Anisotropy links cell shapes to tissue flow during convergent extension
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechani...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 24; p. 13541 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
16.06.2020
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending
germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the
germband predict the onset of rapid cell rearrangement in both wild-type and
mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events. |
|---|---|
| AbstractList | Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending
germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the
germband predict the onset of rapid cell rearrangement in both wild-type and
mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events. Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events. |
| Author | Merkel, Matthias Sutter, Leo B Wang, Xun Erdemci-Tandogan, Gonca Kasza, Karen E Manning, M Lisa |
| Author_xml | – sequence: 1 givenname: Xun orcidid: 0000-0002-6363-4225 surname: Wang fullname: Wang, Xun organization: Department of Mechanical Engineering, Columbia University, New York, NY 10027 – sequence: 2 givenname: Matthias orcidid: 0000-0001-9118-1270 surname: Merkel fullname: Merkel, Matthias organization: Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France – sequence: 3 givenname: Leo B surname: Sutter fullname: Sutter, Leo B organization: BioInspired Institute, Syracuse University, Syracuse, NY 13244 – sequence: 4 givenname: Gonca surname: Erdemci-Tandogan fullname: Erdemci-Tandogan, Gonca organization: BioInspired Institute, Syracuse University, Syracuse, NY 13244 – sequence: 5 givenname: M Lisa orcidid: 0000-0001-7682-2324 surname: Manning fullname: Manning, M Lisa organization: BioInspired Institute, Syracuse University, Syracuse, NY 13244 – sequence: 6 givenname: Karen E orcidid: 0000-0002-0888-3579 surname: Kasza fullname: Kasza, Karen E email: karen.kasza@columbia.edu organization: Department of Mechanical Engineering, Columbia University, New York, NY 10027; karen.kasza@columbia.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32467168$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjztPwzAUhS1URB8wsyGPLCn3Og87Y1VBQarEAnPkODfFkNghToD-e4ooEtM5w6ej883ZxHlHjF0iLBFkfNM5HZaYY5agQpQnbIaQY5QlOUz-9Smbh_AKAHmq4IxNY5FkEjM1Y5uVs8EPve_2vLHuLXBDTcPDi-4o8MHzwYYwEq8b_8mrsbdux413H9TvyA2cvgZywXp3zk5r3QS6OOaCPd_dPq3vo-3j5mG92kYmjdUQkc4JKddgKE4FaC2klgZUTKlOcwQqTVUnWpUJ1KamygBUshISDGa6KoVYsOvf3a737yOFoWht-LmsHfkxFCIBhQdLhQf06oiOZUtV0fW21f2--JMX302_X9c |
| CitedBy_id | crossref_primary_10_1103_PhysRevLett_128_178001 crossref_primary_10_1038_s41567_022_01787_6 crossref_primary_10_1038_s41567_023_01977_w crossref_primary_10_1016_j_actbio_2022_07_008 crossref_primary_10_1103_PhysRevX_15_011067 crossref_primary_10_1007_s12195_021_00676_x crossref_primary_10_1103_PhysRevLett_134_048203 crossref_primary_10_1073_pnas_2425373122 crossref_primary_10_1016_j_semcdb_2022_04_021 crossref_primary_10_1007_s11433_021_1778_y crossref_primary_10_1016_j_cub_2024_10_070 crossref_primary_10_1371_journal_pcbi_1010135 crossref_primary_10_1093_genetics_iyad184 crossref_primary_10_1371_journal_pcbi_1012993 crossref_primary_10_1103_PhysRevX_11_041037 crossref_primary_10_1103_v1qt_zg86 crossref_primary_10_1103_PhysRevResearch_5_013143 crossref_primary_10_1002_dvdy_70061 crossref_primary_10_1063_PT_3_4900 crossref_primary_10_1038_s41567_021_01215_1 crossref_primary_10_1140_epje_s10189_022_00175_5 crossref_primary_10_1016_j_ceb_2021_07_011 crossref_primary_10_1002_advs_202408853 crossref_primary_10_1371_journal_pbio_3002611 crossref_primary_10_7554_eLife_95521 crossref_primary_10_1016_j_bpj_2022_10_029 crossref_primary_10_1016_j_bpj_2021_06_041 crossref_primary_10_1016_j_bpj_2023_10_001 crossref_primary_10_1103_PhysRevX_14_011027 crossref_primary_10_1016_j_cub_2024_07_014 crossref_primary_10_1073_pnas_2418111122 crossref_primary_10_1371_journal_pone_0281931 crossref_primary_10_1002_dvdy_439 crossref_primary_10_1073_pnas_2322732121 crossref_primary_10_1016_j_devcel_2020_11_025 crossref_primary_10_1016_j_jbiomech_2023_111435 crossref_primary_10_1073_pnas_1917853118 crossref_primary_10_1016_j_cdev_2021_203727 crossref_primary_10_1021_acsnano_4c12599 crossref_primary_10_1103_PhysRevE_105_024404 crossref_primary_10_1146_annurev_bioeng_060418_052527 crossref_primary_10_7554_eLife_95521_3 crossref_primary_10_1103_PhysRevResearch_7_013157 crossref_primary_10_1016_j_cub_2024_06_038 crossref_primary_10_1016_j_cub_2025_03_066 crossref_primary_10_1146_annurev_cellbio_120319_030931 crossref_primary_10_1103_PhysRevE_105_025003 crossref_primary_10_1039_D5SM00222B crossref_primary_10_1016_j_ceb_2023_102310 crossref_primary_10_1016_j_cub_2022_02_059 crossref_primary_10_1103_PhysRevLett_130_188201 crossref_primary_10_1007_s10237_023_01704_7 crossref_primary_10_1103_PhysRevResearch_4_043148 crossref_primary_10_1016_j_cub_2021_07_078 crossref_primary_10_1038_s41467_023_43612_5 crossref_primary_10_1038_s41467_024_49044_z crossref_primary_10_1038_s41580_023_00688_7 crossref_primary_10_1016_j_celrep_2024_115193 crossref_primary_10_1016_j_bpj_2024_11_007 crossref_primary_10_1083_jcb_202211113 crossref_primary_10_1073_pnas_2109168118 crossref_primary_10_1016_j_cell_2021_02_017 crossref_primary_10_1242_dev_202577 crossref_primary_10_1103_PhysRevE_104_044606 crossref_primary_10_1016_j_mbm_2024_100038 crossref_primary_10_1103_PhysRevE_105_025004 crossref_primary_10_1103_9ktk_6rqc crossref_primary_10_1016_j_gde_2021_10_007 crossref_primary_10_1101_cshperspect_a041518 crossref_primary_10_1038_s41598_023_45127_x crossref_primary_10_1038_s41556_025_01632_x crossref_primary_10_1073_pnas_2417290122 crossref_primary_10_1016_j_bpj_2024_10_003 crossref_primary_10_1016_j_bpj_2025_08_011 crossref_primary_10_1016_j_cell_2022_04_023 crossref_primary_10_1016_j_compbiomed_2024_109506 crossref_primary_10_1038_s44222_025_00338_x crossref_primary_10_1038_s41467_025_61303_1 crossref_primary_10_1038_s41556_023_01332_4 crossref_primary_10_1371_journal_pcbi_1009049 crossref_primary_10_1016_j_tcb_2021_12_006 crossref_primary_10_1038_s41467_022_34518_9 crossref_primary_10_1042_BST20230173 crossref_primary_10_1016_j_semcdb_2021_07_001 crossref_primary_10_3389_fphy_2021_666916 crossref_primary_10_1371_journal_pcbi_1012001 crossref_primary_10_1111_dgd_70024 crossref_primary_10_1038_s41467_021_27253_0 crossref_primary_10_1016_j_cdev_2021_203746 crossref_primary_10_1016_j_celrep_2025_115387 crossref_primary_10_3390_biophysica4040040 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1916418117 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 32467168 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM117598 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c538t-ea9e1e9a0ce3520aa27a7c083e5a5910ebcdf4a8b40fcfedc00d7d270c16adb22 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548656500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 12:30:46 EDT 2025 Thu Apr 03 06:59:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | morphogenesis epithelia Drosophila vertex models |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c538t-ea9e1e9a0ce3520aa27a7c083e5a5910ebcdf4a8b40fcfedc00d7d270c16adb22 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6363-4225 0000-0001-7682-2324 0000-0002-0888-3579 0000-0001-9118-1270 |
| OpenAccessLink | https://hal.science/hal-02797029 |
| PMID | 32467168 |
| PQID | 2408195881 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2408195881 pubmed_primary_32467168 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-16 |
| PublicationDateYYYYMMDD | 2020-06-16 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2020 |
| SSID | ssj0009580 |
| Score | 2.641699 |
| Snippet | Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 13541 |
| SubjectTerms | Animals Anisotropy Cell Shape Drosophila - cytology Drosophila - genetics Drosophila - growth & development Drosophila - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Epithelium - metabolism Myosin Type II - genetics Myosin Type II - metabolism |
| Title | Anisotropy links cell shapes to tissue flow during convergent extension |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32467168 https://www.proquest.com/docview/2408195881 |
| Volume | 117 |
| WOSCitedRecordID | wos000548656500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPeoibNn2kJxFx9aDLHhT2VtJkgoK0dVsV_72TtoteBMFLTy20k8n0my8z3xByokOrA24jZpXQLAgFYBwEzpTRiebWCNOKJN3F47GcTpNJR7hVXVnlPCY2gdoU2nHkQyfF5YRRpHdRvjI3NcqdrnYjNBZJTyCUcSVd8VT-EN2VrRpB4rEoSPhc2icWwzJX1TnmKlHguVbL3_Fl858Zrf33DdfJaocw6WXrEn2yAPkG6Xd7uKKnndD02Sa5ucyfq6KeFeUnbQ5yqaPxafWkSryxLmjdrAq1L8UHbfsZaVOl7ho2a9rw545s2yKPo-uHq1vWDVZgGuNbzUAl4EGiuAbEX1wpP1axRjAGoQoRP0CmjQ2UzHAVtQWjOTex8WOuvUiZzPe3yVJe5LBLqAVpImEwkREisDpTCPB8KcGA9U3g2QE5nhsrRcd1n6FyKN6q9NtcA7LTWjwtW4WNFFFehImc3PvD0_tkxXc5sJsnFB2QnsVtC4dkWb-jkWZHjUfgdTy5_wLJXMNj |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropy+links+cell+shapes+to+tissue+flow+during+convergent+extension&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Xun&rft.au=Merkel%2C+Matthias&rft.au=Sutter%2C+Leo+B&rft.au=Erdemci-Tandogan%2C+Gonca&rft.date=2020-06-16&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=117&rft.issue=24&rft.spage=13541&rft_id=info:doi/10.1073%2Fpnas.1916418117&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |