Experimental design method to the weld bead geometry optimization for hybrid laser-MAG welding in a narrow chamfer configuration
The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability...
Saved in:
| Published in: | Optics and laser technology Vol. 89; pp. 114 - 125 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.03.2017
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0030-3992, 1879-2545 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2mm deposited metal and must provide sufficient lateral penetration of about 0.2mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan.
•Control the hybrid laser-MAG welding process in a narrow groove configuration.•Optimization of operating parameters of the welding by the experimental design approach.•The lateral penetration is a complex objective function.•The effects of the two experiment designs for the case of the lateral penetration of welding beads have been analyzed. |
|---|---|
| AbstractList | The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2 mm deposited metal and must provide sufficient lateral penetration of about 0.2 mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4 mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan. The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2mm deposited metal and must provide sufficient lateral penetration of about 0.2mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan. The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2mm deposited metal and must provide sufficient lateral penetration of about 0.2mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan. •Control the hybrid laser-MAG welding process in a narrow groove configuration.•Optimization of operating parameters of the welding by the experimental design approach.•The lateral penetration is a complex objective function.•The effects of the two experiment designs for the case of the lateral penetration of welding beads have been analyzed. |
| Author | Bidi, Lyes Le Masson, Philippe Primault, Christophe Cicala, Eugen |
| Author_xml | – sequence: 1 givenname: Lyes surname: Bidi fullname: Bidi, Lyes email: bidi.lyes@gmail.com organization: University of Freres Mentouri-Constantine, Route de Ain El. Bey, Constantine, Algeria – sequence: 2 givenname: Philippe surname: Le Masson fullname: Le Masson, Philippe organization: Université Bretagne Sud, FRE CNRS 3744, IRDL, F-56100 Lorient, France – sequence: 3 givenname: Eugen surname: Cicala fullname: Cicala, Eugen organization: Laboratoire Inter disciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, IUT-12, Rue de la Fonderie, Le Creusot 71200, France – sequence: 4 givenname: Christophe surname: Primault fullname: Primault, Christophe organization: AREVA NP, Centre Technique, Département Soudage, BP40001 Saint Marcel – 71328 Chalon sur Saône Cedex, France |
| BackLink | https://hal.science/hal-01697244$$DView record in HAL |
| BookMark | eNqNkU9vGyEQxVGUSnHSfoYi9dIedgsL-4dDD1aUJpVc9ZKcEQuzXqxdcAEncU_96MV2lUMu7Qk0_N4w894lOnfeAULvKSkpoc3nTem3aVIxgS6rXCiJKAlvztCCdq0oqprX52hBCCMFE6K6QJcxbgjJSM0W6PfN8xaCncElNWED0a4dniGN3uDkcRoBP8FkcA_K4DX4_BT2OP9oZ_tLJesdHnzA474P1uA8BoTi-_L2KLJuja3DCjsVgn_CelTzAAFr7wa73oWj_C16M6gpwru_5xV6-Hpzf31XrH7cfrtergpdsy4VPVem1i0jNbB24BTyhYpu6BXXTDcDIdCStmv7StMaKkaI7vsODNVCCKo5u0KfTn1HNclt3liFvfTKyrvlSh5q2TrRVpw_0sx-PLHb4H_uICY526hhmpQDv4uSdg2vW15VXUY_vEI3fhdc3kRSwUXDuWBNptoTpYOPMcDwMgEl8pCi3MiXFOUhRUmEzBFl5ZdXSm3T0bgUlJ3-Q7886SF7-2ghyKgtOA3GBtBJGm__2eMPtX3CNg |
| CitedBy_id | crossref_primary_10_1016_j_optlastec_2017_09_038 crossref_primary_10_1088_1742_6596_2160_1_012026 crossref_primary_10_1557_adv_2019_364 crossref_primary_10_1007_s40194_021_01085_4 crossref_primary_10_1016_j_oceaneng_2021_110411 crossref_primary_10_3390_met15030326 crossref_primary_10_1016_j_optlastec_2019_03_036 crossref_primary_10_1088_1742_6596_1676_1_012162 crossref_primary_10_1007_s42243_020_00503_z crossref_primary_10_1007_s00170_024_13244_0 |
| Cites_doi | 10.1016/j.optlastec.2011.12.014 10.1016/j.optlastec.2010.03.019 10.1016/j.optlastec.2010.06.006 10.1016/j.optlaseng.2012.10.016 10.1016/j.msea.2004.11.026 10.1007/s00170-012-4721-z 10.1016/j.matdes.2014.03.070 10.1016/j.optlastec.2008.10.005 10.1016/j.apsusc.2007.02.144 10.1016/j.jmatprotec.2007.03.065 10.1016/j.matdes.2014.04.060 10.1016/j.jmatprotec.2007.03.001 10.1016/j.matdes.2009.11.043 10.1016/j.optlaseng.2008.04.009 10.1016/j.optlastec.2010.07.011 10.1016/j.optlastec.2015.04.021 10.1016/j.optlastec.2012.03.033 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Mar 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SP 7U5 8FD F28 FR3 H8D L7M 1XC |
| DOI | 10.1016/j.optlastec.2016.09.046 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-2545 |
| EndPage | 125 |
| ExternalDocumentID | oai:HAL:hal-01697244v1 10_1016_j_optlastec_2016_09_046 S0030399216304285 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7U5 8FD F28 FR3 H8D L7M 1XC |
| ID | FETCH-LOGICAL-c538t-b4ad5c7305e37f41e05e198fba4c3c6f00e70787b2c15e2300cbb8ed1c9991c43 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389160800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0030-3992 |
| IngestDate | Sat Nov 29 15:10:14 EST 2025 Sun Nov 09 10:04:09 EST 2025 Sun Nov 09 06:41:25 EST 2025 Tue Nov 18 22:19:39 EST 2025 Sat Nov 29 03:05:54 EST 2025 Fri Feb 23 02:29:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chamfer configuration Experimental design Hybrid laser-MAG welding Weld bead geometry |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c538t-b4ad5c7305e37f41e05e198fba4c3c6f00e70787b2c15e2300cbb8ed1c9991c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2721-8504 |
| PQID | 1949644936 |
| PQPubID | 2045422 |
| PageCount | 12 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01697244v1 proquest_miscellaneous_1864574228 proquest_journals_1949644936 crossref_primary_10_1016_j_optlastec_2016_09_046 crossref_citationtrail_10_1016_j_optlastec_2016_09_046 elsevier_sciencedirect_doi_10_1016_j_optlastec_2016_09_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Optics and laser technology |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Leo, Renna, Casalino, Olabi (bib18) 2015; 73 Goupy (bib20) 2001 Casalino, Mortello, Leo, Benyounis, Olabi (bib17) 2014; 61 Huang (bib10) 2010; 31 Bidi, Mattei, Cicala, Andrzejewski, Le Masson, Schroeder (bib12) 2011; 43 Cicala, Duffet, Andrzejewski, Grevey, Ignat (bib3) 2005; 395 dongxia, Lixiaoyan, Hedingyong, Niezuoren, Huanghui (bib14) 2012; 44 Cicala (bib21) 2005 Ilie, Cicala, Grevey, Mattei, Stoica (bib8) 2009; 41 Zhao, Wang, Wang, Wang, Chen, Liang (bib16) 2014; 60 Tani, Campana, Fortunato, Ascari (bib5) 2007; 253 Nichici, Cicală, Mee (bib19) 1996 El Rayes, Walz, Sepold (bib2) 2004; 83 Casalino, Campanelli, Ludovico (bib1) 2013; 68 Campana, Fortunato, Ascari, Tani, Tomesani (bib6) 2007; 191 Ascari, Fortunato, Orazi, Campana (bib13) 2012; 44 Moradi, Ghoreishi, Frostevarg, Kaplan (bib15) 2013; 51 Khan, Romoli, Fiaschi, Dini, Sarri (bib11) 2011; 43 Padmanaban, Balasubramanian (bib9) 2010; 42 Casalino (bib4) 2007; 191 Soveja, Cicala, Grevey, Jouvard (bib7) 2008; 46 Huang (10.1016/j.optlastec.2016.09.046_bib10) 2010; 31 Casalino (10.1016/j.optlastec.2016.09.046_bib4) 2007; 191 Moradi (10.1016/j.optlastec.2016.09.046_bib15) 2013; 51 Casalino (10.1016/j.optlastec.2016.09.046_bib1) 2013; 68 Ascari (10.1016/j.optlastec.2016.09.046_bib13) 2012; 44 Campana (10.1016/j.optlastec.2016.09.046_bib6) 2007; 191 Tani (10.1016/j.optlastec.2016.09.046_bib5) 2007; 253 Cicala (10.1016/j.optlastec.2016.09.046_bib21) 2005 Bidi (10.1016/j.optlastec.2016.09.046_bib12) 2011; 43 Soveja (10.1016/j.optlastec.2016.09.046_bib7) 2008; 46 dongxia (10.1016/j.optlastec.2016.09.046_bib14) 2012; 44 El Rayes (10.1016/j.optlastec.2016.09.046_bib2) 2004; 83 Ilie (10.1016/j.optlastec.2016.09.046_bib8) 2009; 41 Khan (10.1016/j.optlastec.2016.09.046_bib11) 2011; 43 Casalino (10.1016/j.optlastec.2016.09.046_bib17) 2014; 61 Zhao (10.1016/j.optlastec.2016.09.046_bib16) 2014; 60 Padmanaban (10.1016/j.optlastec.2016.09.046_bib9) 2010; 42 Nichici (10.1016/j.optlastec.2016.09.046_bib19) 1996 Leo (10.1016/j.optlastec.2016.09.046_bib18) 2015; 73 Goupy (10.1016/j.optlastec.2016.09.046_bib20) 2001 Cicala (10.1016/j.optlastec.2016.09.046_bib3) 2005; 395 |
| References_xml | – volume: 83 start-page: 147s year: 2004 end-page: 153s ident: bib2 article-title: The influence of various hybrid welding parameters on bead geometry publication-title: Weld. Res. Suppl. – volume: 395 start-page: 1 year: 2005 end-page: 9 ident: bib3 article-title: Hot cracking in Al–Mg–Si alloy laser welding – operating parameters and their effects publication-title: Mater. Sci. Eng. A – volume: 73 start-page: 118 year: 2015 end-page: 126 ident: bib18 article-title: Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy” publication-title: Opt. Laser Technol. – year: 2001 ident: bib20 article-title: Introduction aux plans d′expériences – volume: 191 start-page: 106 year: 2007 end-page: 110 ident: bib4 article-title: Statistical analysis of MIG-laser CO publication-title: J. Mater. Process. Technol. – start-page: 320 year: 2005 ident: bib21 article-title: Metoda experimentelor factoriale, proiectarea experimentelor, modelare, optimizare publication-title: Ed. Politeh. Timiş. – volume: 44 start-page: 1485 year: 2012 end-page: 1490 ident: bib13 article-title: The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy publication-title: Opt. Laser Technol. – volume: 41 start-page: 608 year: 2009 end-page: 614 ident: bib8 article-title: Diode laser welding of ABS: experiments and process modeling publication-title: Opt. Laser Technol. – volume: 61 start-page: 191 year: 2014 end-page: 198 ident: bib17 article-title: Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy publication-title: Mater. Des. – volume: 43 start-page: 158 year: 2011 end-page: 172 ident: bib11 article-title: Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration publication-title: Opt. Laser Technol. – volume: 68 start-page: 209 year: 2013 end-page: 216 ident: bib1 article-title: Laser-arc hybrid welding of wrought to selective laser molten stainless steel publication-title: Int. J. Adv. Manuf. Technol. – volume: 253 start-page: 8050 year: 2007 end-page: 8053 ident: bib5 article-title: The influence of shielding gas in hybrid laser-MIG welding publication-title: Appl. Surf. Sci. – volume: 31 start-page: 2488 year: 2010 end-page: 2495 ident: bib10 article-title: Effects of activating flux on the welded joint characteristics in gas metal arc welding publication-title: Mater. Des. – volume: 51 start-page: 481 year: 2013 end-page: 487 ident: bib15 article-title: An investigation on stability of laser hybrid arc welding publication-title: Opt. Lasers Eng. – volume: 46 start-page: 671 year: 2008 end-page: 678 ident: bib7 article-title: Optimisation of TA6V alloy surface laser texturing using an experimental design approach publication-title: Opt. Lasers Eng. – volume: 43 start-page: 537 year: 2011 end-page: 545 ident: bib12 article-title: The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and coating processes publication-title: Opt. Laser Technol. – volume: 44 start-page: 2020 year: 2012 end-page: 2025 ident: bib14 article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach publication-title: Opt. Laser Technol. – volume: 191 start-page: 111 year: 2007 end-page: 113 ident: bib6 article-title: The influence of arc transfer mode in hybrid laser-MIG welding publication-title: J. Mater. Process. Technol. – volume: 42 start-page: 1253 year: 2010 end-page: 1260 ident: bib9 article-title: Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy publication-title: Opt. Laser Technol. – start-page: 163 year: 1996 ident: bib19 article-title: Prelucrarea datelor experimentale – volume: 60 start-page: 479 year: 2014 end-page: 489 ident: bib16 article-title: Process analysis and optimization for failure energy of spot welded titanium alloy publication-title: Mater. Des. – volume: 44 start-page: 1485 year: 2012 ident: 10.1016/j.optlastec.2016.09.046_bib13 article-title: The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2011.12.014 – volume: 83 start-page: 147s year: 2004 ident: 10.1016/j.optlastec.2016.09.046_bib2 article-title: The influence of various hybrid welding parameters on bead geometry publication-title: Weld. Res. Suppl. – start-page: 163 year: 1996 ident: 10.1016/j.optlastec.2016.09.046_bib19 – volume: 42 start-page: 1253 year: 2010 ident: 10.1016/j.optlastec.2016.09.046_bib9 article-title: Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2010.03.019 – start-page: 320 year: 2005 ident: 10.1016/j.optlastec.2016.09.046_bib21 article-title: Metoda experimentelor factoriale, proiectarea experimentelor, modelare, optimizare publication-title: Ed. Politeh. Timiş. – volume: 43 start-page: 158 year: 2011 ident: 10.1016/j.optlastec.2016.09.046_bib11 article-title: Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2010.06.006 – volume: 51 start-page: 481 year: 2013 ident: 10.1016/j.optlastec.2016.09.046_bib15 article-title: An investigation on stability of laser hybrid arc welding publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2012.10.016 – volume: 395 start-page: 1 year: 2005 ident: 10.1016/j.optlastec.2016.09.046_bib3 article-title: Hot cracking in Al–Mg–Si alloy laser welding – operating parameters and their effects publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.11.026 – volume: 68 start-page: 209 year: 2013 ident: 10.1016/j.optlastec.2016.09.046_bib1 article-title: Laser-arc hybrid welding of wrought to selective laser molten stainless steel publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4721-z – year: 2001 ident: 10.1016/j.optlastec.2016.09.046_bib20 – volume: 60 start-page: 479 year: 2014 ident: 10.1016/j.optlastec.2016.09.046_bib16 article-title: Process analysis and optimization for failure energy of spot welded titanium alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.03.070 – volume: 41 start-page: 608 year: 2009 ident: 10.1016/j.optlastec.2016.09.046_bib8 article-title: Diode laser welding of ABS: experiments and process modeling publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2008.10.005 – volume: 253 start-page: 8050 year: 2007 ident: 10.1016/j.optlastec.2016.09.046_bib5 article-title: The influence of shielding gas in hybrid laser-MIG welding publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.02.144 – volume: 191 start-page: 106 year: 2007 ident: 10.1016/j.optlastec.2016.09.046_bib4 article-title: Statistical analysis of MIG-laser CO2 hybrid welding of Al- Mg alloy publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.03.065 – volume: 61 start-page: 191 year: 2014 ident: 10.1016/j.optlastec.2016.09.046_bib17 article-title: Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.04.060 – volume: 191 start-page: 111 year: 2007 ident: 10.1016/j.optlastec.2016.09.046_bib6 article-title: The influence of arc transfer mode in hybrid laser-MIG welding publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.03.001 – volume: 31 start-page: 2488 year: 2010 ident: 10.1016/j.optlastec.2016.09.046_bib10 article-title: Effects of activating flux on the welded joint characteristics in gas metal arc welding publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.11.043 – volume: 46 start-page: 671 year: 2008 ident: 10.1016/j.optlastec.2016.09.046_bib7 article-title: Optimisation of TA6V alloy surface laser texturing using an experimental design approach publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2008.04.009 – volume: 43 start-page: 537 issue: 3 year: 2011 ident: 10.1016/j.optlastec.2016.09.046_bib12 article-title: The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and coating processes publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2010.07.011 – volume: 73 start-page: 118 year: 2015 ident: 10.1016/j.optlastec.2016.09.046_bib18 article-title: Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy” publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2015.04.021 – volume: 44 start-page: 2020 year: 2012 ident: 10.1016/j.optlastec.2016.09.046_bib14 article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2012.03.033 |
| SSID | ssj0004653 |
| Score | 2.2159207 |
| Snippet | The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114 |
| SubjectTerms | Beads Chamfer configuration Chamfering Comparative analysis Design of experiments Design optimization Engineering Sciences Experimental design Hybrid laser-MAG welding Laser beam welding Mathematical models Metal active gas welding Multiple objective analysis Optimization Parameter estimation Parameter identification Parameters Penetration Productivity Response functions Studies Weld bead geometry Welding Welding parameters |
| Title | Experimental design method to the weld bead geometry optimization for hybrid laser-MAG welding in a narrow chamfer configuration |
| URI | https://dx.doi.org/10.1016/j.optlastec.2016.09.046 https://www.proquest.com/docview/1949644936 https://www.proquest.com/docview/1864574228 https://hal.science/hal-01697244 |
| Volume | 89 |
| WOSCitedRecordID | wos000389160800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004653 issn: 0030-3992 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DSQ4IBhMFAYyCHGpgvKzibmVqWOg0u3QSb1Zie10nbq0tGnZbvwz_J-8FztpyoY2DlyiKImTJu-r37P9vu8R8s71lS1DP7ak9AIL4n9pMTtwrdRVbeErR9pJQRTuhf1-NByyk0bjV8mFWU3CLIsuL9nsv5oajoGxkTr7D-aubgoHYB-MDlswO2zvZPhuXbNfFgkapk50GWf-UBMIO8G4rZGawilcZYee48JQMovMw7MrpHK1ILZWc-tb53PRyPBf4lZWSDcia_giVXNMXU_Ho-V8bWUT7h7PKhXo4k6t_NpM_qex1ATtq3U2Yw8LIi0MF0xP-cwqAB4grGJN0hmtiWwnKJuxnOSbign1SQ1wlFVWV9lRe-AeGNvoqHWtIdPTOpp7apy2o9nT1_yBnpo4_wBfEV4T3hGT-dqFsq1_gwJ3_5gfnvZ6fNAdDt7PvltYnAwX8U2lli2y44YBg85zp_OlO_xaI-AauVPzqzcSCW989t_CoK0zzMf9IywoYp3BY_LIDFJoR4PrCWmobJc8rElX7pL7ReqwWDwlP-uAoxpwVAOO5lMKgKOIHYqAoyXgaB1wFABHNeBoBThqAEfHGY2pBhw1gKMbgHtGTg-7g4Mjy9T1sAS419xK_FgGAlxLoLww9R0FOw6L0iT2hSfaqW0r1KAKE1c4gYIxsi2SJFLSETiaEb63R7azaaaeE-oyR8EAOnZVmvhBEsUhlidIZBrLSAVe0iTt8jNzYUTvsfbKhJfZjee8sg9H-3CbcbBPk9hVw5nWfbm9ycfSjtyErzos5YDG2xu_BctXj0LR96NOj-Mx1EsKIQpfOU2yXwKDmx5nwR3mMxjUMA_u8aY6DU4CV_7iTE2XcE3U9oMQ1f5e3OGal-TB-j-5T7bz-VK9IvfEKh8v5q8N9n8D61nnAQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+design+method+to+the+weld+bead+geometry+optimization+for+hybrid+laser-MAG+welding+in+a+narrow+chamfer+configuration&rft.jtitle=Optics+and+laser+technology&rft.au=Bidi%2C+Lyes&rft.au=Le+Masson%2C+Philippe&rft.au=Cicala%2C+Eugen&rft.au=Primault%2C+Christophe&rft.date=2017-03-01&rft.issn=0030-3992&rft.volume=89&rft.spage=114&rft.epage=125&rft_id=info:doi/10.1016%2Fj.optlastec.2016.09.046&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |