hfTz9tlljEYYBFX-bBUhsWGczx_kvSThYpA_r_AmIIZarrwm_KOFmm69x_-yz1yN7mjdLIZP_fJDd88ILvI14kkcA_J13mHOzmoEynSpuHhddoG-ikqNQqvpSc1phj1tG7ovG7WPV32fu3aHg8awa-Yk0A_xJxNTxOc6yKWnFxft1-Q0auikwRt7vtH5OP0zcXp2yyxNGRVketVhoRXyFtdBHAtVSmOLURA1nOuhQPfgwXrAvg8TFs1draADims9BJcN-mU9yzfJztN2_jHhAauoaTErTvLXR60sh6-o3gHITwbkaOhZ8xyA8ZhjhPG6dCQBhvSpIYckRPsv-3DiKUdL7TdwqSpaeSYO8vzMkjwDR3UwYpK2cJJUeZWSj0i-sfeN6u4lBI2vCcm_0sFXsJQMVdVHd-Nn4vWXHUGopVzKCc0-Kd8RA6HoWSSCkHBCn09LkHIi-1tmPy4o1M2vl3DM5hio0CIePIPlXxOdudnU_P-fPbugNzBO3GNiR2SnVW39k_J7erbqu67Z3FqfQc2YBxS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Modeling+of+Volume+and+Biomass+in+Pinus+pseudostrobus+Using+Machine+Learning+and+Allometric+Approaches&rft.jtitle=Forest+science+and+technology&rft.au=Ant%C3%BAnez%2C+Pablo&rft.au=Wehenkel%2C+Christian&rft.au=Basave-Villalobos%2C+Erickson&rft.au=Calixto-Valencia%2C+Celi+Gloria&rft.date=2025-01-02&rft.issn=2158-0715&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1080%2F21580103.2025.2456295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0103&client=summon