Hybrid Data Visualization Based on Depth Complexity Histogram Analysis
In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi‐transparent geometry is present, correct rendering results require sorting of transparent structures. Additional comp...
Saved in:
| Published in: | Computer graphics forum Vol. 34; no. 1; pp. 74 - 85 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.02.2015
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi‐transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A‐buffer, an enhanced framebuffer with additional per‐pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume‐geometry data based on the A‐buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A‐buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather and medical visualization containing both, volumetric data and geometric structures.
We present an A‐buffer based algorithm that achieves performance gains of up to eight times relative existing techniques. The algorithm contains two novel components which improve the utilization of the local cache memory on the GPU. This is particularly important for scenes with non‐uniform depth complexities and rapidly decreasing depth complexity histograms (DCHs). |
|---|---|
| AbstractList | In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi-transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A-buffer, an enhanced framebuffer with additional per-pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume-geometry data based on the A-buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A-buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather, and medical visualization containing both, volumetric data and geometric structures. In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi-transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A-buffer, an enhanced framebuffer with additional per-pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume-geometry data based on the A-buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A-buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather and medical visualization containing both, volumetric data and geometric structures. We present an A-buffer based algorithm that achieves performance gains of up to eight times relative existing techniques. The algorithm contains two novel components which improve the utilization of the local cache memory on the GPU. This is particularly important for scenes with non-uniform depth complexities and rapidly decreasing depth complexity histograms (DCHs). In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi‐transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A‐buffer, an enhanced framebuffer with additional per‐pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume‐geometry data based on the A‐buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A‐buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather and medical visualization containing both, volumetric data and geometric structures. We present an A‐buffer based algorithm that achieves performance gains of up to eight times relative existing techniques. The algorithm contains two novel components which improve the utilization of the local cache memory on the GPU. This is particularly important for scenes with non‐uniform depth complexities and rapidly decreasing depth complexity histograms (DCHs). |
| Author | Lindholm, S. Sundén, E. Ropinski, T. Falk, M. Ynnerman, A. Bock, A. |
| Author_xml | – sequence: 1 givenname: S. surname: Lindholm fullname: Lindholm, S. email: stefan.lindholm@liu.se organization: Department of Science and Technology, Linköping University, Norrköping, Sweden – sequence: 2 givenname: M. surname: Falk fullname: Falk, M. email: martin.falk@liu.se organization: Department of Science and Technology, Linköping University, Norrköping, Sweden – sequence: 3 givenname: E. surname: Sundén fullname: Sundén, E. email: erik.sunden@liu.se organization: Department of Science and Technology, Linköping University, Norrköping, Sweden – sequence: 4 givenname: A. surname: Bock fullname: Bock, A. email: alexander.bock@liu.se organization: Department of Science and Technology, Linköping University, Norrköping, Sweden – sequence: 5 givenname: A. surname: Ynnerman fullname: Ynnerman, A. email: anders.ynnerman@liu.se organization: Department of Science and Technology, Linköping University, Norrköping, Sweden – sequence: 6 givenname: T. surname: Ropinski fullname: Ropinski, T. email: timo.ropinski@liu.se organization: Department of Science and Technology, Linköping University, Norrköping, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110238$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kUtvEzEUhS3USqQtC_7BSGxgMa0949cs8yAJUkQXQFlajh_BxRkP9oza4dfjNimLCnp1pXsX37nSuecMnLShNQC8RfAS5bpSO3uJKkzhKzBBmLKSU9KcgAlEeWeQkNfgLKVbCCFmlEzAcj1uo9PFQvayuHFpkN79lr0LbTGTyegiLwvT9T-Kedh33ty7fizWLvVhF-W-mLbSj8mlC3BqpU_mzXGeg2_Lj1_n63Jzvfo0n25KReoGlopRhSnSjGCNqOXyoSnBtqkYl9rYSuuKIEoxRopKZi00xOqtwlhComF9DsrD3XRnumEruuj2Mo4iSCcW7mYqQtwJ7waBEKxqnvn3B76L4ddgUi_2LinjvWxNGJJAjHGIa8qajL57ht6GIWZ_mWqaquKEc_4iRQmrK0R5namrA6ViSCkaK5TrH7_aR-m8QFA8pCVyWuIxraz48EzxZO1f7PH6nfNm_D8o5qvlk-L4thycuf-rkPGnoKxmRHz_vBKzDZ1tvsCFwPUf5KOzGw |
| CitedBy_id | crossref_primary_10_1111_cgf_14019 crossref_primary_10_1111_cgf_13306 crossref_primary_10_3390_informatics4030025 crossref_primary_10_1109_TVCG_2015_2417581 crossref_primary_10_1111_cgf_14409 crossref_primary_10_1016_j_asoc_2016_08_039 crossref_primary_10_1016_j_autcon_2025_106509 crossref_primary_10_1007_s41095_016_0034_8 crossref_primary_10_1111_cgf_13202 crossref_primary_10_1109_TVCG_2023_3245305 |
| Cites_doi | 10.1109/MCG.2008.96 10.1201/b10629 10.1145/2461912.2461930 10.1111/j.1467-8659.2010.01725.x 10.1007/s00450-010-0141-1 10.1007/978-3-642-10520-3_10 10.1145/2556700.2556702 10.1109/38.31463 10.1145/97879.97918 10.1016/j.cag.2011.07.006 10.1145/1278780.1278806 10.1111/j.1467-8659.2009.01465.x 10.1109/TVCG.2007.70534 10.1145/1572769.1572779 10.1145/1618452.1618498 10.1111/1467-8659.00356 10.1007/s10822-010-9352-6 10.1109/TVCG.2012.300 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. – notice: Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1111/cgf.12460 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | CrossRef Technology Research Database Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 85 |
| ExternalDocumentID | oai_DiVA_org_liu_110238 3601623971 10_1111_cgf_12460 CGF12460 ark_67375_WNG_BL6BLS0D_4 |
| Genre | article Feature |
| GrantInformation_xml | – fundername: Swedish Research Council funderid: 2011‐5816 – fundername: Community Coordinated Modeling Center at Goddard Space Flight Center, NASA – fundername: Linnaeus Environment CADICS and the Swedish e‐Science Research Centre (SeRC) |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c5390-c76c461d754d16f8af8af654f9278adef2dd25166441c6a7ff0e5fdbc44a05d03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350145600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 1467-8659 |
| IngestDate | Tue Nov 04 16:53:34 EST 2025 Fri Sep 05 10:28:09 EDT 2025 Sun Nov 09 06:33:39 EST 2025 Fri Jul 25 23:47:18 EDT 2025 Sat Nov 29 03:41:11 EST 2025 Tue Nov 18 21:58:46 EST 2025 Wed Jan 22 17:04:38 EST 2025 Tue Nov 11 03:31:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5390-c76c461d754d16f8af8af654f9278adef2dd25166441c6a7ff0e5fdbc44a05d03 |
| Notes | istex:4AA5C4DDE5B9DA11B07EDDAAD8777A0DF99B0AD1 Community Coordinated Modeling Center at Goddard Space Flight Center, NASA Figure S1: Performance comparison with our proposed ppAO and ppDP components.Movie S1: Simultaneous visualization of both volumetric and geometric objects relies heavily on techniques such as A-buffers to achieve real-time performance. This work proposes two novel A-buffer components which achieve performance gains of up to eight times relative existing techniques. ark:/67375/WNG-BL6BLS0D-4 Swedish Research Council - No. 2011-5816 Linnaeus Environment CADICS and the Swedish e-Science Research Centre (SeRC) ArticleID:CGF12460 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110238 |
| PQID | 1657321683 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_110238 proquest_miscellaneous_1778043679 proquest_journals_1992285888 proquest_journals_1657321683 crossref_citationtrail_10_1111_cgf_12460 crossref_primary_10_1111_cgf_12460 wiley_primary_10_1111_cgf_12460_CGF12460 istex_primary_ark_67375_WNG_BL6BLS0D_4 |
| PublicationCentury | 2000 |
| PublicationDate | February 2015 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | [PHF07] Plate, J., Holtkaemper, T., Froehlich, B.: A flexible multi-volume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1584-1591. http://dx.doi.org/10.1109/TVCG.2007.70534. [VF13] Vasilakis, A., Fudos, I.: Depth-fighting aware methods for multifragment rendering. IEEE Transactions on Visualization and Computer Graphics 19, 6 (2013), 967-977. http://dx.doi.org/10.1109/TVCG.2012.300. [YHGT10] Yang, J. C., Hensley, J., Grün, H., Thibieroz, N.: Real-time concurrent linked list construction on the GPU. Computer Graphics Forum 29, 4 (2010), 1297-1304. http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x. [CS99] Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Computer Graphics Forum 18, 3 (1999), 359-368. http://dx.doi.org/10.1111/1467-8659.00356. [Mam89] Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Computer Graphics and Applications 9, 4 (1989), 43-55. http://dx.doi.org/10.1109/38.31463. [XOL04] Xie, H., Ofman, L., Lawrence, G.: Cone model for halo CMEs: Application to space weather forecasting. Journal of Geophysical Research: Space Physics 109, A3 (2004). http://dx.doi.org/10.1029/2003JA010226. [SdG10] Seeliger, D., de Groot, B. L.: Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24, 5 (2010), 417-422. http://dx.doi.org/10.1007/s10822-010-9352-6. [GRT13] Günther, T., Rössl, C., Theisel, H.: Opacity optimization for 3D line fields. ACM Transactions on Graphics 32, 4 (July 2013), 120:1-120:8. http://dx.doi.org/10.1145/2461912.2461930. [LLHY09] Lindholm, S., Ljung, P., Hadwiger, M., Ynnerman, A.: Fused multi-volume DVR using binary space partitioning. Computer Graphics Forum 28, 3 (2009), 847-854. http://dx.doi.org/10.1111/j.1467-8659.2009.01465.x. [RBE08] Rössler, F., Botchen, R., Ertl, T.: Dynamic shader generation for GPU-based multi-volume ray casting. IEEE Computer Graphics and Applications 28, 5 (2008), 66-77. http://dx.doi.org/10.1109/MCG.2008.96. [MCTB11] Maule, M., Comba, J. L., Torchelsen, R. P., Bastos, R.: A survey of raster-based transparency techniques. Computers And Graphics 35, 6 (2011), 1023-1034. http://dx.doi.org/10.1016/j.cag.2011.07.006. [SS11] Schubert, N., Scholl, I.: Comparing GPU-based multi-volume ray-casting techniques. Computer Science-Research and Development 26, 1-2 (2011), 39-50. http://dx.doi.org/10.1007/s00450-010-0141-1. [EHK*06] Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C., Weiskopf, D.: Real-Time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006. [KGB*09] Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S., Muehl, J., Schmalstieg, D.: Ray-casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Transactions on Graphics 28, 5 (December 2009), 152:1-152:9. http://dx.doi.org/10.1145/1618452.1618498. 2012 2011 2010 1989; 9 2009 2008 2007 2006 2011; 35 2004 2004; 109 2007; 13 2009; 28 2013; 19 2010; 24 1990 2001 2013; 32 2013; 13 2010; 29 1999; 18 2008; 28 1984 2011; 26 2014 2013 e_1_2_10_23_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Vasilakis A. (e_1_2_10_30_1) 2012 Kauker D. (e_1_2_10_16_1) 2013 Bavoil L. (e_1_2_10_3_1) 2007 Carpenter L. (e_1_2_10_5_1) 1984 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 Ebert D. S. (e_1_2_10_11_1) 1990 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_32_1 e_1_2_10_31_1 Xie H. (e_1_2_10_33_1) 2004; 109 Grimm S. (e_1_2_10_13_1) 2004 Maule M. (e_1_2_10_24_1) 2012 Brecheisen R. (e_1_2_10_2_1) 2008 Carr N. (e_1_2_10_7_1) 2008 Kerzner E. (e_1_2_10_17_1) 2013 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – reference: [CS99] Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Computer Graphics Forum 18, 3 (1999), 359-368. http://dx.doi.org/10.1111/1467-8659.00356. – reference: [SS11] Schubert, N., Scholl, I.: Comparing GPU-based multi-volume ray-casting techniques. Computer Science-Research and Development 26, 1-2 (2011), 39-50. http://dx.doi.org/10.1007/s00450-010-0141-1. – reference: [LLHY09] Lindholm, S., Ljung, P., Hadwiger, M., Ynnerman, A.: Fused multi-volume DVR using binary space partitioning. Computer Graphics Forum 28, 3 (2009), 847-854. http://dx.doi.org/10.1111/j.1467-8659.2009.01465.x. – reference: [PHF07] Plate, J., Holtkaemper, T., Froehlich, B.: A flexible multi-volume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1584-1591. http://dx.doi.org/10.1109/TVCG.2007.70534. – reference: [MCTB11] Maule, M., Comba, J. L., Torchelsen, R. P., Bastos, R.: A survey of raster-based transparency techniques. Computers And Graphics 35, 6 (2011), 1023-1034. http://dx.doi.org/10.1016/j.cag.2011.07.006. – reference: [RBE08] Rössler, F., Botchen, R., Ertl, T.: Dynamic shader generation for GPU-based multi-volume ray casting. IEEE Computer Graphics and Applications 28, 5 (2008), 66-77. http://dx.doi.org/10.1109/MCG.2008.96. – reference: [EHK*06] Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C., Weiskopf, D.: Real-Time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006. – reference: [Mam89] Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Computer Graphics and Applications 9, 4 (1989), 43-55. http://dx.doi.org/10.1109/38.31463. – reference: [XOL04] Xie, H., Ofman, L., Lawrence, G.: Cone model for halo CMEs: Application to space weather forecasting. Journal of Geophysical Research: Space Physics 109, A3 (2004). http://dx.doi.org/10.1029/2003JA010226. – reference: [VF13] Vasilakis, A., Fudos, I.: Depth-fighting aware methods for multifragment rendering. IEEE Transactions on Visualization and Computer Graphics 19, 6 (2013), 967-977. http://dx.doi.org/10.1109/TVCG.2012.300. – reference: [GRT13] Günther, T., Rössl, C., Theisel, H.: Opacity optimization for 3D line fields. ACM Transactions on Graphics 32, 4 (July 2013), 120:1-120:8. http://dx.doi.org/10.1145/2461912.2461930. – reference: [YHGT10] Yang, J. C., Hensley, J., Grün, H., Thibieroz, N.: Real-time concurrent linked list construction on the GPU. Computer Graphics Forum 29, 4 (2010), 1297-1304. http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x. – reference: [KGB*09] Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S., Muehl, J., Schmalstieg, D.: Ray-casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Transactions on Graphics 28, 5 (December 2009), 152:1-152:9. http://dx.doi.org/10.1145/1618452.1618498. – reference: [SdG10] Seeliger, D., de Groot, B. L.: Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24, 5 (2010), 417-422. http://dx.doi.org/10.1007/s10822-010-9352-6. – year: 2011 – volume: 24 start-page: 417 issue: 5 year: 2010 end-page: 422 article-title: Ligand docking and binding site analysis with PyMOL and Autodock/Vina publication-title: Journal of Computer‐Aided Molecular Design – start-page: 109:1 year: 2013 end-page: 109:1 – start-page: 386 year: 2004 end-page: 379 – volume: 32 start-page: 120:1 issue: 4 year: 2013 end-page: 120:8 article-title: Opacity optimization for 3D line fields publication-title: ACM Transactions on Graphics – start-page: 51 year: 2009 end-page: 57 – volume: 29 start-page: 1297 issue: 4 year: 2010 end-page: 1304 article-title: Real‐time concurrent linked list construction on the GPU publication-title: Computer Graphics Forum – year: 2001 – year: 2007 – volume: 19 start-page: 967 issue: 6 year: 2013 end-page: 977 article-title: Depth‐fighting aware methods for multifragment rendering publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 28 start-page: 847 issue: 3 year: 2009 end-page: 854 article-title: Fused multi‐volume DVR using binary space partitioning publication-title: Computer Graphics Forum – start-page: 357 year: 1990 end-page: 366 – start-page: 101 year: 2012 end-page: 104 – volume: 13 start-page: 33 year: 2013 end-page: 40 – start-page: 104 year: 2009 end-page: 116 – year: 2010 – start-page: 97 year: 2007 end-page: 104 – volume: 13 start-page: 1584 issue: 6 year: 2007 end-page: 1591 article-title: A flexible multi‐volume shader framework for arbitrarily intersecting multi‐resolution datasets publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 18 start-page: 359 issue: 3 year: 1999 end-page: 368 article-title: Data intermixing and multi‐volume rendering publication-title: Computer Graphics Forum – volume: 28 start-page: 152:1 issue: 5 year: 2009 end-page: 152:9 article-title: Ray‐casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs publication-title: ACM Transactions on Graphics – volume: 9 start-page: 43 issue: 4 year: 1989 end-page: 55 article-title: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique publication-title: IEEE Computer Graphics and Applications – start-page: 33 year: 2008 end-page: 40 – year: 2008 – start-page: 103 year: 1984 end-page: 108 – year: 2006 – volume: 28 start-page: 66 issue: 5 year: 2008 end-page: 77 article-title: Dynamic shader generation for GPU‐based multi‐volume ray casting publication-title: IEEE Computer Graphics and Applications – volume: 109 issue: A3 year: 2004 article-title: Cone model for halo CMEs: Application to space weather forecasting publication-title: Journal of Geophysical Research: Space Physics – start-page: 303 year: 2008 end-page: 312 – start-page: 134 year: 2012 end-page: 141 – start-page: 143 year: 2014 end-page: 150 – volume: 26 start-page: 39 year: 2011 end-page: 50 article-title: Comparing GPU‐based multi‐volume ray‐casting techniques publication-title: Computer Science‐Research and Development – volume: 35 start-page: 1023 issue: 6 year: 2011 end-page: 1034 article-title: A survey of raster‐based transparency techniques publication-title: Computers And Graphics – start-page: 109:1 volume-title: ACM SIGGRAPH 2013 Posters year: 2013 ident: e_1_2_10_17_1 – ident: e_1_2_10_27_1 doi: 10.1109/MCG.2008.96 – ident: e_1_2_10_10_1 doi: 10.1201/b10629 – ident: e_1_2_10_14_1 doi: 10.1145/2461912.2461930 – start-page: 101 volume-title: Proceedings of Eurographics (Short Papers) year: 2012 ident: e_1_2_10_30_1 – ident: e_1_2_10_34_1 doi: 10.1111/j.1467-8659.2010.01725.x – start-page: 134 volume-title: Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI) year: 2012 ident: e_1_2_10_24_1 – ident: e_1_2_10_29_1 doi: 10.1007/s00450-010-0141-1 – ident: e_1_2_10_18_1 doi: 10.1007/978-3-642-10520-3_10 – ident: e_1_2_10_32_1 doi: 10.1145/2556700.2556702 – ident: e_1_2_10_21_1 doi: 10.1109/38.31463 – start-page: 357 volume-title: Proceedings of SIGGRAPH year: 1990 ident: e_1_2_10_11_1 doi: 10.1145/97879.97918 – ident: e_1_2_10_23_1 doi: 10.1016/j.cag.2011.07.006 – ident: e_1_2_10_8_1 – ident: e_1_2_10_22_1 doi: 10.1145/1278780.1278806 – volume: 109 issue: 3 year: 2004 ident: e_1_2_10_33_1 article-title: Cone model for halo CMEs: Application to space weather forecasting publication-title: Journal of Geophysical Research: Space Physics – ident: e_1_2_10_20_1 doi: 10.1111/j.1467-8659.2009.01465.x – ident: e_1_2_10_26_1 doi: 10.1109/TVCG.2007.70534 – start-page: 97 volume-title: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D) year: 2007 ident: e_1_2_10_3_1 – start-page: 103 volume-title: Proceedings of ACM SIGGRAPH Computer Graphics and Interactive Techniques year: 1984 ident: e_1_2_10_5_1 – ident: e_1_2_10_12_1 – ident: e_1_2_10_4_1 – ident: e_1_2_10_19_1 doi: 10.1145/1572769.1572779 – ident: e_1_2_10_15_1 doi: 10.1145/1618452.1618498 – start-page: 303 volume-title: Proceedings of Vision, Modelling and Visualization (VMV) year: 2008 ident: e_1_2_10_2_1 – ident: e_1_2_10_9_1 doi: 10.1111/1467-8659.00356 – start-page: 33 volume-title: Proceedings of Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) year: 2013 ident: e_1_2_10_16_1 – ident: e_1_2_10_25_1 – ident: e_1_2_10_6_1 – ident: e_1_2_10_28_1 doi: 10.1007/s10822-010-9352-6 – ident: e_1_2_10_31_1 doi: 10.1109/TVCG.2012.300 – start-page: 33 volume-title: Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware year: 2008 ident: e_1_2_10_7_1 – start-page: 386 volume-title: Proceedings of Vision, Modelling and Visualization (VMV) year: 2004 ident: e_1_2_10_13_1 |
| SSID | ssj0004765 |
| Score | 2.155802 |
| Snippet | In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and... |
| SourceID | swepub proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 74 |
| SubjectTerms | Algorithms Analysis Buffers Complexity Computer graphics Computer memory Data processing Data visualization Gain Histograms I.3.3 [Computer Graphics]: Picture/Image Generation Display-algorithms I.3.3 [Computer Graphics]: Picture/Image Generation Display—algorithms; I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—I.3.8 [Computer Graphics]: Applications I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-I.3.8 [Computer Graphics]: Applications Molecular biology Pixels ray tracing real-time rendering Rendering Scientific visualization Space weather Studies Utilization Visualization |
| Title | Hybrid Data Visualization Based on Depth Complexity Histogram Analysis |
| URI | https://api.istex.fr/ark:/67375/WNG-BL6BLS0D-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12460 https://www.proquest.com/docview/1657321683 https://www.proquest.com/docview/1992285888 https://www.proquest.com/docview/1778043679 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110238 |
| Volume | 34 |
| WOSCitedRecordID | wos000350145600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9tAFB6C3UN7SHfqNA3TUkovKlpmEz3FUZQcjClt4-Y2zJqaBDvYcmj-fedpawwpFAo6DOgJnt4y84303jcIveeaZzpsM6KYuDwiLvhCU51GsRGx117krO5bm034dCrOz_MvO-hz1wvT8EP0H9wgM-r5GhJc6fWdJDcX_lNYnFjYrw_TELdkgIbF1_Js8qctkjPaUXsDaUxLLASFPP3DW8vRECz7axtrNvyh29C1XnvKx_-l9RO020JOfNjEyFO04xbP0KM7RITPUXl6C51buFCVwrP5Gjotm_5MPA7LnMVhULjr6ieG-QM4NKtbXDOMQHEX7phNXqCz8vj70WnUnrAQGZrlcWQ4M4QlllNiE-aFgotR4vOUC2WdT60NAIgBaDJMce9jR73VhhAVUxtnL9FgsVy4VwhbS7TxJqBJnxDvRB5CNHg6s4ZQ7ZJshD52hpampR-HUzCuZLcNCaaRtWlG6F0vet1wbtwn9KH2Vi-hVpdQpMap_DE9keMJG0--xYUkI7TfuVO2-bmWCaM8SxMmsvtvA1uvoEKIEXrb3w6JB39T1MItN0GGA3dTxngeVGmipNcFOLuL-exQLlcX8mq-CboDNgo2qGPj728lj07KerD376Kv0cOA4mhTSr6PBtVq496gB-ammq9XB21S_AZZ1w43 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnaD9YH3S06pRRPwSSS77CvRLrzE9MR6i7dlvS7KP9mi5K3c5sf-9O3nZgwqCkA8LO4HJPHZmNzO_BXjLCx4VbpvhB8TEPjFOFwUthn6gRGALK2JW9a1NMz6ZiNPT-OsW7Le9MDU-RHfghp5Rrdfo4HggfcPL1Zn94KITcxv2PnFmRHvQT76lJ9mfvkjOaIvtjagxDbIQVvJ0L2_Eoz6K9tdmslkDiG7mrlXwSXf-j-0HcL9JOr2D2koewpaZP4LtG1CEjyEdX2PvlpfkZe5NZyvstaw7NL2RC3Tac4PEXJXnHq4giKJZXnsVxgiWd3kttskTOEk_Hh-O_eaOBV_RKA58xZkiLNScEh0yK3J8GCU2HnKRa2OHWrsUiGHapFjOrQ0MtbpQhOQB1UH0FHrzxdzsgqc1KZRVLp-0IbFGxM5Ina4jrQgtTBgN4H0raakaAHK8B-NSthsRJxpZiWYAbzrSqxp14zaid5W6Oop8eYFlapzKH5MjOcrYKPseJJIMYK_Vp2w8dCVDRnk0DJmIbp9GvF5BhRADeN1NO9fD_yn53CzWjoYjelPEeOxYqc2k4wVRu5PZ9EAulmfycrZ2vGN25GRQGcffv0oeHqXV4Nm_k76Cu-PjL5nMPk0-P4d7LqejdWH5HvTK5dq8gDvqZzlbLV82HvIbgVUSJw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnYh-aH3i1VajiPglJbnsK-CXXmNaMRxF7dlvS7KPerTcHXe5Yv97d_KyBxUEIR8WdhIm89iZTWZ-C_COFzwq3DbDD4iJfWKcLgpaDP1AicAWVsSs6lubZHw8Fufn8ekWfGx7YWp8iO6DG3pGtV6jg5uFtre8XF3YAxedmNuw9wl1D-1BP_manmV_-iI5oy22N6LGNMhCWMnT3bwRj_oo2l-byWYNILqZu1bBJ935P7YfwXaTdHqHtZU8hi0zewIPb0ERPoX05AZ7t7wkL3NvMl1hr2XdoemNXKDTnhskZlH-9HAFQRTN8sarMEawvMtrsU2ewVn66fvRid-cseArGsWBrzhThIWaU6JDZkWOF6PExkMucm3sUGuXAjFMmxTLubWBoVYXipA8oDqInkNvNp-ZF-BpTQpllcsnbUisEbEzUqfrSCtCCxNGA_jQSlqqBoAcz8G4ku1GxIlGVqIZwNuOdFGjbtxF9L5SV0eRLy-xTI1T-WN8LEcZG2XfgkSSAey1-pSNh65kyCiPhiET0d3TiNcrqBBiAG-6aed6-D8ln5n52tFwRG-KGI8dK7WZdLwgancynRzK-fJCXk3XjnfMjpwMKuP4-1vJo-O0Guz-O-lruH-apDL7PP7yEh64lI7WdeV70CuXa7MP99R1OV0tXzUO8hvx2BGi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Data+Visualization+Based+on+Depth+Complexity+Histogram+Analysis&rft.jtitle=Computer+graphics+forum&rft.au=Lindholm%2C+S.&rft.au=Falk%2C+M.&rft.au=Sund%C3%A9n%2C+E.&rft.au=Bock%2C+A.&rft.date=2015-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=1&rft.spage=74&rft.epage=85&rft_id=info:doi/10.1111%2Fcgf.12460&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BL6BLS0D_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |