Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints
SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterog...
Gespeichert in:
| Veröffentlicht in: | International Journal for Numerical Methods in Engineering Jg. 95; H. 7; S. 562 - 586 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester
Blackwell Publishing Ltd
17.08.2013
Wiley Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0029-5981, 1097-0207, 1069-8299 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors.
International Journal for Numerical Methods in Engineering
published by John Wiley & Sons, Ltd. This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. published by John Wiley & Sons, Ltd. This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. SUMMARY This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright [copy 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. SUMMARY This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] |
| Author | Bucher, Christian Wolff, Sebastian |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Wolff fullname: Wolff, Sebastian email: Correspondence to: Sebastian Wolff, Forschungsbereich für Baumechanik und Baudynamik, Technische Universität Wien, Karlsplatz 13/E2063, 1040 Wien, Austria., sw@allmech.tuwien.ac.at organization: Forschungsbereich für Baumechanik und Baudynamik, Technische Universität Wien, Karlsplatz 13/E2063, 1040 Wien, Austria – sequence: 2 givenname: Christian surname: Bucher fullname: Bucher, Christian organization: Forschungsbereich für Baumechanik und Baudynamik, Technische Universität Wien, Karlsplatz 13/E2063, 1040 Wien, Austria |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681246$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23970806$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkkFv1DAQhS1URLcFiV-AIiEkLlns2I4dDkhVtbRIS-EA6tFyHKfr4tiL7dDuv6-j3W4pAnGaw3zz9GbeHIED550G4CWCcwRh9c4Nek4oqp-AGYINK2EF2QGY5VZT0oajQ3AU4zWECFGIn4HDCjcMcljPgD-JG6dWwTs_xkJ5a0003hXGJX0VZPIhvi8Wt2trlElFClqmQbtU-L4YnbEy6SBtnnNJqlTcmLQq-mBUmjSk6wrnu9wPOqYgs2Z8Dp720kb9YlePwfePi2-n5-Xyy9mn05NlqShu6hL1uGk5YlwqRDsONeFty2qtZIt51eeliew51rBSWDJVdxC2Xds3vFVtlVl8DD5sdddjO-hOZc_ZqFgHM8iwEV4a8bjjzEpc-V8CM0KrmmaBtzuB4H-O2b8YTFTaWul0PpVAPFOsJpD8HyWEM0orOqGv_0Cv_RhcvkSmIMSMQjJRr343v3d9H1sG3uwAGZW0fZBOmfjAsZqjikzcfMup4GMMuhc5RTmFM8VhBYJi-h-R_0dM__Owyn7gXvMvaLlFb4zVm39y4uLz4jFvYtK3e16GH6JmeXFxeXEmlmRZscuvtYD4Dr2S5NU |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1016_j_cma_2022_115660 crossref_primary_10_1007_s10338_023_00456_2 crossref_primary_10_1016_j_cma_2013_02_015 crossref_primary_10_1007_s00466_014_1058_5 crossref_primary_10_1186_s40323_018_0124_5 crossref_primary_10_1002_nme_4805 |
| Cites_doi | 10.1109/2945.466717 10.1007/BF01077598 10.1016/0021-9991(83)90014-1 10.1145/545261.545267 10.1002/nme.1620370302 10.1007/s00707-004-0076-3 10.1080/10867651.1997.10487480 10.1002/nme.1880 10.1111/j.1467-8659.2005.00829.x 10.1002/nme.264 10.1016/S0167-2789(97)00051-1 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V 10.1016/S0045-7825(03)00257-3 10.1145/361002.361007 10.1002/nme.2361 10.1137/S1111111102406038 10.1007/0-387-21791-6_3 10.1137/S1064827596313851 10.1016/S0168-9274(97)00061-5 10.1145/169627.169640 10.1016/j.cma.2012.11.004 10.1016/j.cma.2010.02.017 10.1063/1.463137 10.1016/0045-7949(86)90346-9 10.1016/0045-7949(89)90272-1 10.1002/nme.958 10.1063/1.532892 10.1007/BF00761712 10.1007/s00205-002-0212-y 10.1109/2945.675649 10.1002/nme.1400 10.1016/j.jcp.2008.05.017 10.1017/S096249290100006X 10.1016/0045-7949(95)00256-1 10.1002/nme.2271 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. 2014 INIST-CNRS Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. 2013 |
| Copyright_xml | – notice: Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. 2013 |
| DBID | BSCLL 24P AAYXX CITATION IQODW NPM 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
| DOI | 10.1002/nme.4516 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Civil Engineering Abstracts MEDLINE - Academic Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 1069-8299 |
| EndPage | 586 |
| ExternalDocumentID | PMC3745265 3020875121 23970806 27681246 10_1002_nme_4516 NME4516 ark_67375_WNG_L4L27WP6_0 |
| Genre | article Journal Article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 24P ALUQN AAYXX CITATION O8X 31~ 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. FEDTE GBZZK HF~ HVGLF IQODW M6O PALCI RIWAO RNS SAMSI VH1 VOH ZY4 ~A~ NPM 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c5396-1f39b8178ac15d80e48bb76ecab382f1004af83e02c3a7c6d00bdbf98bcb248b3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321850300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Tue Nov 04 01:49:33 EST 2025 Thu Jul 10 23:46:54 EDT 2025 Sun Nov 09 10:32:51 EST 2025 Fri Jul 25 19:05:15 EDT 2025 Mon Jul 21 05:56:46 EDT 2025 Mon Jul 21 09:13:27 EDT 2025 Sat Nov 29 06:43:47 EST 2025 Tue Nov 18 22:14:58 EST 2025 Sun Sep 21 06:21:44 EDT 2025 Tue Nov 11 03:33:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Constraint Automatic mesh generation Modeling Adaptive method Finite element method System with n degrees of freedom variational methods Discretization contact Variational calculus nonlinear dynamics Numerical convergence Collision Step method Mechanical contact Contact surface explicit Time domain method Linear system Asynchronism Friction Equivalent circuit Unilateral Hamiltonian mechanics Hamiltonian Time integration time integration, explicit |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/3.0 CC BY 4.0 Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5396-1f39b8178ac15d80e48bb76ecab382f1004af83e02c3a7c6d00bdbf98bcb248b3 |
| Notes | istex:1C12F339B6AF994E2BE98117ADDE240557904AAC ark:/67375/WNG-L4L27WP6-0 ArticleID:NME4516 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Feature-2 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4516 |
| PMID | 23970806 |
| PQID | 1400375044 |
| PQPubID | 996376 |
| PageCount | 25 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3745265 proquest_miscellaneous_1826576404 proquest_miscellaneous_1448755254 proquest_journals_1400375044 pubmed_primary_23970806 pascalfrancis_primary_27681246 crossref_citationtrail_10_1002_nme_4516 crossref_primary_10_1002_nme_4516 wiley_primary_10_1002_nme_4516_NME4516 istex_primary_ark_67375_WNG_L4L27WP6_0 |
| PublicationCentury | 2000 |
| PublicationDate | 17 August 2013 |
| PublicationDateYYYYMMDD | 2013-08-17 |
| PublicationDate_xml | – month: 08 year: 2013 text: 17 August 2013 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester – name: England – name: Bognor Regis – name: Oxford, UK |
| PublicationTitle | International Journal for Numerical Methods in Engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
| References | Neal MO, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 31(6):871-80. Cirak F, West M. Decomposition contact response (DCR) for explicit finite element dynamics. International Journal for Numerical Methods in Engineering 2005; 64(8):1078-1110. Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal for Numerical Methods in Engineering 2004; 60(1):153-212. Benes M, Matous K. Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids. Computer Methods in Applied Mechanics and Engineering 2010; 199(29-32):1992-2013. Hairer E. Variable time step integration with symplectic methods. Applied Numerical Mathematics: Transactions of IMACS 1997; 25(2-3):219-227. Kale K, Lew A. Parallel asynchronous variational integrators. International Journal for Numerical Methods in Engineering 2007; 70:291-321. Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 1998; 4(1):21-36. Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97(3):1990-2001. van den Bergen G. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools Archive 1997; 2(4):1-13. Garcia-archilla B, Sanz-serna JM, Skeel RD. Long-time-step methods for oscillatory differential equations. SIAM Journal of Scientific Computing 1999; 20:930-963. Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM 1975; 18:509-517. Hubbard PM. Collision detection for interactive graphics applications. IEEE Transactions on Visualization and Computer Graphics 1995; 1(3):218-230. Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. Computer Graphics 1996; 30(Annual Conference Series):171-180. Love GR, Laursen TA. Improved implicit integrators for transient impact problems - dynamic frictional dissipation within an admissible conserving framework. Computer Methods in Applied Mechanics and Engineering 2003; 192:2223-2248. Veselov AP. Integrable discrete-time systems and difference operators. Functional Analysis and its Applications 1988; 22(2):83-93. Laursen TA, Love GR. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering 2002; 53:245-274. Gates M, Matous K, Heath MT. Asynchronous multi-domain variational integrators for non-linear problems. International Journal for Numerical Methods in Engineering 2008; 76(29-32):1353-1378. Belytschko T, Mullen R. Explicit integration of structural problems. Finite Elements in Nonlinear Mechanics 1977; 2:669-720. Fong W, Darve E, Lew A. Stability of asynchronous variational integrators. Journal of Computational Physics 2008; 227(18):8367-8394. Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Journal Physica D 1997; 106:223-246. Kane C, Marsden JE, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics 1999; 40(7):3353-3371. Fetecau RC, Marsden JE, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems 2003; 2(3):381-416. Baez JC, Gilliam JW. An algebraic approach to discrete mechanics. Letters in Mathematical Physics 1994; 31:205-212. Laursen TA, Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering 1997; 40:863-886. Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics & Analysis 2003; 167(2):85-146. Signorini A. Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity). Rendiconti di Matematica e delle sue applicazioni 1959; 5(18):95-139. Wolff S, Bucher C. Asynchronous variational integration using continuous assumed gradient elements. Computer Methods in Applied Mechanics and Engineering 2013; 255:158-166. Focardi M, Mariano PM. Convergence of asynchronous variational integrators in linear elastodynamics. International Journal for Numerical Methods in Engineering 2008; 75:755-769. Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica 2001; 10:357-514. Oldenburg M, Nilsson L. The position code algorithm for contact searching. International Journal for Numerical Methods in Engineering 1994; 37(3):359-386. Ortiz M. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers & Structures 1986; 24(1):167-168. Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum 2005; 24(1). Glocker C. Concepts for modeling impacts without friction. Acta Mechanica 2004; 168(1-2):1-19. Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures 1996; 59(2):273-281. Andersen H. RATTLE: A "velocity" version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52(1):24-34. 1997; 40 2004; 60 2004; 168 2002; 53 1997; 25 1975; 18 1976 2009 2005; 64 1996; 30 2007; 70 2008; 227 2003; 192 1983; 52 2008; 76 1999; 20 1997; 2 1993 1992 1999; 40 2003 2002 2008; 75 1992; 97 1995; 1 1996; 59 2005; 24 1959; 5 1997; 106 1989; 31 2000 1986; 24 2003; 2 2013; 255 1988; 22 2010; 199 1977; 2 1994; 37 2003; 167 1998; 4 1994; 31 2001; 10 Smolinski P (e_1_2_11_5_1) 1992 Harmon D (e_1_2_11_27_1) 2009 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 Diekmann R (e_1_2_11_42_1) 2000 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_4_1 e_1_2_11_26_1 Gottschalk S (e_1_2_11_35_1) 1996; 30 Belytschko T (e_1_2_11_3_1) 1977; 2 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 Signorini A (e_1_2_11_21_1) 1959; 5 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 Belytschko T (e_1_2_11_2_1) 1976 23543620 - Comput Methods Appl Mech Eng. 2013 Mar 1;255(C):158-166 |
| References_xml | – reference: Laursen TA, Love GR. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering 2002; 53:245-274. – reference: Hubbard PM. Collision detection for interactive graphics applications. IEEE Transactions on Visualization and Computer Graphics 1995; 1(3):218-230. – reference: Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Journal Physica D 1997; 106:223-246. – reference: Focardi M, Mariano PM. Convergence of asynchronous variational integrators in linear elastodynamics. International Journal for Numerical Methods in Engineering 2008; 75:755-769. – reference: Fong W, Darve E, Lew A. Stability of asynchronous variational integrators. Journal of Computational Physics 2008; 227(18):8367-8394. – reference: Signorini A. Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity). Rendiconti di Matematica e delle sue applicazioni 1959; 5(18):95-139. – reference: Neal MO, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 31(6):871-80. – reference: Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica 2001; 10:357-514. – reference: Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics & Analysis 2003; 167(2):85-146. – reference: Glocker C. Concepts for modeling impacts without friction. Acta Mechanica 2004; 168(1-2):1-19. – reference: Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures 1996; 59(2):273-281. – reference: Benes M, Matous K. Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids. Computer Methods in Applied Mechanics and Engineering 2010; 199(29-32):1992-2013. – reference: Love GR, Laursen TA. Improved implicit integrators for transient impact problems - dynamic frictional dissipation within an admissible conserving framework. Computer Methods in Applied Mechanics and Engineering 2003; 192:2223-2248. – reference: Belytschko T, Mullen R. Explicit integration of structural problems. Finite Elements in Nonlinear Mechanics 1977; 2:669-720. – reference: Oldenburg M, Nilsson L. The position code algorithm for contact searching. International Journal for Numerical Methods in Engineering 1994; 37(3):359-386. – reference: Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97(3):1990-2001. – reference: Veselov AP. Integrable discrete-time systems and difference operators. Functional Analysis and its Applications 1988; 22(2):83-93. – reference: Kane C, Marsden JE, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics 1999; 40(7):3353-3371. – reference: Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. Computer Graphics 1996; 30(Annual Conference Series):171-180. – reference: Andersen H. RATTLE: A "velocity" version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52(1):24-34. – reference: Ortiz M. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers & Structures 1986; 24(1):167-168. – reference: Laursen TA, Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering 1997; 40:863-886. – reference: Gates M, Matous K, Heath MT. Asynchronous multi-domain variational integrators for non-linear problems. International Journal for Numerical Methods in Engineering 2008; 76(29-32):1353-1378. – reference: Cirak F, West M. Decomposition contact response (DCR) for explicit finite element dynamics. International Journal for Numerical Methods in Engineering 2005; 64(8):1078-1110. – reference: Fetecau RC, Marsden JE, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems 2003; 2(3):381-416. – reference: Wolff S, Bucher C. Asynchronous variational integration using continuous assumed gradient elements. Computer Methods in Applied Mechanics and Engineering 2013; 255:158-166. – reference: Garcia-archilla B, Sanz-serna JM, Skeel RD. Long-time-step methods for oscillatory differential equations. SIAM Journal of Scientific Computing 1999; 20:930-963. – reference: Kale K, Lew A. Parallel asynchronous variational integrators. International Journal for Numerical Methods in Engineering 2007; 70:291-321. – reference: Hairer E. Variable time step integration with symplectic methods. Applied Numerical Mathematics: Transactions of IMACS 1997; 25(2-3):219-227. – reference: Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM 1975; 18:509-517. – reference: van den Bergen G. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools Archive 1997; 2(4):1-13. – reference: Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 1998; 4(1):21-36. – reference: Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal for Numerical Methods in Engineering 2004; 60(1):153-212. – reference: Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum 2005; 24(1). – reference: Baez JC, Gilliam JW. An algebraic approach to discrete mechanics. Letters in Mathematical Physics 1994; 31:205-212. – volume: 40 start-page: 863 year: 1997 end-page: 886 article-title: Design of energy conserving algorithms for frictionless dynamic contact problems publication-title: International Journal for Numerical Methods in Engineering – volume: 52 start-page: 24 issue: 1 year: 1983 end-page: 34 article-title: RATTLE: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations publication-title: Journal of Computational Physics – volume: 106 start-page: 223 year: 1997 end-page: 246 article-title: Mechanical integrators derived from a discrete variational principle publication-title: Journal Physica D – start-page: 156 year: 2000 end-page: 163 – volume: 18 start-page: 509 year: 1975 end-page: 517 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM – volume: 31 start-page: 205 year: 1994 end-page: 212 article-title: An algebraic approach to discrete mechanics publication-title: Letters in Mathematical Physics – volume: 4 start-page: 21 issue: 1 year: 1998 end-page: 36 article-title: Efficient collision detection using bounding volume hierarchies of ‐DOPs publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 91 year: 2002 end-page: 110 – volume: 37 start-page: 359 issue: 3 year: 1994 end-page: 386 article-title: The position code algorithm for contact searching publication-title: International Journal for Numerical Methods in Engineering – start-page: 87:1 year: 2009 end-page: 87:12 – volume: 167 start-page: 85 issue: 2 year: 2003 end-page: 146 article-title: Asynchronous variational integrators publication-title: Archive for Rational Mechanics & Analysis – volume: 24 issue: 1 year: 2005 article-title: Collision detection for deformable objects publication-title: Computer Graphics Forum – volume: 10 start-page: 357 year: 2001 end-page: 514 article-title: Discrete mechanics and variational integrators publication-title: Acta Numerica – year: 2003 – start-page: 33 year: 2002 end-page: 40 – year: 2000 – start-page: 673 year: 1976 end-page: 690 – volume: 20 start-page: 930 year: 1999 end-page: 963 article-title: Long‐time‐step methods for oscillatory differential equations publication-title: SIAM Journal of Scientific Computing – volume: 24 start-page: 167 issue: 1 year: 1986 end-page: 168 article-title: A note on energy conservation and stability of nonlinear time‐stepping algorithms publication-title: Computers & Structures – volume: 70 start-page: 291 year: 2007 end-page: 321 article-title: Parallel asynchronous variational integrators publication-title: International Journal for Numerical Methods in Engineering – volume: 255 start-page: 158 year: 2013 end-page: 166 article-title: Asynchronous variational integration using continuous assumed gradient elements publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 168 start-page: 1 issue: 1‐2 year: 2004 end-page: 19 article-title: Concepts for modeling impacts without friction publication-title: Acta Mechanica – volume: 192 start-page: 2223 year: 2003 end-page: 2248 article-title: Improved implicit integrators for transient impact problems – dynamic frictional dissipation within an admissible conserving framework publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 64 start-page: 1078 issue: 8 year: 2005 end-page: 1110 article-title: Decomposition contact response (DCR) for explicit finite element dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 53 start-page: 245 year: 2002 end-page: 274 article-title: Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework publication-title: International Journal for Numerical Methods in Engineering – start-page: 12 year: 1993 end-page: 21 – start-page: 1 year: 1992 end-page: 4 – volume: 75 start-page: 755 year: 2008 end-page: 769 article-title: Convergence of asynchronous variational integrators in linear elastodynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 97 start-page: 1990 issue: 3 year: 1992 end-page: 2001 article-title: Reversible multiple time scale molecular dynamics publication-title: The Journal of Chemical Physics – volume: 60 start-page: 153 issue: 1 year: 2004 end-page: 212 article-title: Variational time integrators publication-title: International Journal for Numerical Methods in Engineering – volume: 25 start-page: 219 issue: 2–3 year: 1997 end-page: 227 article-title: Variable time step integration with symplectic methods publication-title: Applied Numerical Mathematics: Transactions of IMACS – volume: 5 start-page: 95 issue: 18 year: 1959 end-page: 139 article-title: Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity) publication-title: Rendiconti di Matematica e delle sue applicazioni – volume: 22 start-page: 83 issue: 2 year: 1988 end-page: 93 article-title: Integrable discrete‐time systems and difference operators publication-title: Functional Analysis and its Applications – volume: 31 start-page: 871 issue: 6 year: 1989 end-page: 80 article-title: Explicit–explicit subcycling with non‐integer time step ratios for structural dynamic systems publication-title: Computers and Structures – volume: 2 start-page: 381 issue: 3 year: 2003 end-page: 416 article-title: Nonsmooth Lagrangian mechanics and variational collision integrators publication-title: SIAM Journal on Applied Dynamical Systems – volume: 2 start-page: 669 year: 1977 end-page: 720 article-title: Explicit integration of structural problems publication-title: Finite Elements in Nonlinear Mechanics – volume: 59 start-page: 273 issue: 2 year: 1996 end-page: 281 article-title: Subcycling integration with non‐integer time steps for structural dynamics problems publication-title: Computers & Structures – volume: 76 start-page: 1353 issue: 29‐32 year: 2008 end-page: 1378 article-title: Asynchronous multi‐domain variational integrators for non‐linear problems publication-title: International Journal for Numerical Methods in Engineering – volume: 40 start-page: 3353 issue: 7 year: 1999 end-page: 3371 article-title: Symplectic‐energy‐momentum preserving variational integrators publication-title: Journal of Mathematical Physics – volume: 2 start-page: 1 issue: 4 year: 1997 end-page: 13 article-title: Efficient collision detection of complex deformable models using aabb trees publication-title: Journal of Graphics Tools Archive – volume: 199 start-page: 1992 issue: 29‐32 year: 2010 end-page: 2013 article-title: Asynchronous multi‐domain variational integrators for nonlinear hyperelastic solids publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 30 start-page: 171 issue: Annual Conference Series year: 1996 end-page: 180 article-title: OBBTree: a hierarchical structure for rapid interference detection publication-title: Computer Graphics – volume: 1 start-page: 218 issue: 3 year: 1995 end-page: 230 article-title: Collision detection for interactive graphics applications publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 227 start-page: 8367 issue: 18 year: 2008 end-page: 8394 article-title: Stability of asynchronous variational integrators publication-title: Journal of Computational Physics – ident: e_1_2_11_34_1 doi: 10.1109/2945.466717 – ident: e_1_2_11_41_1 – ident: e_1_2_11_15_1 doi: 10.1007/BF01077598 – ident: e_1_2_11_32_1 doi: 10.1016/0021-9991(83)90014-1 – ident: e_1_2_11_44_1 – ident: e_1_2_11_33_1 doi: 10.1145/545261.545267 – ident: e_1_2_11_43_1 doi: 10.1002/nme.1620370302 – ident: e_1_2_11_46_1 doi: 10.1007/s00707-004-0076-3 – ident: e_1_2_11_36_1 doi: 10.1080/10867651.1997.10487480 – ident: e_1_2_11_39_1 – start-page: 673 volume-title: Formulations and Computational Algorithms in Finite Element Analysis year: 1976 ident: e_1_2_11_2_1 – ident: e_1_2_11_11_1 doi: 10.1002/nme.1880 – ident: e_1_2_11_45_1 doi: 10.1111/j.1467-8659.2005.00829.x – ident: e_1_2_11_23_1 doi: 10.1002/nme.264 – ident: e_1_2_11_14_1 doi: 10.1016/S0167-2789(97)00051-1 – ident: e_1_2_11_22_1 doi: 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V – ident: e_1_2_11_24_1 doi: 10.1016/S0045-7825(03)00257-3 – ident: e_1_2_11_40_1 doi: 10.1145/361002.361007 – ident: e_1_2_11_18_1 doi: 10.1002/nme.2361 – ident: e_1_2_11_25_1 doi: 10.1137/S1111111102406038 – ident: e_1_2_11_8_1 doi: 10.1007/0-387-21791-6_3 – ident: e_1_2_11_20_1 doi: 10.1137/S1064827596313851 – ident: e_1_2_11_28_1 doi: 10.1016/S0168-9274(97)00061-5 – ident: e_1_2_11_38_1 doi: 10.1145/169627.169640 – ident: e_1_2_11_31_1 doi: 10.1016/j.cma.2012.11.004 – ident: e_1_2_11_19_1 doi: 10.1016/j.cma.2010.02.017 – ident: e_1_2_11_7_1 doi: 10.1063/1.463137 – start-page: 87:1 volume-title: ACM SIGGRAPH 2009 papers year: 2009 ident: e_1_2_11_27_1 – volume: 30 start-page: 171 year: 1996 ident: e_1_2_11_35_1 article-title: OBBTree: a hierarchical structure for rapid interference detection publication-title: Computer Graphics – ident: e_1_2_11_17_1 doi: 10.1016/0045-7949(86)90346-9 – volume: 2 start-page: 669 year: 1977 ident: e_1_2_11_3_1 article-title: Explicit integration of structural problems publication-title: Finite Elements in Nonlinear Mechanics – ident: e_1_2_11_4_1 doi: 10.1016/0045-7949(89)90272-1 – ident: e_1_2_11_10_1 doi: 10.1002/nme.958 – ident: e_1_2_11_29_1 doi: 10.1063/1.532892 – ident: e_1_2_11_16_1 doi: 10.1007/BF00761712 – ident: e_1_2_11_9_1 doi: 10.1007/s00205-002-0212-y – ident: e_1_2_11_37_1 doi: 10.1109/2945.675649 – volume-title: Proceedings of ECCOMAS 2000 year: 2000 ident: e_1_2_11_42_1 – ident: e_1_2_11_26_1 doi: 10.1002/nme.1400 – start-page: 1 volume-title: New Methods in Transient Analysis , PVP‐Vol. 246/AMD‐Vol. 143 year: 1992 ident: e_1_2_11_5_1 – ident: e_1_2_11_13_1 doi: 10.1016/j.jcp.2008.05.017 – ident: e_1_2_11_30_1 doi: 10.1017/S096249290100006X – ident: e_1_2_11_6_1 doi: 10.1016/0045-7949(95)00256-1 – ident: e_1_2_11_12_1 doi: 10.1002/nme.2271 – volume: 5 start-page: 95 issue: 18 year: 1959 ident: e_1_2_11_21_1 article-title: Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity) publication-title: Rendiconti di Matematica e delle sue applicazioni – reference: 23543620 - Comput Methods Appl Mech Eng. 2013 Mar 1;255(C):158-166 |
| SSID | ssj0011503 ssj0009080 |
| Score | 2.1037958 |
| Snippet | SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow... This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow... SUMMARY This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 562 |
| SubjectTerms | Constraints Contact Exact sciences and technology explicit Friction Fundamental areas of phenomenology (including applications) Hamiltonian Integrators Mathematical analysis Mathematical models Mathematics Mechanical contact (friction...) nonlinear dynamics Numerical analysis Numerical analysis. Scientific computation Partial differential equations, initial value problems and time-dependant initial-boundary value problems Physics Projection Sciences and techniques of general use Solid mechanics Structural and continuum mechanics time integration time integration, explicit variational methods |
| Title | Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints |
| URI | https://api.istex.fr/ark:/67375/WNG-L4L27WP6-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4516 https://www.ncbi.nlm.nih.gov/pubmed/23970806 https://www.proquest.com/docview/1400375044 https://www.proquest.com/docview/1448755254 https://www.proquest.com/docview/1826576404 https://pubmed.ncbi.nlm.nih.gov/PMC3745265 |
| Volume | 95 |
| WOSCitedRecordID | wos000321850300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg5cAODMavwqg8CcEpLLGd2OE2wQqHrqoQ03qLbMfWKkoyNS2C_5738otWDITEJVXkl8h9_uy8lzx_HyEveegNs0YE3jgdiDyPApUIF2juU28N107oWmxCTqdqPk9nbVUl7oVp-CH6F244M-r1Gie4NtXJFmnoV_cGVWZvk0EUcYmIZmLWf0GAQId35R1xqqKOeDZkJ92VO4-iAXr1O5ZG6gq84xtZi5vizt_LJ7fD2vq5ND74n390n9xro1F62sDnAbnlikNy0EamtJ331SHZ36IthLPznuu1ekjK0-pHYZFjt9xUFHFVb1enHRFFuareUiz1W9jFmvaF7bT0dFMslhq3QC8plsxru6b4XpiidhEChuoip0WZQztKiKCaxbp6RC7GZ5_ffQxaGYfAxjxNgsjz1KhIKm2jOFehE8oYmTirDVfMI2Wd9oq7kFmupU3yMDS58aky1jCw5Y_JXlEW7imhMKixjRIH98iFS5hOcligfORE6r2RYkhedyOa2ZbjHDu3zBp2ZpaBjzP08ZAc95bXDa_HDTavalD0Bnr1BevgZJxdTj9kEzFh8nKWZOGQjHZQ01_AJNK7CbjTUQejrF0jKki6agHiUEC3j_tmmN34yUYXDgYNbDChjCGL_4sNZIiQNYoQbJ40yPzVAQg3ISeADsgdzPYGyC6-21IsrmqWcS5RfT4GJ9SY_aOXsun5Gf4--1fD5-QuqzVFVBDJI7K3Xm3cC3LHflsvqtWonsVwlHM1IoP3n8YXk585J1Gt |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZGiwQ8MBi_CmN4EoKnbEnsxA48TbAyRFtNaNP2FtmOLSJKgpoWwX_PXX7RioGQeKoqXyLn_Nm5c87fR8hz5jsdGs09p63yeJYFnoy59RRziTOaKctVLTYhZjN5eZmcbpHX3VmYhh-i33DDmVGv1zjBcUP6cI019Is9QJnZa2TIAUXRgAzffhyfT_qPCBDrsK7CI0pk0HHP-uFhd-3G22iIjv2O1ZGqAge5RtniqtDz9wrK9ci2fjWNt__roe6Q221ESo8aCN0lW7bYIdttdErbuV_tkFtr1IXwb9rzvVb3SHlU_SgM8uyWq4oituoj67QjoygX1SuK5X65yZe0L26npaOrIp8rPAY9p1g2r8yS4t4wRf0iBA1VRUaLMoN2lBFBRYtldZ-cj4_P3px4rZSDZyKWxF7gWKJlIKQyQZRJ33KptYitUZrJ0CFtnXKSWT80TAkTZ76vM-0SqY0OwZY9IIOiLOwjQmFUIxPEFu6RcRuHKs5gkXKB5YlzWvARedkNaWpannPs3DxtGJrDFHycoo9HZL-3_Npwe1xh86JGRW-gFp-xFk5E6cXsXTrhk1BcnMapPyJ7G7DpLwgFUrxxuNNuh6O0XScqSLxqEWKfQ7f3-2aY4fjZRhUWBg1sMKmMIJP_iw1kiZA5ch9sHjbQ_NUBCDkhL4AOiA3Q9gbIML7ZUuSfaqZxJlCBPgIn1KD9o5fS2fQYfx__q-EzcuPkbDpJJ-9nH56Qm2GtMSK9QOySwXKxsk_JdfNtmVeLvXZS_wSdClSi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKixAcKJTXQimuhOAUmsRO7MCpgi4gttEeQO0tsh1bRCxJtcki-PfM5MWuKAiJUxR5bDnjGWcmGX8fIU-Z73RoNPectsrjeR54MubWU8wlzmimLFct2YRIU3l-nsy3yKvhLEyHDzF-cEPPaPdrdHB7kbujNdTQr_YF0sxeITs8gi0WYZ35fPyFAJEOG-o7okQGA_KsHx4NPTfeRTuo1u9YG6lqUI_reC0uCzx_r59cj2vbF9N0978e6Ra52cej9LgzoNtky5Z7ZLePTWnv-fUeubEGXAh3pyPaa32HVMf1j9Igym61qilaVntgnQ5QFNWyfkmx2K8wRUPH0nZaOboqi4XCQ9ALikXzyjQUvwxTZC9Ck6GqzGlZ5dCOJCLIZ9HUd8mn6cnH1--8nsjBMxFLYi9wLNEyEFKZIMqlb7nUWsTWKM1k6BC0TjnJrB8apoSJc9_XuXaJ1EaHIMvuke2yKu0DQmFVIxPEFsbIuY1DFeewRbnA8sQ5LfiEPB-WNDM9yjlObpF1-MxhBjrOUMcTcjhKXnTIHpfIPGutYhRQyy9YCSei7Cx9m834LBRn8zjzJ-Rgw2zGDqFAgDcOI-0PdpT1u0QNaVdLQexzmPbh2Az-jT9tVGlh0UAGU8oI8vi_yECOCHkj90HmfmeavyYAASdkBTABsWG0owDii2-2lMXnFmecCeSfj0AJrdH-UUtZenqC14f_KviEXJu_mWaz9-mHR-R62BKMSC8Q-2S7Wa7sY3LVfGuKennQevRPv8dSiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+collision+integrators%3A+Explicit+treatment+of+unilateral+contact+with+friction+and+nodal+restraints&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Wolff%2C+Sebastian&rft.au=Bucher%2C+Christian&rft.date=2013-08-17&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=95&rft.issue=7&rft.spage=562&rft.epage=586&rft_id=info:doi/10.1002%2Fnme.4516&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |