Hybrid Data Visualization Based on Depth Complexity Histogram Analysis

In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi‐transparent geometry is present, correct rendering results require sorting of transparent structures. Additional comp...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 34; no. 1; pp. 74 - 85
Main Authors: Lindholm, S., Falk, M., Sundén, E., Bock, A., Ynnerman, A., Ropinski, T.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.02.2015
Subjects:
ISSN:0167-7055, 1467-8659, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi‐transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A‐buffer, an enhanced framebuffer with additional per‐pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume‐geometry data based on the A‐buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A‐buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather and medical visualization containing both, volumetric data and geometric structures. We present an A‐buffer based algorithm that achieves performance gains of up to eight times relative existing techniques. The algorithm contains two novel components which improve the utilization of the local cache memory on the GPU. This is particularly important for scenes with non‐uniform depth complexities and rapidly decreasing depth complexity histograms (DCHs).
AbstractList In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi-transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A-buffer, an enhanced framebuffer with additional per-pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume-geometry data based on the A-buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A-buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather, and medical visualization containing both, volumetric data and geometric structures.
In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi-transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A-buffer, an enhanced framebuffer with additional per-pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume-geometry data based on the A-buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A-buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather and medical visualization containing both, volumetric data and geometric structures. We present an A-buffer based algorithm that achieves performance gains of up to eight times relative existing techniques. The algorithm contains two novel components which improve the utilization of the local cache memory on the GPU. This is particularly important for scenes with non-uniform depth complexities and rapidly decreasing depth complexity histograms (DCHs).
In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi‐transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A‐buffer, an enhanced framebuffer with additional per‐pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume‐geometry data based on the A‐buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A‐buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather and medical visualization containing both, volumetric data and geometric structures. We present an A‐buffer based algorithm that achieves performance gains of up to eight times relative existing techniques. The algorithm contains two novel components which improve the utilization of the local cache memory on the GPU. This is particularly important for scenes with non‐uniform depth complexities and rapidly decreasing depth complexity histograms (DCHs).
Author Lindholm, S.
Sundén, E.
Ropinski, T.
Falk, M.
Ynnerman, A.
Bock, A.
Author_xml – sequence: 1
  givenname: S.
  surname: Lindholm
  fullname: Lindholm, S.
  email: stefan.lindholm@liu.se
  organization: Department of Science and Technology, Linköping University, Norrköping, Sweden
– sequence: 2
  givenname: M.
  surname: Falk
  fullname: Falk, M.
  email: martin.falk@liu.se
  organization: Department of Science and Technology, Linköping University, Norrköping, Sweden
– sequence: 3
  givenname: E.
  surname: Sundén
  fullname: Sundén, E.
  email: erik.sunden@liu.se
  organization: Department of Science and Technology, Linköping University, Norrköping, Sweden
– sequence: 4
  givenname: A.
  surname: Bock
  fullname: Bock, A.
  email: alexander.bock@liu.se
  organization: Department of Science and Technology, Linköping University, Norrköping, Sweden
– sequence: 5
  givenname: A.
  surname: Ynnerman
  fullname: Ynnerman, A.
  email: anders.ynnerman@liu.se
  organization: Department of Science and Technology, Linköping University, Norrköping, Sweden
– sequence: 6
  givenname: T.
  surname: Ropinski
  fullname: Ropinski, T.
  email: timo.ropinski@liu.se
  organization: Department of Science and Technology, Linköping University, Norrköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110238$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kUtvEzEUhS3USqQtC_7BSGxgMa0949cs8yAJUkQXQFlajh_BxRkP9oza4dfjNimLCnp1pXsX37nSuecMnLShNQC8RfAS5bpSO3uJKkzhKzBBmLKSU9KcgAlEeWeQkNfgLKVbCCFmlEzAcj1uo9PFQvayuHFpkN79lr0LbTGTyegiLwvT9T-Kedh33ty7fizWLvVhF-W-mLbSj8mlC3BqpU_mzXGeg2_Lj1_n63Jzvfo0n25KReoGlopRhSnSjGCNqOXyoSnBtqkYl9rYSuuKIEoxRopKZi00xOqtwlhComF9DsrD3XRnumEruuj2Mo4iSCcW7mYqQtwJ7waBEKxqnvn3B76L4ddgUi_2LinjvWxNGJJAjHGIa8qajL57ht6GIWZ_mWqaquKEc_4iRQmrK0R5namrA6ViSCkaK5TrH7_aR-m8QFA8pCVyWuIxraz48EzxZO1f7PH6nfNm_D8o5qvlk-L4thycuf-rkPGnoKxmRHz_vBKzDZ1tvsCFwPUf5KOzGw
CitedBy_id crossref_primary_10_1111_cgf_14019
crossref_primary_10_1111_cgf_13306
crossref_primary_10_3390_informatics4030025
crossref_primary_10_1109_TVCG_2015_2417581
crossref_primary_10_1111_cgf_14409
crossref_primary_10_1016_j_asoc_2016_08_039
crossref_primary_10_1016_j_autcon_2025_106509
crossref_primary_10_1007_s41095_016_0034_8
crossref_primary_10_1111_cgf_13202
crossref_primary_10_1109_TVCG_2023_3245305
Cites_doi 10.1109/MCG.2008.96
10.1201/b10629
10.1145/2461912.2461930
10.1111/j.1467-8659.2010.01725.x
10.1007/s00450-010-0141-1
10.1007/978-3-642-10520-3_10
10.1145/2556700.2556702
10.1109/38.31463
10.1145/97879.97918
10.1016/j.cag.2011.07.006
10.1145/1278780.1278806
10.1111/j.1467-8659.2009.01465.x
10.1109/TVCG.2007.70534
10.1145/1572769.1572779
10.1145/1618452.1618498
10.1111/1467-8659.00356
10.1007/s10822-010-9352-6
10.1109/TVCG.2012.300
ContentType Journal Article
Copyright 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1111/cgf.12460
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Technology Research Database
Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 85
ExternalDocumentID oai_DiVA_org_liu_110238
3601623971
10_1111_cgf_12460
CGF12460
ark_67375_WNG_BL6BLS0D_4
Genre article
Feature
GrantInformation_xml – fundername: Swedish Research Council
  funderid: 2011‐5816
– fundername: Community Coordinated Modeling Center at Goddard Space Flight Center, NASA
– fundername: Linnaeus Environment CADICS and the Swedish e‐Science Research Centre (SeRC)
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c5390-c76c461d754d16f8af8af654f9278adef2dd25166441c6a7ff0e5fdbc44a05d03
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350145600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
1467-8659
IngestDate Tue Nov 04 16:53:34 EST 2025
Fri Sep 05 10:28:09 EDT 2025
Sun Nov 09 06:33:39 EST 2025
Fri Jul 25 23:47:18 EDT 2025
Sat Nov 29 03:41:11 EST 2025
Tue Nov 18 21:58:46 EST 2025
Wed Jan 22 17:04:38 EST 2025
Tue Nov 11 03:31:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5390-c76c461d754d16f8af8af654f9278adef2dd25166441c6a7ff0e5fdbc44a05d03
Notes istex:4AA5C4DDE5B9DA11B07EDDAAD8777A0DF99B0AD1
Community Coordinated Modeling Center at Goddard Space Flight Center, NASA
Figure S1: Performance comparison with our proposed ppAO and ppDP components.Movie S1: Simultaneous visualization of both volumetric and geometric objects relies heavily on techniques such as A-buffers to achieve real-time performance. This work proposes two novel A-buffer components which achieve performance gains of up to eight times relative existing techniques.
ark:/67375/WNG-BL6BLS0D-4
Swedish Research Council - No. 2011-5816
Linnaeus Environment CADICS and the Swedish e-Science Research Centre (SeRC)
ArticleID:CGF12460
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110238
PQID 1657321683
PQPubID 30877
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_liu_110238
proquest_miscellaneous_1778043679
proquest_journals_1992285888
proquest_journals_1657321683
crossref_citationtrail_10_1111_cgf_12460
crossref_primary_10_1111_cgf_12460
wiley_primary_10_1111_cgf_12460_CGF12460
istex_primary_ark_67375_WNG_BL6BLS0D_4
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References [PHF07] Plate, J., Holtkaemper, T., Froehlich, B.: A flexible multi-volume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1584-1591. http://dx.doi.org/10.1109/TVCG.2007.70534.
[VF13] Vasilakis, A., Fudos, I.: Depth-fighting aware methods for multifragment rendering. IEEE Transactions on Visualization and Computer Graphics 19, 6 (2013), 967-977. http://dx.doi.org/10.1109/TVCG.2012.300.
[YHGT10] Yang, J. C., Hensley, J., Grün, H., Thibieroz, N.: Real-time concurrent linked list construction on the GPU. Computer Graphics Forum 29, 4 (2010), 1297-1304. http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x.
[CS99] Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Computer Graphics Forum 18, 3 (1999), 359-368. http://dx.doi.org/10.1111/1467-8659.00356.
[Mam89] Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Computer Graphics and Applications 9, 4 (1989), 43-55. http://dx.doi.org/10.1109/38.31463.
[XOL04] Xie, H., Ofman, L., Lawrence, G.: Cone model for halo CMEs: Application to space weather forecasting. Journal of Geophysical Research: Space Physics 109, A3 (2004). http://dx.doi.org/10.1029/2003JA010226.
[SdG10] Seeliger, D., de Groot, B. L.: Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24, 5 (2010), 417-422. http://dx.doi.org/10.1007/s10822-010-9352-6.
[GRT13] Günther, T., Rössl, C., Theisel, H.: Opacity optimization for 3D line fields. ACM Transactions on Graphics 32, 4 (July 2013), 120:1-120:8. http://dx.doi.org/10.1145/2461912.2461930.
[LLHY09] Lindholm, S., Ljung, P., Hadwiger, M., Ynnerman, A.: Fused multi-volume DVR using binary space partitioning. Computer Graphics Forum 28, 3 (2009), 847-854. http://dx.doi.org/10.1111/j.1467-8659.2009.01465.x.
[RBE08] Rössler, F., Botchen, R., Ertl, T.: Dynamic shader generation for GPU-based multi-volume ray casting. IEEE Computer Graphics and Applications 28, 5 (2008), 66-77. http://dx.doi.org/10.1109/MCG.2008.96.
[MCTB11] Maule, M., Comba, J. L., Torchelsen, R. P., Bastos, R.: A survey of raster-based transparency techniques. Computers And Graphics 35, 6 (2011), 1023-1034. http://dx.doi.org/10.1016/j.cag.2011.07.006.
[SS11] Schubert, N., Scholl, I.: Comparing GPU-based multi-volume ray-casting techniques. Computer Science-Research and Development 26, 1-2 (2011), 39-50. http://dx.doi.org/10.1007/s00450-010-0141-1.
[EHK*06] Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C., Weiskopf, D.: Real-Time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006.
[KGB*09] Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S., Muehl, J., Schmalstieg, D.: Ray-casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Transactions on Graphics 28, 5 (December 2009), 152:1-152:9. http://dx.doi.org/10.1145/1618452.1618498.
2012
2011
2010
1989; 9
2009
2008
2007
2006
2011; 35
2004
2004; 109
2007; 13
2009; 28
2013; 19
2010; 24
1990
2001
2013; 32
2013; 13
2010; 29
1999; 18
2008; 28
1984
2011; 26
2014
2013
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Vasilakis A. (e_1_2_10_30_1) 2012
Kauker D. (e_1_2_10_16_1) 2013
Bavoil L. (e_1_2_10_3_1) 2007
Carpenter L. (e_1_2_10_5_1) 1984
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
Ebert D. S. (e_1_2_10_11_1) 1990
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_32_1
e_1_2_10_31_1
Xie H. (e_1_2_10_33_1) 2004; 109
Grimm S. (e_1_2_10_13_1) 2004
Maule M. (e_1_2_10_24_1) 2012
Brecheisen R. (e_1_2_10_2_1) 2008
Carr N. (e_1_2_10_7_1) 2008
Kerzner E. (e_1_2_10_17_1) 2013
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – reference: [CS99] Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Computer Graphics Forum 18, 3 (1999), 359-368. http://dx.doi.org/10.1111/1467-8659.00356.
– reference: [SS11] Schubert, N., Scholl, I.: Comparing GPU-based multi-volume ray-casting techniques. Computer Science-Research and Development 26, 1-2 (2011), 39-50. http://dx.doi.org/10.1007/s00450-010-0141-1.
– reference: [LLHY09] Lindholm, S., Ljung, P., Hadwiger, M., Ynnerman, A.: Fused multi-volume DVR using binary space partitioning. Computer Graphics Forum 28, 3 (2009), 847-854. http://dx.doi.org/10.1111/j.1467-8659.2009.01465.x.
– reference: [PHF07] Plate, J., Holtkaemper, T., Froehlich, B.: A flexible multi-volume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1584-1591. http://dx.doi.org/10.1109/TVCG.2007.70534.
– reference: [MCTB11] Maule, M., Comba, J. L., Torchelsen, R. P., Bastos, R.: A survey of raster-based transparency techniques. Computers And Graphics 35, 6 (2011), 1023-1034. http://dx.doi.org/10.1016/j.cag.2011.07.006.
– reference: [RBE08] Rössler, F., Botchen, R., Ertl, T.: Dynamic shader generation for GPU-based multi-volume ray casting. IEEE Computer Graphics and Applications 28, 5 (2008), 66-77. http://dx.doi.org/10.1109/MCG.2008.96.
– reference: [EHK*06] Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C., Weiskopf, D.: Real-Time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006.
– reference: [Mam89] Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Computer Graphics and Applications 9, 4 (1989), 43-55. http://dx.doi.org/10.1109/38.31463.
– reference: [XOL04] Xie, H., Ofman, L., Lawrence, G.: Cone model for halo CMEs: Application to space weather forecasting. Journal of Geophysical Research: Space Physics 109, A3 (2004). http://dx.doi.org/10.1029/2003JA010226.
– reference: [VF13] Vasilakis, A., Fudos, I.: Depth-fighting aware methods for multifragment rendering. IEEE Transactions on Visualization and Computer Graphics 19, 6 (2013), 967-977. http://dx.doi.org/10.1109/TVCG.2012.300.
– reference: [GRT13] Günther, T., Rössl, C., Theisel, H.: Opacity optimization for 3D line fields. ACM Transactions on Graphics 32, 4 (July 2013), 120:1-120:8. http://dx.doi.org/10.1145/2461912.2461930.
– reference: [YHGT10] Yang, J. C., Hensley, J., Grün, H., Thibieroz, N.: Real-time concurrent linked list construction on the GPU. Computer Graphics Forum 29, 4 (2010), 1297-1304. http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x.
– reference: [KGB*09] Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S., Muehl, J., Schmalstieg, D.: Ray-casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Transactions on Graphics 28, 5 (December 2009), 152:1-152:9. http://dx.doi.org/10.1145/1618452.1618498.
– reference: [SdG10] Seeliger, D., de Groot, B. L.: Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24, 5 (2010), 417-422. http://dx.doi.org/10.1007/s10822-010-9352-6.
– year: 2011
– volume: 24
  start-page: 417
  issue: 5
  year: 2010
  end-page: 422
  article-title: Ligand docking and binding site analysis with PyMOL and Autodock/Vina
  publication-title: Journal of Computer‐Aided Molecular Design
– start-page: 109:1
  year: 2013
  end-page: 109:1
– start-page: 386
  year: 2004
  end-page: 379
– volume: 32
  start-page: 120:1
  issue: 4
  year: 2013
  end-page: 120:8
  article-title: Opacity optimization for 3D line fields
  publication-title: ACM Transactions on Graphics
– start-page: 51
  year: 2009
  end-page: 57
– volume: 29
  start-page: 1297
  issue: 4
  year: 2010
  end-page: 1304
  article-title: Real‐time concurrent linked list construction on the GPU
  publication-title: Computer Graphics Forum
– year: 2001
– year: 2007
– volume: 19
  start-page: 967
  issue: 6
  year: 2013
  end-page: 977
  article-title: Depth‐fighting aware methods for multifragment rendering
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 28
  start-page: 847
  issue: 3
  year: 2009
  end-page: 854
  article-title: Fused multi‐volume DVR using binary space partitioning
  publication-title: Computer Graphics Forum
– start-page: 357
  year: 1990
  end-page: 366
– start-page: 101
  year: 2012
  end-page: 104
– volume: 13
  start-page: 33
  year: 2013
  end-page: 40
– start-page: 104
  year: 2009
  end-page: 116
– year: 2010
– start-page: 97
  year: 2007
  end-page: 104
– volume: 13
  start-page: 1584
  issue: 6
  year: 2007
  end-page: 1591
  article-title: A flexible multi‐volume shader framework for arbitrarily intersecting multi‐resolution datasets
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 18
  start-page: 359
  issue: 3
  year: 1999
  end-page: 368
  article-title: Data intermixing and multi‐volume rendering
  publication-title: Computer Graphics Forum
– volume: 28
  start-page: 152:1
  issue: 5
  year: 2009
  end-page: 152:9
  article-title: Ray‐casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs
  publication-title: ACM Transactions on Graphics
– volume: 9
  start-page: 43
  issue: 4
  year: 1989
  end-page: 55
  article-title: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique
  publication-title: IEEE Computer Graphics and Applications
– start-page: 33
  year: 2008
  end-page: 40
– year: 2008
– start-page: 103
  year: 1984
  end-page: 108
– year: 2006
– volume: 28
  start-page: 66
  issue: 5
  year: 2008
  end-page: 77
  article-title: Dynamic shader generation for GPU‐based multi‐volume ray casting
  publication-title: IEEE Computer Graphics and Applications
– volume: 109
  issue: A3
  year: 2004
  article-title: Cone model for halo CMEs: Application to space weather forecasting
  publication-title: Journal of Geophysical Research: Space Physics
– start-page: 303
  year: 2008
  end-page: 312
– start-page: 134
  year: 2012
  end-page: 141
– start-page: 143
  year: 2014
  end-page: 150
– volume: 26
  start-page: 39
  year: 2011
  end-page: 50
  article-title: Comparing GPU‐based multi‐volume ray‐casting techniques
  publication-title: Computer Science‐Research and Development
– volume: 35
  start-page: 1023
  issue: 6
  year: 2011
  end-page: 1034
  article-title: A survey of raster‐based transparency techniques
  publication-title: Computers And Graphics
– start-page: 109:1
  volume-title: ACM SIGGRAPH 2013 Posters
  year: 2013
  ident: e_1_2_10_17_1
– ident: e_1_2_10_27_1
  doi: 10.1109/MCG.2008.96
– ident: e_1_2_10_10_1
  doi: 10.1201/b10629
– ident: e_1_2_10_14_1
  doi: 10.1145/2461912.2461930
– start-page: 101
  volume-title: Proceedings of Eurographics (Short Papers)
  year: 2012
  ident: e_1_2_10_30_1
– ident: e_1_2_10_34_1
  doi: 10.1111/j.1467-8659.2010.01725.x
– start-page: 134
  volume-title: Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI)
  year: 2012
  ident: e_1_2_10_24_1
– ident: e_1_2_10_29_1
  doi: 10.1007/s00450-010-0141-1
– ident: e_1_2_10_18_1
  doi: 10.1007/978-3-642-10520-3_10
– ident: e_1_2_10_32_1
  doi: 10.1145/2556700.2556702
– ident: e_1_2_10_21_1
  doi: 10.1109/38.31463
– start-page: 357
  volume-title: Proceedings of SIGGRAPH
  year: 1990
  ident: e_1_2_10_11_1
  doi: 10.1145/97879.97918
– ident: e_1_2_10_23_1
  doi: 10.1016/j.cag.2011.07.006
– ident: e_1_2_10_8_1
– ident: e_1_2_10_22_1
  doi: 10.1145/1278780.1278806
– volume: 109
  issue: 3
  year: 2004
  ident: e_1_2_10_33_1
  article-title: Cone model for halo CMEs: Application to space weather forecasting
  publication-title: Journal of Geophysical Research: Space Physics
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1467-8659.2009.01465.x
– ident: e_1_2_10_26_1
  doi: 10.1109/TVCG.2007.70534
– start-page: 97
  volume-title: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D)
  year: 2007
  ident: e_1_2_10_3_1
– start-page: 103
  volume-title: Proceedings of ACM SIGGRAPH Computer Graphics and Interactive Techniques
  year: 1984
  ident: e_1_2_10_5_1
– ident: e_1_2_10_12_1
– ident: e_1_2_10_4_1
– ident: e_1_2_10_19_1
  doi: 10.1145/1572769.1572779
– ident: e_1_2_10_15_1
  doi: 10.1145/1618452.1618498
– start-page: 303
  volume-title: Proceedings of Vision, Modelling and Visualization (VMV)
  year: 2008
  ident: e_1_2_10_2_1
– ident: e_1_2_10_9_1
  doi: 10.1111/1467-8659.00356
– start-page: 33
  volume-title: Proceedings of Eurographics Symposium on Parallel Graphics and Visualization (EGPGV)
  year: 2013
  ident: e_1_2_10_16_1
– ident: e_1_2_10_25_1
– ident: e_1_2_10_6_1
– ident: e_1_2_10_28_1
  doi: 10.1007/s10822-010-9352-6
– ident: e_1_2_10_31_1
  doi: 10.1109/TVCG.2012.300
– start-page: 33
  volume-title: Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware
  year: 2008
  ident: e_1_2_10_7_1
– start-page: 386
  volume-title: Proceedings of Vision, Modelling and Visualization (VMV)
  year: 2004
  ident: e_1_2_10_13_1
SSID ssj0004765
Score 2.155802
Snippet In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Algorithms
Analysis
Buffers
Complexity
Computer graphics
Computer memory
Data processing
Data visualization
Gain
Histograms
I.3.3 [Computer Graphics]: Picture/Image Generation Display-algorithms
I.3.3 [Computer Graphics]: Picture/Image Generation Display—algorithms; I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—I.3.8 [Computer Graphics]: Applications
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-I.3.8 [Computer Graphics]: Applications
Molecular biology
Pixels
ray tracing
real-time rendering
Rendering
Scientific visualization
Space weather
Studies
Utilization
Visualization
Title Hybrid Data Visualization Based on Depth Complexity Histogram Analysis
URI https://api.istex.fr/ark:/67375/WNG-BL6BLS0D-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12460
https://www.proquest.com/docview/1657321683
https://www.proquest.com/docview/1992285888
https://www.proquest.com/docview/1778043679
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110238
Volume 34
WOSCitedRecordID wos000350145600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9tAFB6C3UN7SHfqNA3TUkovKlpmEz3FUZQcjClt4-Y2zJqaBDvYcmj-fedpawwpFAo6DOgJnt4y84303jcIveeaZzpsM6KYuDwiLvhCU51GsRGx117krO5bm034dCrOz_MvO-hz1wvT8EP0H9wgM-r5GhJc6fWdJDcX_lNYnFjYrw_TELdkgIbF1_Js8qctkjPaUXsDaUxLLASFPP3DW8vRECz7axtrNvyh29C1XnvKx_-l9RO020JOfNjEyFO04xbP0KM7RITPUXl6C51buFCVwrP5Gjotm_5MPA7LnMVhULjr6ieG-QM4NKtbXDOMQHEX7phNXqCz8vj70WnUnrAQGZrlcWQ4M4QlllNiE-aFgotR4vOUC2WdT60NAIgBaDJMce9jR73VhhAVUxtnL9FgsVy4VwhbS7TxJqBJnxDvRB5CNHg6s4ZQ7ZJshD52hpampR-HUzCuZLcNCaaRtWlG6F0vet1wbtwn9KH2Vi-hVpdQpMap_DE9keMJG0--xYUkI7TfuVO2-bmWCaM8SxMmsvtvA1uvoEKIEXrb3w6JB39T1MItN0GGA3dTxngeVGmipNcFOLuL-exQLlcX8mq-CboDNgo2qGPj728lj07KerD376Kv0cOA4mhTSr6PBtVq496gB-ammq9XB21S_AZZ1w43
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnaD9YH3S06pRRPwSSS77CvRLrzE9MR6i7dlvS7KP9mi5K3c5sf-9O3nZgwqCkA8LO4HJPHZmNzO_BXjLCx4VbpvhB8TEPjFOFwUthn6gRGALK2JW9a1NMz6ZiNPT-OsW7Le9MDU-RHfghp5Rrdfo4HggfcPL1Zn94KITcxv2PnFmRHvQT76lJ9mfvkjOaIvtjagxDbIQVvJ0L2_Eoz6K9tdmslkDiG7mrlXwSXf-j-0HcL9JOr2D2koewpaZP4LtG1CEjyEdX2PvlpfkZe5NZyvstaw7NL2RC3Tac4PEXJXnHq4giKJZXnsVxgiWd3kttskTOEk_Hh-O_eaOBV_RKA58xZkiLNScEh0yK3J8GCU2HnKRa2OHWrsUiGHapFjOrQ0MtbpQhOQB1UH0FHrzxdzsgqc1KZRVLp-0IbFGxM5Ina4jrQgtTBgN4H0raakaAHK8B-NSthsRJxpZiWYAbzrSqxp14zaid5W6Oop8eYFlapzKH5MjOcrYKPseJJIMYK_Vp2w8dCVDRnk0DJmIbp9GvF5BhRADeN1NO9fD_yn53CzWjoYjelPEeOxYqc2k4wVRu5PZ9EAulmfycrZ2vGN25GRQGcffv0oeHqXV4Nm_k76Cu-PjL5nMPk0-P4d7LqejdWH5HvTK5dq8gDvqZzlbLV82HvIbgVUSJw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnYh-aH3i1VajiPglJbnsK-CXXmNaMRxF7dlvS7KPerTcHXe5Yv97d_KyBxUEIR8WdhIm89iZTWZ-C_COFzwq3DbDD4iJfWKcLgpaDP1AicAWVsSs6lubZHw8Fufn8ekWfGx7YWp8iO6DG3pGtV6jg5uFtre8XF3YAxedmNuw9wl1D-1BP_manmV_-iI5oy22N6LGNMhCWMnT3bwRj_oo2l-byWYNILqZu1bBJ935P7YfwXaTdHqHtZU8hi0zewIPb0ERPoX05AZ7t7wkL3NvMl1hr2XdoemNXKDTnhskZlH-9HAFQRTN8sarMEawvMtrsU2ewVn66fvRid-cseArGsWBrzhThIWaU6JDZkWOF6PExkMucm3sUGuXAjFMmxTLubWBoVYXipA8oDqInkNvNp-ZF-BpTQpllcsnbUisEbEzUqfrSCtCCxNGA_jQSlqqBoAcz8G4ku1GxIlGVqIZwNuOdFGjbtxF9L5SV0eRLy-xTI1T-WN8LEcZG2XfgkSSAey1-pSNh65kyCiPhiET0d3TiNcrqBBiAG-6aed6-D8ln5n52tFwRG-KGI8dK7WZdLwgancynRzK-fJCXk3XjnfMjpwMKuP4-1vJo-O0Guz-O-lruH-apDL7PP7yEh64lI7WdeV70CuXa7MP99R1OV0tXzUO8hvx2BGi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Data+Visualization+Based+on+Depth+Complexity+Histogram+Analysis&rft.jtitle=Computer+graphics+forum&rft.au=Lindholm%2C+S.&rft.au=Falk%2C+M.&rft.au=Sund%C3%A9n%2C+E.&rft.au=Bock%2C+A.&rft.date=2015-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=1&rft.spage=74&rft.epage=85&rft_id=info:doi/10.1111%2Fcgf.12460&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BL6BLS0D_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon