Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering

Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomaterials Ročník 232; s. 119679
Hlavní autoři: Hong, Heesun, Seo, Ye Been, Kim, Do Yeon, Lee, Ji Seung, Lee, Young Jin, Lee, Hanna, Ajiteru, Olatunji, Sultan, Md Tipu, Lee, Ok Joo, Kim, Soon Hee, Park, Chan Hum
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier Ltd 01.02.2020
Témata:
ISSN:0142-9612, 1878-5905, 1878-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration.
AbstractList Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration.
Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration.Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine. Especially for the clinical application, it needs to develop of bio-ink with biocompatibility, biodegradability and printability. Therefore, we demonstrated that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing. The ability of chondrogenesis with chondrocyte-laden Silk-GMA evaluated in vitro culture system and applied in vivo. DLP 3D printing system provided 3D product with even cell distribution due to rapid printing speed and photopolymerization of DLP 3D printer. Up to 4 weeks in vitro cultivation of Silk-GMA hydrogel allows to ensure of viability, proliferation and differentiation to chondrogenesis of encapsulated cells. Moreover, in vivo experiments against partially defected trachea rabbit model demonstrated that new cartilage like tissue and epithelium found surrounding transplanted Silk-GMA hydrogel. This study promises the fabricated Silk GMA hydrogel using DLP 3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration.
ArticleNumber 119679
Author Ajiteru, Olatunji
Seo, Ye Been
Lee, Young Jin
Hong, Heesun
Kim, Do Yeon
Sultan, Md Tipu
Kim, Soon Hee
Lee, Hanna
Lee, Ok Joo
Lee, Ji Seung
Park, Chan Hum
Author_xml – sequence: 1
  givenname: Heesun
  surname: Hong
  fullname: Hong, Heesun
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 2
  givenname: Ye Been
  surname: Seo
  fullname: Seo, Ye Been
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 3
  givenname: Do Yeon
  surname: Kim
  fullname: Kim, Do Yeon
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 4
  givenname: Ji Seung
  surname: Lee
  fullname: Lee, Ji Seung
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 5
  givenname: Young Jin
  surname: Lee
  fullname: Lee, Young Jin
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 6
  givenname: Hanna
  surname: Lee
  fullname: Lee, Hanna
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 7
  givenname: Olatunji
  surname: Ajiteru
  fullname: Ajiteru, Olatunji
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 8
  givenname: Md Tipu
  surname: Sultan
  fullname: Sultan, Md Tipu
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 9
  givenname: Ok Joo
  surname: Lee
  fullname: Lee, Ok Joo
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 10
  givenname: Soon Hee
  surname: Kim
  fullname: Kim, Soon Hee
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
– sequence: 11
  givenname: Chan Hum
  surname: Park
  fullname: Park, Chan Hum
  email: hlpch@paran.com
  organization: Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31865191$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4AsTlyy2Inj2JyALv-kSlzgwsVynHE6W68Dthdpvz2utpVQL-zJGum9n2feuyBncYlAyCvO1pxx-Wa7HnHZ2QIJbcjrlnG95lzLQT8hK64G1fSa9WdkxbhoGy15e04uct6yOjPRPiPnHVey55qvyM8NzlhsoAHnm0J_pcVBzhhn2m3qhLHARDOGW-pxTAtGenOY0jJDoH5J1NlUMNgZaMGc90Ahzhihbhbn5-Spr_vBi_v3kvz49PH71Zfm-tvnr1fvrxvXd6o0owM_DI5L0NbLwXoLTnghnOonLZRnrXDaj1KO2jnZsq4XICRToCar6xHdJXl95Nblf-8hF7PD7CAEG2HZZ9P2reiYqMb_S7uOMdkpxar05b10P-5gMjWLnU0H8xBdFbw7Clxack7gjatBFlxiSRaD4czctWW25t-2zF1b5thWRbx9hHj45STz5miGmu0fhGSyQ4gOJkzgipkWPA3z4RHGBYzobLiFw6mQv22yz70
CitedBy_id crossref_primary_10_3389_fbioe_2023_1211688
crossref_primary_10_1002_adhm_202102810
crossref_primary_10_1016_j_bioactmat_2022_10_029
crossref_primary_10_3389_fbioe_2023_1214715
crossref_primary_10_1016_j_apmt_2024_102364
crossref_primary_10_3390_app13010120
crossref_primary_10_1002_mabi_202200278
crossref_primary_10_1016_j_ijbiomac_2025_146491
crossref_primary_10_1002_app_52155
crossref_primary_10_1016_j_ijbiomac_2024_131954
crossref_primary_10_1016_j_compositesb_2021_109470
crossref_primary_10_1093_rb_rbaf019
crossref_primary_10_1186_s40824_023_00358_x
crossref_primary_10_1155_2022_2076680
crossref_primary_10_1159_000512792
crossref_primary_10_1007_s12204_022_2507_5
crossref_primary_10_1016_j_bioactmat_2024_05_005
crossref_primary_10_1002_SMMD_20220011
crossref_primary_10_1016_j_addr_2024_115237
crossref_primary_10_3390_gels8110748
crossref_primary_10_1016_j_ijbiomac_2023_128031
crossref_primary_10_3390_biomimetics8080612
crossref_primary_10_1002_anbr_202000066
crossref_primary_10_1016_j_bioactmat_2022_05_008
crossref_primary_10_1039_D2PY00417H
crossref_primary_10_1016_j_matdes_2022_111299
crossref_primary_10_1002_biot_202300040
crossref_primary_10_1016_j_cis_2025_103481
crossref_primary_10_1088_2516_1091_ad2d59
crossref_primary_10_3389_fcvm_2023_1208227
crossref_primary_10_1016_j_matdes_2023_112315
crossref_primary_10_1016_j_bioactmat_2020_10_014
crossref_primary_10_1088_1748_605X_acef86
crossref_primary_10_1088_1748_605X_ac5416
crossref_primary_10_1002_mabi_202500101
crossref_primary_10_1016_j_actbio_2022_08_004
crossref_primary_10_1002_adhm_202102123
crossref_primary_10_1002_pol_20220772
crossref_primary_10_1007_s40145_021_0468_z
crossref_primary_10_3390_ijms23020910
crossref_primary_10_1002_adma_202400700
crossref_primary_10_3390_polym14235143
crossref_primary_10_1002_adhm_202402571
crossref_primary_10_1016_j_addr_2025_115523
crossref_primary_10_1038_s41570_023_00486_x
crossref_primary_10_3390_technologies9040091
crossref_primary_10_1016_j_biomaterials_2020_120413
crossref_primary_10_1016_j_ijbiomac_2023_125570
crossref_primary_10_1016_j_matdes_2024_113221
crossref_primary_10_1038_s41467_023_43364_2
crossref_primary_10_1002_jbm_b_35086
crossref_primary_10_1016_j_ijbiomac_2022_01_081
crossref_primary_10_1007_s10439_023_03176_3
crossref_primary_10_1111_cpr_12917
crossref_primary_10_3390_jfb16070232
crossref_primary_10_1088_1758_5090_ad0b3f
crossref_primary_10_1016_j_matchemphys_2020_123642
crossref_primary_10_1016_j_matdes_2025_114261
crossref_primary_10_1016_j_jiec_2020_12_011
crossref_primary_10_1002_mabi_202400515
crossref_primary_10_3390_bioengineering10070759
crossref_primary_10_1016_j_compositesb_2021_109261
crossref_primary_10_3390_jcs6080227
crossref_primary_10_1063_5_0024177
crossref_primary_10_1002_slct_202301395
crossref_primary_10_1111_iwj_13699
crossref_primary_10_1002_advs_202412566
crossref_primary_10_1002_bmm2_12078
crossref_primary_10_1002_smll_202409739
crossref_primary_10_1016_j_carbpol_2021_118780
crossref_primary_10_1016_j_bioadv_2022_213239
crossref_primary_10_1002_adhm_202301724
crossref_primary_10_1016_j_apmt_2025_102775
crossref_primary_10_1016_j_addma_2021_102563
crossref_primary_10_1016_j_addma_2024_104443
crossref_primary_10_1016_j_ijbiomac_2023_127410
crossref_primary_10_1016_j_cclet_2021_01_048
crossref_primary_10_1093_burnst_tkaf041
crossref_primary_10_1002_smll_202506259
crossref_primary_10_1155_2023_6428579
crossref_primary_10_1016_j_jfutfo_2021_09_005
crossref_primary_10_1016_j_foodhyd_2025_111505
crossref_primary_10_1002_smll_202201869
crossref_primary_10_1016_j_bioactmat_2020_06_004
crossref_primary_10_1088_1748_605X_abb615
crossref_primary_10_3390_polym14050986
crossref_primary_10_1039_D3MH00755C
crossref_primary_10_1016_j_ceramint_2024_07_268
crossref_primary_10_1016_j_carbpol_2022_119508
crossref_primary_10_1016_j_biomaterials_2022_121672
crossref_primary_10_1039_D0RA03964K
crossref_primary_10_1002_adhm_202200678
crossref_primary_10_1039_D2RA07037E
crossref_primary_10_1063_10_0025654
crossref_primary_10_1016_j_ijbiomac_2025_143610
crossref_primary_10_1016_j_nantod_2021_101180
crossref_primary_10_1016_j_ijbiomac_2025_145478
crossref_primary_10_1016_j_ijbiomac_2025_147532
crossref_primary_10_1016_j_mattod_2023_03_027
crossref_primary_10_1016_j_actbio_2022_12_048
crossref_primary_10_1016_j_compositesb_2022_110437
crossref_primary_10_3389_fphar_2022_1044726
crossref_primary_10_3390_molecules27092757
crossref_primary_10_1088_2752_5724_ad8898
crossref_primary_10_1186_s40779_022_00429_5
crossref_primary_10_3390_polym17060765
crossref_primary_10_1038_s41428_021_00536_5
crossref_primary_10_1016_j_ijbiomac_2024_130373
crossref_primary_10_1016_j_addma_2024_104142
crossref_primary_10_1016_j_mtbio_2024_101384
crossref_primary_10_1002_agt2_270
crossref_primary_10_1016_j_bioactmat_2022_01_038
crossref_primary_10_1002_admt_202200417
crossref_primary_10_1016_j_bioactmat_2021_03_040
crossref_primary_10_1016_j_matdes_2022_111120
crossref_primary_10_1002_bit_28075
crossref_primary_10_1016_j_bioactmat_2022_01_034
crossref_primary_10_1016_j_ijbiomac_2025_146699
crossref_primary_10_1039_D5MA00019J
crossref_primary_10_1080_10408398_2022_2067829
crossref_primary_10_1088_1748_605X_ac1ab4
crossref_primary_10_1002_pc_26948
crossref_primary_10_1631_bdm_2400058
crossref_primary_10_1016_j_tibtech_2020_11_003
crossref_primary_10_1007_s40883_023_00326_w
crossref_primary_10_3389_fbioe_2021_654087
crossref_primary_10_1016_j_cej_2024_155650
crossref_primary_10_1002_adfm_202401516
crossref_primary_10_3390_ijms24031836
crossref_primary_10_1016_j_tibtech_2023_11_014
crossref_primary_10_1016_j_eurpolymj_2022_111509
crossref_primary_10_1016_j_jmapro_2024_10_016
crossref_primary_10_3390_polym13050753
crossref_primary_10_1557_s43578_023_01193_5
crossref_primary_10_1002_adhm_202303499
crossref_primary_10_1016_j_bioadv_2024_213805
crossref_primary_10_3390_polym13203537
crossref_primary_10_1016_j_ijbiomac_2021_07_199
crossref_primary_10_1186_s13287_020_02024_8
crossref_primary_10_3390_jfb15020037
crossref_primary_10_1016_j_cis_2024_103163
crossref_primary_10_3390_gels10070469
crossref_primary_10_1016_j_ebiom_2024_105258
crossref_primary_10_1016_j_matchemphys_2021_125484
crossref_primary_10_1039_D5GC02299A
crossref_primary_10_1002_adhm_202302063
crossref_primary_10_1016_j_polymer_2024_127384
crossref_primary_10_1080_10837450_2024_2345144
crossref_primary_10_1016_j_bbrc_2023_01_097
crossref_primary_10_1016_j_jconrel_2023_12_025
crossref_primary_10_3389_fbioe_2022_854693
crossref_primary_10_3233_THC_220393
crossref_primary_10_1016_j_eurpolymj_2023_112471
crossref_primary_10_1016_j_heliyon_2023_e14349
crossref_primary_10_3390_biomedicines10123224
crossref_primary_10_3390_gels9020100
crossref_primary_10_1002_appl_202300030
crossref_primary_10_3390_ma15062170
crossref_primary_10_1002_jbm_b_35142
crossref_primary_10_3390_gels8120833
crossref_primary_10_1016_j_eurpolymj_2025_114007
crossref_primary_10_3390_bioengineering12090936
crossref_primary_10_1002_adma_202306468
crossref_primary_10_1007_s10904_022_02410_0
crossref_primary_10_1016_j_progpolymsci_2021_101375
crossref_primary_10_1088_1748_605X_ac96ba
crossref_primary_10_1016_j_bprint_2021_e00183
crossref_primary_10_1016_j_carbpol_2023_121232
crossref_primary_10_1007_s42247_024_00643_y
crossref_primary_10_1016_j_actbio_2022_11_029
crossref_primary_10_1002_advs_202305215
crossref_primary_10_1177_20417314241309183
crossref_primary_10_1089_ten_teb_2023_0072
crossref_primary_10_3390_biom11010035
crossref_primary_10_1016_j_bprint_2024_e00343
crossref_primary_10_1016_j_procbio_2022_12_012
crossref_primary_10_3389_fbioe_2022_865770
crossref_primary_10_1021_acsabm_4c01923
crossref_primary_10_1016_j_nanoen_2022_108158
crossref_primary_10_1016_j_actbio_2025_08_026
crossref_primary_10_1088_1758_5090_abfaee
crossref_primary_10_1021_acsbiomaterials_4c01931
crossref_primary_10_1002_VIW_20230069
crossref_primary_10_1016_j_actbio_2025_01_011
crossref_primary_10_1080_1539445X_2021_1918719
crossref_primary_10_1063_5_0084794
crossref_primary_10_1038_s41596_021_00622_1
crossref_primary_10_1016_j_colcom_2022_100667
crossref_primary_10_1021_acsapm_5c00047
crossref_primary_10_1080_21691401_2020_1809439
crossref_primary_10_3390_bioengineering10111309
crossref_primary_10_1007_s40843_024_2970_2
crossref_primary_10_3390_jfb15010007
crossref_primary_10_3390_gels10010008
crossref_primary_10_1038_s41368_022_00203_2
crossref_primary_10_3390_coatings12091357
crossref_primary_10_1016_j_bprint_2022_e00239
crossref_primary_10_1016_j_cclet_2024_110686
crossref_primary_10_3390_polym15020375
crossref_primary_10_1016_j_jddst_2022_103994
crossref_primary_10_3389_fbioe_2022_1067111
crossref_primary_10_1111_1541_4337_12939
crossref_primary_10_1002_adhm_202400431
crossref_primary_10_1016_j_indcrop_2023_118000
crossref_primary_10_1021_acsami_5c16395
crossref_primary_10_1007_s12257_021_0418_1
crossref_primary_10_3390_bioengineering11040329
crossref_primary_10_1016_j_compositesb_2022_109691
crossref_primary_10_1002_smll_202302506
crossref_primary_10_1208_s12249_025_03108_5
crossref_primary_10_1002_adsr_202300011
crossref_primary_10_1007_s13346_023_01437_1
crossref_primary_10_3389_fbioe_2023_1264006
crossref_primary_10_1002_adfm_202201257
crossref_primary_10_1016_j_bprint_2025_e00407
crossref_primary_10_1016_j_matdes_2023_112044
crossref_primary_10_1088_1758_5090_ad92da
crossref_primary_10_1016_j_cis_2025_103660
crossref_primary_10_1016_j_matdes_2023_111885
crossref_primary_10_1016_j_addma_2023_103723
crossref_primary_10_1039_D5TB00248F
crossref_primary_10_1002_smll_202309485
crossref_primary_10_3389_fbioe_2023_1199507
crossref_primary_10_3389_fcell_2022_698282
crossref_primary_10_3390_gels7040155
crossref_primary_10_3389_fphar_2022_1071868
crossref_primary_10_3390_gels8100650
crossref_primary_10_1007_s42765_022_00144_9
crossref_primary_10_1016_j_bprint_2022_e00253
crossref_primary_10_1021_acssuschemeng_5c02690
crossref_primary_10_1016_j_ijbiomac_2022_09_275
crossref_primary_10_3390_pharmaceutics12030207
crossref_primary_10_3390_bioengineering8040048
crossref_primary_10_1002_smll_202503147
crossref_primary_10_3390_polym17091287
crossref_primary_10_1016_j_jddst_2022_103384
crossref_primary_10_1016_j_actbio_2023_04_034
crossref_primary_10_1631_bdm_2400313
crossref_primary_10_1007_s40883_022_00277_8
crossref_primary_10_3390_polym12122936
crossref_primary_10_1038_s41467_023_35807_7
crossref_primary_10_1155_2023_1105664
crossref_primary_10_3390_gels10040238
crossref_primary_10_1016_j_jconrel_2024_12_071
crossref_primary_10_2174_0122103031309831240531084125
crossref_primary_10_1016_j_jddst_2022_103385
crossref_primary_10_1007_s42242_024_00275_5
crossref_primary_10_1016_j_reactfunctpolym_2022_105313
crossref_primary_10_1007_s11431_023_2471_0
crossref_primary_10_1007_s10853_024_10018_7
crossref_primary_10_1007_s10853_022_07361_y
crossref_primary_10_1016_j_indcrop_2021_113759
crossref_primary_10_1016_j_jmst_2022_08_028
crossref_primary_10_1016_j_watres_2020_116497
crossref_primary_10_3390_gels9030195
crossref_primary_10_1016_j_bioactmat_2021_04_005
crossref_primary_10_1002_smsc_202400097
crossref_primary_10_1002_marc_202300661
crossref_primary_10_1088_1758_5090_adcbd7
crossref_primary_10_1007_s00289_023_04949_5
crossref_primary_10_1039_D2BM01343F
crossref_primary_10_1016_j_scp_2022_100606
crossref_primary_10_1002_adfm_202405255
crossref_primary_10_1177_11795972241288099
crossref_primary_10_1016_j_matdes_2022_110670
crossref_primary_10_1016_j_cej_2021_130429
crossref_primary_10_1002_adfm_202406920
crossref_primary_10_1016_j_jpha_2023_12_015
crossref_primary_10_1002_app_56973
crossref_primary_10_3390_ijms22031499
crossref_primary_10_1016_j_bprint_2024_e00363
crossref_primary_10_3390_ma16155312
crossref_primary_10_1049_bsb2_12036
crossref_primary_10_1557_s43578_025_01521_x
crossref_primary_10_1208_s12249_023_02720_7
crossref_primary_10_2147_DDDT_S344036
crossref_primary_10_1007_s43939_024_00115_4
crossref_primary_10_1021_acs_biomac_5c00305
crossref_primary_10_1002_adhm_202403079
crossref_primary_10_1007_s10741_023_10367_6
crossref_primary_10_1016_j_mfglet_2023_08_015
crossref_primary_10_1063_5_0187558
crossref_primary_10_1016_j_jddst_2022_104018
crossref_primary_10_1088_1758_5090_ad0071
crossref_primary_10_1146_annurev_matsci_080423_123810
crossref_primary_10_1007_s10439_023_03243_9
crossref_primary_10_1007_s10853_024_10182_w
crossref_primary_10_3390_molecules30020328
crossref_primary_10_1007_s12200_020_1009_z
crossref_primary_10_1016_j_biopha_2024_116238
crossref_primary_10_1016_j_eurpolymj_2021_110411
crossref_primary_10_3389_fbioe_2025_1595116
crossref_primary_10_1002_pol_20240302
crossref_primary_10_1007_s10439_024_03626_6
crossref_primary_10_1002_adhm_202401458
crossref_primary_10_1016_j_biomaterials_2020_120281
crossref_primary_10_1016_j_apmt_2022_101668
crossref_primary_10_1016_j_polymer_2023_126392
crossref_primary_10_1016_j_apmt_2023_101968
crossref_primary_10_1016_j_foodhyd_2024_110079
crossref_primary_10_1016_j_bioactmat_2021_05_011
crossref_primary_10_3389_fbioe_2023_1137145
crossref_primary_10_1016_j_polymertesting_2025_108699
crossref_primary_10_3390_pharmaceutics12070620
crossref_primary_10_3390_biomedicines11082244
crossref_primary_10_3389_fbioe_2022_858656
crossref_primary_10_1016_j_msec_2021_112576
crossref_primary_10_1002_adma_202107759
crossref_primary_10_1016_j_cjmeam_2022_100011
Cites_doi 10.1016/j.polymer.2018.08.019
10.1152/physrev.1991.71.2.481
10.1002/adma.201606000
10.1038/nprot.2011.379
10.2106/00004623-199704000-00021
10.1021/acsbiomaterials.9b00696
10.1016/j.biomaterials.2010.08.100
10.1089/ten.2006.12.1971
10.1016/j.joca.2012.06.016
10.1016/j.biomaterials.2011.08.027
10.22203/eCM.v009a08
10.1097/GOX.0000000000001227
10.1038/nbt.2958
10.1016/j.actbio.2013.03.020
10.1039/C6TB00717A
10.1038/s41467-018-03759-y
10.3390/ma12030504
10.7150/thno.16614
10.1088/1758-5090/aa663c
10.1016/S0142-9612(03)00340-5
10.1021/acsbiomaterials.8b00150
10.1021/acs.analchem.6b03426
10.3390/ijms20020316
10.1016/j.actbio.2017.08.005
10.1016/j.msec.2010.02.017
10.1016/j.biomaterials.2012.09.048
10.1002/jbm.a.33308
10.1016/j.biomaterials.2004.02.047
10.1088/1758-5082/6/2/025003
10.1016/j.actbio.2017.07.028
10.1021/acsami.9b11644
10.1007/s10853-018-1992-2
10.1016/j.biomaterials.2007.08.017
10.1016/j.biomaterials.2004.09.034
10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
10.1016/j.actbio.2009.02.002
10.1016/j.ijbiomac.2015.03.064
10.1016/j.actbio.2019.01.009
10.1016/j.biomaterials.2008.05.002
10.1016/j.biomaterials.2016.01.019
10.3390/ma7032104
10.1016/j.progpolymsci.2019.101145
10.1016/j.biotechadv.2015.12.011
10.1016/j.jiec.2017.12.032
10.1038/nmeth.3839
10.1016/j.copbio.2016.03.014
10.3109/17453679608994664
10.1097/00003086-196609000-00028
10.1016/S0003-4975(03)01193-7
10.1016/S1357-2725(02)00301-1
10.3390/ijms17121976
10.1016/S0142-9612(02)00353-8
10.1007/s13770-017-0104-8
10.1021/acsbiomaterials.6b00258
10.1038/nmat4694
10.1002/jcb.20652
10.3390/jdb3040177
10.1016/j.biomaterials.2009.06.008
10.1016/j.sna.2018.02.041
10.1016/j.ceramint.2016.04.050
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2019.119679
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 31865191
10_1016_j_biomaterials_2019_119679
S0142961219307781
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-bcef77c16e9af67afaec4f44c85d948f024c9fb66b9cc620354e4608e8da95193
ISICitedReferencesCount 280
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514748200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sat Sep 27 16:57:45 EDT 2025
Thu Oct 02 09:56:10 EDT 2025
Thu Apr 03 06:55:12 EDT 2025
Sat Nov 29 07:24:15 EST 2025
Tue Nov 18 21:16:31 EST 2025
Fri Feb 23 02:40:20 EST 2024
Tue Oct 14 19:30:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cartilage tissue engineering
Chondrogenesis
Silk fibroin – Glycidyl methacrylate (silk-GMA)
Digital light processing (DLP) 3D printing
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-bcef77c16e9af67afaec4f44c85d948f024c9fb66b9cc620354e4608e8da95193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31865191
PQID 2330063880
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524304035
proquest_miscellaneous_2330063880
pubmed_primary_31865191
crossref_citationtrail_10_1016_j_biomaterials_2019_119679
crossref_primary_10_1016_j_biomaterials_2019_119679
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119679
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119679
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Ma, Gou, Mei, Zhang, Chen (bib6) 2016; 40
Zeng, Yan, Yan, Liu, Li, Dong (bib10) 2018; 53
Caron, Emans, Coolsen, Voss, Surtel, Cremers, van Rhijin, Welting (bib49) 2012; 20
Jung, Kim, Lee, Min, Park (bib60) 2018; 15
Murphy, Atala (bib1) 2014; 32
Talukdar, Nguyen, Chen, Sah, Kundu (bib39) 2011; 32
Hung, Tseng, Dai, Hsu (bib59) 2016; 83
Lin (bib12) 2013; 34
Moller, Amoroso, Hagg, Brantsing, Rotter, Apelgren, Lindahl, Kolby, Gatenholm (bib57) 2017; 5
Ng, Chua, Shen (bib33) 2019; 97
Chua, Aminuddin, Fuzina, Ruszymah (bib51) 2005; 9
Vedadghavami, Minooei, Mohammadi, Khetani, Kolahchi, Mashayekhan, Sanati-Nezhad (bib55) 2017; 62
Zhou, Liu, Wu, Song, Chen, Cheng (bib3) 2016; 42
Meinel, Hofmann, Karageorgiou, Kirker-Head, McCool, Gronowicz (bib21) 2005; 26
Buckwalter, Mankin (bib28) 1998; 41
Mauney, Nguyen, Gillen, Kirker-Head, Gimble, Kaplan (bib22) 2007; 28
Nuernberger, Cyran, Albrecht, Redl, Vécsei, Marlovits (bib19) 2011; 32
Grogan (bib11) 2013; 9
Depalma, McKEEvER, Subin (bib29) 1966; 48
Shao, Ke, Liu, Sun, He, Yang (bib5) 2017; 9
Rockwood, Preda, Yucel, Wang, Lovett, Kaplan (bib34) 2011; 6
Grogan, Chung, Soman, Chen (bib31) 2013; 9
Kim, Yeon, Lee, Chao, Lee (bib8) 2018; 9
Archer, Francis-West (bib26) 2003; 35
Chen, Liu, Chua, Chou (bib47) 2014; 7
Lin, Willers, Xu, Zheng (bib48) 2006; 12
Akkiraju, Nohe (bib27) 2015; 3
Garcia-Fuentes, Meinel, Hilbe, Meinel, Merkle (bib42) 2009; 30
Altman, Diaz, Jakuba, Calabro, Horan, Chen, Lu, Richmond, Kaplan (bib43) 2003; 24
Levato, Webb, Otto, Mensinga, Zhang, Rujen, Weeren, Khan, Malda (bib58) 2017; 60
Kim, Park (bib24) 2016; 11
Xue, Zhang, Wang, Mei (bib32) 2019; 5
Chang, Cheng, Ho, Huang, Lee (bib45) 2009; 5
Jeyakumar, Niculescu-Morza, Bauer, Lacza, Nehrer (bib50) 2019; 20
Wang, Han, Yan, Zhang (bib35) 2019; 12
Tondera, Hauser, Kruger-Genge, Jung, Neffe, Lendlein, Klopfleisch, Steinbach, Neuber, Pietzsch (bib53) 2016; 6
Caliari, Burdick (bib56) 2016 Apr 28; 13
Bonakdar, Emami, Shokrgozar, Farhadi, Ahmadi, Amanzadeh (bib16) 2010; 30
Goldring, Tsuchimochi, Ijiri (bib41) 2006 Jan1; 97
Axpe, Oyen (bib15) 2016; 17
Singh, Bandyopadhyay, Mandal (bib63) 2019; 11
Cheng, Davoudi, Xing, Yu, Cheng, Li, Deng, Wang (bib37) 2018; 4
Mandrycky, Wang, Kim, Kim (bib9) 2016; 34
Bhardwaj, Singh, Devi, Kanimalla, Kotoky, Mandal (bib38) 2016; 4
Na, Shin, Lee, Shin, Baek, Kwak (bib40) 2018; 61
Ge, Dong, Wang, Ge, Gu (bib14) 2018; 273
Wang, Rudym, Walsh, Abrahamsen, Kim, Kim (bib52) 2008; 29
Ashammakhi, Reis, Chiellini (bib62) 2008; 4
Dorotka, Windberger, Macfelda, Bindreiter, Toma, Nehrer (bib17) 2005; 26
Zheng, Smith, Jackson, Moran, Cui, Chen (bib13) 2016; 15
Lee, Lee, Kim, Kim, Kweon, Jo (bib20) 2012; 100
Buckwalter, Mankin (bib44) 1997; 79A
Leberfinger, Dinda, Wu, Koduru, Ozbolat, Ravnic, Ozbolat (bib54) 2019; 95
You, Wu, Zhu, Lei, Eames, Chen (bib61) 2016; 2
Park (bib23) 2015; 78
Drury, Mooney (bib18) 2003; 24
Kim, Kim, Choi, Park, Ki (bib36) 2018; 153
Kojima, Bonassar, Ignotz (bib25) 2003; 76
Mandon, Blum, Marquette (bib4) 2016; 88
Patel, Sakhaei, Layani, Zhang, Ge, Magdassi (bib2) 2017; 29
Park, Jung, Kang, Cho (bib7) 2014; 6
Jackson, Busch, Cardin (bib46) 1991; 71
Messner, Maletius (bib30) 1996; 67
Talukdar (10.1016/j.biomaterials.2019.119679_bib39) 2011; 32
Hung (10.1016/j.biomaterials.2019.119679_bib59) 2016; 83
Meinel (10.1016/j.biomaterials.2019.119679_bib21) 2005; 26
Goldring (10.1016/j.biomaterials.2019.119679_bib41) 2006; 97
Na (10.1016/j.biomaterials.2019.119679_bib40) 2018; 61
Mandrycky (10.1016/j.biomaterials.2019.119679_bib9) 2016; 34
Lee (10.1016/j.biomaterials.2019.119679_bib20) 2012; 100
Ge (10.1016/j.biomaterials.2019.119679_bib14) 2018; 273
Drury (10.1016/j.biomaterials.2019.119679_bib18) 2003; 24
Xue (10.1016/j.biomaterials.2019.119679_bib32) 2019; 5
Zhou (10.1016/j.biomaterials.2019.119679_bib3) 2016; 42
Messner (10.1016/j.biomaterials.2019.119679_bib30) 1996; 67
Jeyakumar (10.1016/j.biomaterials.2019.119679_bib50) 2019; 20
Depalma (10.1016/j.biomaterials.2019.119679_bib29) 1966; 48
Chua (10.1016/j.biomaterials.2019.119679_bib51) 2005; 9
Chen (10.1016/j.biomaterials.2019.119679_bib47) 2014; 7
Zheng (10.1016/j.biomaterials.2019.119679_bib13) 2016; 15
Ng (10.1016/j.biomaterials.2019.119679_bib33) 2019; 97
Park (10.1016/j.biomaterials.2019.119679_bib7) 2014; 6
Wang (10.1016/j.biomaterials.2019.119679_bib52) 2008; 29
Chang (10.1016/j.biomaterials.2019.119679_bib45) 2009; 5
Mauney (10.1016/j.biomaterials.2019.119679_bib22) 2007; 28
Garcia-Fuentes (10.1016/j.biomaterials.2019.119679_bib42) 2009; 30
Caron (10.1016/j.biomaterials.2019.119679_bib49) 2012; 20
Lin (10.1016/j.biomaterials.2019.119679_bib48) 2006; 12
Jung (10.1016/j.biomaterials.2019.119679_bib60) 2018; 15
Grogan (10.1016/j.biomaterials.2019.119679_bib11) 2013; 9
Moller (10.1016/j.biomaterials.2019.119679_bib57) 2017; 5
Wang (10.1016/j.biomaterials.2019.119679_bib35) 2019; 12
Nuernberger (10.1016/j.biomaterials.2019.119679_bib19) 2011; 32
Murphy (10.1016/j.biomaterials.2019.119679_bib1) 2014; 32
Zhu (10.1016/j.biomaterials.2019.119679_bib6) 2016; 40
Buckwalter (10.1016/j.biomaterials.2019.119679_bib28) 1998; 41
Shao (10.1016/j.biomaterials.2019.119679_bib5) 2017; 9
Caliari (10.1016/j.biomaterials.2019.119679_bib56) 2016; 13
Singh (10.1016/j.biomaterials.2019.119679_bib63) 2019; 11
Grogan (10.1016/j.biomaterials.2019.119679_bib31) 2013; 9
Bonakdar (10.1016/j.biomaterials.2019.119679_bib16) 2010; 30
Rockwood (10.1016/j.biomaterials.2019.119679_bib34) 2011; 6
Vedadghavami (10.1016/j.biomaterials.2019.119679_bib55) 2017; 62
Kim (10.1016/j.biomaterials.2019.119679_bib8) 2018; 9
Park (10.1016/j.biomaterials.2019.119679_bib23) 2015; 78
Leberfinger (10.1016/j.biomaterials.2019.119679_bib54) 2019; 95
You (10.1016/j.biomaterials.2019.119679_bib61) 2016; 2
Dorotka (10.1016/j.biomaterials.2019.119679_bib17) 2005; 26
Zeng (10.1016/j.biomaterials.2019.119679_bib10) 2018; 53
Kim (10.1016/j.biomaterials.2019.119679_bib36) 2018; 153
Archer (10.1016/j.biomaterials.2019.119679_bib26) 2003; 35
Kim (10.1016/j.biomaterials.2019.119679_bib24) 2016; 11
Axpe (10.1016/j.biomaterials.2019.119679_bib15) 2016; 17
Bhardwaj (10.1016/j.biomaterials.2019.119679_bib38) 2016; 4
Cheng (10.1016/j.biomaterials.2019.119679_bib37) 2018; 4
Lin (10.1016/j.biomaterials.2019.119679_bib12) 2013; 34
Mandon (10.1016/j.biomaterials.2019.119679_bib4) 2016; 88
Jackson (10.1016/j.biomaterials.2019.119679_bib46) 1991; 71
Patel (10.1016/j.biomaterials.2019.119679_bib2) 2017; 29
Ashammakhi (10.1016/j.biomaterials.2019.119679_bib62) 2008; 4
Tondera (10.1016/j.biomaterials.2019.119679_bib53) 2016; 6
Akkiraju (10.1016/j.biomaterials.2019.119679_bib27) 2015; 3
Kojima (10.1016/j.biomaterials.2019.119679_bib25) 2003; 76
Altman (10.1016/j.biomaterials.2019.119679_bib43) 2003; 24
Buckwalter (10.1016/j.biomaterials.2019.119679_bib44) 1997; 79A
Levato (10.1016/j.biomaterials.2019.119679_bib58) 2017; 60
References_xml – volume: 48
  start-page: 229
  year: 1966
  end-page: 242
  ident: bib29
  article-title: 23 process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine
  publication-title: Clin. Orthop. Relat. Res.
– volume: 30
  start-page: 5068
  year: 2009
  end-page: 5076
  ident: bib42
  article-title: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering
  publication-title: Biomaterials
– volume: 79A
  start-page: 600
  year: 1997
  end-page: 611
  ident: bib44
  article-title: Articular cartilage: tissue design and chondrocyte–matrix interactions
  publication-title: J Bone Joint Surg Am
– volume: 9
  start-page: 7218
  year: 2013
  end-page: 7226
  ident: bib11
  article-title: Digital micromirror device projection printing system for meniscus tissue engineering
  publication-title: Acta Biomater.
– volume: 100
  start-page: 2018
  year: 2012
  end-page: 2026
  ident: bib20
  article-title: Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations
  publication-title: J. Biomed. Mater. Res. A
– volume: 29
  start-page: 1606000
  year: 2017
  ident: bib2
  article-title: Highly stretchable and UV curable elastomers for digital light processing based 3D printing
  publication-title: Adv. Mater.
– volume: 88
  start-page: 10767
  year: 2016
  end-page: 10772
  ident: bib4
  article-title: Adding biomolecular recognition capability to 3D printed objects
  publication-title: Anal. Chem.
– volume: 83
  start-page: 156
  year: 2016
  end-page: 168
  ident: bib59
  article-title: Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering
  publication-title: Biomaterials
– volume: 41
  start-page: 1331
  year: 1998
  end-page: 1342
  ident: bib28
  article-title: Articular cartilage repair and transplantation
  publication-title: Arthritis Rheum.: Off. J. Am. Coll. Rheumatol.
– volume: 7
  start-page: 2104
  year: 2014
  end-page: 2119
  ident: bib47
  article-title: Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology
  publication-title: Materials
– volume: 9
  start-page: 7218
  year: 2013
  end-page: 7226
  ident: bib31
  article-title: Digital micromirror device projection printing system for meniscus tissue engineering
  publication-title: Acta Biomater.
– volume: 11
  start-page: 33684
  year: 2019
  end-page: 33696
  ident: bib63
  article-title: 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering
  publication-title: ACS Appl. Mater. Interfaces
– volume: 67
  start-page: 165
  year: 1996
  end-page: 168
  ident: bib30
  article-title: The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes
  publication-title: Acta Orthop. Scand.
– volume: 35
  start-page: 401
  year: 2003
  end-page: 404
  ident: bib26
  article-title: The chondrocyte
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 4
  start-page: 3
  year: 2008
  end-page: 16
  ident: bib62
  publication-title: Top. Tissue Eng.
– volume: 34
  start-page: 331
  year: 2013
  end-page: 339
  ident: bib12
  article-title: Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
  publication-title: Biomaterials
– volume: 15
  start-page: 1100
  year: 2016
  ident: bib13
  article-title: Multiscale metallic metamaterials
  publication-title: Nat. Mater.
– volume: 32
  start-page: 8927
  year: 2011
  end-page: 8937
  ident: bib39
  article-title: Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering
  publication-title: Biomaterials
– volume: 62
  start-page: 42
  year: 2017
  end-page: 63
  ident: bib55
  article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications
  publication-title: Acta Biomater.
– volume: 97
  start-page: 101145
  year: 2019
  ident: bib33
  article-title: Print me an organ! Why we are not there yet
  publication-title: Prog. Polym. Sci.
– volume: 40
  start-page: 103
  year: 2016
  end-page: 112
  ident: bib6
  article-title: 3D printing of functional biomaterials for tissue engineering
  publication-title: Curr. Opin. Biotechnol.
– volume: 13
  start-page: 405
  year: 2016 Apr 28
  end-page: 414
  ident: bib56
  article-title: A practical guide to hydrogels for cell culture
  publication-title: Nat. Methods
– volume: 24
  start-page: 4337
  year: 2003
  end-page: 4351
  ident: bib18
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
– volume: 42
  start-page: 11598
  year: 2016
  end-page: 11602
  ident: bib3
  article-title: Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes
  publication-title: Ceram. Int.
– volume: 6
  start-page: 1612
  year: 2011
  end-page: 1631
  ident: bib34
  article-title: Materials fabrication from
  publication-title: Nat. Protoc.
– volume: 12
  start-page: 504
  year: 2019
  ident: bib35
  article-title: 3D printing of silk fibroin for biomedical applications
  publication-title: Materials
– volume: 17
  start-page: 1976
  year: 2016
  ident: bib15
  article-title: Applications of alginate-based bioinks in 3D bioprinting
  publication-title: Int. J. Mol. Sci.
– volume: 97
  start-page: 33
  year: 2006 Jan1
  end-page: 44
  ident: bib41
  article-title: The control of chondrogenesis
  publication-title: J. Cell. Biochem.
– volume: 29
  start-page: 3415
  year: 2008
  end-page: 3428
  ident: bib52
  article-title: In vivo degradation of three-dimensional silk fibroin scaffolds
  publication-title: Biomaterials
– volume: 4
  start-page: 3670
  year: 2016
  end-page: 3684
  ident: bib38
  article-title: Potential of silk fibroin/chondrocyte constructs of muga silkworm
  publication-title: J. Mater. Chem. B.
– volume: 71
  start-page: 481
  year: 1991
  end-page: 539
  ident: bib46
  article-title: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes
  publication-title: Physiol. Rev.
– volume: 32
  start-page: 773
  year: 2014
  ident: bib1
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
– volume: 153
  start-page: 232
  year: 2018
  end-page: 240
  ident: bib36
  article-title: Characterization of silk hydrogel formed with hydrolyzed silk fibroin-methacrylate via photopolymerization
  publication-title: Polymer
– volume: 5
  start-page: e1227
  year: 2017
  ident: bib57
  article-title: In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs
  publication-title: Plast Reconstr Surg Glob Open
– volume: 95
  start-page: 32
  year: 2019
  end-page: 49
  ident: bib54
  article-title: Bioprinting functional tissues
  publication-title: Acta Biomater.
– volume: 60
  start-page: 41
  year: 2017
  end-page: 53
  ident: bib58
  article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
  publication-title: Acta Biomater.
– volume: 34
  start-page: 422
  year: 2016
  end-page: 434
  ident: bib9
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol. Adv.
– volume: 2
  start-page: 1200
  year: 2016
  end-page: 1210
  ident: bib61
  article-title: 3D printing of cell-laden hydrogel constructs for potential applications in cartilage tissue engineering
  publication-title: ACS Biomater. Sci. Eng.
– volume: 32
  start-page: 1032
  year: 2011
  end-page: 1040
  ident: bib19
  article-title: The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts
  publication-title: Biomaterials
– volume: 15
  start-page: 155
  year: 2018
  end-page: 162
  ident: bib60
  article-title: Development of printable natural cartilage matrix bioink for 3D printing on irregular tissue shape
  publication-title: Tissue Eng Regen Med
– volume: 26
  start-page: 147
  year: 2005
  end-page: 155
  ident: bib21
  article-title: The inflammatory responses to silk films in vitro and in vivo
  publication-title: Biomaterials
– volume: 78
  start-page: 215
  year: 2015
  end-page: 223
  ident: bib23
  article-title: Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction
  publication-title: Int. J. Biol. Macromol.
– volume: 9
  year: 2017
  ident: bib5
  article-title: Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect
  publication-title: Biofabrication
– volume: 53
  start-page: 6291
  year: 2018
  end-page: 6301
  ident: bib10
  article-title: 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing
  publication-title: J. Mater. Sci.
– volume: 6
  start-page: 2114
  year: 2016
  end-page: 2128
  ident: bib53
  article-title: Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodel preclinical imaging in immunocompetent nude mice
  publication-title: Theranostics
– volume: 76
  start-page: 1884
  year: 2003
  end-page: 1888
  ident: bib25
  article-title: Comparison of tracheal and nasal chondrocytes for tissue engineering of th trachea
  publication-title: Ann. Thorac. Surg.
– volume: 6
  year: 2014
  ident: bib7
  article-title: Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process
  publication-title: Biofabrication
– volume: 9
  start-page: 1620
  year: 2018
  ident: bib8
  article-title: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1971e84
  year: 2006
  ident: bib48
  article-title: The chondrocyte: biology and clinical application
  publication-title: Tissue Eng.
– volume: 11
  start-page: 2967
  year: 2016
  end-page: 2978
  ident: bib24
  article-title: Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility
  publication-title: Int. J. Nanomed.
– volume: 24
  start-page: 401
  year: 2003
  end-page: 416
  ident: bib43
  article-title: Silk-based biomaterials
  publication-title: Biomaterials
– volume: 5
  start-page: 1937
  year: 2009
  end-page: 1947
  ident: bib45
  article-title: Fabrication and characterization of poly (γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering
  publication-title: Acta Biomater.
– volume: 20
  start-page: 316
  year: 2019
  ident: bib50
  article-title: Redifferentiation of articular chondrocytes by hyperacute serum and platelet rich plasma in collagen type I hydrogels
  publication-title: Int. J. Mol. Sci.
– volume: 61
  start-page: 340
  year: 2018
  end-page: 347
  ident: bib40
  article-title: Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink
  publication-title: J. Ind. Eng. Chem.
– volume: 20
  start-page: 1170
  year: 2012
  end-page: 1178
  ident: bib49
  article-title: Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures
  publication-title: Osteoarthr. Cartil.
– volume: 28
  start-page: 5280
  year: 2007
  end-page: 5290
  ident: bib22
  article-title: Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds
  publication-title: Biomaterials
– volume: 273
  start-page: 285
  year: 2018
  end-page: 292
  ident: bib14
  article-title: A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators
  publication-title: Sens. Actuators A Phys.
– volume: 4
  start-page: 2704
  year: 2018
  end-page: 2715
  ident: bib37
  article-title: Advanced silk fibroin biomaterials for cartilage regeneration
  publication-title: ACS Biomater. Sci. Eng.
– volume: 30
  start-page: 636
  year: 2010
  end-page: 643
  ident: bib16
  article-title: Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage
  publication-title: Mater. Sci. Eng. C
– volume: 3
  start-page: 177
  year: 2015
  end-page: 192
  ident: bib27
  article-title: Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration
  publication-title: Dev. Biol.
– volume: 9
  start-page: 58
  year: 2005
  end-page: 67
  ident: bib51
  article-title: Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage
  publication-title: Eur. Cells Mater.
– volume: 26
  start-page: 3617
  year: 2005
  end-page: 3629
  ident: bib17
  article-title: Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix
  publication-title: Biomaterials
– volume: 5
  start-page: 4825
  year: 2019
  end-page: 4833
  ident: bib32
  article-title: Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness
  publication-title: ACS Biomater. Sci. Eng.
– volume: 153
  start-page: 232
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib36
  article-title: Characterization of silk hydrogel formed with hydrolyzed silk fibroin-methacrylate via photopolymerization
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.08.019
– volume: 71
  start-page: 481
  year: 1991
  ident: 10.1016/j.biomaterials.2019.119679_bib46
  article-title: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1991.71.2.481
– volume: 29
  start-page: 1606000
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119679_bib2
  article-title: Highly stretchable and UV curable elastomers for digital light processing based 3D printing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606000
– volume: 6
  start-page: 1612
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119679_bib34
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.379
– volume: 79A
  start-page: 600
  year: 1997
  ident: 10.1016/j.biomaterials.2019.119679_bib44
  article-title: Articular cartilage: tissue design and chondrocyte–matrix interactions
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-199704000-00021
– volume: 11
  start-page: 2967
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib24
  article-title: Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility
  publication-title: Int. J. Nanomed.
– volume: 5
  start-page: 4825
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119679_bib32
  article-title: Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00696
– volume: 32
  start-page: 1032
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119679_bib19
  article-title: The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.100
– volume: 12
  start-page: 1971e84
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119679_bib48
  article-title: The chondrocyte: biology and clinical application
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.12.1971
– volume: 20
  start-page: 1170
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119679_bib49
  article-title: Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2012.06.016
– volume: 32
  start-page: 8927
  issue: 24
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119679_bib39
  article-title: Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.027
– volume: 9
  start-page: 58
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119679_bib51
  article-title: Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v009a08
– volume: 5
  start-page: e1227
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119679_bib57
  article-title: In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs
  publication-title: Plast Reconstr Surg Glob Open
  doi: 10.1097/GOX.0000000000001227
– volume: 32
  start-page: 773
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119679_bib1
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
– volume: 9
  start-page: 7218
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119679_bib31
  article-title: Digital micromirror device projection printing system for meniscus tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.03.020
– volume: 4
  start-page: 3670
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib38
  article-title: Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C6TB00717A
– volume: 9
  start-page: 1620
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib8
  article-title: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03759-y
– volume: 9
  start-page: 7218
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119679_bib11
  article-title: Digital micromirror device projection printing system for meniscus tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.03.020
– volume: 12
  start-page: 504
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119679_bib35
  article-title: 3D printing of silk fibroin for biomedical applications
  publication-title: Materials
  doi: 10.3390/ma12030504
– volume: 6
  start-page: 2114
  issue: 12
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib53
  article-title: Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodel preclinical imaging in immunocompetent nude mice
  publication-title: Theranostics
  doi: 10.7150/thno.16614
– volume: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119679_bib5
  article-title: Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa663c
– volume: 24
  start-page: 4337
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119679_bib18
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
– volume: 4
  start-page: 2704
  issue: 8
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib37
  article-title: Advanced silk fibroin biomaterials for cartilage regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00150
– volume: 88
  start-page: 10767
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib4
  article-title: Adding biomolecular recognition capability to 3D printed objects
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03426
– volume: 20
  start-page: 316
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119679_bib50
  article-title: Redifferentiation of articular chondrocytes by hyperacute serum and platelet rich plasma in collagen type I hydrogels
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20020316
– volume: 60
  start-page: 41
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119679_bib58
  article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.08.005
– volume: 30
  start-page: 636
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119679_bib16
  article-title: Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2010.02.017
– volume: 34
  start-page: 331
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119679_bib12
  article-title: Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.09.048
– volume: 100
  start-page: 2018
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119679_bib20
  article-title: Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.33308
– volume: 26
  start-page: 147
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119679_bib21
  article-title: The inflammatory responses to silk films in vitro and in vivo
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.02.047
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119679_bib7
  article-title: Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/2/025003
– volume: 62
  start-page: 42
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119679_bib55
  article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.07.028
– volume: 11
  start-page: 33684
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119679_bib63
  article-title: 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11644
– volume: 53
  start-page: 6291
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib10
  article-title: 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-1992-2
– volume: 28
  start-page: 5280
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119679_bib22
  article-title: Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.08.017
– volume: 26
  start-page: 3617
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119679_bib17
  article-title: Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.034
– volume: 41
  start-page: 1331
  year: 1998
  ident: 10.1016/j.biomaterials.2019.119679_bib28
  article-title: Articular cartilage repair and transplantation
  publication-title: Arthritis Rheum.: Off. J. Am. Coll. Rheumatol.
  doi: 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
– volume: 5
  start-page: 1937
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119679_bib45
  article-title: Fabrication and characterization of poly (γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.02.002
– volume: 78
  start-page: 215
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119679_bib23
  article-title: Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.03.064
– volume: 95
  start-page: 32
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119679_bib54
  article-title: Bioprinting functional tissues
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.01.009
– volume: 29
  start-page: 3415
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119679_bib52
  article-title: In vivo degradation of three-dimensional silk fibroin scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.05.002
– volume: 83
  start-page: 156
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib59
  article-title: Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.019
– volume: 7
  start-page: 2104
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119679_bib47
  article-title: Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology
  publication-title: Materials
  doi: 10.3390/ma7032104
– volume: 97
  start-page: 101145
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119679_bib33
  article-title: Print me an organ! Why we are not there yet
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.101145
– volume: 34
  start-page: 422
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib9
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2015.12.011
– volume: 61
  start-page: 340
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib40
  article-title: Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.12.032
– volume: 13
  start-page: 405
  issue: 5
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib56
  article-title: A practical guide to hydrogels for cell culture
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3839
– volume: 40
  start-page: 103
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib6
  article-title: 3D printing of functional biomaterials for tissue engineering
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.03.014
– volume: 67
  start-page: 165
  year: 1996
  ident: 10.1016/j.biomaterials.2019.119679_bib30
  article-title: The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes
  publication-title: Acta Orthop. Scand.
  doi: 10.3109/17453679608994664
– volume: 48
  start-page: 229
  year: 1966
  ident: 10.1016/j.biomaterials.2019.119679_bib29
  article-title: 23 process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-196609000-00028
– volume: 76
  start-page: 1884
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119679_bib25
  article-title: Comparison of tracheal and nasal chondrocytes for tissue engineering of th trachea
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/S0003-4975(03)01193-7
– volume: 4
  start-page: 3
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119679_bib62
  publication-title: Top. Tissue Eng.
– volume: 35
  start-page: 401
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119679_bib26
  article-title: The chondrocyte
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(02)00301-1
– volume: 17
  start-page: 1976
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib15
  article-title: Applications of alginate-based bioinks in 3D bioprinting
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17121976
– volume: 24
  start-page: 401
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119679_bib43
  article-title: Silk-based biomaterials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00353-8
– volume: 15
  start-page: 155
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib60
  article-title: Development of printable natural cartilage matrix bioink for 3D printing on irregular tissue shape
  publication-title: Tissue Eng Regen Med
  doi: 10.1007/s13770-017-0104-8
– volume: 2
  start-page: 1200
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib61
  article-title: 3D printing of cell-laden hydrogel constructs for potential applications in cartilage tissue engineering
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00258
– volume: 15
  start-page: 1100
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib13
  article-title: Multiscale metallic metamaterials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4694
– volume: 97
  start-page: 33
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119679_bib41
  article-title: The control of chondrogenesis
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20652
– volume: 3
  start-page: 177
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119679_bib27
  article-title: Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration
  publication-title: Dev. Biol.
  doi: 10.3390/jdb3040177
– volume: 30
  start-page: 5068
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119679_bib42
  article-title: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.06.008
– volume: 273
  start-page: 285
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119679_bib14
  article-title: A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2018.02.041
– volume: 42
  start-page: 11598
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119679_bib3
  article-title: Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.04.050
SSID ssj0014042
Score 2.7037952
Snippet Three-dimensional printing with Digital Lighting Processing (DLP) printer has come into the new wave in the tissue engineering for regenerative medicine....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119679
SubjectTerms Animals
biocompatibility
biocompatible materials
biodegradability
biopolymers
Cartilage
Cartilage tissue engineering
Chondrogenesis
Digital light processing (DLP) 3D printing
encapsulation
epithelium
Fibroins
Hydrogels
medicine
printers
Printing, Three-Dimensional
Rabbits
Silk
Silk fibroin – Glycidyl methacrylate (silk-GMA)
three-dimensional printing
Tissue Engineering
Tissue Scaffolds
viability
Title Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219307781
https://dx.doi.org/10.1016/j.biomaterials.2019.119679
https://www.ncbi.nlm.nih.gov/pubmed/31865191
https://www.proquest.com/docview/2330063880
https://www.proquest.com/docview/2524304035
Volume 232
WOSCitedRecordID wos000514748200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQwgeEAwG5WMyEm9RUD7sxBbiYdChgWBCYqDCS2S79sgoSdUPNP57zrGTZkxFRYiXqEpydZz75Xx3vg-EnoDEMxlXMkxMHoUEdI6QcUFCSYmisSBj2pRd_PQ2PzpioxF_713Z86adQF5V7OyMT_8rq-EcMNumzv4Fu7s_hRPwG5gOR2A7HDdi_LA8sY1Agok1u4OpSwSwDoF0GFgvnlUx5-XkW2DAUq7LKvj6czyrT3STyGgrVS_KiQ3kWTQsCfSqYOG5DeCyBl3XzaeDhg_vPdR6vuxA98F5Yz_r4IXWvT3_705_hwv1hbCgEmTY0g_oXRJgf0bnwju6XJlVYJJzXSYhz3zQtHbiloENS3lE-_I4cQ7PC7LduRlOn8reBG1sHgexzzPXkua32tk2dC2xY4KaGuW5TdHfTnLKQfxt778-GL3pNpxI1PRZ6h6yrU_bhAKuG3GdLrPOVml0luOb6IY3NvC-A8ktdElXO-h6rwTlDrr6zgdX3EZfPHJwgxy8Qg5Oh9gjB1vkYI8c3CIHA3JwhxzskIN7yLmDPr46OH55GPrWG6GCFXARSqVNnqs401yYLBdGaEUMIYrRMSfMgGanuJFZJrlSWRKllGiSRUyzseDWKNhFW1Vd6XsIR0zkkcwoV1QQZYwUEowQCXaJjNk4FgPE25dYKF-X3rZHmRRtAOJp0WdAYRlQOAYMUNrRTl11lo2onrW8Ktr8Y1gxCwDaRtTPO2qvpTrtc2P6xy08ChDldn9OVLpewk1p2lgQLPrDPTQhKSy8KR2guw5b3cxhec7g3cf3__EJH6Brq6_6IdpazJb6EbqifgB8Znvocj5ie_77-QWIweEl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+light+processing+3D+printed+silk+fibroin+hydrogel+for+cartilage+tissue+engineering&rft.jtitle=Biomaterials&rft.au=Hong%2C+Heesun&rft.au=Seo%2C+Ye+Been&rft.au=Kim%2C+Do+Yeon&rft.au=Lee%2C+Ji+Seung&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=232&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119679&rft.externalDocID=S0142961219307781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon