Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop
Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum)...
Saved in:
| Published in: | Trends in plant science Vol. 25; no. 6; pp. 525 - 537 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.06.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 1360-1385, 1878-4372, 1878-4372 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach. Here we highlight protein coding sequences in the recently released T. intermedium genome sequence that may be orthologous to domestication genes identified in annual grain crops. Their presence suggests a roadmap for the accelerated domestication of this plant using new breeding technologies.
Current grain crops are annuals that must be sown every year, giving their root systems little time to develop during the growing season.A perennial grain crop with a long-lived extensive root system would improve soil quality, store carbon belowground, and utilize water and minerals more efficiently.Domestication genes of the annual grass wheat are highly conserved in the perennial intermediate wheatgrass (Thinopyrum intermedium), providing an opportunity for accelerated domestication of a perennial grain using a mutagenesis approach. |
|---|---|
| AbstractList | Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach. Here we highlight protein coding sequences in the recently released T. intermedium genome sequence that may be orthologous to domestication genes identified in annual grain crops. Their presence suggests a roadmap for the accelerated domestication of this plant using new breeding technologies.Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach. Here we highlight protein coding sequences in the recently released T. intermedium genome sequence that may be orthologous to domestication genes identified in annual grain crops. Their presence suggests a roadmap for the accelerated domestication of this plant using new breeding technologies. Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach. Here we highlight protein coding sequences in the recently released T. intermedium genome sequence that may be orthologous to domestication genes identified in annual grain crops. Their presence suggests a roadmap for the accelerated domestication of this plant using new breeding technologies. Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach. Here we highlight protein coding sequences in the recently released T. intermedium genome sequence that may be orthologous to domestication genes identified in annual grain crops. Their presence suggests a roadmap for the accelerated domestication of this plant using new breeding technologies. Current grain crops are annuals that must be sown every year, giving their root systems little time to develop during the growing season.A perennial grain crop with a long-lived extensive root system would improve soil quality, store carbon belowground, and utilize water and minerals more efficiently.Domestication genes of the annual grass wheat are highly conserved in the perennial intermediate wheatgrass (Thinopyrum intermedium), providing an opportunity for accelerated domestication of a perennial grain using a mutagenesis approach. |
| Author | Palmgren, Michael Wenkel, Stephan Gao, Caixia DeHaan, Lee Larson, Steve López-Marqués, Rosa L. |
| Author_xml | – sequence: 1 givenname: Lee surname: DeHaan fullname: DeHaan, Lee organization: The Land Institute, 2440 E. Water Well Road, Salina, KS 67401, USA – sequence: 2 givenname: Steve surname: Larson fullname: Larson, Steve organization: United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT 84322-6300, USA – sequence: 3 givenname: Rosa L. surname: López-Marqués fullname: López-Marqués, Rosa L. organization: NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark – sequence: 4 givenname: Stephan surname: Wenkel fullname: Wenkel, Stephan organization: NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark – sequence: 5 givenname: Caixia surname: Gao fullname: Gao, Caixia organization: State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China – sequence: 6 givenname: Michael surname: Palmgren fullname: Palmgren, Michael email: palmgren@plen.ku.dk organization: NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32407693$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URNuBRwBZYsMm4fovzogFqoZSKlUCIVhbHuem8iixg-1B4u3xMAOLboq9sBffuTr3nEtyFmJAQl4yaBmw7u2uLctkQ8ktBw4t8BZAPiEXrNd9I4XmZ_UvOmiY6NU5ucx5BwCa9d0zci64BN2txQW5_RrtMNuFjjHRK-dwwmQLDvRDnDEX72zxMdA4Uhvo9Yzp3od7-gUThuDtRG-S9YFuUlyek6ejnTK-OL0r8v3j9bfNp-bu883t5uqucUqsS8OdBe3Wljlm5TBarnsYUDhtAaUSI5Md7wfFleDcOeaUPhzl0G2t1nYrVuTNce6S4o999Whmn6vvGgbGfTZ1tXqVYPA_KMhuzTpZ0dcP0F3cp1AXqZQEBlJUSyvy6kTttzMOZkl-tumX-ZtnBdQRcCnmnHD8hzAwh97Mzpx6M4feDHBTPVTduwc658uf6EsNeHpU_f6oxpr7T4_JZOcxOBx8QlfMEP0jE34Dm2S0_g |
| CitedBy_id | crossref_primary_10_1111_pce_70099 crossref_primary_10_3390_molecules29081777 crossref_primary_10_1016_j_molp_2023_07_011 crossref_primary_10_3390_agronomy10091322 crossref_primary_10_1002_csc2_20944 crossref_primary_10_1038_s41422_024_01001_7 crossref_primary_10_3390_agronomy11081656 crossref_primary_10_1016_j_cell_2024_04_047 crossref_primary_10_1051_bioconf_202411301017 crossref_primary_10_3389_fsufs_2021_706142 crossref_primary_10_1017_S1742170523000340 crossref_primary_10_1016_j_molp_2020_12_006 crossref_primary_10_1002_tpg2_20145 crossref_primary_10_1016_j_eja_2022_126721 crossref_primary_10_1093_plcell_koac303 crossref_primary_10_1073_pnas_2311961120 crossref_primary_10_3389_fpls_2022_898769 crossref_primary_10_3389_fsufs_2025_1569398 crossref_primary_10_1051_bioconf_20248401055 crossref_primary_10_1007_s11295_022_01583_6 crossref_primary_10_1016_j_molp_2020_12_013 crossref_primary_10_1038_s41576_024_00720_2 crossref_primary_10_1073_pnas_2022666118 crossref_primary_10_1007_s13593_024_00993_1 crossref_primary_10_1073_pnas_2205769120 crossref_primary_10_1002_csc2_21315 crossref_primary_10_1016_j_plantsci_2024_112054 crossref_primary_10_3389_fpls_2021_681367 crossref_primary_10_1016_j_tplants_2021_08_007 crossref_primary_10_3389_fpls_2023_1087768 crossref_primary_10_1093_pcp_pcac065 crossref_primary_10_3390_foods12112109 crossref_primary_10_1088_1755_1315_937_2_022111 crossref_primary_10_1038_s41477_024_01655_6 crossref_primary_10_1088_1755_1315_937_2_022112 crossref_primary_10_3390_plants11152038 crossref_primary_10_1016_j_agee_2021_107747 crossref_primary_10_1016_j_oneear_2021_12_012 crossref_primary_10_1016_j_scitotenv_2023_164975 crossref_primary_10_1007_s12374_022_09370_5 crossref_primary_10_1073_pnas_2308984120 crossref_primary_10_3390_horticulturae10080868 crossref_primary_10_3389_fpls_2020_00789 crossref_primary_10_1007_s11104_022_05592_1 crossref_primary_10_1088_1755_1315_937_3_032047 crossref_primary_10_1093_pcp_pcac077 crossref_primary_10_1002_csc2_20716 crossref_primary_10_1111_tpj_70179 crossref_primary_10_1016_j_pbi_2021_102150 crossref_primary_10_3389_fsci_2024_1416023 crossref_primary_10_1016_j_cell_2021_01_013 crossref_primary_10_3389_fpls_2023_1207078 crossref_primary_10_3389_fpls_2023_1331258 crossref_primary_10_1017_sus_2024_27 crossref_primary_10_1016_j_copbio_2023_102946 crossref_primary_10_3390_plants11040532 crossref_primary_10_1007_s00122_022_04148_2 crossref_primary_10_1093_biosci_biab092 crossref_primary_10_1038_s41580_020_00288_9 crossref_primary_10_1016_j_afres_2025_101246 crossref_primary_10_1038_s41893_022_00997_3 crossref_primary_10_1002_cche_10505 crossref_primary_10_31073_kormovyrobnytstvo202192_03 crossref_primary_10_3389_fpls_2022_886162 crossref_primary_10_1016_j_molp_2023_12_011 crossref_primary_10_1016_j_jgg_2023_09_007 crossref_primary_10_1080_07388551_2022_2042481 crossref_primary_10_1186_s12284_023_00630_7 |
| Cites_doi | 10.1126/science.1126410 10.1080/00224561.1990.12456435 10.1126/science.aan0032 10.1146/annurev-arplant-050312-120048 10.1016/j.tplants.2016.01.014 10.1126/science.aar7191 10.1007/s11105-015-0911-9 10.1038/s41477-018-0259-x 10.1038/22307 10.1093/biosci/biy014 10.1371/journal.pone.0082641 10.1038/nbt.4272 10.1073/pnas.0711034105 10.1016/j.plantsci.2016.12.012 10.1146/annurev-phyto-080615-095909 10.1007/s00425-018-3057-9 10.1038/nbt.3811 10.1126/science.aax0025 10.1007/s00122-012-1895-6 10.1007/s00425-018-2847-4 10.1038/nplants.2017.43 10.1016/j.plantsci.2019.05.012 10.1038/nbt.4261 10.1007/s00122-019-03357-6 10.1038/s41587-019-0337-2 10.1038/ncomms2296 10.1038/s41588-019-0381-3 10.1016/j.tplants.2017.01.004 10.1111/mpp.12849 10.1038/ncomms14261 10.1073/pnas.1110552108 10.1007/s00122-019-03358-5 10.1105/tpc.16.00124 10.1073/pnas.0608580104 10.1016/j.tplants.2010.05.008 10.1038/nature11997 10.1038/s41586-019-1679-0 10.1534/genetics.105.044727 10.1126/science.1128836 10.1007/s00122-019-03315-2 10.1079/RAF200496 10.3390/genes10010068 10.1038/nbt.4273 10.1073/pnas.1815465116 10.1086/374951 10.4161/psb.20813 10.1093/jxb/erz247 10.1007/s11032-014-0087-2 10.2134/agronj2012.0273 10.1016/j.cell.2015.07.002 10.1016/j.cub.2019.05.053 10.1007/s11295-014-0790-5 10.1016/j.tplants.2011.11.005 10.2135/cropsci2006.05.0341 10.1111/tpj.14440 10.1038/ng.2007.20 10.1038/ng2014 10.1073/pnas.1311681110 10.1038/nbt.2969 10.1093/pcp/pcz050 10.1007/s10722-014-0195-1 10.3732/ajb.1400084 10.1007/s10142-014-0380-5 10.1111/tpj.13903 10.1038/s41586-018-0594-0 10.1016/j.agee.2016.03.012 10.3390/su10051499 10.2174/138920208784533656 10.1111/tpj.12581 10.1105/tpc.111.094383 10.1007/s00122-010-1437-z 10.1017/sus.2018.11 10.1038/ncomms13274 10.1111/nph.14377 10.1126/science.1188761 10.1038/s41586-019-1711-4 10.1016/j.tibtech.2018.03.009 10.1038/s41565-019-0382-5 10.1094/CFW-62-6-0278 10.1023/A:1023044913155 10.1126/science.1123604 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. Copyright Elsevier BV Jun 2020 |
| Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: Copyright Elsevier BV Jun 2020 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 |
| DOI | 10.1016/j.tplants.2020.02.004 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA Virology and AIDS Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Botany |
| EISSN | 1878-4372 |
| EndPage | 537 |
| ExternalDocumentID | 32407693 10_1016_j_tplants_2020_02_004 S1360138520300534 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM 9DU AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD AGCQF C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c539t-2ca07c9a1c1a4dfa2780de3c7a0e453f14628d525322cc1c5777775cecba77ab3 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533518400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1360-1385 1878-4372 |
| IngestDate | Sun Sep 28 09:16:56 EDT 2025 Sun Sep 28 01:39:16 EDT 2025 Wed Aug 13 04:26:50 EDT 2025 Wed Feb 19 02:31:23 EST 2025 Sat Nov 29 07:07:05 EST 2025 Tue Nov 18 22:26:13 EST 2025 Fri Feb 23 02:47:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | genome editing perennial grain crops accelerated domestication |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c539t-2ca07c9a1c1a4dfa2780de3c7a0e453f14628d525322cc1c5777775cecba77ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.tplants.2020.02.004 |
| PMID | 32407693 |
| PQID | 2440104325 |
| PQPubID | 2045386 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2404045310 proquest_miscellaneous_2400469164 proquest_journals_2440104325 pubmed_primary_32407693 crossref_primary_10_1016_j_tplants_2020_02_004 crossref_citationtrail_10_1016_j_tplants_2020_02_004 elsevier_sciencedirect_doi_10_1016_j_tplants_2020_02_004 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 2020-Jun 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Kidlington |
| PublicationTitle | Trends in plant science |
| PublicationTitleAlternate | Trends Plant Sci |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Food and Agriculture Organization of the United Nations (bb0005) 2017 Harfouche (bb0385) 2012; 17 Ryan (bb0045) 2018; 68 Springmann (bb0010) 2018; 562 Konishi (bb0195) 2006; 312 Denison (bb0100) 2003; 78 Barkley, Wang (bb0070) 2008; 9 Nave (bb0185) 2019; 285 Nahirñak (bb0275) 2012; 7 Houston (bb0260) 2013; 110 Wagoner (bb0060) 1990; 45 Peng (bb0255) 1999; 400 Østerberg (bb0115) 2017; 22 Avni (bb0155) 2017; 357 Wang (bb0335) 2003; 73 Lowe (bb0340) 2016; 28 Larson (bb0240) 2019; 132 DeHaan (bb0065) 2018; 10 Hu (bb0365) 2019; 20 Chuck (bb0220) 2007; 39 DeHaan, Ismail (bb0055) 2017; 62 Zhang (bb0225) 2011; 108 Debernardi (bb0235) 2017; 144 Muranty (bb0400) 2014; 10 Zhou (bb0200) 2012; 24 Liu (bb0295) 2017; 3 Culman (bb0040) 2013; 105 Anzalone (bb0325) 2019; 576 Zsögön (bb0130) 2017; 256 Svitashev (bb0350) 2016; 7 Lemmon (bb0150) 2018; 4 Yao (bb0310) 2019; 132 Zhang (bb0330) 2019; 249 Di Vittori (bb0170) 2019; 10 Crews (bb0020) 2016; 223 Li (bb0110) 2018; 36 Gross, Olsen (bb0080) 2010; 15 Dehaan, Van Tassel (bb0120) 2014; 101 Shapter (bb0125) 2013; 8 Sakuma (bb0320) 2019; 116 Kim (bb0355) 2017; 8 Doebley (bb0105) 2006; 312 DeHaan (bb0050) 2005; 20 Glover (bb0030) 2010; 328 Zhang (bb0290) 2016; 7 Song (bb0300) 2007; 39 Ray (bb0015) 2012; 3 Bailey-Serres (bb0145) 2019; 575 Zhao (bb0180) 2019; 60 Golan (bb0315) 2019; 132 Civáň, Brown (bb0410) 2017; 214 Chen (bb0075) 2012; 7 Eshed, Lippman (bb0140) 2019; 366 Liang (bb0345) 2017; 8 Wang (bb0405) 2014; 32 Wang (bb0390) 2007; 47 Crews (bb0035) 2018; 1 Simons (bb0215) 2006; 172 Demirer (bb0370) 2019; 14 Komatsuda (bb0440) 2007; 104 Hong (bb0425) 2014; 14 Sormacheva (bb0230) 2015; 62 Ling (bb0280) 2013; 496 Jackson, Li (bb0360) 2016; 54 Taketa (bb0190) 2008; 105 Guvvala (bb0395) 2013; 1 Xie (bb0210) 2018; 247 Zong (bb0245) 2017; 35 Maher (bb0380) 2020; 38 Pourkheirandish (bb0175) 2015; 162 Maccaferri (bb0165) 2019; 51 Su (bb0430) 2011; 122 Cunningham (bb0375) 2018; 36 Wang (bb0270) 2019; 100 Yu (bb0265) 2019; 70 Zhang (bb0305) 2018; 94 Zsögön (bb0135) 2018; 36 Yoon (bb0205) 2014; 79 Zong (bb0250) 2018; 36 Dong (bb0285) 2014; 34 Yang (bb0435) 2012; 125 Purugganan (bb0095) 2019; 29 Li (bb0420) 2006; 311 Yu (bb0415) 2016; 34 The International Wheat Genome Sequencing Consortium (IWGSC) (bb0160) 2018; 361 Jackson (bb0025) 1980 Olsen, Wendel (bb0085) 2013; 64 Swinnen (bb0090) 2016; 21 Zsögön (10.1016/j.tplants.2020.02.004_bb0135) 2018; 36 Xie (10.1016/j.tplants.2020.02.004_bb0210) 2018; 247 Wagoner (10.1016/j.tplants.2020.02.004_bb0060) 1990; 45 Olsen (10.1016/j.tplants.2020.02.004_bb0085) 2013; 64 Sormacheva (10.1016/j.tplants.2020.02.004_bb0230) 2015; 62 Crews (10.1016/j.tplants.2020.02.004_bb0035) 2018; 1 Østerberg (10.1016/j.tplants.2020.02.004_bb0115) 2017; 22 Lemmon (10.1016/j.tplants.2020.02.004_bb0150) 2018; 4 Wang (10.1016/j.tplants.2020.02.004_bb0405) 2014; 32 Civáň (10.1016/j.tplants.2020.02.004_bb0410) 2017; 214 Li (10.1016/j.tplants.2020.02.004_bb0110) 2018; 36 Simons (10.1016/j.tplants.2020.02.004_bb0215) 2006; 172 Lowe (10.1016/j.tplants.2020.02.004_bb0340) 2016; 28 Cunningham (10.1016/j.tplants.2020.02.004_bb0375) 2018; 36 Su (10.1016/j.tplants.2020.02.004_bb0430) 2011; 122 Ray (10.1016/j.tplants.2020.02.004_bb0015) 2012; 3 Konishi (10.1016/j.tplants.2020.02.004_bb0195) 2006; 312 Yu (10.1016/j.tplants.2020.02.004_bb0265) 2019; 70 DeHaan (10.1016/j.tplants.2020.02.004_bb0050) 2005; 20 Zhao (10.1016/j.tplants.2020.02.004_bb0180) 2019; 60 Purugganan (10.1016/j.tplants.2020.02.004_bb0095) 2019; 29 Debernardi (10.1016/j.tplants.2020.02.004_bb0235) 2017; 144 Pourkheirandish (10.1016/j.tplants.2020.02.004_bb0175) 2015; 162 Dong (10.1016/j.tplants.2020.02.004_bb0285) 2014; 34 Yang (10.1016/j.tplants.2020.02.004_bb0435) 2012; 125 Golan (10.1016/j.tplants.2020.02.004_bb0315) 2019; 132 Ryan (10.1016/j.tplants.2020.02.004_bb0045) 2018; 68 Maher (10.1016/j.tplants.2020.02.004_bb0380) 2020; 38 Wang (10.1016/j.tplants.2020.02.004_bb0390) 2007; 47 Springmann (10.1016/j.tplants.2020.02.004_bb0010) 2018; 562 Glover (10.1016/j.tplants.2020.02.004_bb0030) 2010; 328 Doebley (10.1016/j.tplants.2020.02.004_bb0105) 2006; 312 Wang (10.1016/j.tplants.2020.02.004_bb0270) 2019; 100 Jackson (10.1016/j.tplants.2020.02.004_bb0025) 1980 Houston (10.1016/j.tplants.2020.02.004_bb0260) 2013; 110 Crews (10.1016/j.tplants.2020.02.004_bb0020) 2016; 223 Peng (10.1016/j.tplants.2020.02.004_bb0255) 1999; 400 Shapter (10.1016/j.tplants.2020.02.004_bb0125) 2013; 8 Barkley (10.1016/j.tplants.2020.02.004_bb0070) 2008; 9 Bailey-Serres (10.1016/j.tplants.2020.02.004_bb0145) 2019; 575 Food and Agriculture Organization of the United Nations (10.1016/j.tplants.2020.02.004_bb0005) 2017 Song (10.1016/j.tplants.2020.02.004_bb0300) 2007; 39 Ling (10.1016/j.tplants.2020.02.004_bb0280) 2013; 496 Denison (10.1016/j.tplants.2020.02.004_bb0100) 2003; 78 Eshed (10.1016/j.tplants.2020.02.004_bb0140) 2019; 366 Swinnen (10.1016/j.tplants.2020.02.004_bb0090) 2016; 21 DeHaan (10.1016/j.tplants.2020.02.004_bb0065) 2018; 10 Li (10.1016/j.tplants.2020.02.004_bb0420) 2006; 311 Di Vittori (10.1016/j.tplants.2020.02.004_bb0170) 2019; 10 DeHaan (10.1016/j.tplants.2020.02.004_bb0055) 2017; 62 Taketa (10.1016/j.tplants.2020.02.004_bb0190) 2008; 105 Zhou (10.1016/j.tplants.2020.02.004_bb0200) 2012; 24 Culman (10.1016/j.tplants.2020.02.004_bb0040) 2013; 105 Guvvala (10.1016/j.tplants.2020.02.004_bb0395) 2013; 1 Dehaan (10.1016/j.tplants.2020.02.004_bb0120) 2014; 101 The International Wheat Genome Sequencing Consortium (IWGSC) (10.1016/j.tplants.2020.02.004_bb0160) 2018; 361 Yao (10.1016/j.tplants.2020.02.004_bb0310) 2019; 132 Sakuma (10.1016/j.tplants.2020.02.004_bb0320) 2019; 116 Chen (10.1016/j.tplants.2020.02.004_bb0075) 2012; 7 Zhang (10.1016/j.tplants.2020.02.004_bb0225) 2011; 108 Hong (10.1016/j.tplants.2020.02.004_bb0425) 2014; 14 Chuck (10.1016/j.tplants.2020.02.004_bb0220) 2007; 39 Wang (10.1016/j.tplants.2020.02.004_bb0335) 2003; 73 Svitashev (10.1016/j.tplants.2020.02.004_bb0350) 2016; 7 Komatsuda (10.1016/j.tplants.2020.02.004_bb0440) 2007; 104 Demirer (10.1016/j.tplants.2020.02.004_bb0370) 2019; 14 Maccaferri (10.1016/j.tplants.2020.02.004_bb0165) 2019; 51 Gross (10.1016/j.tplants.2020.02.004_bb0080) 2010; 15 Nahirñak (10.1016/j.tplants.2020.02.004_bb0275) 2012; 7 Zhang (10.1016/j.tplants.2020.02.004_bb0290) 2016; 7 Yu (10.1016/j.tplants.2020.02.004_bb0415) 2016; 34 Zhang (10.1016/j.tplants.2020.02.004_bb0305) 2018; 94 Zong (10.1016/j.tplants.2020.02.004_bb0250) 2018; 36 Zong (10.1016/j.tplants.2020.02.004_bb0245) 2017; 35 Zhang (10.1016/j.tplants.2020.02.004_bb0330) 2019; 249 Hu (10.1016/j.tplants.2020.02.004_bb0365) 2019; 20 Muranty (10.1016/j.tplants.2020.02.004_bb0400) 2014; 10 Liu (10.1016/j.tplants.2020.02.004_bb0295) 2017; 3 Larson (10.1016/j.tplants.2020.02.004_bb0240) 2019; 132 Jackson (10.1016/j.tplants.2020.02.004_bb0360) 2016; 54 Zsögön (10.1016/j.tplants.2020.02.004_bb0130) 2017; 256 Liang (10.1016/j.tplants.2020.02.004_bb0345) 2017; 8 Kim (10.1016/j.tplants.2020.02.004_bb0355) 2017; 8 Anzalone (10.1016/j.tplants.2020.02.004_bb0325) 2019; 576 Harfouche (10.1016/j.tplants.2020.02.004_bb0385) 2012; 17 Nave (10.1016/j.tplants.2020.02.004_bb0185) 2019; 285 Yoon (10.1016/j.tplants.2020.02.004_bb0205) 2014; 79 Avni (10.1016/j.tplants.2020.02.004_bb0155) 2017; 357 |
| References_xml | – volume: 38 start-page: 84 year: 2020 end-page: 89 ident: bb0380 article-title: Plant gene editing through de novo induction of meristems publication-title: Nat. Biotechnol. – volume: 4 start-page: 766 year: 2018 end-page: 770 ident: bb0150 article-title: Rapid improvement of domestication traits in an orphan crop by genome editing publication-title: Nat. Plants – volume: 36 start-page: 950 year: 2018 ident: bb0250 article-title: Efficient C-to-T base editing in plants using a fusion of ncas9 and human apobec3a publication-title: Nat. Biotechnol. – volume: 51 start-page: 885 year: 2019 end-page: 895 ident: bb0165 article-title: Durum wheat genome highlights past domestication signatures and future improvement targets publication-title: Nat. Genet. – year: 1980 ident: bb0025 article-title: New Roots for Agriculture – volume: 79 start-page: 717 year: 2014 end-page: 728 ident: bb0205 article-title: The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis publication-title: Plant J. – volume: 32 start-page: 947 year: 2014 end-page: 951 ident: bb0405 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat. Biotechnol. – volume: 101 start-page: 1801 year: 2014 end-page: 1819 ident: bb0120 article-title: Useful insights from evolutionary biology for developing perennial grain crops publication-title: Am. J. Bot. – volume: 54 start-page: 469 year: 2016 end-page: 498 ident: bb0360 article-title: Developments in plant negative-strand RNA virus reverse genetics publication-title: Annu. Rev. Phytopathol. – volume: 312 start-page: 1318 year: 2006 end-page: 1319 ident: bb0105 article-title: Unfallen grains: how ancient farmers turned weeds into crops publication-title: Science – volume: 21 start-page: 506 year: 2016 end-page: 515 ident: bb0090 article-title: Lessons from domestication: targeting cis-regulatory elements for crop improvement publication-title: Trends Plant Sci. – volume: 214 start-page: 468 year: 2017 end-page: 472 ident: bb0410 article-title: A novel mutation conferring the nonbrittle phenotype of cultivated barley publication-title: New Phytol. – volume: 575 start-page: 109 year: 2019 end-page: 118 ident: bb0145 article-title: Genetic strategies for improving crop yields publication-title: Nature – volume: 144 start-page: 1966 year: 2017 end-page: 1975 ident: bb0235 article-title: microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability publication-title: Development – volume: 39 start-page: 1517 year: 2007 end-page: 1521 ident: bb0220 article-title: The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1 publication-title: Nat. Genet. – volume: 24 start-page: 1034 year: 2012 end-page: 1048 ident: bb0200 article-title: Genetic control of seed shattering in rice by the APETALA2 transcription factor Shattering Abortion1 publication-title: Plant Cell – volume: 70 start-page: 4671 year: 2019 end-page: 4688 ident: bb0265 article-title: Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling publication-title: J. Exp. Bot. – volume: 15 start-page: 529 year: 2010 end-page: 537 ident: bb0080 article-title: Genetic perspectives on crop domestication publication-title: Trends Plant Sci. – volume: 20 start-page: 1463 year: 2019 end-page: 1474 ident: bb0365 article-title: A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize publication-title: Mol. Plant Pathol. – volume: 62 start-page: 278 year: 2017 end-page: 281 ident: bb0055 article-title: Perennial cereals provide ecosystem benefits publication-title: Cereal Foods World – volume: 36 start-page: 1160 year: 2018 end-page: 1163 ident: bb0110 article-title: Domestication of wild tomato is accelerated by genome editing publication-title: Nat. Biotechnol. – volume: 10 start-page: 1491 year: 2014 end-page: 1510 ident: bb0400 article-title: Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops publication-title: Tree Genet. Genomes – volume: 45 start-page: 81 year: 1990 end-page: 82 ident: bb0060 article-title: Perennial grain: new use for intermediate wheatgrass publication-title: J. Soil Water Conserv. – volume: 78 start-page: 145 year: 2003 end-page: 168 ident: bb0100 article-title: Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? publication-title: Q. Rev. Biol. – volume: 162 start-page: 527 year: 2015 end-page: 539 ident: bb0175 article-title: Evolution of the grain dispersal system in Barley publication-title: Cell – volume: 125 start-page: 1057 year: 2012 end-page: 1068 ident: bb0435 article-title: SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight publication-title: Theor. Appl. Genet. – volume: 36 start-page: 882 year: 2018 end-page: 897 ident: bb0375 article-title: Nanoparticle-mediated delivery towards advancing plant genetic engineering publication-title: Trends Biotechnol. – volume: 10 start-page: 68 year: 2019 ident: bb0170 article-title: Convergent evolution of the seed shattering trait publication-title: Genes (Basel) – volume: 28 start-page: 1998 year: 2016 end-page: 2015 ident: bb0340 article-title: Morphogenic regulators publication-title: Plant Cell – volume: 357 start-page: 93 year: 2017 end-page: 97 ident: bb0155 article-title: Wild emmer genome architecture and diversity elucidate wheat evolution and domestication publication-title: Science – volume: 73 start-page: 265 year: 2003 end-page: 273 ident: bb0335 article-title: Establishment of a plant regeneration system for wheatgrasses ( publication-title: Plant Cell. Tissue Organ Cult. – volume: 7 year: 2016 ident: bb0290 article-title: Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA publication-title: Nat. Commun. – volume: 256 start-page: 120 year: 2017 end-page: 130 ident: bb0130 article-title: Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato publication-title: Plant Sci. – volume: 3 year: 2017 ident: bb0295 article-title: GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice publication-title: Nat. Plants – volume: 361 year: 2018 ident: bb0160 article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome publication-title: Science – volume: 116 start-page: 5182 year: 2019 end-page: 5187 ident: bb0320 article-title: Unleashing floret fertility in wheat through the mutation of a homeobox gene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 34 start-page: 242 year: 2016 end-page: 248 ident: bb0415 article-title: A single nucleotide polymorphism of nud converts the caryopsis type of barley ( publication-title: Plant Mol. Biol. Report. – volume: 100 start-page: 251 year: 2019 end-page: 264 ident: bb0270 article-title: Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat publication-title: Plant J. – volume: 62 start-page: 837 year: 2015 end-page: 852 ident: bb0230 article-title: Q gene variability in wheat species with different spike morphology publication-title: Genet. Resour. Crop. Evol. – volume: 8 year: 2017 ident: bb0355 article-title: CRISPR/Cpf1-mediated DNA-free plant genome editing publication-title: Nat. Commun. – volume: 14 start-page: 341 year: 2014 end-page: 349 ident: bb0425 article-title: Transcript suppression of TaGW2 increased grain width and weight in bread wheat publication-title: Funct. Integr. Genomics – volume: 1 start-page: 52 year: 2013 end-page: 66 ident: bb0395 article-title: Improvement of resistance to bacterial blight through marker assisted backcross breeding and field validation in rice ( publication-title: J. Biol. – year: 2017 ident: bb0005 article-title: The Future of Food and Agriculture: Trends and Challenges – volume: 1 start-page: 1 year: 2018 end-page: 18 ident: bb0035 article-title: Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures publication-title: Glob. Sustain. – volume: 223 start-page: 223 year: 2016 end-page: 238 ident: bb0020 article-title: Going where no grains have gone before: from early to mid-succession publication-title: Agric. Ecosyst. Environ. – volume: 22 start-page: 373 year: 2017 end-page: 384 ident: bb0115 article-title: Accelerating the domestication of new crops: feasibility and approaches publication-title: Trends Plant Sci. – volume: 7 year: 2012 ident: bb0075 article-title: Development and characterization of a new TILLING population of common bread wheat ( publication-title: PLoS One – volume: 328 start-page: 1638 year: 2010 end-page: 1639 ident: bb0030 article-title: Increased food and ecosystem security via perennial grains publication-title: Science – volume: 496 start-page: 87 year: 2013 end-page: 90 ident: bb0280 article-title: Draft genome of the wheat A-genome progenitor publication-title: Nature – volume: 249 start-page: 1007 year: 2019 end-page: 1015 ident: bb0330 article-title: Genetic modification of western wheatgrass ( publication-title: Planta – volume: 311 start-page: 1936 year: 2006 end-page: 1939 ident: bb0420 article-title: Rice domestication by reducing shattering publication-title: Science – volume: 39 start-page: 623 year: 2007 end-page: 630 ident: bb0300 article-title: A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase publication-title: Nat. Genet. – volume: 34 start-page: 937 year: 2014 end-page: 947 ident: bb0285 article-title: Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions publication-title: Mol. Breed. – volume: 104 start-page: 1424 year: 2007 end-page: 1429 ident: bb0440 article-title: Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 576 start-page: 149 year: 2019 end-page: 157 ident: bb0325 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature – volume: 562 start-page: 519 year: 2018 end-page: 525 ident: bb0010 article-title: Options for keeping the food system within environmental limits publication-title: Nature – volume: 108 start-page: 18737 year: 2011 end-page: 18742 ident: bb0225 article-title: Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 35 start-page: 438 year: 2017 end-page: 440 ident: bb0245 article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion publication-title: Nat. Biotechnol. – volume: 8 year: 2017 ident: bb0345 article-title: Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes publication-title: Nat. Commun. – volume: 285 start-page: 193 year: 2019 end-page: 199 ident: bb0185 article-title: Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B) publication-title: Plant Sci. – volume: 247 start-page: 1089 year: 2018 end-page: 1098 ident: bb0210 article-title: Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology publication-title: Planta – volume: 122 start-page: 211 year: 2011 end-page: 223 ident: bb0430 article-title: Identification and development of a functional marker of publication-title: Theor. Appl. Genet. – volume: 105 start-page: 735 year: 2013 end-page: 744 ident: bb0040 article-title: Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass publication-title: Agron. J. – volume: 7 year: 2016 ident: bb0350 article-title: Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes publication-title: Nat. Commun. – volume: 132 start-page: 2325 year: 2019 end-page: 2351 ident: bb0240 article-title: Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass ( publication-title: Theor. Appl. Genet. – volume: 68 start-page: 294 year: 2018 end-page: 304 ident: bb0045 article-title: Managing for multifunctionality in perennial grain crops publication-title: Bioscience – volume: 132 start-page: 2353 year: 2019 end-page: 2365 ident: bb0315 article-title: GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat publication-title: Theor. Appl. Genet. – volume: 60 start-page: 1342 year: 2019 end-page: 1353 ident: bb0180 article-title: Btr1-A induces grain shattering and affects spike morphology and yield-related traits in wheat publication-title: Plant Cell Physiol. – volume: 9 start-page: 212 year: 2008 end-page: 226 ident: bb0070 article-title: Application of TILLING and EcoTILLING as reverse genetic: approaches to elucidate the function of genes in plants and animals publication-title: Curr. Genomics – volume: 29 start-page: R705 year: 2019 end-page: R714 ident: bb0095 article-title: Evolutionary insights into the nature of plant domestication publication-title: Curr. Biol. – volume: 312 start-page: 1392 year: 2006 end-page: 1396 ident: bb0195 article-title: An SNP caused loss of seed shattering during rice domestication publication-title: Science – volume: 172 start-page: 547 year: 2006 end-page: 555 ident: bb0215 article-title: Molecular characterization of the major wheat domestication gene Q publication-title: Genetics – volume: 3 start-page: 1293 year: 2012 ident: bb0015 article-title: Recent patterns of crop yield growth and stagnation publication-title: Nat. Commun. – volume: 105 start-page: 4062 year: 2008 end-page: 4067 ident: bb0190 article-title: Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 5 year: 2005 end-page: 14 ident: bb0050 article-title: Perennial grain crops: a synthesis of ecology and plant breeding publication-title: Renew. Agric. Food Syst. – volume: 10 start-page: 1 year: 2018 end-page: 19 ident: bb0065 article-title: Development and evolution of an intermediate wheatgrass domestication program publication-title: Sustainability – volume: 110 start-page: 16675 year: 2013 end-page: 16680 ident: bb0260 article-title: Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 366 start-page: 705 year: 2019 ident: bb0140 article-title: Revolutions in agriculture chart a course for targeted breeding of old and new crops publication-title: Science – volume: 64 start-page: 47 year: 2013 end-page: 70 ident: bb0085 article-title: A bountiful harvest: genomic insights into crop domestication phenotypes publication-title: Annu. Rev. Plant Biol. – volume: 36 start-page: 1211 year: 2018 end-page: 1216 ident: bb0135 article-title: De novo domestication of wild tomato using genome editing publication-title: Nat. Biotechnol. – volume: 7 start-page: 1004 year: 2012 end-page: 1008 ident: bb0275 article-title: Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis publication-title: Plant Signal. Behav. – volume: 17 start-page: 64 year: 2012 end-page: 72 ident: bb0385 article-title: Accelerating the domestication of forest trees in a changing world publication-title: Trends Plant Sci. – volume: 132 start-page: 1789 year: 2019 end-page: 1797 ident: bb0310 article-title: HL2 on chromosome 7D of wheat ( publication-title: Theor. Appl. Genet. – volume: 14 start-page: 456 year: 2019 end-page: 464 ident: bb0370 article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants publication-title: Nat. Nanotechnol. – volume: 400 start-page: 256 year: 1999 end-page: 261 ident: bb0255 article-title: “Green revolution” genes encode mutant gibberellin response modulators publication-title: Nature – volume: 94 start-page: 857 year: 2018 end-page: 866 ident: bb0305 article-title: Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits publication-title: Plant J. – volume: 47 start-page: 582 year: 2007 end-page: 590 ident: bb0390 article-title: Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection publication-title: Crop Sci. – volume: 8 year: 2013 ident: bb0125 article-title: High-throughput sequencing and mutagenesis to accelerate the domestication of publication-title: PLoS One – year: 1980 ident: 10.1016/j.tplants.2020.02.004_bb0025 – volume: 312 start-page: 1392 year: 2006 ident: 10.1016/j.tplants.2020.02.004_bb0195 article-title: An SNP caused loss of seed shattering during rice domestication publication-title: Science doi: 10.1126/science.1126410 – volume: 45 start-page: 81 year: 1990 ident: 10.1016/j.tplants.2020.02.004_bb0060 article-title: Perennial grain: new use for intermediate wheatgrass publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.1990.12456435 – volume: 357 start-page: 93 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0155 article-title: Wild emmer genome architecture and diversity elucidate wheat evolution and domestication publication-title: Science doi: 10.1126/science.aan0032 – volume: 64 start-page: 47 year: 2013 ident: 10.1016/j.tplants.2020.02.004_bb0085 article-title: A bountiful harvest: genomic insights into crop domestication phenotypes publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120048 – volume: 21 start-page: 506 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0090 article-title: Lessons from domestication: targeting cis-regulatory elements for crop improvement publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.014 – volume: 361 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0160 article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome publication-title: Science doi: 10.1126/science.aar7191 – volume: 34 start-page: 242 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0415 article-title: A single nucleotide polymorphism of nud converts the caryopsis type of barley (Hordeum Vulgare L.) publication-title: Plant Mol. Biol. Report. doi: 10.1007/s11105-015-0911-9 – volume: 4 start-page: 766 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0150 article-title: Rapid improvement of domestication traits in an orphan crop by genome editing publication-title: Nat. Plants doi: 10.1038/s41477-018-0259-x – volume: 144 start-page: 1966 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0235 article-title: microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability publication-title: Development – volume: 8 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0355 article-title: CRISPR/Cpf1-mediated DNA-free plant genome editing publication-title: Nat. Commun. – volume: 400 start-page: 256 year: 1999 ident: 10.1016/j.tplants.2020.02.004_bb0255 article-title: “Green revolution” genes encode mutant gibberellin response modulators publication-title: Nature doi: 10.1038/22307 – volume: 68 start-page: 294 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0045 article-title: Managing for multifunctionality in perennial grain crops publication-title: Bioscience doi: 10.1093/biosci/biy014 – volume: 8 year: 2013 ident: 10.1016/j.tplants.2020.02.004_bb0125 article-title: High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop publication-title: PLoS One doi: 10.1371/journal.pone.0082641 – volume: 36 start-page: 1211 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0135 article-title: De novo domestication of wild tomato using genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4272 – volume: 105 start-page: 4062 year: 2008 ident: 10.1016/j.tplants.2020.02.004_bb0190 article-title: Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0711034105 – volume: 256 start-page: 120 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0130 article-title: Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.12.012 – volume: 54 start-page: 469 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0360 article-title: Developments in plant negative-strand RNA virus reverse genetics publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080615-095909 – volume: 249 start-page: 1007 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0330 article-title: Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT publication-title: Planta doi: 10.1007/s00425-018-3057-9 – volume: 35 start-page: 438 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0245 article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3811 – volume: 366 start-page: 705 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0140 article-title: Revolutions in agriculture chart a course for targeted breeding of old and new crops publication-title: Science doi: 10.1126/science.aax0025 – volume: 125 start-page: 1057 year: 2012 ident: 10.1016/j.tplants.2020.02.004_bb0435 article-title: SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-012-1895-6 – volume: 247 start-page: 1089 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0210 article-title: Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology publication-title: Planta doi: 10.1007/s00425-018-2847-4 – volume: 3 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0295 article-title: GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice publication-title: Nat. Plants doi: 10.1038/nplants.2017.43 – volume: 285 start-page: 193 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0185 article-title: Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B) publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.05.012 – volume: 36 start-page: 950 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0250 article-title: Efficient C-to-T base editing in plants using a fusion of ncas9 and human apobec3a publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4261 – volume: 132 start-page: 2325 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0240 article-title: Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium) publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-019-03357-6 – volume: 38 start-page: 84 year: 2020 ident: 10.1016/j.tplants.2020.02.004_bb0380 article-title: Plant gene editing through de novo induction of meristems publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0337-2 – volume: 3 start-page: 1293 year: 2012 ident: 10.1016/j.tplants.2020.02.004_bb0015 article-title: Recent patterns of crop yield growth and stagnation publication-title: Nat. Commun. doi: 10.1038/ncomms2296 – volume: 51 start-page: 885 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0165 article-title: Durum wheat genome highlights past domestication signatures and future improvement targets publication-title: Nat. Genet. doi: 10.1038/s41588-019-0381-3 – volume: 22 start-page: 373 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0115 article-title: Accelerating the domestication of new crops: feasibility and approaches publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.01.004 – volume: 20 start-page: 1463 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0365 article-title: A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12849 – volume: 1 start-page: 52 year: 2013 ident: 10.1016/j.tplants.2020.02.004_bb0395 article-title: Improvement of resistance to bacterial blight through marker assisted backcross breeding and field validation in rice (Oryza sativa). Res publication-title: J. Biol. – volume: 8 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0345 article-title: Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes publication-title: Nat. Commun. doi: 10.1038/ncomms14261 – volume: 108 start-page: 18737 year: 2011 ident: 10.1016/j.tplants.2020.02.004_bb0225 article-title: Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1110552108 – volume: 132 start-page: 2353 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0315 article-title: GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-019-03358-5 – volume: 28 start-page: 1998 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0340 article-title: Morphogenic regulators Baby boom and Wuschel improve monocot transformation publication-title: Plant Cell doi: 10.1105/tpc.16.00124 – volume: 104 start-page: 1424 year: 2007 ident: 10.1016/j.tplants.2020.02.004_bb0440 article-title: Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608580104 – volume: 15 start-page: 529 year: 2010 ident: 10.1016/j.tplants.2020.02.004_bb0080 article-title: Genetic perspectives on crop domestication publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.05.008 – volume: 496 start-page: 87 year: 2013 ident: 10.1016/j.tplants.2020.02.004_bb0280 article-title: Draft genome of the wheat A-genome progenitor Triticum urartu publication-title: Nature doi: 10.1038/nature11997 – volume: 575 start-page: 109 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0145 article-title: Genetic strategies for improving crop yields publication-title: Nature doi: 10.1038/s41586-019-1679-0 – volume: 172 start-page: 547 year: 2006 ident: 10.1016/j.tplants.2020.02.004_bb0215 article-title: Molecular characterization of the major wheat domestication gene Q publication-title: Genetics doi: 10.1534/genetics.105.044727 – volume: 312 start-page: 1318 year: 2006 ident: 10.1016/j.tplants.2020.02.004_bb0105 article-title: Unfallen grains: how ancient farmers turned weeds into crops publication-title: Science doi: 10.1126/science.1128836 – volume: 7 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0290 article-title: Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA publication-title: Nat. Commun. – volume: 132 start-page: 1789 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0310 article-title: HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-019-03315-2 – volume: 20 start-page: 5 year: 2005 ident: 10.1016/j.tplants.2020.02.004_bb0050 article-title: Perennial grain crops: a synthesis of ecology and plant breeding publication-title: Renew. Agric. Food Syst. doi: 10.1079/RAF200496 – volume: 10 start-page: 68 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0170 article-title: Convergent evolution of the seed shattering trait publication-title: Genes (Basel) doi: 10.3390/genes10010068 – volume: 36 start-page: 1160 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0110 article-title: Domestication of wild tomato is accelerated by genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4273 – volume: 116 start-page: 5182 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0320 article-title: Unleashing floret fertility in wheat through the mutation of a homeobox gene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1815465116 – volume: 78 start-page: 145 year: 2003 ident: 10.1016/j.tplants.2020.02.004_bb0100 article-title: Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? publication-title: Q. Rev. Biol. doi: 10.1086/374951 – volume: 7 start-page: 1004 year: 2012 ident: 10.1016/j.tplants.2020.02.004_bb0275 article-title: Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis publication-title: Plant Signal. Behav. doi: 10.4161/psb.20813 – volume: 70 start-page: 4671 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0265 article-title: Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz247 – volume: 34 start-page: 937 year: 2014 ident: 10.1016/j.tplants.2020.02.004_bb0285 article-title: Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions publication-title: Mol. Breed. doi: 10.1007/s11032-014-0087-2 – volume: 105 start-page: 735 year: 2013 ident: 10.1016/j.tplants.2020.02.004_bb0040 article-title: Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass publication-title: Agron. J. doi: 10.2134/agronj2012.0273 – volume: 162 start-page: 527 year: 2015 ident: 10.1016/j.tplants.2020.02.004_bb0175 article-title: Evolution of the grain dispersal system in Barley publication-title: Cell doi: 10.1016/j.cell.2015.07.002 – volume: 29 start-page: R705 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0095 article-title: Evolutionary insights into the nature of plant domestication publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.05.053 – volume: 10 start-page: 1491 year: 2014 ident: 10.1016/j.tplants.2020.02.004_bb0400 article-title: Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops publication-title: Tree Genet. Genomes doi: 10.1007/s11295-014-0790-5 – volume: 17 start-page: 64 year: 2012 ident: 10.1016/j.tplants.2020.02.004_bb0385 article-title: Accelerating the domestication of forest trees in a changing world publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.11.005 – volume: 47 start-page: 582 year: 2007 ident: 10.1016/j.tplants.2020.02.004_bb0390 article-title: Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection publication-title: Crop Sci. doi: 10.2135/cropsci2006.05.0341 – volume: 7 year: 2012 ident: 10.1016/j.tplants.2020.02.004_bb0075 article-title: Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.) publication-title: PLoS One – volume: 100 start-page: 251 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0270 article-title: Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat publication-title: Plant J. doi: 10.1111/tpj.14440 – volume: 39 start-page: 1517 year: 2007 ident: 10.1016/j.tplants.2020.02.004_bb0220 article-title: The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1 publication-title: Nat. Genet. doi: 10.1038/ng.2007.20 – volume: 39 start-page: 623 year: 2007 ident: 10.1016/j.tplants.2020.02.004_bb0300 article-title: A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase publication-title: Nat. Genet. doi: 10.1038/ng2014 – volume: 110 start-page: 16675 year: 2013 ident: 10.1016/j.tplants.2020.02.004_bb0260 article-title: Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1311681110 – volume: 32 start-page: 947 year: 2014 ident: 10.1016/j.tplants.2020.02.004_bb0405 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2969 – volume: 60 start-page: 1342 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0180 article-title: Btr1-A induces grain shattering and affects spike morphology and yield-related traits in wheat publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcz050 – volume: 62 start-page: 837 year: 2015 ident: 10.1016/j.tplants.2020.02.004_bb0230 article-title: Q gene variability in wheat species with different spike morphology publication-title: Genet. Resour. Crop. Evol. doi: 10.1007/s10722-014-0195-1 – volume: 101 start-page: 1801 year: 2014 ident: 10.1016/j.tplants.2020.02.004_bb0120 article-title: Useful insights from evolutionary biology for developing perennial grain crops publication-title: Am. J. Bot. doi: 10.3732/ajb.1400084 – volume: 14 start-page: 341 year: 2014 ident: 10.1016/j.tplants.2020.02.004_bb0425 article-title: Transcript suppression of TaGW2 increased grain width and weight in bread wheat publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-014-0380-5 – volume: 94 start-page: 857 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0305 article-title: Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits publication-title: Plant J. doi: 10.1111/tpj.13903 – volume: 562 start-page: 519 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0010 article-title: Options for keeping the food system within environmental limits publication-title: Nature doi: 10.1038/s41586-018-0594-0 – volume: 223 start-page: 223 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0020 article-title: Going where no grains have gone before: from early to mid-succession publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.03.012 – volume: 10 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0065 article-title: Development and evolution of an intermediate wheatgrass domestication program publication-title: Sustainability doi: 10.3390/su10051499 – volume: 9 start-page: 212 year: 2008 ident: 10.1016/j.tplants.2020.02.004_bb0070 article-title: Application of TILLING and EcoTILLING as reverse genetic: approaches to elucidate the function of genes in plants and animals publication-title: Curr. Genomics doi: 10.2174/138920208784533656 – volume: 79 start-page: 717 year: 2014 ident: 10.1016/j.tplants.2020.02.004_bb0205 article-title: The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis publication-title: Plant J. doi: 10.1111/tpj.12581 – volume: 24 start-page: 1034 year: 2012 ident: 10.1016/j.tplants.2020.02.004_bb0200 article-title: Genetic control of seed shattering in rice by the APETALA2 transcription factor Shattering Abortion1 publication-title: Plant Cell doi: 10.1105/tpc.111.094383 – volume: 122 start-page: 211 year: 2011 ident: 10.1016/j.tplants.2020.02.004_bb0430 article-title: Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-010-1437-z – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0035 article-title: Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures publication-title: Glob. Sustain. doi: 10.1017/sus.2018.11 – volume: 7 year: 2016 ident: 10.1016/j.tplants.2020.02.004_bb0350 article-title: Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes publication-title: Nat. Commun. doi: 10.1038/ncomms13274 – volume: 214 start-page: 468 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0410 article-title: A novel mutation conferring the nonbrittle phenotype of cultivated barley publication-title: New Phytol. doi: 10.1111/nph.14377 – volume: 328 start-page: 1638 year: 2010 ident: 10.1016/j.tplants.2020.02.004_bb0030 article-title: Increased food and ecosystem security via perennial grains publication-title: Science doi: 10.1126/science.1188761 – volume: 576 start-page: 149 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0325 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 36 start-page: 882 year: 2018 ident: 10.1016/j.tplants.2020.02.004_bb0375 article-title: Nanoparticle-mediated delivery towards advancing plant genetic engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.03.009 – volume: 14 start-page: 456 year: 2019 ident: 10.1016/j.tplants.2020.02.004_bb0370 article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0382-5 – volume: 62 start-page: 278 year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0055 article-title: Perennial cereals provide ecosystem benefits publication-title: Cereal Foods World doi: 10.1094/CFW-62-6-0278 – volume: 73 start-page: 265 year: 2003 ident: 10.1016/j.tplants.2020.02.004_bb0335 article-title: Establishment of a plant regeneration system for wheatgrasses (Thinopyrum, Agropyron and Pascopyrum) publication-title: Plant Cell. Tissue Organ Cult. doi: 10.1023/A:1023044913155 – year: 2017 ident: 10.1016/j.tplants.2020.02.004_bb0005 – volume: 311 start-page: 1936 year: 2006 ident: 10.1016/j.tplants.2020.02.004_bb0420 article-title: Rice domestication by reducing shattering publication-title: Science doi: 10.1126/science.1123604 |
| SSID | ssj0007186 |
| Score | 2.5710566 |
| SecondaryResourceType | review_article |
| Snippet | Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 525 |
| SubjectTerms | accelerated domestication Carbon sequestration Cereal crops Climate change Crops Domestication genes genome editing Genomes Grain Grain crops Life cycles Nucleotide sequence nucleotide sequences Perennial crops perennial grain crops perennial grasses Plant breeding Thinopyrum intermedium subsp. intermedium Triticum aestivum Wheat |
| Title | Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop |
| URI | https://dx.doi.org/10.1016/j.tplants.2020.02.004 https://www.ncbi.nlm.nih.gov/pubmed/32407693 https://www.proquest.com/docview/2440104325 https://www.proquest.com/docview/2400469164 https://www.proquest.com/docview/2404045310 |
| Volume | 25 |
| WOSCitedRecordID | wos000533518400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-4372 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007186 issn: 1360-1385 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jwd4QDBgFMYUJMTLlJEPJ04ey9SxoVIm1EHfLMd2JUaXhK6bBn8DfzR3seN2gm3wQCtFlR23je_nu_P5Pgh5megg1hnVflTAFoUWwcQXTGm_SJSKM5GlqWpS5g_YcJiNx_lRp_OzjYW5mLKyzC4v8_q_khragNgYOvsP5HZfCg3wGYgOVyA7XP-K8B8roU5F3fgP9qQEsYLZIBSoyqeYUUM6HRFWNpqkmipFRxj1V6L1_C3WjNjZm1X1st66cJ2tp0CLHSs4nRqsD4QNYtCucSBmNpyrKZ3mmqta__DfixlKJOPcfSZ2nA36sy6_Gs-BxgHNgtfaJaJg4T9ljGUuYObTEnuN0wCzHppzbG3aMgRJzK7wZBMMbbG3zGAT0_Mb4zc2iJPdeTMLmIc9CkwyVrqQdO3p_vAD3z8eDPioPx69qr_5WIMMz-ptQZYVshaxJAceudY77I_fOckOcjw1cXzmKRYRYa__-MvX6TrX7WUanWZ0n9yzmxGvZ0D0gHR0uUHW31SwYfi-Qe4u5ap8SA4trjzAlbeEK-8Krrxq4onSa3HlOVx5Da48xNUjcrzfH-0d-LYOhy-TOJ_7kRQBk7kIZSiomoiIZYHSsWQi0DSJJyHGNyugDAgHKUOZMHwlUstCMCaK-DFZLatSPyGeKpIwEzlwiFSBWiSKtJgouAoqdU5l2CW0nTEubZJ6rJUy5a034gm3E81xonkQcZjoLtl1w2qTpeW2AVlLDm5XjFEhOQDqtqFbLfm4XfbQTykaNuIo6ZIXrhs4NR6_iVJX53hPY4wKU3rjPfAGuRh0yaaBhnsgTJ2JlUuf3vwHnpE7i-W4RVbns3P9nKzLi_mXs9k2WWHjbNsC-xdE3cnr |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roadmap+for+Accelerated+Domestication+of+an+Emerging+Perennial+Grain+Crop&rft.jtitle=Trends+in+plant+science&rft.au=DeHaan%2C+Lee&rft.au=Larson%2C+Steve&rft.au=Lopez-Marques%2C+Rosa+L&rft.au=Wenkel%2C+Stephan&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=1360-1385&rft.eissn=1878-4372&rft.volume=25&rft.issue=6&rft.spage=525&rft_id=info:doi/10.1016%2Fj.tplants.2020.02.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |