Anisotropy links cell shapes to tissue flow during convergent extension

Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechani...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 24; p. 13541
Main Authors: Wang, Xun, Merkel, Matthias, Sutter, Leo B, Erdemci-Tandogan, Gonca, Manning, M Lisa, Kasza, Karen E
Format: Journal Article
Language:English
Published: United States 16.06.2020
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the germband predict the onset of rapid cell rearrangement in both wild-type and mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
AbstractList Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the germband predict the onset of rapid cell rearrangement in both wild-type and mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
Author Merkel, Matthias
Sutter, Leo B
Wang, Xun
Erdemci-Tandogan, Gonca
Kasza, Karen E
Manning, M Lisa
Author_xml – sequence: 1
  givenname: Xun
  orcidid: 0000-0002-6363-4225
  surname: Wang
  fullname: Wang, Xun
  organization: Department of Mechanical Engineering, Columbia University, New York, NY 10027
– sequence: 2
  givenname: Matthias
  orcidid: 0000-0001-9118-1270
  surname: Merkel
  fullname: Merkel, Matthias
  organization: Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
– sequence: 3
  givenname: Leo B
  surname: Sutter
  fullname: Sutter, Leo B
  organization: BioInspired Institute, Syracuse University, Syracuse, NY 13244
– sequence: 4
  givenname: Gonca
  surname: Erdemci-Tandogan
  fullname: Erdemci-Tandogan, Gonca
  organization: BioInspired Institute, Syracuse University, Syracuse, NY 13244
– sequence: 5
  givenname: M Lisa
  orcidid: 0000-0001-7682-2324
  surname: Manning
  fullname: Manning, M Lisa
  organization: BioInspired Institute, Syracuse University, Syracuse, NY 13244
– sequence: 6
  givenname: Karen E
  orcidid: 0000-0002-0888-3579
  surname: Kasza
  fullname: Kasza, Karen E
  email: karen.kasza@columbia.edu
  organization: Department of Mechanical Engineering, Columbia University, New York, NY 10027; karen.kasza@columbia.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32467168$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAUhS1URB8wsyGPLCn3Og87Y1VBQarEAnPkODfFkNghToD-e4ooEtM5w6ej883ZxHlHjF0iLBFkfNM5HZaYY5agQpQnbIaQY5QlOUz-9Smbh_AKAHmq4IxNY5FkEjM1Y5uVs8EPve_2vLHuLXBDTcPDi-4o8MHzwYYwEq8b_8mrsbdux413H9TvyA2cvgZywXp3zk5r3QS6OOaCPd_dPq3vo-3j5mG92kYmjdUQkc4JKddgKE4FaC2klgZUTKlOcwQqTVUnWpUJ1KamygBUshISDGa6KoVYsOvf3a737yOFoWht-LmsHfkxFCIBhQdLhQf06oiOZUtV0fW21f2--JMX302_X9c
CitedBy_id crossref_primary_10_1103_PhysRevLett_128_178001
crossref_primary_10_1038_s41567_022_01787_6
crossref_primary_10_1038_s41567_023_01977_w
crossref_primary_10_1016_j_actbio_2022_07_008
crossref_primary_10_1103_PhysRevX_15_011067
crossref_primary_10_1007_s12195_021_00676_x
crossref_primary_10_1103_PhysRevLett_134_048203
crossref_primary_10_1073_pnas_2425373122
crossref_primary_10_1016_j_semcdb_2022_04_021
crossref_primary_10_1007_s11433_021_1778_y
crossref_primary_10_1016_j_cub_2024_10_070
crossref_primary_10_1371_journal_pcbi_1010135
crossref_primary_10_1093_genetics_iyad184
crossref_primary_10_1371_journal_pcbi_1012993
crossref_primary_10_1103_PhysRevX_11_041037
crossref_primary_10_1103_v1qt_zg86
crossref_primary_10_1103_PhysRevResearch_5_013143
crossref_primary_10_1002_dvdy_70061
crossref_primary_10_1063_PT_3_4900
crossref_primary_10_1038_s41567_021_01215_1
crossref_primary_10_1140_epje_s10189_022_00175_5
crossref_primary_10_1016_j_ceb_2021_07_011
crossref_primary_10_1002_advs_202408853
crossref_primary_10_1371_journal_pbio_3002611
crossref_primary_10_7554_eLife_95521
crossref_primary_10_1016_j_bpj_2022_10_029
crossref_primary_10_1016_j_bpj_2021_06_041
crossref_primary_10_1016_j_bpj_2023_10_001
crossref_primary_10_1103_PhysRevX_14_011027
crossref_primary_10_1016_j_cub_2024_07_014
crossref_primary_10_1073_pnas_2418111122
crossref_primary_10_1371_journal_pone_0281931
crossref_primary_10_1002_dvdy_439
crossref_primary_10_1073_pnas_2322732121
crossref_primary_10_1016_j_devcel_2020_11_025
crossref_primary_10_1016_j_jbiomech_2023_111435
crossref_primary_10_1073_pnas_1917853118
crossref_primary_10_1016_j_cdev_2021_203727
crossref_primary_10_1021_acsnano_4c12599
crossref_primary_10_1103_PhysRevE_105_024404
crossref_primary_10_1146_annurev_bioeng_060418_052527
crossref_primary_10_7554_eLife_95521_3
crossref_primary_10_1103_PhysRevResearch_7_013157
crossref_primary_10_1016_j_cub_2024_06_038
crossref_primary_10_1016_j_cub_2025_03_066
crossref_primary_10_1146_annurev_cellbio_120319_030931
crossref_primary_10_1103_PhysRevE_105_025003
crossref_primary_10_1039_D5SM00222B
crossref_primary_10_1016_j_ceb_2023_102310
crossref_primary_10_1016_j_cub_2022_02_059
crossref_primary_10_1103_PhysRevLett_130_188201
crossref_primary_10_1007_s10237_023_01704_7
crossref_primary_10_1103_PhysRevResearch_4_043148
crossref_primary_10_1016_j_cub_2021_07_078
crossref_primary_10_1038_s41467_023_43612_5
crossref_primary_10_1038_s41467_024_49044_z
crossref_primary_10_1038_s41580_023_00688_7
crossref_primary_10_1016_j_celrep_2024_115193
crossref_primary_10_1016_j_bpj_2024_11_007
crossref_primary_10_1083_jcb_202211113
crossref_primary_10_1073_pnas_2109168118
crossref_primary_10_1016_j_cell_2021_02_017
crossref_primary_10_1242_dev_202577
crossref_primary_10_1103_PhysRevE_104_044606
crossref_primary_10_1016_j_mbm_2024_100038
crossref_primary_10_1103_PhysRevE_105_025004
crossref_primary_10_1103_9ktk_6rqc
crossref_primary_10_1016_j_gde_2021_10_007
crossref_primary_10_1101_cshperspect_a041518
crossref_primary_10_1038_s41598_023_45127_x
crossref_primary_10_1038_s41556_025_01632_x
crossref_primary_10_1073_pnas_2417290122
crossref_primary_10_1016_j_bpj_2024_10_003
crossref_primary_10_1016_j_bpj_2025_08_011
crossref_primary_10_1016_j_cell_2022_04_023
crossref_primary_10_1016_j_compbiomed_2024_109506
crossref_primary_10_1038_s44222_025_00338_x
crossref_primary_10_1038_s41467_025_61303_1
crossref_primary_10_1038_s41556_023_01332_4
crossref_primary_10_1371_journal_pcbi_1009049
crossref_primary_10_1016_j_tcb_2021_12_006
crossref_primary_10_1038_s41467_022_34518_9
crossref_primary_10_1042_BST20230173
crossref_primary_10_1016_j_semcdb_2021_07_001
crossref_primary_10_3389_fphy_2021_666916
crossref_primary_10_1371_journal_pcbi_1012001
crossref_primary_10_1111_dgd_70024
crossref_primary_10_1038_s41467_021_27253_0
crossref_primary_10_1016_j_cdev_2021_203746
crossref_primary_10_1016_j_celrep_2025_115387
crossref_primary_10_3390_biophysica4040040
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1916418117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 32467168
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM117598
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c538t-ea9e1e9a0ce3520aa27a7c083e5a5910ebcdf4a8b40fcfedc00d7d270c16adb22
IEDL.DBID 7X8
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548656500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 12:30:46 EDT 2025
Thu Apr 03 06:59:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords morphogenesis
epithelia
Drosophila
vertex models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-ea9e1e9a0ce3520aa27a7c083e5a5910ebcdf4a8b40fcfedc00d7d270c16adb22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6363-4225
0000-0001-7682-2324
0000-0002-0888-3579
0000-0001-9118-1270
OpenAccessLink https://hal.science/hal-02797029
PMID 32467168
PQID 2408195881
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2408195881
pubmed_primary_32467168
PublicationCentury 2000
PublicationDate 2020-06-16
PublicationDateYYYYMMDD 2020-06-16
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
SSID ssj0009580
Score 2.641699
Snippet Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 13541
SubjectTerms Animals
Anisotropy
Cell Shape
Drosophila - cytology
Drosophila - genetics
Drosophila - growth & development
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Epithelium - metabolism
Myosin Type II - genetics
Myosin Type II - metabolism
Title Anisotropy links cell shapes to tissue flow during convergent extension
URI https://www.ncbi.nlm.nih.gov/pubmed/32467168
https://www.proquest.com/docview/2408195881
Volume 117
WOSCitedRecordID wos000548656500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPeoibNn2kJxFx9aDLHhT2VtJkgoK0dVsV_72TtoteBMFLTy20k8n0my8z3xByokOrA24jZpXQLAgFYBwEzpTRiebWCNOKJN3F47GcTpNJR7hVXVnlPCY2gdoU2nHkQyfF5YRRpHdRvjI3NcqdrnYjNBZJTyCUcSVd8VT-EN2VrRpB4rEoSPhc2icWwzJX1TnmKlHguVbL3_Fl858Zrf33DdfJaocw6WXrEn2yAPkG6Xd7uKKnndD02Sa5ucyfq6KeFeUnbQ5yqaPxafWkSryxLmjdrAq1L8UHbfsZaVOl7ho2a9rw545s2yKPo-uHq1vWDVZgGuNbzUAl4EGiuAbEX1wpP1axRjAGoQoRP0CmjQ2UzHAVtQWjOTex8WOuvUiZzPe3yVJe5LBLqAVpImEwkREisDpTCPB8KcGA9U3g2QE5nhsrRcd1n6FyKN6q9NtcA7LTWjwtW4WNFFFehImc3PvD0_tkxXc5sJsnFB2QnsVtC4dkWb-jkWZHjUfgdTy5_wLJXMNj
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropy+links+cell+shapes+to+tissue+flow+during+convergent+extension&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Xun&rft.au=Merkel%2C+Matthias&rft.au=Sutter%2C+Leo+B&rft.au=Erdemci-Tandogan%2C+Gonca&rft.date=2020-06-16&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=117&rft.issue=24&rft.spage=13541&rft_id=info:doi/10.1073%2Fpnas.1916418117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon