Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal for Numerical Methods in Engineering Jg. 95; H. 7; S. 562 - 586
Hauptverfasser: Wolff, Sebastian, Bucher, Christian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Blackwell Publishing Ltd 17.08.2013
Wiley
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207, 1069-8299
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
AbstractList This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. published by John Wiley & Sons, Ltd.
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
SUMMARY This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright [copy 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
SUMMARY This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Author Bucher, Christian
Wolff, Sebastian
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Wolff
  fullname: Wolff, Sebastian
  email: Correspondence to: Sebastian Wolff, Forschungsbereich für Baumechanik und Baudynamik, Technische Universität Wien, Karlsplatz 13/E2063, 1040 Wien, Austria., sw@allmech.tuwien.ac.at
  organization: Forschungsbereich für Baumechanik und Baudynamik, Technische Universität Wien, Karlsplatz 13/E2063, 1040 Wien, Austria
– sequence: 2
  givenname: Christian
  surname: Bucher
  fullname: Bucher, Christian
  organization: Forschungsbereich für Baumechanik und Baudynamik, Technische Universität Wien, Karlsplatz 13/E2063, 1040 Wien, Austria
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681246$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23970806$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1DAQhS1URLcFiV-AIiEkLlns2I4dDkhVtbRIS-EA6tFyHKfr4tiL7dDuv6-j3W4pAnGaw3zz9GbeHIED550G4CWCcwRh9c4Nek4oqp-AGYINK2EF2QGY5VZT0oajQ3AU4zWECFGIn4HDCjcMcljPgD-JG6dWwTs_xkJ5a0003hXGJX0VZPIhvi8Wt2trlElFClqmQbtU-L4YnbEy6SBtnnNJqlTcmLQq-mBUmjSk6wrnu9wPOqYgs2Z8Dp720kb9YlePwfePi2-n5-Xyy9mn05NlqShu6hL1uGk5YlwqRDsONeFty2qtZIt51eeliew51rBSWDJVdxC2Xds3vFVtlVl8DD5sdddjO-hOZc_ZqFgHM8iwEV4a8bjjzEpc-V8CM0KrmmaBtzuB4H-O2b8YTFTaWul0PpVAPFOsJpD8HyWEM0orOqGv_0Cv_RhcvkSmIMSMQjJRr343v3d9H1sG3uwAGZW0fZBOmfjAsZqjikzcfMup4GMMuhc5RTmFM8VhBYJi-h-R_0dM__Owyn7gXvMvaLlFb4zVm39y4uLz4jFvYtK3e16GH6JmeXFxeXEmlmRZscuvtYD4Dr2S5NU
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_cma_2022_115660
crossref_primary_10_1007_s10338_023_00456_2
crossref_primary_10_1016_j_cma_2013_02_015
crossref_primary_10_1007_s00466_014_1058_5
crossref_primary_10_1186_s40323_018_0124_5
crossref_primary_10_1002_nme_4805
Cites_doi 10.1109/2945.466717
10.1007/BF01077598
10.1016/0021-9991(83)90014-1
10.1145/545261.545267
10.1002/nme.1620370302
10.1007/s00707-004-0076-3
10.1080/10867651.1997.10487480
10.1002/nme.1880
10.1111/j.1467-8659.2005.00829.x
10.1002/nme.264
10.1016/S0167-2789(97)00051-1
10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
10.1016/S0045-7825(03)00257-3
10.1145/361002.361007
10.1002/nme.2361
10.1137/S1111111102406038
10.1007/0-387-21791-6_3
10.1137/S1064827596313851
10.1016/S0168-9274(97)00061-5
10.1145/169627.169640
10.1016/j.cma.2012.11.004
10.1016/j.cma.2010.02.017
10.1063/1.463137
10.1016/0045-7949(86)90346-9
10.1016/0045-7949(89)90272-1
10.1002/nme.958
10.1063/1.532892
10.1007/BF00761712
10.1007/s00205-002-0212-y
10.1109/2945.675649
10.1002/nme.1400
10.1016/j.jcp.2008.05.017
10.1017/S096249290100006X
10.1016/0045-7949(95)00256-1
10.1002/nme.2271
ContentType Journal Article
Copyright Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. 2013
Copyright_xml – notice: Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. 2013
DBID BSCLL
24P
AAYXX
CITATION
IQODW
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/nme.4516
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


Civil Engineering Abstracts
MEDLINE - Academic
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
1069-8299
EndPage 586
ExternalDocumentID PMC3745265
3020875121
23970806
27681246
10_1002_nme_4516
NME4516
ark_67375_WNG_L4L27WP6_0
Genre article
Journal Article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
24P
ALUQN
AAYXX
CITATION
O8X
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
FEDTE
GBZZK
HF~
HVGLF
IQODW
M6O
PALCI
RIWAO
RNS
SAMSI
VH1
VOH
ZY4
~A~
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c5396-1f39b8178ac15d80e48bb76ecab382f1004af83e02c3a7c6d00bdbf98bcb248b3
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321850300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Tue Nov 04 01:49:33 EST 2025
Thu Jul 10 23:46:54 EDT 2025
Sun Nov 09 10:32:51 EST 2025
Fri Jul 25 19:05:15 EDT 2025
Mon Jul 21 05:56:46 EDT 2025
Mon Jul 21 09:13:27 EDT 2025
Sat Nov 29 06:43:47 EST 2025
Tue Nov 18 22:14:58 EST 2025
Sun Sep 21 06:21:44 EDT 2025
Tue Nov 11 03:33:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Constraint
Automatic mesh generation
Modeling
Adaptive method
Finite element method
System with n degrees of freedom
variational methods
Discretization
contact
Variational calculus
nonlinear dynamics
Numerical convergence
Collision
Step method
Mechanical contact
Contact surface
explicit
Time domain method
Linear system
Asynchronism
Friction
Equivalent circuit
Unilateral
Hamiltonian mechanics
Hamiltonian
Time integration
time integration, explicit
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
CC BY 4.0
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5396-1f39b8178ac15d80e48bb76ecab382f1004af83e02c3a7c6d00bdbf98bcb248b3
Notes istex:1C12F339B6AF994E2BE98117ADDE240557904AAC
ark:/67375/WNG-L4L27WP6-0
ArticleID:NME4516
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Feature-2
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4516
PMID 23970806
PQID 1400375044
PQPubID 996376
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3745265
proquest_miscellaneous_1826576404
proquest_miscellaneous_1448755254
proquest_journals_1400375044
pubmed_primary_23970806
pascalfrancis_primary_27681246
crossref_citationtrail_10_1002_nme_4516
crossref_primary_10_1002_nme_4516
wiley_primary_10_1002_nme_4516_NME4516
istex_primary_ark_67375_WNG_L4L27WP6_0
PublicationCentury 2000
PublicationDate 17 August 2013
PublicationDateYYYYMMDD 2013-08-17
PublicationDate_xml – month: 08
  year: 2013
  text: 17 August 2013
  day: 17
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: England
– name: Bognor Regis
– name: Oxford, UK
PublicationTitle International Journal for Numerical Methods in Engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Neal MO, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 31(6):871-80.
Cirak F, West M. Decomposition contact response (DCR) for explicit finite element dynamics. International Journal for Numerical Methods in Engineering 2005; 64(8):1078-1110.
Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal for Numerical Methods in Engineering 2004; 60(1):153-212.
Benes M, Matous K. Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids. Computer Methods in Applied Mechanics and Engineering 2010; 199(29-32):1992-2013.
Hairer E. Variable time step integration with symplectic methods. Applied Numerical Mathematics: Transactions of IMACS 1997; 25(2-3):219-227.
Kale K, Lew A. Parallel asynchronous variational integrators. International Journal for Numerical Methods in Engineering 2007; 70:291-321.
Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 1998; 4(1):21-36.
Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97(3):1990-2001.
van den Bergen G. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools Archive 1997; 2(4):1-13.
Garcia-archilla B, Sanz-serna JM, Skeel RD. Long-time-step methods for oscillatory differential equations. SIAM Journal of Scientific Computing 1999; 20:930-963.
Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM 1975; 18:509-517.
Hubbard PM. Collision detection for interactive graphics applications. IEEE Transactions on Visualization and Computer Graphics 1995; 1(3):218-230.
Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. Computer Graphics 1996; 30(Annual Conference Series):171-180.
Love GR, Laursen TA. Improved implicit integrators for transient impact problems - dynamic frictional dissipation within an admissible conserving framework. Computer Methods in Applied Mechanics and Engineering 2003; 192:2223-2248.
Veselov AP. Integrable discrete-time systems and difference operators. Functional Analysis and its Applications 1988; 22(2):83-93.
Laursen TA, Love GR. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering 2002; 53:245-274.
Gates M, Matous K, Heath MT. Asynchronous multi-domain variational integrators for non-linear problems. International Journal for Numerical Methods in Engineering 2008; 76(29-32):1353-1378.
Belytschko T, Mullen R. Explicit integration of structural problems. Finite Elements in Nonlinear Mechanics 1977; 2:669-720.
Fong W, Darve E, Lew A. Stability of asynchronous variational integrators. Journal of Computational Physics 2008; 227(18):8367-8394.
Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Journal Physica D 1997; 106:223-246.
Kane C, Marsden JE, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics 1999; 40(7):3353-3371.
Fetecau RC, Marsden JE, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems 2003; 2(3):381-416.
Baez JC, Gilliam JW. An algebraic approach to discrete mechanics. Letters in Mathematical Physics 1994; 31:205-212.
Laursen TA, Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering 1997; 40:863-886.
Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics & Analysis 2003; 167(2):85-146.
Signorini A. Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity). Rendiconti di Matematica e delle sue applicazioni 1959; 5(18):95-139.
Wolff S, Bucher C. Asynchronous variational integration using continuous assumed gradient elements. Computer Methods in Applied Mechanics and Engineering 2013; 255:158-166.
Focardi M, Mariano PM. Convergence of asynchronous variational integrators in linear elastodynamics. International Journal for Numerical Methods in Engineering 2008; 75:755-769.
Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica 2001; 10:357-514.
Oldenburg M, Nilsson L. The position code algorithm for contact searching. International Journal for Numerical Methods in Engineering 1994; 37(3):359-386.
Ortiz M. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers & Structures 1986; 24(1):167-168.
Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum 2005; 24(1).
Glocker C. Concepts for modeling impacts without friction. Acta Mechanica 2004; 168(1-2):1-19.
Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures 1996; 59(2):273-281.
Andersen H. RATTLE: A "velocity" version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52(1):24-34.
1997; 40
2004; 60
2004; 168
2002; 53
1997; 25
1975; 18
1976
2009
2005; 64
1996; 30
2007; 70
2008; 227
2003; 192
1983; 52
2008; 76
1999; 20
1997; 2
1993
1992
1999; 40
2003
2002
2008; 75
1992; 97
1995; 1
1996; 59
2005; 24
1959; 5
1997; 106
1989; 31
2000
1986; 24
2003; 2
2013; 255
1988; 22
2010; 199
1977; 2
1994; 37
2003; 167
1998; 4
1994; 31
2001; 10
Smolinski P (e_1_2_11_5_1) 1992
Harmon D (e_1_2_11_27_1) 2009
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
Diekmann R (e_1_2_11_42_1) 2000
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_4_1
e_1_2_11_26_1
Gottschalk S (e_1_2_11_35_1) 1996; 30
Belytschko T (e_1_2_11_3_1) 1977; 2
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
Signorini A (e_1_2_11_21_1) 1959; 5
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
Belytschko T (e_1_2_11_2_1) 1976
23543620 - Comput Methods Appl Mech Eng. 2013 Mar 1;255(C):158-166
References_xml – reference: Laursen TA, Love GR. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering 2002; 53:245-274.
– reference: Hubbard PM. Collision detection for interactive graphics applications. IEEE Transactions on Visualization and Computer Graphics 1995; 1(3):218-230.
– reference: Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Journal Physica D 1997; 106:223-246.
– reference: Focardi M, Mariano PM. Convergence of asynchronous variational integrators in linear elastodynamics. International Journal for Numerical Methods in Engineering 2008; 75:755-769.
– reference: Fong W, Darve E, Lew A. Stability of asynchronous variational integrators. Journal of Computational Physics 2008; 227(18):8367-8394.
– reference: Signorini A. Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity). Rendiconti di Matematica e delle sue applicazioni 1959; 5(18):95-139.
– reference: Neal MO, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 31(6):871-80.
– reference: Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica 2001; 10:357-514.
– reference: Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics & Analysis 2003; 167(2):85-146.
– reference: Glocker C. Concepts for modeling impacts without friction. Acta Mechanica 2004; 168(1-2):1-19.
– reference: Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures 1996; 59(2):273-281.
– reference: Benes M, Matous K. Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids. Computer Methods in Applied Mechanics and Engineering 2010; 199(29-32):1992-2013.
– reference: Love GR, Laursen TA. Improved implicit integrators for transient impact problems - dynamic frictional dissipation within an admissible conserving framework. Computer Methods in Applied Mechanics and Engineering 2003; 192:2223-2248.
– reference: Belytschko T, Mullen R. Explicit integration of structural problems. Finite Elements in Nonlinear Mechanics 1977; 2:669-720.
– reference: Oldenburg M, Nilsson L. The position code algorithm for contact searching. International Journal for Numerical Methods in Engineering 1994; 37(3):359-386.
– reference: Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97(3):1990-2001.
– reference: Veselov AP. Integrable discrete-time systems and difference operators. Functional Analysis and its Applications 1988; 22(2):83-93.
– reference: Kane C, Marsden JE, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics 1999; 40(7):3353-3371.
– reference: Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. Computer Graphics 1996; 30(Annual Conference Series):171-180.
– reference: Andersen H. RATTLE: A "velocity" version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52(1):24-34.
– reference: Ortiz M. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers & Structures 1986; 24(1):167-168.
– reference: Laursen TA, Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering 1997; 40:863-886.
– reference: Gates M, Matous K, Heath MT. Asynchronous multi-domain variational integrators for non-linear problems. International Journal for Numerical Methods in Engineering 2008; 76(29-32):1353-1378.
– reference: Cirak F, West M. Decomposition contact response (DCR) for explicit finite element dynamics. International Journal for Numerical Methods in Engineering 2005; 64(8):1078-1110.
– reference: Fetecau RC, Marsden JE, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems 2003; 2(3):381-416.
– reference: Wolff S, Bucher C. Asynchronous variational integration using continuous assumed gradient elements. Computer Methods in Applied Mechanics and Engineering 2013; 255:158-166.
– reference: Garcia-archilla B, Sanz-serna JM, Skeel RD. Long-time-step methods for oscillatory differential equations. SIAM Journal of Scientific Computing 1999; 20:930-963.
– reference: Kale K, Lew A. Parallel asynchronous variational integrators. International Journal for Numerical Methods in Engineering 2007; 70:291-321.
– reference: Hairer E. Variable time step integration with symplectic methods. Applied Numerical Mathematics: Transactions of IMACS 1997; 25(2-3):219-227.
– reference: Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM 1975; 18:509-517.
– reference: van den Bergen G. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools Archive 1997; 2(4):1-13.
– reference: Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 1998; 4(1):21-36.
– reference: Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal for Numerical Methods in Engineering 2004; 60(1):153-212.
– reference: Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum 2005; 24(1).
– reference: Baez JC, Gilliam JW. An algebraic approach to discrete mechanics. Letters in Mathematical Physics 1994; 31:205-212.
– volume: 40
  start-page: 863
  year: 1997
  end-page: 886
  article-title: Design of energy conserving algorithms for frictionless dynamic contact problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 52
  start-page: 24
  issue: 1
  year: 1983
  end-page: 34
  article-title: RATTLE: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations
  publication-title: Journal of Computational Physics
– volume: 106
  start-page: 223
  year: 1997
  end-page: 246
  article-title: Mechanical integrators derived from a discrete variational principle
  publication-title: Journal Physica D
– start-page: 156
  year: 2000
  end-page: 163
– volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
– volume: 31
  start-page: 205
  year: 1994
  end-page: 212
  article-title: An algebraic approach to discrete mechanics
  publication-title: Letters in Mathematical Physics
– volume: 4
  start-page: 21
  issue: 1
  year: 1998
  end-page: 36
  article-title: Efficient collision detection using bounding volume hierarchies of ‐DOPs
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 91
  year: 2002
  end-page: 110
– volume: 37
  start-page: 359
  issue: 3
  year: 1994
  end-page: 386
  article-title: The position code algorithm for contact searching
  publication-title: International Journal for Numerical Methods in Engineering
– start-page: 87:1
  year: 2009
  end-page: 87:12
– volume: 167
  start-page: 85
  issue: 2
  year: 2003
  end-page: 146
  article-title: Asynchronous variational integrators
  publication-title: Archive for Rational Mechanics & Analysis
– volume: 24
  issue: 1
  year: 2005
  article-title: Collision detection for deformable objects
  publication-title: Computer Graphics Forum
– volume: 10
  start-page: 357
  year: 2001
  end-page: 514
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numerica
– year: 2003
– start-page: 33
  year: 2002
  end-page: 40
– year: 2000
– start-page: 673
  year: 1976
  end-page: 690
– volume: 20
  start-page: 930
  year: 1999
  end-page: 963
  article-title: Long‐time‐step methods for oscillatory differential equations
  publication-title: SIAM Journal of Scientific Computing
– volume: 24
  start-page: 167
  issue: 1
  year: 1986
  end-page: 168
  article-title: A note on energy conservation and stability of nonlinear time‐stepping algorithms
  publication-title: Computers & Structures
– volume: 70
  start-page: 291
  year: 2007
  end-page: 321
  article-title: Parallel asynchronous variational integrators
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 255
  start-page: 158
  year: 2013
  end-page: 166
  article-title: Asynchronous variational integration using continuous assumed gradient elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 168
  start-page: 1
  issue: 1‐2
  year: 2004
  end-page: 19
  article-title: Concepts for modeling impacts without friction
  publication-title: Acta Mechanica
– volume: 192
  start-page: 2223
  year: 2003
  end-page: 2248
  article-title: Improved implicit integrators for transient impact problems – dynamic frictional dissipation within an admissible conserving framework
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 64
  start-page: 1078
  issue: 8
  year: 2005
  end-page: 1110
  article-title: Decomposition contact response (DCR) for explicit finite element dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 53
  start-page: 245
  year: 2002
  end-page: 274
  article-title: Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework
  publication-title: International Journal for Numerical Methods in Engineering
– start-page: 12
  year: 1993
  end-page: 21
– start-page: 1
  year: 1992
  end-page: 4
– volume: 75
  start-page: 755
  year: 2008
  end-page: 769
  article-title: Convergence of asynchronous variational integrators in linear elastodynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 97
  start-page: 1990
  issue: 3
  year: 1992
  end-page: 2001
  article-title: Reversible multiple time scale molecular dynamics
  publication-title: The Journal of Chemical Physics
– volume: 60
  start-page: 153
  issue: 1
  year: 2004
  end-page: 212
  article-title: Variational time integrators
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 25
  start-page: 219
  issue: 2–3
  year: 1997
  end-page: 227
  article-title: Variable time step integration with symplectic methods
  publication-title: Applied Numerical Mathematics: Transactions of IMACS
– volume: 5
  start-page: 95
  issue: 18
  year: 1959
  end-page: 139
  article-title: Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity)
  publication-title: Rendiconti di Matematica e delle sue applicazioni
– volume: 22
  start-page: 83
  issue: 2
  year: 1988
  end-page: 93
  article-title: Integrable discrete‐time systems and difference operators
  publication-title: Functional Analysis and its Applications
– volume: 31
  start-page: 871
  issue: 6
  year: 1989
  end-page: 80
  article-title: Explicit–explicit subcycling with non‐integer time step ratios for structural dynamic systems
  publication-title: Computers and Structures
– volume: 2
  start-page: 381
  issue: 3
  year: 2003
  end-page: 416
  article-title: Nonsmooth Lagrangian mechanics and variational collision integrators
  publication-title: SIAM Journal on Applied Dynamical Systems
– volume: 2
  start-page: 669
  year: 1977
  end-page: 720
  article-title: Explicit integration of structural problems
  publication-title: Finite Elements in Nonlinear Mechanics
– volume: 59
  start-page: 273
  issue: 2
  year: 1996
  end-page: 281
  article-title: Subcycling integration with non‐integer time steps for structural dynamics problems
  publication-title: Computers & Structures
– volume: 76
  start-page: 1353
  issue: 29‐32
  year: 2008
  end-page: 1378
  article-title: Asynchronous multi‐domain variational integrators for non‐linear problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 40
  start-page: 3353
  issue: 7
  year: 1999
  end-page: 3371
  article-title: Symplectic‐energy‐momentum preserving variational integrators
  publication-title: Journal of Mathematical Physics
– volume: 2
  start-page: 1
  issue: 4
  year: 1997
  end-page: 13
  article-title: Efficient collision detection of complex deformable models using aabb trees
  publication-title: Journal of Graphics Tools Archive
– volume: 199
  start-page: 1992
  issue: 29‐32
  year: 2010
  end-page: 2013
  article-title: Asynchronous multi‐domain variational integrators for nonlinear hyperelastic solids
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 30
  start-page: 171
  issue: Annual Conference Series
  year: 1996
  end-page: 180
  article-title: OBBTree: a hierarchical structure for rapid interference detection
  publication-title: Computer Graphics
– volume: 1
  start-page: 218
  issue: 3
  year: 1995
  end-page: 230
  article-title: Collision detection for interactive graphics applications
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 227
  start-page: 8367
  issue: 18
  year: 2008
  end-page: 8394
  article-title: Stability of asynchronous variational integrators
  publication-title: Journal of Computational Physics
– ident: e_1_2_11_34_1
  doi: 10.1109/2945.466717
– ident: e_1_2_11_41_1
– ident: e_1_2_11_15_1
  doi: 10.1007/BF01077598
– ident: e_1_2_11_32_1
  doi: 10.1016/0021-9991(83)90014-1
– ident: e_1_2_11_44_1
– ident: e_1_2_11_33_1
  doi: 10.1145/545261.545267
– ident: e_1_2_11_43_1
  doi: 10.1002/nme.1620370302
– ident: e_1_2_11_46_1
  doi: 10.1007/s00707-004-0076-3
– ident: e_1_2_11_36_1
  doi: 10.1080/10867651.1997.10487480
– ident: e_1_2_11_39_1
– start-page: 673
  volume-title: Formulations and Computational Algorithms in Finite Element Analysis
  year: 1976
  ident: e_1_2_11_2_1
– ident: e_1_2_11_11_1
  doi: 10.1002/nme.1880
– ident: e_1_2_11_45_1
  doi: 10.1111/j.1467-8659.2005.00829.x
– ident: e_1_2_11_23_1
  doi: 10.1002/nme.264
– ident: e_1_2_11_14_1
  doi: 10.1016/S0167-2789(97)00051-1
– ident: e_1_2_11_22_1
  doi: 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
– ident: e_1_2_11_24_1
  doi: 10.1016/S0045-7825(03)00257-3
– ident: e_1_2_11_40_1
  doi: 10.1145/361002.361007
– ident: e_1_2_11_18_1
  doi: 10.1002/nme.2361
– ident: e_1_2_11_25_1
  doi: 10.1137/S1111111102406038
– ident: e_1_2_11_8_1
  doi: 10.1007/0-387-21791-6_3
– ident: e_1_2_11_20_1
  doi: 10.1137/S1064827596313851
– ident: e_1_2_11_28_1
  doi: 10.1016/S0168-9274(97)00061-5
– ident: e_1_2_11_38_1
  doi: 10.1145/169627.169640
– ident: e_1_2_11_31_1
  doi: 10.1016/j.cma.2012.11.004
– ident: e_1_2_11_19_1
  doi: 10.1016/j.cma.2010.02.017
– ident: e_1_2_11_7_1
  doi: 10.1063/1.463137
– start-page: 87:1
  volume-title: ACM SIGGRAPH 2009 papers
  year: 2009
  ident: e_1_2_11_27_1
– volume: 30
  start-page: 171
  year: 1996
  ident: e_1_2_11_35_1
  article-title: OBBTree: a hierarchical structure for rapid interference detection
  publication-title: Computer Graphics
– ident: e_1_2_11_17_1
  doi: 10.1016/0045-7949(86)90346-9
– volume: 2
  start-page: 669
  year: 1977
  ident: e_1_2_11_3_1
  article-title: Explicit integration of structural problems
  publication-title: Finite Elements in Nonlinear Mechanics
– ident: e_1_2_11_4_1
  doi: 10.1016/0045-7949(89)90272-1
– ident: e_1_2_11_10_1
  doi: 10.1002/nme.958
– ident: e_1_2_11_29_1
  doi: 10.1063/1.532892
– ident: e_1_2_11_16_1
  doi: 10.1007/BF00761712
– ident: e_1_2_11_9_1
  doi: 10.1007/s00205-002-0212-y
– ident: e_1_2_11_37_1
  doi: 10.1109/2945.675649
– volume-title: Proceedings of ECCOMAS 2000
  year: 2000
  ident: e_1_2_11_42_1
– ident: e_1_2_11_26_1
  doi: 10.1002/nme.1400
– start-page: 1
  volume-title: New Methods in Transient Analysis , PVP‐Vol. 246/AMD‐Vol. 143
  year: 1992
  ident: e_1_2_11_5_1
– ident: e_1_2_11_13_1
  doi: 10.1016/j.jcp.2008.05.017
– ident: e_1_2_11_30_1
  doi: 10.1017/S096249290100006X
– ident: e_1_2_11_6_1
  doi: 10.1016/0045-7949(95)00256-1
– ident: e_1_2_11_12_1
  doi: 10.1002/nme.2271
– volume: 5
  start-page: 95
  issue: 18
  year: 1959
  ident: e_1_2_11_21_1
  article-title: Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity)
  publication-title: Rendiconti di Matematica e delle sue applicazioni
– reference: 23543620 - Comput Methods Appl Mech Eng. 2013 Mar 1;255(C):158-166
SSID ssj0011503
ssj0009080
Score 2.1037958
Snippet SUMMARYThis article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow...
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow...
SUMMARY This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 562
SubjectTerms Constraints
Contact
Exact sciences and technology
explicit
Friction
Fundamental areas of phenomenology (including applications)
Hamiltonian
Integrators
Mathematical analysis
Mathematical models
Mathematics
Mechanical contact (friction...)
nonlinear dynamics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Physics
Projection
Sciences and techniques of general use
Solid mechanics
Structural and continuum mechanics
time integration
time integration, explicit
variational methods
Title Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints
URI https://api.istex.fr/ark:/67375/WNG-L4L27WP6-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4516
https://www.ncbi.nlm.nih.gov/pubmed/23970806
https://www.proquest.com/docview/1400375044
https://www.proquest.com/docview/1448755254
https://www.proquest.com/docview/1826576404
https://pubmed.ncbi.nlm.nih.gov/PMC3745265
Volume 95
WOSCitedRecordID wos000321850300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg5cAODMavwqg8CcEpLLGd2OE2wQqHrqoQ03qLbMfWKkoyNS2C_5738otWDITEJVXkl8h9_uy8lzx_HyEveegNs0YE3jgdiDyPApUIF2juU28N107oWmxCTqdqPk9nbVUl7oVp-CH6F244M-r1Gie4NtXJFmnoV_cGVWZvk0EUcYmIZmLWf0GAQId35R1xqqKOeDZkJ92VO4-iAXr1O5ZG6gq84xtZi5vizt_LJ7fD2vq5ND74n390n9xro1F62sDnAbnlikNy0EamtJ331SHZ36IthLPznuu1ekjK0-pHYZFjt9xUFHFVb1enHRFFuareUiz1W9jFmvaF7bT0dFMslhq3QC8plsxru6b4XpiidhEChuoip0WZQztKiKCaxbp6RC7GZ5_ffQxaGYfAxjxNgsjz1KhIKm2jOFehE8oYmTirDVfMI2Wd9oq7kFmupU3yMDS58aky1jCw5Y_JXlEW7imhMKixjRIH98iFS5hOcligfORE6r2RYkhedyOa2ZbjHDu3zBp2ZpaBjzP08ZAc95bXDa_HDTavalD0Bnr1BevgZJxdTj9kEzFh8nKWZOGQjHZQ01_AJNK7CbjTUQejrF0jKki6agHiUEC3j_tmmN34yUYXDgYNbDChjCGL_4sNZIiQNYoQbJ40yPzVAQg3ISeADsgdzPYGyC6-21IsrmqWcS5RfT4GJ9SY_aOXsun5Gf4--1fD5-QuqzVFVBDJI7K3Xm3cC3LHflsvqtWonsVwlHM1IoP3n8YXk585J1Gt
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZGiwQ8MBi_CmN4EoKnbEnsxA48TbAyRFtNaNP2FtmOLSJKgpoWwX_PXX7RioGQeKoqXyLn_Nm5c87fR8hz5jsdGs09p63yeJYFnoy59RRziTOaKctVLTYhZjN5eZmcbpHX3VmYhh-i33DDmVGv1zjBcUP6cI019Is9QJnZa2TIAUXRgAzffhyfT_qPCBDrsK7CI0pk0HHP-uFhd-3G22iIjv2O1ZGqAge5RtniqtDz9wrK9ci2fjWNt__roe6Q221ESo8aCN0lW7bYIdttdErbuV_tkFtr1IXwb9rzvVb3SHlU_SgM8uyWq4oituoj67QjoygX1SuK5X65yZe0L26npaOrIp8rPAY9p1g2r8yS4t4wRf0iBA1VRUaLMoN2lBFBRYtldZ-cj4_P3px4rZSDZyKWxF7gWKJlIKQyQZRJ33KptYitUZrJ0CFtnXKSWT80TAkTZ76vM-0SqY0OwZY9IIOiLOwjQmFUIxPEFu6RcRuHKs5gkXKB5YlzWvARedkNaWpannPs3DxtGJrDFHycoo9HZL-3_Npwe1xh86JGRW-gFp-xFk5E6cXsXTrhk1BcnMapPyJ7G7DpLwgFUrxxuNNuh6O0XScqSLxqEWKfQ7f3-2aY4fjZRhUWBg1sMKmMIJP_iw1kiZA5ch9sHjbQ_NUBCDkhL4AOiA3Q9gbIML7ZUuSfaqZxJlCBPgIn1KD9o5fS2fQYfx__q-EzcuPkbDpJJ-9nH56Qm2GtMSK9QOySwXKxsk_JdfNtmVeLvXZS_wSdClSi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKixAcKJTXQimuhOAUmsRO7MCpgi4gttEeQO0tsh1bRCxJtcki-PfM5MWuKAiJUxR5bDnjGWcmGX8fIU-Z73RoNPectsrjeR54MubWU8wlzmimLFct2YRIU3l-nsy3yKvhLEyHDzF-cEPPaPdrdHB7kbujNdTQr_YF0sxeITs8gi0WYZ35fPyFAJEOG-o7okQGA_KsHx4NPTfeRTuo1u9YG6lqUI_reC0uCzx_r59cj2vbF9N0978e6Ra52cej9LgzoNtky5Z7ZLePTWnv-fUeubEGXAh3pyPaa32HVMf1j9Igym61qilaVntgnQ5QFNWyfkmx2K8wRUPH0nZaOboqi4XCQ9ALikXzyjQUvwxTZC9Ck6GqzGlZ5dCOJCLIZ9HUd8mn6cnH1--8nsjBMxFLYi9wLNEyEFKZIMqlb7nUWsTWKM1k6BC0TjnJrB8apoSJc9_XuXaJ1EaHIMvuke2yKu0DQmFVIxPEFsbIuY1DFeewRbnA8sQ5LfiEPB-WNDM9yjlObpF1-MxhBjrOUMcTcjhKXnTIHpfIPGutYhRQyy9YCSei7Cx9m834LBRn8zjzJ-Rgw2zGDqFAgDcOI-0PdpT1u0QNaVdLQexzmPbh2Az-jT9tVGlh0UAGU8oI8vi_yECOCHkj90HmfmeavyYAASdkBTABsWG0owDii2-2lMXnFmecCeSfj0AJrdH-UUtZenqC14f_KviEXJu_mWaz9-mHR-R62BKMSC8Q-2S7Wa7sY3LVfGuKennQevRPv8dSiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+collision+integrators%3A+Explicit+treatment+of+unilateral+contact+with+friction+and+nodal+restraints&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Wolff%2C+Sebastian&rft.au=Bucher%2C+Christian&rft.date=2013-08-17&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=95&rft.issue=7&rft.spage=562&rft.epage=586&rft_id=info:doi/10.1002%2Fnme.4516&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon