Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering
Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we de...
Uloženo v:
| Vydáno v: | Biomaterials Ročník 232; s. 119679 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Ltd
01.02.2020
|
| Témata: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration. |
|---|---|
| AbstractList | Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration. Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration.Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration. |
| ArticleNumber | 119679 |
| Author | Ajiteru, Olatunji Seo, Ye Been Lee, Young Jin Hong, Heesun Kim, Do Yeon Sultan, Md Tipu Kim, Soon Hee Lee, Hanna Lee, Ok Joo Lee, Ji Seung Park, Chan Hum |
| Author_xml | – sequence: 1 givenname: Heesun surname: Hong fullname: Hong, Heesun organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 2 givenname: Ye Been surname: Seo fullname: Seo, Ye Been organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 3 givenname: Do Yeon surname: Kim fullname: Kim, Do Yeon organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 4 givenname: Ji Seung surname: Lee fullname: Lee, Ji Seung organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 5 givenname: Young Jin surname: Lee fullname: Lee, Young Jin organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 6 givenname: Hanna surname: Lee fullname: Lee, Hanna organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 7 givenname: Olatunji surname: Ajiteru fullname: Ajiteru, Olatunji organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 8 givenname: Md Tipu surname: Sultan fullname: Sultan, Md Tipu organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 9 givenname: Ok Joo surname: Lee fullname: Lee, Ok Joo organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 10 givenname: Soon Hee surname: Kim fullname: Kim, Soon Hee organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea – sequence: 11 givenname: Chan Hum surname: Park fullname: Park, Chan Hum email: hlpch@paran.com organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31865191$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9v1DAQxS1URLeFr4AsTlyy2Inj2JyALv-kSlzgwsVynHE6W68Dthdpvz2utpVQL-zJGum9n2feuyBncYlAyCvO1pxx-Wa7HnHZ2QIJbcjrlnG95lzLQT8hK64G1fSa9WdkxbhoGy15e04uct6yOjPRPiPnHVey55qvyM8NzlhsoAHnm0J_pcVBzhhn2m3qhLHARDOGW-pxTAtGenOY0jJDoH5J1NlUMNgZaMGc90Ahzhihbhbn5-Spr_vBi_v3kvz49PH71Zfm-tvnr1fvrxvXd6o0owM_DI5L0NbLwXoLTnghnOonLZRnrXDaj1KO2jnZsq4XICRToCar6xHdJXl95Nblf-8hF7PD7CAEG2HZZ9P2reiYqMb_S7uOMdkpxar05b10P-5gMjWLnU0H8xBdFbw7Clxack7gjatBFlxiSRaD4czctWW25t-2zF1b5thWRbx9hHj45STz5miGmu0fhGSyQ4gOJkzgipkWPA3z4RHGBYzobLiFw6mQv22yz70 |
| CitedBy_id | crossref_primary_10_3389_fbioe_2023_1211688 crossref_primary_10_1002_adhm_202102810 crossref_primary_10_1016_j_bioactmat_2022_10_029 crossref_primary_10_3389_fbioe_2023_1214715 crossref_primary_10_1016_j_apmt_2024_102364 crossref_primary_10_3390_app13010120 crossref_primary_10_1002_mabi_202200278 crossref_primary_10_1016_j_ijbiomac_2025_146491 crossref_primary_10_1002_app_52155 crossref_primary_10_1016_j_ijbiomac_2024_131954 crossref_primary_10_1016_j_compositesb_2021_109470 crossref_primary_10_1093_rb_rbaf019 crossref_primary_10_1186_s40824_023_00358_x crossref_primary_10_1155_2022_2076680 crossref_primary_10_1159_000512792 crossref_primary_10_1007_s12204_022_2507_5 crossref_primary_10_1016_j_bioactmat_2024_05_005 crossref_primary_10_1002_SMMD_20220011 crossref_primary_10_1016_j_addr_2024_115237 crossref_primary_10_3390_gels8110748 crossref_primary_10_1016_j_ijbiomac_2023_128031 crossref_primary_10_3390_biomimetics8080612 crossref_primary_10_1002_anbr_202000066 crossref_primary_10_1016_j_bioactmat_2022_05_008 crossref_primary_10_1039_D2PY00417H crossref_primary_10_1016_j_matdes_2022_111299 crossref_primary_10_1002_biot_202300040 crossref_primary_10_1016_j_cis_2025_103481 crossref_primary_10_1088_2516_1091_ad2d59 crossref_primary_10_3389_fcvm_2023_1208227 crossref_primary_10_1016_j_matdes_2023_112315 crossref_primary_10_1016_j_bioactmat_2020_10_014 crossref_primary_10_1088_1748_605X_acef86 crossref_primary_10_1088_1748_605X_ac5416 crossref_primary_10_1002_mabi_202500101 crossref_primary_10_1016_j_actbio_2022_08_004 crossref_primary_10_1002_adhm_202102123 crossref_primary_10_1002_pol_20220772 crossref_primary_10_1007_s40145_021_0468_z crossref_primary_10_3390_ijms23020910 crossref_primary_10_1002_adma_202400700 crossref_primary_10_3390_polym14235143 crossref_primary_10_1002_adhm_202402571 crossref_primary_10_1016_j_addr_2025_115523 crossref_primary_10_1038_s41570_023_00486_x crossref_primary_10_3390_technologies9040091 crossref_primary_10_1016_j_biomaterials_2020_120413 crossref_primary_10_1016_j_ijbiomac_2023_125570 crossref_primary_10_1016_j_matdes_2024_113221 crossref_primary_10_1038_s41467_023_43364_2 crossref_primary_10_1002_jbm_b_35086 crossref_primary_10_1016_j_ijbiomac_2022_01_081 crossref_primary_10_1007_s10439_023_03176_3 crossref_primary_10_1111_cpr_12917 crossref_primary_10_3390_jfb16070232 crossref_primary_10_1088_1758_5090_ad0b3f crossref_primary_10_1016_j_matchemphys_2020_123642 crossref_primary_10_1016_j_matdes_2025_114261 crossref_primary_10_1016_j_jiec_2020_12_011 crossref_primary_10_1002_mabi_202400515 crossref_primary_10_3390_bioengineering10070759 crossref_primary_10_1016_j_compositesb_2021_109261 crossref_primary_10_3390_jcs6080227 crossref_primary_10_1063_5_0024177 crossref_primary_10_1002_slct_202301395 crossref_primary_10_1111_iwj_13699 crossref_primary_10_1002_advs_202412566 crossref_primary_10_1002_bmm2_12078 crossref_primary_10_1002_smll_202409739 crossref_primary_10_1016_j_carbpol_2021_118780 crossref_primary_10_1016_j_bioadv_2022_213239 crossref_primary_10_1002_adhm_202301724 crossref_primary_10_1016_j_apmt_2025_102775 crossref_primary_10_1016_j_addma_2021_102563 crossref_primary_10_1016_j_addma_2024_104443 crossref_primary_10_1016_j_ijbiomac_2023_127410 crossref_primary_10_1016_j_cclet_2021_01_048 crossref_primary_10_1093_burnst_tkaf041 crossref_primary_10_1002_smll_202506259 crossref_primary_10_1155_2023_6428579 crossref_primary_10_1016_j_jfutfo_2021_09_005 crossref_primary_10_1016_j_foodhyd_2025_111505 crossref_primary_10_1002_smll_202201869 crossref_primary_10_1016_j_bioactmat_2020_06_004 crossref_primary_10_1088_1748_605X_abb615 crossref_primary_10_3390_polym14050986 crossref_primary_10_1039_D3MH00755C crossref_primary_10_1016_j_ceramint_2024_07_268 crossref_primary_10_1016_j_carbpol_2022_119508 crossref_primary_10_1016_j_biomaterials_2022_121672 crossref_primary_10_1039_D0RA03964K crossref_primary_10_1002_adhm_202200678 crossref_primary_10_1039_D2RA07037E crossref_primary_10_1063_10_0025654 crossref_primary_10_1016_j_ijbiomac_2025_143610 crossref_primary_10_1016_j_nantod_2021_101180 crossref_primary_10_1016_j_ijbiomac_2025_145478 crossref_primary_10_1016_j_ijbiomac_2025_147532 crossref_primary_10_1016_j_mattod_2023_03_027 crossref_primary_10_1016_j_actbio_2022_12_048 crossref_primary_10_1016_j_compositesb_2022_110437 crossref_primary_10_3389_fphar_2022_1044726 crossref_primary_10_3390_molecules27092757 crossref_primary_10_1088_2752_5724_ad8898 crossref_primary_10_1186_s40779_022_00429_5 crossref_primary_10_3390_polym17060765 crossref_primary_10_1038_s41428_021_00536_5 crossref_primary_10_1016_j_ijbiomac_2024_130373 crossref_primary_10_1016_j_addma_2024_104142 crossref_primary_10_1016_j_mtbio_2024_101384 crossref_primary_10_1002_agt2_270 crossref_primary_10_1016_j_bioactmat_2022_01_038 crossref_primary_10_1002_admt_202200417 crossref_primary_10_1016_j_bioactmat_2021_03_040 crossref_primary_10_1016_j_matdes_2022_111120 crossref_primary_10_1002_bit_28075 crossref_primary_10_1016_j_bioactmat_2022_01_034 crossref_primary_10_1016_j_ijbiomac_2025_146699 crossref_primary_10_1039_D5MA00019J crossref_primary_10_1080_10408398_2022_2067829 crossref_primary_10_1088_1748_605X_ac1ab4 crossref_primary_10_1002_pc_26948 crossref_primary_10_1631_bdm_2400058 crossref_primary_10_1016_j_tibtech_2020_11_003 crossref_primary_10_1007_s40883_023_00326_w crossref_primary_10_3389_fbioe_2021_654087 crossref_primary_10_1016_j_cej_2024_155650 crossref_primary_10_1002_adfm_202401516 crossref_primary_10_3390_ijms24031836 crossref_primary_10_1016_j_tibtech_2023_11_014 crossref_primary_10_1016_j_eurpolymj_2022_111509 crossref_primary_10_1016_j_jmapro_2024_10_016 crossref_primary_10_3390_polym13050753 crossref_primary_10_1557_s43578_023_01193_5 crossref_primary_10_1002_adhm_202303499 crossref_primary_10_1016_j_bioadv_2024_213805 crossref_primary_10_3390_polym13203537 crossref_primary_10_1016_j_ijbiomac_2021_07_199 crossref_primary_10_1186_s13287_020_02024_8 crossref_primary_10_3390_jfb15020037 crossref_primary_10_1016_j_cis_2024_103163 crossref_primary_10_3390_gels10070469 crossref_primary_10_1016_j_ebiom_2024_105258 crossref_primary_10_1016_j_matchemphys_2021_125484 crossref_primary_10_1039_D5GC02299A crossref_primary_10_1002_adhm_202302063 crossref_primary_10_1016_j_polymer_2024_127384 crossref_primary_10_1080_10837450_2024_2345144 crossref_primary_10_1016_j_bbrc_2023_01_097 crossref_primary_10_1016_j_jconrel_2023_12_025 crossref_primary_10_3389_fbioe_2022_854693 crossref_primary_10_3233_THC_220393 crossref_primary_10_1016_j_eurpolymj_2023_112471 crossref_primary_10_1016_j_heliyon_2023_e14349 crossref_primary_10_3390_biomedicines10123224 crossref_primary_10_3390_gels9020100 crossref_primary_10_1002_appl_202300030 crossref_primary_10_3390_ma15062170 crossref_primary_10_1002_jbm_b_35142 crossref_primary_10_3390_gels8120833 crossref_primary_10_1016_j_eurpolymj_2025_114007 crossref_primary_10_3390_bioengineering12090936 crossref_primary_10_1002_adma_202306468 crossref_primary_10_1007_s10904_022_02410_0 crossref_primary_10_1016_j_progpolymsci_2021_101375 crossref_primary_10_1088_1748_605X_ac96ba crossref_primary_10_1016_j_bprint_2021_e00183 crossref_primary_10_1016_j_carbpol_2023_121232 crossref_primary_10_1007_s42247_024_00643_y crossref_primary_10_1016_j_actbio_2022_11_029 crossref_primary_10_1002_advs_202305215 crossref_primary_10_1177_20417314241309183 crossref_primary_10_1089_ten_teb_2023_0072 crossref_primary_10_3390_biom11010035 crossref_primary_10_1016_j_bprint_2024_e00343 crossref_primary_10_1016_j_procbio_2022_12_012 crossref_primary_10_3389_fbioe_2022_865770 crossref_primary_10_1021_acsabm_4c01923 crossref_primary_10_1016_j_nanoen_2022_108158 crossref_primary_10_1016_j_actbio_2025_08_026 crossref_primary_10_1088_1758_5090_abfaee crossref_primary_10_1021_acsbiomaterials_4c01931 crossref_primary_10_1002_VIW_20230069 crossref_primary_10_1016_j_actbio_2025_01_011 crossref_primary_10_1080_1539445X_2021_1918719 crossref_primary_10_1063_5_0084794 crossref_primary_10_1038_s41596_021_00622_1 crossref_primary_10_1016_j_colcom_2022_100667 crossref_primary_10_1021_acsapm_5c00047 crossref_primary_10_1080_21691401_2020_1809439 crossref_primary_10_3390_bioengineering10111309 crossref_primary_10_1007_s40843_024_2970_2 crossref_primary_10_3390_jfb15010007 crossref_primary_10_3390_gels10010008 crossref_primary_10_1038_s41368_022_00203_2 crossref_primary_10_3390_coatings12091357 crossref_primary_10_1016_j_bprint_2022_e00239 crossref_primary_10_1016_j_cclet_2024_110686 crossref_primary_10_3390_polym15020375 crossref_primary_10_1016_j_jddst_2022_103994 crossref_primary_10_3389_fbioe_2022_1067111 crossref_primary_10_1111_1541_4337_12939 crossref_primary_10_1002_adhm_202400431 crossref_primary_10_1016_j_indcrop_2023_118000 crossref_primary_10_1021_acsami_5c16395 crossref_primary_10_1007_s12257_021_0418_1 crossref_primary_10_3390_bioengineering11040329 crossref_primary_10_1016_j_compositesb_2022_109691 crossref_primary_10_1002_smll_202302506 crossref_primary_10_1208_s12249_025_03108_5 crossref_primary_10_1002_adsr_202300011 crossref_primary_10_1007_s13346_023_01437_1 crossref_primary_10_3389_fbioe_2023_1264006 crossref_primary_10_1002_adfm_202201257 crossref_primary_10_1016_j_bprint_2025_e00407 crossref_primary_10_1016_j_matdes_2023_112044 crossref_primary_10_1088_1758_5090_ad92da crossref_primary_10_1016_j_cis_2025_103660 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_1016_j_addma_2023_103723 crossref_primary_10_1039_D5TB00248F crossref_primary_10_1002_smll_202309485 crossref_primary_10_3389_fbioe_2023_1199507 crossref_primary_10_3389_fcell_2022_698282 crossref_primary_10_3390_gels7040155 crossref_primary_10_3389_fphar_2022_1071868 crossref_primary_10_3390_gels8100650 crossref_primary_10_1007_s42765_022_00144_9 crossref_primary_10_1016_j_bprint_2022_e00253 crossref_primary_10_1021_acssuschemeng_5c02690 crossref_primary_10_1016_j_ijbiomac_2022_09_275 crossref_primary_10_3390_pharmaceutics12030207 crossref_primary_10_3390_bioengineering8040048 crossref_primary_10_1002_smll_202503147 crossref_primary_10_3390_polym17091287 crossref_primary_10_1016_j_jddst_2022_103384 crossref_primary_10_1016_j_actbio_2023_04_034 crossref_primary_10_1631_bdm_2400313 crossref_primary_10_1007_s40883_022_00277_8 crossref_primary_10_3390_polym12122936 crossref_primary_10_1038_s41467_023_35807_7 crossref_primary_10_1155_2023_1105664 crossref_primary_10_3390_gels10040238 crossref_primary_10_1016_j_jconrel_2024_12_071 crossref_primary_10_2174_0122103031309831240531084125 crossref_primary_10_1016_j_jddst_2022_103385 crossref_primary_10_1007_s42242_024_00275_5 crossref_primary_10_1016_j_reactfunctpolym_2022_105313 crossref_primary_10_1007_s11431_023_2471_0 crossref_primary_10_1007_s10853_024_10018_7 crossref_primary_10_1007_s10853_022_07361_y crossref_primary_10_1016_j_indcrop_2021_113759 crossref_primary_10_1016_j_jmst_2022_08_028 crossref_primary_10_1016_j_watres_2020_116497 crossref_primary_10_3390_gels9030195 crossref_primary_10_1016_j_bioactmat_2021_04_005 crossref_primary_10_1002_smsc_202400097 crossref_primary_10_1002_marc_202300661 crossref_primary_10_1088_1758_5090_adcbd7 crossref_primary_10_1007_s00289_023_04949_5 crossref_primary_10_1039_D2BM01343F crossref_primary_10_1016_j_scp_2022_100606 crossref_primary_10_1002_adfm_202405255 crossref_primary_10_1177_11795972241288099 crossref_primary_10_1016_j_matdes_2022_110670 crossref_primary_10_1016_j_cej_2021_130429 crossref_primary_10_1002_adfm_202406920 crossref_primary_10_1016_j_jpha_2023_12_015 crossref_primary_10_1002_app_56973 crossref_primary_10_3390_ijms22031499 crossref_primary_10_1016_j_bprint_2024_e00363 crossref_primary_10_3390_ma16155312 crossref_primary_10_1049_bsb2_12036 crossref_primary_10_1557_s43578_025_01521_x crossref_primary_10_1208_s12249_023_02720_7 crossref_primary_10_2147_DDDT_S344036 crossref_primary_10_1007_s43939_024_00115_4 crossref_primary_10_1021_acs_biomac_5c00305 crossref_primary_10_1002_adhm_202403079 crossref_primary_10_1007_s10741_023_10367_6 crossref_primary_10_1016_j_mfglet_2023_08_015 crossref_primary_10_1063_5_0187558 crossref_primary_10_1016_j_jddst_2022_104018 crossref_primary_10_1088_1758_5090_ad0071 crossref_primary_10_1146_annurev_matsci_080423_123810 crossref_primary_10_1007_s10439_023_03243_9 crossref_primary_10_1007_s10853_024_10182_w crossref_primary_10_3390_molecules30020328 crossref_primary_10_1007_s12200_020_1009_z crossref_primary_10_1016_j_biopha_2024_116238 crossref_primary_10_1016_j_eurpolymj_2021_110411 crossref_primary_10_3389_fbioe_2025_1595116 crossref_primary_10_1002_pol_20240302 crossref_primary_10_1007_s10439_024_03626_6 crossref_primary_10_1002_adhm_202401458 crossref_primary_10_1016_j_biomaterials_2020_120281 crossref_primary_10_1016_j_apmt_2022_101668 crossref_primary_10_1016_j_polymer_2023_126392 crossref_primary_10_1016_j_apmt_2023_101968 crossref_primary_10_1016_j_foodhyd_2024_110079 crossref_primary_10_1016_j_bioactmat_2021_05_011 crossref_primary_10_3389_fbioe_2023_1137145 crossref_primary_10_1016_j_polymertesting_2025_108699 crossref_primary_10_3390_pharmaceutics12070620 crossref_primary_10_3390_biomedicines11082244 crossref_primary_10_3389_fbioe_2022_858656 crossref_primary_10_1016_j_msec_2021_112576 crossref_primary_10_1002_adma_202107759 crossref_primary_10_1016_j_cjmeam_2022_100011 |
| Cites_doi | 10.1016/j.polymer.2018.08.019 10.1152/physrev.1991.71.2.481 10.1002/adma.201606000 10.1038/nprot.2011.379 10.2106/00004623-199704000-00021 10.1021/acsbiomaterials.9b00696 10.1016/j.biomaterials.2010.08.100 10.1089/ten.2006.12.1971 10.1016/j.joca.2012.06.016 10.1016/j.biomaterials.2011.08.027 10.22203/eCM.v009a08 10.1097/GOX.0000000000001227 10.1038/nbt.2958 10.1016/j.actbio.2013.03.020 10.1039/C6TB00717A 10.1038/s41467-018-03759-y 10.3390/ma12030504 10.7150/thno.16614 10.1088/1758-5090/aa663c 10.1016/S0142-9612(03)00340-5 10.1021/acsbiomaterials.8b00150 10.1021/acs.analchem.6b03426 10.3390/ijms20020316 10.1016/j.actbio.2017.08.005 10.1016/j.msec.2010.02.017 10.1016/j.biomaterials.2012.09.048 10.1002/jbm.a.33308 10.1016/j.biomaterials.2004.02.047 10.1088/1758-5082/6/2/025003 10.1016/j.actbio.2017.07.028 10.1021/acsami.9b11644 10.1007/s10853-018-1992-2 10.1016/j.biomaterials.2007.08.017 10.1016/j.biomaterials.2004.09.034 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J 10.1016/j.actbio.2009.02.002 10.1016/j.ijbiomac.2015.03.064 10.1016/j.actbio.2019.01.009 10.1016/j.biomaterials.2008.05.002 10.1016/j.biomaterials.2016.01.019 10.3390/ma7032104 10.1016/j.progpolymsci.2019.101145 10.1016/j.biotechadv.2015.12.011 10.1016/j.jiec.2017.12.032 10.1038/nmeth.3839 10.1016/j.copbio.2016.03.014 10.3109/17453679608994664 10.1097/00003086-196609000-00028 10.1016/S0003-4975(03)01193-7 10.1016/S1357-2725(02)00301-1 10.3390/ijms17121976 10.1016/S0142-9612(02)00353-8 10.1007/s13770-017-0104-8 10.1021/acsbiomaterials.6b00258 10.1038/nmat4694 10.1002/jcb.20652 10.3390/jdb3040177 10.1016/j.biomaterials.2009.06.008 10.1016/j.sna.2018.02.041 10.1016/j.ceramint.2016.04.050 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2019.119679 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 31865191 10_1016_j_biomaterials_2019_119679 S0142961219307781 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c538t-bcef77c16e9af67afaec4f44c85d948f024c9fb66b9cc620354e4608e8da95193 |
| ISICitedReferencesCount | 280 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514748200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sat Sep 27 16:57:45 EDT 2025 Thu Oct 02 09:56:10 EDT 2025 Thu Apr 03 06:55:12 EDT 2025 Sat Nov 29 07:24:15 EST 2025 Tue Nov 18 21:16:31 EST 2025 Fri Feb 23 02:40:20 EST 2024 Tue Oct 14 19:30:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cartilage tissue engineering Chondrogenesis Silk fibroin – Glycidyl methacrylate (silk-GMA) Digital light processing (DLP) 3D printing |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c538t-bcef77c16e9af67afaec4f44c85d948f024c9fb66b9cc620354e4608e8da95193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31865191 |
| PQID | 2330063880 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2524304035 proquest_miscellaneous_2330063880 pubmed_primary_31865191 crossref_citationtrail_10_1016_j_biomaterials_2019_119679 crossref_primary_10_1016_j_biomaterials_2019_119679 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119679 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119679 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhu, Ma, Gou, Mei, Zhang, Chen (bib6) 2016; 40 Zeng, Yan, Yan, Liu, Li, Dong (bib10) 2018; 53 Caron, Emans, Coolsen, Voss, Surtel, Cremers, van Rhijin, Welting (bib49) 2012; 20 Jung, Kim, Lee, Min, Park (bib60) 2018; 15 Murphy, Atala (bib1) 2014; 32 Talukdar, Nguyen, Chen, Sah, Kundu (bib39) 2011; 32 Hung, Tseng, Dai, Hsu (bib59) 2016; 83 Lin (bib12) 2013; 34 Moller, Amoroso, Hagg, Brantsing, Rotter, Apelgren, Lindahl, Kolby, Gatenholm (bib57) 2017; 5 Ng, Chua, Shen (bib33) 2019; 97 Chua, Aminuddin, Fuzina, Ruszymah (bib51) 2005; 9 Vedadghavami, Minooei, Mohammadi, Khetani, Kolahchi, Mashayekhan, Sanati-Nezhad (bib55) 2017; 62 Zhou, Liu, Wu, Song, Chen, Cheng (bib3) 2016; 42 Meinel, Hofmann, Karageorgiou, Kirker-Head, McCool, Gronowicz (bib21) 2005; 26 Buckwalter, Mankin (bib28) 1998; 41 Mauney, Nguyen, Gillen, Kirker-Head, Gimble, Kaplan (bib22) 2007; 28 Nuernberger, Cyran, Albrecht, Redl, Vécsei, Marlovits (bib19) 2011; 32 Grogan (bib11) 2013; 9 Depalma, McKEEvER, Subin (bib29) 1966; 48 Shao, Ke, Liu, Sun, He, Yang (bib5) 2017; 9 Rockwood, Preda, Yucel, Wang, Lovett, Kaplan (bib34) 2011; 6 Grogan, Chung, Soman, Chen (bib31) 2013; 9 Kim, Yeon, Lee, Chao, Lee (bib8) 2018; 9 Archer, Francis-West (bib26) 2003; 35 Chen, Liu, Chua, Chou (bib47) 2014; 7 Lin, Willers, Xu, Zheng (bib48) 2006; 12 Akkiraju, Nohe (bib27) 2015; 3 Garcia-Fuentes, Meinel, Hilbe, Meinel, Merkle (bib42) 2009; 30 Altman, Diaz, Jakuba, Calabro, Horan, Chen, Lu, Richmond, Kaplan (bib43) 2003; 24 Levato, Webb, Otto, Mensinga, Zhang, Rujen, Weeren, Khan, Malda (bib58) 2017; 60 Kim, Park (bib24) 2016; 11 Xue, Zhang, Wang, Mei (bib32) 2019; 5 Chang, Cheng, Ho, Huang, Lee (bib45) 2009; 5 Jeyakumar, Niculescu-Morza, Bauer, Lacza, Nehrer (bib50) 2019; 20 Wang, Han, Yan, Zhang (bib35) 2019; 12 Tondera, Hauser, Kruger-Genge, Jung, Neffe, Lendlein, Klopfleisch, Steinbach, Neuber, Pietzsch (bib53) 2016; 6 Caliari, Burdick (bib56) 2016 Apr 28; 13 Bonakdar, Emami, Shokrgozar, Farhadi, Ahmadi, Amanzadeh (bib16) 2010; 30 Goldring, Tsuchimochi, Ijiri (bib41) 2006 Jan1; 97 Axpe, Oyen (bib15) 2016; 17 Singh, Bandyopadhyay, Mandal (bib63) 2019; 11 Cheng, Davoudi, Xing, Yu, Cheng, Li, Deng, Wang (bib37) 2018; 4 Mandrycky, Wang, Kim, Kim (bib9) 2016; 34 Bhardwaj, Singh, Devi, Kanimalla, Kotoky, Mandal (bib38) 2016; 4 Na, Shin, Lee, Shin, Baek, Kwak (bib40) 2018; 61 Ge, Dong, Wang, Ge, Gu (bib14) 2018; 273 Wang, Rudym, Walsh, Abrahamsen, Kim, Kim (bib52) 2008; 29 Ashammakhi, Reis, Chiellini (bib62) 2008; 4 Dorotka, Windberger, Macfelda, Bindreiter, Toma, Nehrer (bib17) 2005; 26 Zheng, Smith, Jackson, Moran, Cui, Chen (bib13) 2016; 15 Lee, Lee, Kim, Kim, Kweon, Jo (bib20) 2012; 100 Buckwalter, Mankin (bib44) 1997; 79A Leberfinger, Dinda, Wu, Koduru, Ozbolat, Ravnic, Ozbolat (bib54) 2019; 95 You, Wu, Zhu, Lei, Eames, Chen (bib61) 2016; 2 Park (bib23) 2015; 78 Drury, Mooney (bib18) 2003; 24 Kim, Kim, Choi, Park, Ki (bib36) 2018; 153 Kojima, Bonassar, Ignotz (bib25) 2003; 76 Mandon, Blum, Marquette (bib4) 2016; 88 Patel, Sakhaei, Layani, Zhang, Ge, Magdassi (bib2) 2017; 29 Park, Jung, Kang, Cho (bib7) 2014; 6 Jackson, Busch, Cardin (bib46) 1991; 71 Messner, Maletius (bib30) 1996; 67 Talukdar (10.1016/j.biomaterials.2019.119679_bib39) 2011; 32 Hung (10.1016/j.biomaterials.2019.119679_bib59) 2016; 83 Meinel (10.1016/j.biomaterials.2019.119679_bib21) 2005; 26 Goldring (10.1016/j.biomaterials.2019.119679_bib41) 2006; 97 Na (10.1016/j.biomaterials.2019.119679_bib40) 2018; 61 Mandrycky (10.1016/j.biomaterials.2019.119679_bib9) 2016; 34 Lee (10.1016/j.biomaterials.2019.119679_bib20) 2012; 100 Ge (10.1016/j.biomaterials.2019.119679_bib14) 2018; 273 Drury (10.1016/j.biomaterials.2019.119679_bib18) 2003; 24 Xue (10.1016/j.biomaterials.2019.119679_bib32) 2019; 5 Zhou (10.1016/j.biomaterials.2019.119679_bib3) 2016; 42 Messner (10.1016/j.biomaterials.2019.119679_bib30) 1996; 67 Jeyakumar (10.1016/j.biomaterials.2019.119679_bib50) 2019; 20 Depalma (10.1016/j.biomaterials.2019.119679_bib29) 1966; 48 Chua (10.1016/j.biomaterials.2019.119679_bib51) 2005; 9 Chen (10.1016/j.biomaterials.2019.119679_bib47) 2014; 7 Zheng (10.1016/j.biomaterials.2019.119679_bib13) 2016; 15 Ng (10.1016/j.biomaterials.2019.119679_bib33) 2019; 97 Park (10.1016/j.biomaterials.2019.119679_bib7) 2014; 6 Wang (10.1016/j.biomaterials.2019.119679_bib52) 2008; 29 Chang (10.1016/j.biomaterials.2019.119679_bib45) 2009; 5 Mauney (10.1016/j.biomaterials.2019.119679_bib22) 2007; 28 Garcia-Fuentes (10.1016/j.biomaterials.2019.119679_bib42) 2009; 30 Caron (10.1016/j.biomaterials.2019.119679_bib49) 2012; 20 Lin (10.1016/j.biomaterials.2019.119679_bib48) 2006; 12 Jung (10.1016/j.biomaterials.2019.119679_bib60) 2018; 15 Grogan (10.1016/j.biomaterials.2019.119679_bib11) 2013; 9 Moller (10.1016/j.biomaterials.2019.119679_bib57) 2017; 5 Wang (10.1016/j.biomaterials.2019.119679_bib35) 2019; 12 Nuernberger (10.1016/j.biomaterials.2019.119679_bib19) 2011; 32 Murphy (10.1016/j.biomaterials.2019.119679_bib1) 2014; 32 Zhu (10.1016/j.biomaterials.2019.119679_bib6) 2016; 40 Buckwalter (10.1016/j.biomaterials.2019.119679_bib28) 1998; 41 Shao (10.1016/j.biomaterials.2019.119679_bib5) 2017; 9 Caliari (10.1016/j.biomaterials.2019.119679_bib56) 2016; 13 Singh (10.1016/j.biomaterials.2019.119679_bib63) 2019; 11 Grogan (10.1016/j.biomaterials.2019.119679_bib31) 2013; 9 Bonakdar (10.1016/j.biomaterials.2019.119679_bib16) 2010; 30 Rockwood (10.1016/j.biomaterials.2019.119679_bib34) 2011; 6 Vedadghavami (10.1016/j.biomaterials.2019.119679_bib55) 2017; 62 Kim (10.1016/j.biomaterials.2019.119679_bib8) 2018; 9 Park (10.1016/j.biomaterials.2019.119679_bib23) 2015; 78 Leberfinger (10.1016/j.biomaterials.2019.119679_bib54) 2019; 95 You (10.1016/j.biomaterials.2019.119679_bib61) 2016; 2 Dorotka (10.1016/j.biomaterials.2019.119679_bib17) 2005; 26 Zeng (10.1016/j.biomaterials.2019.119679_bib10) 2018; 53 Kim (10.1016/j.biomaterials.2019.119679_bib36) 2018; 153 Archer (10.1016/j.biomaterials.2019.119679_bib26) 2003; 35 Kim (10.1016/j.biomaterials.2019.119679_bib24) 2016; 11 Axpe (10.1016/j.biomaterials.2019.119679_bib15) 2016; 17 Bhardwaj (10.1016/j.biomaterials.2019.119679_bib38) 2016; 4 Cheng (10.1016/j.biomaterials.2019.119679_bib37) 2018; 4 Lin (10.1016/j.biomaterials.2019.119679_bib12) 2013; 34 Mandon (10.1016/j.biomaterials.2019.119679_bib4) 2016; 88 Jackson (10.1016/j.biomaterials.2019.119679_bib46) 1991; 71 Patel (10.1016/j.biomaterials.2019.119679_bib2) 2017; 29 Ashammakhi (10.1016/j.biomaterials.2019.119679_bib62) 2008; 4 Tondera (10.1016/j.biomaterials.2019.119679_bib53) 2016; 6 Akkiraju (10.1016/j.biomaterials.2019.119679_bib27) 2015; 3 Kojima (10.1016/j.biomaterials.2019.119679_bib25) 2003; 76 Altman (10.1016/j.biomaterials.2019.119679_bib43) 2003; 24 Buckwalter (10.1016/j.biomaterials.2019.119679_bib44) 1997; 79A Levato (10.1016/j.biomaterials.2019.119679_bib58) 2017; 60 |
| References_xml | – volume: 48 start-page: 229 year: 1966 end-page: 242 ident: bib29 article-title: 23 process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine publication-title: Clin. Orthop. Relat. Res. – volume: 30 start-page: 5068 year: 2009 end-page: 5076 ident: bib42 article-title: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering publication-title: Biomaterials – volume: 79A start-page: 600 year: 1997 end-page: 611 ident: bib44 article-title: Articular cartilage: tissue design and chondrocyte–matrix interactions publication-title: J Bone Joint Surg Am – volume: 9 start-page: 7218 year: 2013 end-page: 7226 ident: bib11 article-title: Digital micromirror device projection printing system for meniscus tissue engineering publication-title: Acta Biomater. – volume: 100 start-page: 2018 year: 2012 end-page: 2026 ident: bib20 article-title: Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations publication-title: J. Biomed. Mater. Res. A – volume: 29 start-page: 1606000 year: 2017 ident: bib2 article-title: Highly stretchable and UV curable elastomers for digital light processing based 3D printing publication-title: Adv. Mater. – volume: 88 start-page: 10767 year: 2016 end-page: 10772 ident: bib4 article-title: Adding biomolecular recognition capability to 3D printed objects publication-title: Anal. Chem. – volume: 83 start-page: 156 year: 2016 end-page: 168 ident: bib59 article-title: Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering publication-title: Biomaterials – volume: 41 start-page: 1331 year: 1998 end-page: 1342 ident: bib28 article-title: Articular cartilage repair and transplantation publication-title: Arthritis Rheum.: Off. J. Am. Coll. Rheumatol. – volume: 7 start-page: 2104 year: 2014 end-page: 2119 ident: bib47 article-title: Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology publication-title: Materials – volume: 9 start-page: 7218 year: 2013 end-page: 7226 ident: bib31 article-title: Digital micromirror device projection printing system for meniscus tissue engineering publication-title: Acta Biomater. – volume: 11 start-page: 33684 year: 2019 end-page: 33696 ident: bib63 article-title: 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering publication-title: ACS Appl. Mater. Interfaces – volume: 67 start-page: 165 year: 1996 end-page: 168 ident: bib30 article-title: The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes publication-title: Acta Orthop. Scand. – volume: 35 start-page: 401 year: 2003 end-page: 404 ident: bib26 article-title: The chondrocyte publication-title: Int. J. Biochem. Cell Biol. – volume: 4 start-page: 3 year: 2008 end-page: 16 ident: bib62 publication-title: Top. Tissue Eng. – volume: 34 start-page: 331 year: 2013 end-page: 339 ident: bib12 article-title: Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture publication-title: Biomaterials – volume: 15 start-page: 1100 year: 2016 ident: bib13 article-title: Multiscale metallic metamaterials publication-title: Nat. Mater. – volume: 32 start-page: 8927 year: 2011 end-page: 8937 ident: bib39 article-title: Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering publication-title: Biomaterials – volume: 62 start-page: 42 year: 2017 end-page: 63 ident: bib55 article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications publication-title: Acta Biomater. – volume: 97 start-page: 101145 year: 2019 ident: bib33 article-title: Print me an organ! Why we are not there yet publication-title: Prog. Polym. Sci. – volume: 40 start-page: 103 year: 2016 end-page: 112 ident: bib6 article-title: 3D printing of functional biomaterials for tissue engineering publication-title: Curr. Opin. Biotechnol. – volume: 13 start-page: 405 year: 2016 Apr 28 end-page: 414 ident: bib56 article-title: A practical guide to hydrogels for cell culture publication-title: Nat. Methods – volume: 24 start-page: 4337 year: 2003 end-page: 4351 ident: bib18 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials – volume: 42 start-page: 11598 year: 2016 end-page: 11602 ident: bib3 article-title: Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes publication-title: Ceram. Int. – volume: 6 start-page: 1612 year: 2011 end-page: 1631 ident: bib34 article-title: Materials fabrication from publication-title: Nat. Protoc. – volume: 12 start-page: 504 year: 2019 ident: bib35 article-title: 3D printing of silk fibroin for biomedical applications publication-title: Materials – volume: 17 start-page: 1976 year: 2016 ident: bib15 article-title: Applications of alginate-based bioinks in 3D bioprinting publication-title: Int. J. Mol. Sci. – volume: 97 start-page: 33 year: 2006 Jan1 end-page: 44 ident: bib41 article-title: The control of chondrogenesis publication-title: J. Cell. Biochem. – volume: 29 start-page: 3415 year: 2008 end-page: 3428 ident: bib52 article-title: In vivo degradation of three-dimensional silk fibroin scaffolds publication-title: Biomaterials – volume: 4 start-page: 3670 year: 2016 end-page: 3684 ident: bib38 article-title: Potential of silk fibroin/chondrocyte constructs of muga silkworm publication-title: J. Mater. Chem. B. – volume: 71 start-page: 481 year: 1991 end-page: 539 ident: bib46 article-title: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes publication-title: Physiol. Rev. – volume: 32 start-page: 773 year: 2014 ident: bib1 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. – volume: 153 start-page: 232 year: 2018 end-page: 240 ident: bib36 article-title: Characterization of silk hydrogel formed with hydrolyzed silk fibroin-methacrylate via photopolymerization publication-title: Polymer – volume: 5 start-page: e1227 year: 2017 ident: bib57 article-title: In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs publication-title: Plast Reconstr Surg Glob Open – volume: 95 start-page: 32 year: 2019 end-page: 49 ident: bib54 article-title: Bioprinting functional tissues publication-title: Acta Biomater. – volume: 60 start-page: 41 year: 2017 end-page: 53 ident: bib58 article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells publication-title: Acta Biomater. – volume: 34 start-page: 422 year: 2016 end-page: 434 ident: bib9 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. – volume: 2 start-page: 1200 year: 2016 end-page: 1210 ident: bib61 article-title: 3D printing of cell-laden hydrogel constructs for potential applications in cartilage tissue engineering publication-title: ACS Biomater. Sci. Eng. – volume: 32 start-page: 1032 year: 2011 end-page: 1040 ident: bib19 article-title: The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts publication-title: Biomaterials – volume: 15 start-page: 155 year: 2018 end-page: 162 ident: bib60 article-title: Development of printable natural cartilage matrix bioink for 3D printing on irregular tissue shape publication-title: Tissue Eng Regen Med – volume: 26 start-page: 147 year: 2005 end-page: 155 ident: bib21 article-title: The inflammatory responses to silk films in vitro and in vivo publication-title: Biomaterials – volume: 78 start-page: 215 year: 2015 end-page: 223 ident: bib23 article-title: Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction publication-title: Int. J. Biol. Macromol. – volume: 9 year: 2017 ident: bib5 article-title: Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect publication-title: Biofabrication – volume: 53 start-page: 6291 year: 2018 end-page: 6301 ident: bib10 article-title: 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing publication-title: J. Mater. Sci. – volume: 6 start-page: 2114 year: 2016 end-page: 2128 ident: bib53 article-title: Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodel preclinical imaging in immunocompetent nude mice publication-title: Theranostics – volume: 76 start-page: 1884 year: 2003 end-page: 1888 ident: bib25 article-title: Comparison of tracheal and nasal chondrocytes for tissue engineering of th trachea publication-title: Ann. Thorac. Surg. – volume: 6 year: 2014 ident: bib7 article-title: Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process publication-title: Biofabrication – volume: 9 start-page: 1620 year: 2018 ident: bib8 article-title: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing publication-title: Nat. Commun. – volume: 12 start-page: 1971e84 year: 2006 ident: bib48 article-title: The chondrocyte: biology and clinical application publication-title: Tissue Eng. – volume: 11 start-page: 2967 year: 2016 end-page: 2978 ident: bib24 article-title: Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility publication-title: Int. J. Nanomed. – volume: 24 start-page: 401 year: 2003 end-page: 416 ident: bib43 article-title: Silk-based biomaterials publication-title: Biomaterials – volume: 5 start-page: 1937 year: 2009 end-page: 1947 ident: bib45 article-title: Fabrication and characterization of poly (γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering publication-title: Acta Biomater. – volume: 20 start-page: 316 year: 2019 ident: bib50 article-title: Redifferentiation of articular chondrocytes by hyperacute serum and platelet rich plasma in collagen type I hydrogels publication-title: Int. J. Mol. Sci. – volume: 61 start-page: 340 year: 2018 end-page: 347 ident: bib40 article-title: Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink publication-title: J. Ind. Eng. Chem. – volume: 20 start-page: 1170 year: 2012 end-page: 1178 ident: bib49 article-title: Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures publication-title: Osteoarthr. Cartil. – volume: 28 start-page: 5280 year: 2007 end-page: 5290 ident: bib22 article-title: Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds publication-title: Biomaterials – volume: 273 start-page: 285 year: 2018 end-page: 292 ident: bib14 article-title: A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators publication-title: Sens. Actuators A Phys. – volume: 4 start-page: 2704 year: 2018 end-page: 2715 ident: bib37 article-title: Advanced silk fibroin biomaterials for cartilage regeneration publication-title: ACS Biomater. Sci. Eng. – volume: 30 start-page: 636 year: 2010 end-page: 643 ident: bib16 article-title: Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage publication-title: Mater. Sci. Eng. C – volume: 3 start-page: 177 year: 2015 end-page: 192 ident: bib27 article-title: Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration publication-title: Dev. Biol. – volume: 9 start-page: 58 year: 2005 end-page: 67 ident: bib51 article-title: Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage publication-title: Eur. Cells Mater. – volume: 26 start-page: 3617 year: 2005 end-page: 3629 ident: bib17 article-title: Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix publication-title: Biomaterials – volume: 5 start-page: 4825 year: 2019 end-page: 4833 ident: bib32 article-title: Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness publication-title: ACS Biomater. Sci. Eng. – volume: 153 start-page: 232 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib36 article-title: Characterization of silk hydrogel formed with hydrolyzed silk fibroin-methacrylate via photopolymerization publication-title: Polymer doi: 10.1016/j.polymer.2018.08.019 – volume: 71 start-page: 481 year: 1991 ident: 10.1016/j.biomaterials.2019.119679_bib46 article-title: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes publication-title: Physiol. Rev. doi: 10.1152/physrev.1991.71.2.481 – volume: 29 start-page: 1606000 year: 2017 ident: 10.1016/j.biomaterials.2019.119679_bib2 article-title: Highly stretchable and UV curable elastomers for digital light processing based 3D printing publication-title: Adv. Mater. doi: 10.1002/adma.201606000 – volume: 6 start-page: 1612 year: 2011 ident: 10.1016/j.biomaterials.2019.119679_bib34 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.379 – volume: 79A start-page: 600 year: 1997 ident: 10.1016/j.biomaterials.2019.119679_bib44 article-title: Articular cartilage: tissue design and chondrocyte–matrix interactions publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-199704000-00021 – volume: 11 start-page: 2967 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib24 article-title: Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility publication-title: Int. J. Nanomed. – volume: 5 start-page: 4825 year: 2019 ident: 10.1016/j.biomaterials.2019.119679_bib32 article-title: Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00696 – volume: 32 start-page: 1032 year: 2011 ident: 10.1016/j.biomaterials.2019.119679_bib19 article-title: The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.100 – volume: 12 start-page: 1971e84 year: 2006 ident: 10.1016/j.biomaterials.2019.119679_bib48 article-title: The chondrocyte: biology and clinical application publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.1971 – volume: 20 start-page: 1170 year: 2012 ident: 10.1016/j.biomaterials.2019.119679_bib49 article-title: Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2012.06.016 – volume: 32 start-page: 8927 issue: 24 year: 2011 ident: 10.1016/j.biomaterials.2019.119679_bib39 article-title: Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.027 – volume: 9 start-page: 58 year: 2005 ident: 10.1016/j.biomaterials.2019.119679_bib51 article-title: Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v009a08 – volume: 5 start-page: e1227 year: 2017 ident: 10.1016/j.biomaterials.2019.119679_bib57 article-title: In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs publication-title: Plast Reconstr Surg Glob Open doi: 10.1097/GOX.0000000000001227 – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.biomaterials.2019.119679_bib1 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 – volume: 9 start-page: 7218 year: 2013 ident: 10.1016/j.biomaterials.2019.119679_bib31 article-title: Digital micromirror device projection printing system for meniscus tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.03.020 – volume: 4 start-page: 3670 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib38 article-title: Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering publication-title: J. Mater. Chem. B. doi: 10.1039/C6TB00717A – volume: 9 start-page: 1620 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib8 article-title: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing publication-title: Nat. Commun. doi: 10.1038/s41467-018-03759-y – volume: 9 start-page: 7218 year: 2013 ident: 10.1016/j.biomaterials.2019.119679_bib11 article-title: Digital micromirror device projection printing system for meniscus tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.03.020 – volume: 12 start-page: 504 year: 2019 ident: 10.1016/j.biomaterials.2019.119679_bib35 article-title: 3D printing of silk fibroin for biomedical applications publication-title: Materials doi: 10.3390/ma12030504 – volume: 6 start-page: 2114 issue: 12 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib53 article-title: Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodel preclinical imaging in immunocompetent nude mice publication-title: Theranostics doi: 10.7150/thno.16614 – volume: 9 year: 2017 ident: 10.1016/j.biomaterials.2019.119679_bib5 article-title: Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect publication-title: Biofabrication doi: 10.1088/1758-5090/aa663c – volume: 24 start-page: 4337 year: 2003 ident: 10.1016/j.biomaterials.2019.119679_bib18 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00340-5 – volume: 4 start-page: 2704 issue: 8 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib37 article-title: Advanced silk fibroin biomaterials for cartilage regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00150 – volume: 88 start-page: 10767 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib4 article-title: Adding biomolecular recognition capability to 3D printed objects publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03426 – volume: 20 start-page: 316 year: 2019 ident: 10.1016/j.biomaterials.2019.119679_bib50 article-title: Redifferentiation of articular chondrocytes by hyperacute serum and platelet rich plasma in collagen type I hydrogels publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20020316 – volume: 60 start-page: 41 year: 2017 ident: 10.1016/j.biomaterials.2019.119679_bib58 article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.08.005 – volume: 30 start-page: 636 year: 2010 ident: 10.1016/j.biomaterials.2019.119679_bib16 article-title: Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2010.02.017 – volume: 34 start-page: 331 year: 2013 ident: 10.1016/j.biomaterials.2019.119679_bib12 article-title: Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.09.048 – volume: 100 start-page: 2018 year: 2012 ident: 10.1016/j.biomaterials.2019.119679_bib20 article-title: Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.33308 – volume: 26 start-page: 147 year: 2005 ident: 10.1016/j.biomaterials.2019.119679_bib21 article-title: The inflammatory responses to silk films in vitro and in vivo publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.02.047 – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2019.119679_bib7 article-title: Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process publication-title: Biofabrication doi: 10.1088/1758-5082/6/2/025003 – volume: 62 start-page: 42 year: 2017 ident: 10.1016/j.biomaterials.2019.119679_bib55 article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.07.028 – volume: 11 start-page: 33684 year: 2019 ident: 10.1016/j.biomaterials.2019.119679_bib63 article-title: 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11644 – volume: 53 start-page: 6291 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib10 article-title: 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-1992-2 – volume: 28 start-page: 5280 year: 2007 ident: 10.1016/j.biomaterials.2019.119679_bib22 article-title: Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.08.017 – volume: 26 start-page: 3617 year: 2005 ident: 10.1016/j.biomaterials.2019.119679_bib17 article-title: Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.034 – volume: 41 start-page: 1331 year: 1998 ident: 10.1016/j.biomaterials.2019.119679_bib28 article-title: Articular cartilage repair and transplantation publication-title: Arthritis Rheum.: Off. J. Am. Coll. Rheumatol. doi: 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J – volume: 5 start-page: 1937 year: 2009 ident: 10.1016/j.biomaterials.2019.119679_bib45 article-title: Fabrication and characterization of poly (γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.02.002 – volume: 78 start-page: 215 year: 2015 ident: 10.1016/j.biomaterials.2019.119679_bib23 article-title: Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.03.064 – volume: 95 start-page: 32 year: 2019 ident: 10.1016/j.biomaterials.2019.119679_bib54 article-title: Bioprinting functional tissues publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.01.009 – volume: 29 start-page: 3415 year: 2008 ident: 10.1016/j.biomaterials.2019.119679_bib52 article-title: In vivo degradation of three-dimensional silk fibroin scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.05.002 – volume: 83 start-page: 156 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib59 article-title: Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.019 – volume: 7 start-page: 2104 year: 2014 ident: 10.1016/j.biomaterials.2019.119679_bib47 article-title: Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology publication-title: Materials doi: 10.3390/ma7032104 – volume: 97 start-page: 101145 year: 2019 ident: 10.1016/j.biomaterials.2019.119679_bib33 article-title: Print me an organ! Why we are not there yet publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.101145 – volume: 34 start-page: 422 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib9 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.12.011 – volume: 61 start-page: 340 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib40 article-title: Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.12.032 – volume: 13 start-page: 405 issue: 5 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib56 article-title: A practical guide to hydrogels for cell culture publication-title: Nat. Methods doi: 10.1038/nmeth.3839 – volume: 40 start-page: 103 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib6 article-title: 3D printing of functional biomaterials for tissue engineering publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.03.014 – volume: 67 start-page: 165 year: 1996 ident: 10.1016/j.biomaterials.2019.119679_bib30 article-title: The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes publication-title: Acta Orthop. Scand. doi: 10.3109/17453679608994664 – volume: 48 start-page: 229 year: 1966 ident: 10.1016/j.biomaterials.2019.119679_bib29 article-title: 23 process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-196609000-00028 – volume: 76 start-page: 1884 year: 2003 ident: 10.1016/j.biomaterials.2019.119679_bib25 article-title: Comparison of tracheal and nasal chondrocytes for tissue engineering of th trachea publication-title: Ann. Thorac. Surg. doi: 10.1016/S0003-4975(03)01193-7 – volume: 4 start-page: 3 year: 2008 ident: 10.1016/j.biomaterials.2019.119679_bib62 publication-title: Top. Tissue Eng. – volume: 35 start-page: 401 year: 2003 ident: 10.1016/j.biomaterials.2019.119679_bib26 article-title: The chondrocyte publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(02)00301-1 – volume: 17 start-page: 1976 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib15 article-title: Applications of alginate-based bioinks in 3D bioprinting publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17121976 – volume: 24 start-page: 401 year: 2003 ident: 10.1016/j.biomaterials.2019.119679_bib43 article-title: Silk-based biomaterials publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00353-8 – volume: 15 start-page: 155 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib60 article-title: Development of printable natural cartilage matrix bioink for 3D printing on irregular tissue shape publication-title: Tissue Eng Regen Med doi: 10.1007/s13770-017-0104-8 – volume: 2 start-page: 1200 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib61 article-title: 3D printing of cell-laden hydrogel constructs for potential applications in cartilage tissue engineering publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00258 – volume: 15 start-page: 1100 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib13 article-title: Multiscale metallic metamaterials publication-title: Nat. Mater. doi: 10.1038/nmat4694 – volume: 97 start-page: 33 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2019.119679_bib41 article-title: The control of chondrogenesis publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20652 – volume: 3 start-page: 177 year: 2015 ident: 10.1016/j.biomaterials.2019.119679_bib27 article-title: Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration publication-title: Dev. Biol. doi: 10.3390/jdb3040177 – volume: 30 start-page: 5068 year: 2009 ident: 10.1016/j.biomaterials.2019.119679_bib42 article-title: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.06.008 – volume: 273 start-page: 285 year: 2018 ident: 10.1016/j.biomaterials.2019.119679_bib14 article-title: A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.02.041 – volume: 42 start-page: 11598 year: 2016 ident: 10.1016/j.biomaterials.2019.119679_bib3 article-title: Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.04.050 |
| SSID | ssj0014042 |
| Score | 2.7037952 |
| Snippet | Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 119679 |
| SubjectTerms | Animals biocompatibility biocompatible materials biodegradability biopolymers Cartilage Cartilage tissue engineering Chondrogenesis Digital light processing (DLP) 3D printing encapsulation epithelium Fibroins Hydrogels medicine printers Printing, Three-Dimensional Rabbits Silk Silk fibroin – Glycidyl methacrylate (silk-GMA) three-dimensional printing Tissue Engineering Tissue Scaffolds viability |
| Title | Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219307781 https://dx.doi.org/10.1016/j.biomaterials.2019.119679 https://www.ncbi.nlm.nih.gov/pubmed/31865191 https://www.proquest.com/docview/2330063880 https://www.proquest.com/docview/2524304035 |
| Volume | 232 |
| WOSCitedRecordID | wos000514748200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQwgeEAwG5WMyEm9RUD7sxBbiYdChgWBCYqDCS2S79sgoSdUPNP57zrGTZkxFRYiXqEpydZz75Xx3vg-EnoDEMxlXMkxMHoUEdI6QcUFCSYmisSBj2pRd_PQ2PzpioxF_713Z86adQF5V7OyMT_8rq-EcMNumzv4Fu7s_hRPwG5gOR2A7HDdi_LA8sY1Agok1u4OpSwSwDoF0GFgvnlUx5-XkW2DAUq7LKvj6czyrT3STyGgrVS_KiQ3kWTQsCfSqYOG5DeCyBl3XzaeDhg_vPdR6vuxA98F5Yz_r4IXWvT3_705_hwv1hbCgEmTY0g_oXRJgf0bnwju6XJlVYJJzXSYhz3zQtHbiloENS3lE-_I4cQ7PC7LduRlOn8reBG1sHgexzzPXkua32tk2dC2xY4KaGuW5TdHfTnLKQfxt778-GL3pNpxI1PRZ6h6yrU_bhAKuG3GdLrPOVml0luOb6IY3NvC-A8ktdElXO-h6rwTlDrr6zgdX3EZfPHJwgxy8Qg5Oh9gjB1vkYI8c3CIHA3JwhxzskIN7yLmDPr46OH55GPrWG6GCFXARSqVNnqs401yYLBdGaEUMIYrRMSfMgGanuJFZJrlSWRKllGiSRUyzseDWKNhFW1Vd6XsIR0zkkcwoV1QQZYwUEowQCXaJjNk4FgPE25dYKF-X3rZHmRRtAOJp0WdAYRlQOAYMUNrRTl11lo2onrW8Ktr8Y1gxCwDaRtTPO2qvpTrtc2P6xy08ChDldn9OVLpewk1p2lgQLPrDPTQhKSy8KR2guw5b3cxhec7g3cf3__EJH6Brq6_6IdpazJb6EbqifgB8Znvocj5ie_77-QWIweEl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+light+processing+3D+printed+silk+fibroin+hydrogel+for+cartilage+tissue+engineering&rft.jtitle=Biomaterials&rft.au=Hong%2C+Heesun&rft.au=Seo%2C+Ye+Been&rft.au=Kim%2C+Do+Yeon&rft.au=Lee%2C+Ji+Seung&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=232&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119679&rft.externalDocID=S0142961219307781 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |