Progress in 3D bioprinting technology for tissue/organ regenerative engineering
Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tis...
Gespeichert in:
| Veröffentlicht in: | Biomaterials Jg. 226; S. 119536 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Ltd
01.01.2020
|
| Schlagworte: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology. |
|---|---|
| AbstractList | Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology. Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology. |
| ArticleNumber | 119536 |
| Author | Seyedsalehi, Amir Matai, Ishita Kaur, Gurvinder Laurencin, Cato T. McClinton, Aneesah |
| Author_xml | – sequence: 1 givenname: Ishita surname: Matai fullname: Matai, Ishita organization: Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India – sequence: 2 givenname: Gurvinder surname: Kaur fullname: Kaur, Gurvinder organization: Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India – sequence: 3 givenname: Amir surname: Seyedsalehi fullname: Seyedsalehi, Amir organization: Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA – sequence: 4 givenname: Aneesah surname: McClinton fullname: McClinton, Aneesah organization: Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA – sequence: 5 givenname: Cato T. surname: Laurencin fullname: Laurencin, Cato T. email: laurencin@uchc.edu organization: Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31648135$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1r3DAQhkVISTYffyGYnnrxRmNZstRTm-9CID00ZyFrx662XimVtIH991HYBEJOexIDzzwa3veI7PvgkZCvQOdAQZwv570LK5MxOjOleUNBzQEUZ2KPzEB2suaK8n0yo9A2tRLQHJKjlJa0zLRtDsghA9FKYHxGHn7HMEZMqXK-YldVMT9F57PzY5XR_vVhCuOmGkKssktpjechjsZXEUf0GE12z1ihH53Hco4fT8iXoRyFp2_vMXm8uf5zeVffP9z-uvx5X1vOZK5lZxTarpUUVcfRWsDOdK0Y-p4zK1oj-kYNIEFQ3kHP-gGtZEooYTjHfmDH5NvW-xTD_zWmrFcuWZwm4zGsk26YLEF00MIOKFWtYoUu6Nkbuu5XuNAlipWJG_2eVwF-bAEbQ0oRB21dLiEEn6NxkwaqXyvSS_2xIv1akd5WVBTfPynef9lp-Wq7jCXbZ4dRJ-vQW1y4iDbrRXC7aS4-aezkvLNm-oebXSUvSAbLjg |
| CitedBy_id | crossref_primary_10_1002_bit_28301 crossref_primary_10_1038_s41392_024_02104_8 crossref_primary_10_3389_fbioe_2023_1214715 crossref_primary_10_1016_j_apmt_2024_102364 crossref_primary_10_1002_admt_202400620 crossref_primary_10_18311_jmmf_2025_49339 crossref_primary_10_1002_advs_202200670 crossref_primary_10_1007_s40883_023_00323_z crossref_primary_10_1016_j_actbio_2022_08_014 crossref_primary_10_3390_foods12132614 crossref_primary_10_1002_adfm_202100027 crossref_primary_10_1007_s10741_020_09989_x crossref_primary_10_1186_s12943_025_02240_x crossref_primary_10_1016_j_drudis_2021_02_002 crossref_primary_10_1007_s42242_024_00273_7 crossref_primary_10_1088_1748_605X_ab9422 crossref_primary_10_3390_membranes12090902 crossref_primary_10_1002_adfm_202400431 crossref_primary_10_1007_s10853_019_04259_0 crossref_primary_10_1177_20417314221083414 crossref_primary_10_3390_ijms252111426 crossref_primary_10_3390_ijms21228694 crossref_primary_10_1038_s41598_024_80973_3 crossref_primary_10_1002_advs_202403049 crossref_primary_10_1155_2022_8998451 crossref_primary_10_1039_D0BM01485K crossref_primary_10_1016_j_ijbiomac_2024_137253 crossref_primary_10_3389_fbioe_2025_1643430 crossref_primary_10_3390_ijms23158567 crossref_primary_10_1016_j_actbio_2024_12_005 crossref_primary_10_1016_j_colsurfb_2021_112041 crossref_primary_10_3390_ijms26115316 crossref_primary_10_1007_s10853_021_06229_x crossref_primary_10_1038_s41392_024_01852_x crossref_primary_10_1016_j_drudis_2022_103426 crossref_primary_10_3389_fbioe_2024_1480772 crossref_primary_10_1002_adhm_202403781 crossref_primary_10_1007_s40615_024_02140_8 crossref_primary_10_3390_ma18030502 crossref_primary_10_1002_adma_202408308 crossref_primary_10_1007_s42242_022_00192_5 crossref_primary_10_3390_bios15030176 crossref_primary_10_3390_mi12121517 crossref_primary_10_1016_j_mtbio_2025_102299 crossref_primary_10_1002_iub_70036 crossref_primary_10_1002_advs_202207089 crossref_primary_10_1186_s12938_024_01226_y crossref_primary_10_1007_s40964_022_00373_9 crossref_primary_10_1016_j_carbpol_2023_121050 crossref_primary_10_3390_biomedicines11102678 crossref_primary_10_3390_jfb16070232 crossref_primary_10_1002_adfm_202215220 crossref_primary_10_1042_EBC20200130 crossref_primary_10_3390_gels9090689 crossref_primary_10_1002_smll_202004900 crossref_primary_10_1089_wound_2024_0138 crossref_primary_10_2147_IJN_S254094 crossref_primary_10_1002_advs_202304989 crossref_primary_10_1039_D5AN00105F crossref_primary_10_3390_ma17184560 crossref_primary_10_1016_j_matdes_2023_111591 crossref_primary_10_1002_admt_202200029 crossref_primary_10_1016_j_acuro_2021_09_009 crossref_primary_10_56871_MHCO_2025_27_84_012 crossref_primary_10_1002_slct_202003978 crossref_primary_10_1007_s40430_024_04950_7 crossref_primary_10_1088_2631_7990_acde21 crossref_primary_10_1016_j_cell_2020_12_002 crossref_primary_10_1002_bit_28452 crossref_primary_10_1186_s12896_024_00848_3 crossref_primary_10_34133_bmr_0174 crossref_primary_10_1016_j_ijbiomac_2024_138681 crossref_primary_10_1177_20417314231185848 crossref_primary_10_34172_apb_2024_032 crossref_primary_10_3390_ijms22020830 crossref_primary_10_3390_app11188298 crossref_primary_10_1007_s42247_021_00285_4 crossref_primary_10_1002_ibra_12005 crossref_primary_10_3389_fmats_2024_1446035 crossref_primary_10_1002_elsc_202300226 crossref_primary_10_3389_fbioe_2022_847344 crossref_primary_10_1111_1751_7915_14360 crossref_primary_10_1016_j_jare_2024_09_011 crossref_primary_10_1042_EBC20200153 crossref_primary_10_1002_adhm_202401025 crossref_primary_10_3390_pharmaceutics15082094 crossref_primary_10_3389_fsurg_2022_988843 crossref_primary_10_3390_ma13132891 crossref_primary_10_4103_1673_5374_332131 crossref_primary_10_1088_1758_5090_ac9809 crossref_primary_10_2174_0113892010306310240605050448 crossref_primary_10_3390_polym14153222 crossref_primary_10_3390_life12060903 crossref_primary_10_1002_biot_202100074 crossref_primary_10_1016_j_biomaterials_2020_120465 crossref_primary_10_1093_rb_rbae094 crossref_primary_10_1016_j_bioactmat_2022_01_024 crossref_primary_10_1016_j_ijbiomac_2025_147532 crossref_primary_10_3390_nano11092456 crossref_primary_10_1002_adhm_202203044 crossref_primary_10_1002_bit_28996 crossref_primary_10_1016_j_biomaterials_2025_123196 crossref_primary_10_1016_j_ijbiomac_2025_146461 crossref_primary_10_3390_nano11123215 crossref_primary_10_34133_bmr_0031 crossref_primary_10_3390_cancers15204996 crossref_primary_10_1186_s12967_024_05954_6 crossref_primary_10_1016_j_ceramint_2025_04_073 crossref_primary_10_1016_j_pmatsci_2024_101293 crossref_primary_10_1155_2020_2689701 crossref_primary_10_1158_2326_6066_CIR_24_1144 crossref_primary_10_1002_smsc_202400261 crossref_primary_10_1002_adhm_202403583 crossref_primary_10_1016_j_nantod_2021_101077 crossref_primary_10_1016_j_compositesb_2024_111256 crossref_primary_10_3389_fsurg_2021_731031 crossref_primary_10_1177_09544062241307455 crossref_primary_10_3390_jfb15110345 crossref_primary_10_1016_j_matdes_2024_112853 crossref_primary_10_1038_s41467_025_62996_0 crossref_primary_10_1016_j_actbio_2022_11_058 crossref_primary_10_1186_s13619_022_00113_y crossref_primary_10_1016_j_sempedsurg_2024_151385 crossref_primary_10_1016_j_bioadv_2022_212916 crossref_primary_10_1016_j_progpolymsci_2021_101472 crossref_primary_10_1038_s41591_024_03489_3 crossref_primary_10_1007_s10439_022_02955_8 crossref_primary_10_1097_IMNA_D_24_00007 crossref_primary_10_3389_fsurg_2022_985110 crossref_primary_10_63580_iti_fi_45744 crossref_primary_10_3390_gels8100603 crossref_primary_10_1016_j_nxmate_2024_100187 crossref_primary_10_1097_TP_0000000000004668 crossref_primary_10_3390_pharmaceutics17081088 crossref_primary_10_1007_s10853_021_06829_7 crossref_primary_10_1002_admt_202101636 crossref_primary_10_1002_btm2_10497 crossref_primary_10_1089_3dp_2022_0281 crossref_primary_10_1038_s41378_021_00277_8 crossref_primary_10_1038_s43586_023_00251_w crossref_primary_10_1063_5_0023206 crossref_primary_10_52711_0975_4377_2025_00020 crossref_primary_10_1016_j_bprint_2020_e00120 crossref_primary_10_1016_j_bioactmat_2021_08_034 crossref_primary_10_3389_frlct_2024_1383783 crossref_primary_10_1177_03913988231218566 crossref_primary_10_1002_jbm_a_37325 crossref_primary_10_1016_j_actbio_2022_09_034 crossref_primary_10_3390_jfb16060227 crossref_primary_10_1111_cpr_13123 crossref_primary_10_1016_j_tibtech_2022_03_009 crossref_primary_10_1007_s11886_023_01881_y crossref_primary_10_1016_j_cis_2024_103163 crossref_primary_10_1002_adfm_202314171 crossref_primary_10_1007_s11051_023_05676_8 crossref_primary_10_3390_bioengineering11070664 crossref_primary_10_1002_jbm_b_34602 crossref_primary_10_1088_1758_5090_adb890 crossref_primary_10_1186_s12951_024_03052_9 crossref_primary_10_1155_2022_7907191 crossref_primary_10_1016_j_bprint_2025_e00392 crossref_primary_10_3390_biomimetics7010003 crossref_primary_10_1016_j_bprint_2025_e00391 crossref_primary_10_1088_1748_605X_ade18d crossref_primary_10_1002_term_3293 crossref_primary_10_3390_bioengineering9110696 crossref_primary_10_3390_pharmaceutics15020416 crossref_primary_10_1016_j_colsurfb_2025_115134 crossref_primary_10_1088_1758_5090_ad2081 crossref_primary_10_1177_20417314211027677 crossref_primary_10_1016_j_biomaterials_2020_120556 crossref_primary_10_1021_acsbiomaterials_5c01060 crossref_primary_10_3389_fbioe_2025_1454903 crossref_primary_10_3390_bioengineering10080910 crossref_primary_10_1088_2631_7990_ada7a8 crossref_primary_10_1007_s12663_023_02063_7 crossref_primary_10_1002_advs_202205041 crossref_primary_10_1016_j_bioactmat_2021_10_029 crossref_primary_10_1186_s12951_024_02455_y crossref_primary_10_1016_j_ijbiomac_2021_12_077 crossref_primary_10_1039_D0RA07795J crossref_primary_10_1039_D3BM01934A crossref_primary_10_2217_rme_2020_0091 crossref_primary_10_1016_j_addr_2023_114823 crossref_primary_10_1089_ten_tea_2024_0112 crossref_primary_10_1142_S1793984425410041 crossref_primary_10_3390_jfb14020096 crossref_primary_10_3389_fbioe_2022_998988 crossref_primary_10_1177_20417314241309183 crossref_primary_10_1016_j_bprint_2020_e00100 crossref_primary_10_1111_1750_3841_70049 crossref_primary_10_1016_j_jbiotec_2024_01_015 crossref_primary_10_1088_1758_5090_ac7ad8 crossref_primary_10_3390_cells10051268 crossref_primary_10_1039_D3BM00626C crossref_primary_10_2217_nnm_2021_0454 crossref_primary_10_1016_j_ijbiomac_2025_146764 crossref_primary_10_1002_adbi_202000024 crossref_primary_10_1002_adfm_202405966 crossref_primary_10_1002_smll_202309269 crossref_primary_10_1016_j_carbpol_2023_121484 crossref_primary_10_1038_s41596_021_00622_1 crossref_primary_10_1016_j_bios_2020_112849 crossref_primary_10_1016_j_bprint_2024_e00357 crossref_primary_10_3390_bioengineering10060667 crossref_primary_10_1089_ten_tea_2022_0227 crossref_primary_10_1039_D2BM00784C crossref_primary_10_3390_bios12111045 crossref_primary_10_3390_gels7030144 crossref_primary_10_1016_j_actbio_2020_03_033 crossref_primary_10_1016_j_actbio_2021_04_016 crossref_primary_10_3389_fbioe_2021_639765 crossref_primary_10_1016_j_jddst_2025_106872 crossref_primary_10_1016_j_jconrel_2020_11_044 crossref_primary_10_1177_20417314211028574 crossref_primary_10_32749_nucleodoconhecimento_com_br_salud_tratamiento_de_ulcera crossref_primary_10_3390_biom15081055 crossref_primary_10_1039_D1MH01632F crossref_primary_10_1039_D1BM01794B crossref_primary_10_1088_1758_5090_ad28f0 crossref_primary_10_1016_j_bioadv_2024_214017 crossref_primary_10_3389_fonc_2023_1143600 crossref_primary_10_1021_acsbiomaterials_4c02473 crossref_primary_10_3390_biomimetics8020246 crossref_primary_10_1002_adhm_202201989 crossref_primary_10_34172_joddd_2022_001 crossref_primary_10_1016_j_jconrel_2023_01_048 crossref_primary_10_3390_ijerph182010806 crossref_primary_10_1016_j_cej_2024_152469 crossref_primary_10_1007_s10845_023_02141_0 crossref_primary_10_1016_j_colsurfb_2023_113506 crossref_primary_10_1016_j_tibtech_2025_03_006 crossref_primary_10_1039_D2BM00109H crossref_primary_10_1186_s41205_022_00133_z crossref_primary_10_3390_polym12102262 crossref_primary_10_1016_j_bprint_2025_e00407 crossref_primary_10_1002_bit_28850 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_3390_jfb16030097 crossref_primary_10_1002_adfm_202010609 crossref_primary_10_1002_advs_202205059 crossref_primary_10_1002_cbic_202400378 crossref_primary_10_1016_j_tice_2025_103024 crossref_primary_10_7759_cureus_41624 crossref_primary_10_1007_s42242_020_00120_5 crossref_primary_10_3390_ma13102278 crossref_primary_10_1007_s40430_023_04495_1 crossref_primary_10_1088_1758_5090_ad3a14 crossref_primary_10_1016_j_bprint_2024_e00335 crossref_primary_10_1016_j_actbio_2025_04_021 crossref_primary_10_1021_acsbiomaterials_4c02245 crossref_primary_10_1002_adhm_202201877 crossref_primary_10_1016_j_actbio_2025_05_068 crossref_primary_10_7238_artnodes_v0i37_432976 crossref_primary_10_1002_jbm_a_37774 crossref_primary_10_3390_gels10070430 crossref_primary_10_1002_adhm_202001600 crossref_primary_10_1002_app_52227 crossref_primary_10_1002_smll_202300311 crossref_primary_10_3389_fbioe_2020_589094 crossref_primary_10_3390_bioengineering9100580 crossref_primary_10_1038_s43587_025_00858_6 crossref_primary_10_3390_biomedicines11041056 crossref_primary_10_3390_jfb16090349 crossref_primary_10_1002_advs_202302539 crossref_primary_10_3390_life15050787 crossref_primary_10_1088_1748_605X_ad270a crossref_primary_10_1016_j_bioactmat_2023_08_018 crossref_primary_10_1016_j_bprint_2024_e00381 crossref_primary_10_1002_adfm_202105080 crossref_primary_10_2147_IJN_S435845 crossref_primary_10_3390_biom14091066 crossref_primary_10_1038_s41598_022_05174_2 crossref_primary_10_1016_j_bprint_2025_e00423 crossref_primary_10_3389_fbioe_2022_866148 crossref_primary_10_3389_fbioe_2022_905438 crossref_primary_10_3390_jfb16010028 crossref_primary_10_1007_s42242_021_00165_0 crossref_primary_10_1016_j_addma_2021_102251 crossref_primary_10_1016_j_mtbio_2025_101835 crossref_primary_10_17323_2500_2597_2022_1_6_20 crossref_primary_10_1007_s42242_022_00187_2 crossref_primary_10_2147_IJN_S448905 crossref_primary_10_2147_IJN_S503445 crossref_primary_10_3390_ijms21165792 crossref_primary_10_1186_s40164_025_00647_2 crossref_primary_10_1016_j_ijporl_2022_111253 crossref_primary_10_1016_j_biomaterials_2024_122880 crossref_primary_10_1007_s12551_023_01141_x crossref_primary_10_1016_j_actbio_2025_03_009 crossref_primary_10_3389_fbioe_2022_985692 crossref_primary_10_1016_j_matpr_2022_05_325 crossref_primary_10_1016_j_tips_2021_06_002 crossref_primary_10_3390_biomedicines12020453 crossref_primary_10_3389_fbioe_2022_853193 crossref_primary_10_3390_biom14081019 crossref_primary_10_1007_s12015_021_10299_4 crossref_primary_10_1098_rsta_2020_0344 crossref_primary_10_1016_j_mtcomm_2025_112094 crossref_primary_10_1088_1758_5090_ac1259 crossref_primary_10_3390_ph17070897 crossref_primary_10_3390_polym12040919 crossref_primary_10_3390_polym16172456 crossref_primary_10_1016_j_carbpol_2021_117793 crossref_primary_10_1016_j_jmst_2023_04_015 crossref_primary_10_3390_pharmaceutics15122743 crossref_primary_10_1016_j_carbpol_2021_117791 crossref_primary_10_1002_smll_202305940 crossref_primary_10_1016_j_ijbiomac_2023_124364 crossref_primary_10_2147_IJN_S522198 crossref_primary_10_3390_ma13214819 crossref_primary_10_1002_jbm_b_35520 crossref_primary_10_1016_j_bioactmat_2024_01_004 crossref_primary_10_1089_ten_teb_2024_0227 crossref_primary_10_1016_j_eurpolymj_2024_113210 crossref_primary_10_26599_NR_2025_94907084 crossref_primary_10_3390_pharmaceutics13040564 crossref_primary_10_1002_advs_202404580 crossref_primary_10_1016_j_jconrel_2021_04_003 crossref_primary_10_3390_bioengineering9030109 crossref_primary_10_1002_adhm_202000208 crossref_primary_10_1016_j_amf_2024_200113 crossref_primary_10_1016_j_apmt_2024_102546 crossref_primary_10_1007_s10765_020_02770_0 crossref_primary_10_1007_s10047_022_01360_1 crossref_primary_10_1016_j_bioactmat_2024_01_015 crossref_primary_10_1080_09205063_2024_2449294 crossref_primary_10_1080_15323269_2025_2474408 crossref_primary_10_3389_fbioe_2022_976960 crossref_primary_10_1016_j_copbio_2021_10_011 crossref_primary_10_1039_D5TB01489A crossref_primary_10_3390_polym16243550 crossref_primary_10_1063_5_0176301 crossref_primary_10_2147_IJN_S432468 crossref_primary_10_3390_app14219919 crossref_primary_10_1016_j_trac_2024_117569 crossref_primary_10_1088_1748_605X_add9db crossref_primary_10_3390_polym17070948 crossref_primary_10_1080_21655979_2023_2274150 crossref_primary_10_1002_EXP_20210083 crossref_primary_10_3389_fbioe_2021_682498 crossref_primary_10_3389_fcell_2022_953408 crossref_primary_10_3390_ma14174891 crossref_primary_10_1039_D3MH00849E crossref_primary_10_1002_adhm_202001404 crossref_primary_10_1088_1742_6596_2798_1_012013 crossref_primary_10_1002_adfm_202211323 crossref_primary_10_1088_2516_1091_ad10b4 crossref_primary_10_1016_j_bioactmat_2020_10_021 crossref_primary_10_21202_2782_2923_2025_2_448_463 crossref_primary_10_2147_IJN_S353062 crossref_primary_10_3390_bioengineering9030093 crossref_primary_10_3390_jfb14100497 crossref_primary_10_1002_admt_202301785 crossref_primary_10_1016_j_ijbiomac_2024_131281 crossref_primary_10_1002_jbm_a_36979 crossref_primary_10_1002_EXP_20230126 crossref_primary_10_1016_j_actbio_2020_08_017 crossref_primary_10_3389_fonc_2022_810774 crossref_primary_10_1007_s40843_023_2809_x crossref_primary_10_1016_j_colsurfb_2021_111980 crossref_primary_10_1007_s00398_021_00469_4 crossref_primary_10_3390_ph16030454 crossref_primary_10_1016_j_actbio_2024_09_056 crossref_primary_10_1021_cbe_4c00079 crossref_primary_10_1080_00914037_2023_2201947 crossref_primary_10_3390_pharmaceutics15061750 crossref_primary_10_1016_j_biomaterials_2022_121639 crossref_primary_10_1007_s42242_022_00189_0 crossref_primary_10_1016_j_carbpol_2025_124357 crossref_primary_10_2217_nnm_2021_0285 crossref_primary_10_1088_1758_5090_ad1b1f crossref_primary_10_1016_j_biomaterials_2021_121131 crossref_primary_10_1016_j_jmst_2022_03_009 crossref_primary_10_3390_jfb13040214 crossref_primary_10_1080_09205063_2022_2145867 crossref_primary_10_1088_1758_5090_abec2c crossref_primary_10_3390_bioengineering10030287 crossref_primary_10_3390_mi11090826 crossref_primary_10_1016_j_addr_2025_115649 crossref_primary_10_3390_mi12030294 crossref_primary_10_3389_fbioe_2022_1011800 crossref_primary_10_3390_polym14235143 crossref_primary_10_1002_app_49888 crossref_primary_10_1016_j_mvr_2022_104321 crossref_primary_10_1089_3dp_2020_0337 crossref_primary_10_1016_j_addr_2024_115347 crossref_primary_10_3389_fimmu_2025_1622508 crossref_primary_10_1007_s43152_023_00050_1 crossref_primary_10_1002_jbm_a_37954 crossref_primary_10_1021_acsami_5c06168 crossref_primary_10_1039_D3MH00528C crossref_primary_10_1016_j_tibtech_2020_04_013 crossref_primary_10_1097_HEP_0000000000001321 crossref_primary_10_3390_biophysica5020013 crossref_primary_10_3390_nano12132190 crossref_primary_10_1186_s40824_022_00338_7 crossref_primary_10_1007_s40883_022_00278_7 crossref_primary_10_3390_md21050299 crossref_primary_10_3390_medsci9030055 crossref_primary_10_3390_ma13183980 crossref_primary_10_3390_molecules28093683 crossref_primary_10_1007_s44174_022_00021_4 crossref_primary_10_1016_j_bprint_2023_e00321 crossref_primary_10_3390_cells11152439 crossref_primary_10_1039_D0BM00973C crossref_primary_10_1161_CIRCRESAHA_122_321670 crossref_primary_10_1007_s40883_020_00166_y crossref_primary_10_1016_j_progpolymsci_2023_101755 crossref_primary_10_2147_IJN_S494364 crossref_primary_10_1016_j_actbio_2020_09_033 crossref_primary_10_1016_j_mtcomm_2025_113049 crossref_primary_10_1002_VIW_20210018 crossref_primary_10_3390_bioengineering10020213 crossref_primary_10_1016_j_bios_2024_117103 crossref_primary_10_1002_adhm_202100968 crossref_primary_10_1002_admt_202201926 crossref_primary_10_1016_j_cej_2021_129129 crossref_primary_10_1089_ten_teb_2021_0133 crossref_primary_10_1016_j_snb_2021_129594 crossref_primary_10_1016_j_tibtech_2022_07_011 crossref_primary_10_3390_gels10100644 crossref_primary_10_1002_adtp_202300425 crossref_primary_10_1016_j_actbio_2022_05_009 crossref_primary_10_3390_biomedicines13030731 crossref_primary_10_3390_jfb14040196 crossref_primary_10_3390_pharmaceutics15010255 crossref_primary_10_3390_mi11090855 crossref_primary_10_37188_lam_2025_021 crossref_primary_10_1002_mco2_437 crossref_primary_10_1093_rb_rbaa042 crossref_primary_10_1007_s12221_023_00438_8 crossref_primary_10_1002_bmm2_12070 crossref_primary_10_1016_j_ijbiomac_2021_09_014 crossref_primary_10_1002_adhm_202401944 crossref_primary_10_1096_fj_202400991R crossref_primary_10_3390_bioengineering10070787 crossref_primary_10_3390_polym13142350 crossref_primary_10_1002_smll_202506259 crossref_primary_10_1063_5_0087852 crossref_primary_10_3390_ma15134468 crossref_primary_10_1002_mame_202500251 crossref_primary_10_1039_D0QM01099E crossref_primary_10_1039_D3NR00205E crossref_primary_10_1002_smll_202201869 crossref_primary_10_1093_rb_rbac105 crossref_primary_10_3389_fbioe_2022_904629 crossref_primary_10_3390_biomedicines11030794 crossref_primary_10_1039_D3MH00755C crossref_primary_10_1016_j_bprint_2023_e00264 crossref_primary_10_3389_fphys_2022_1034603 crossref_primary_10_1002_adma_202210769 crossref_primary_10_1016_j_carbpol_2024_122805 crossref_primary_10_1016_j_mtbio_2024_101391 crossref_primary_10_3390_jcm10214966 crossref_primary_10_1002_bit_28182 crossref_primary_10_1016_j_actbio_2021_03_067 crossref_primary_10_3390_ijms26178422 crossref_primary_10_1002_mba2_63 crossref_primary_10_3389_fbioe_2024_1358246 crossref_primary_10_1016_j_jconrel_2022_11_035 crossref_primary_10_3390_gels9110890 crossref_primary_10_3390_fib13060083 crossref_primary_10_1088_1758_5090_ad2536 crossref_primary_10_3390_cells10071749 crossref_primary_10_1016_j_carbpol_2023_121441 crossref_primary_10_1080_17452759_2024_2378003 crossref_primary_10_1016_j_compstruct_2025_118848 crossref_primary_10_1089_dtom_2024_0007 crossref_primary_10_1016_j_mtbio_2025_101449 crossref_primary_10_1038_s41596_025_01221_0 crossref_primary_10_1089_ten_tea_2020_0350 crossref_primary_10_1016_j_bone_2023_116746 crossref_primary_10_1002_adhm_202100934 crossref_primary_10_3389_fmed_2024_1521851 crossref_primary_10_3389_fphar_2022_1033043 crossref_primary_10_1088_1748_605X_acc99a crossref_primary_10_1080_09205063_2025_2505350 crossref_primary_10_1007_s00449_021_02650_3 crossref_primary_10_1002_advs_202202278 crossref_primary_10_1016_j_tibtech_2020_11_003 crossref_primary_10_3389_fbioe_2023_1303053 crossref_primary_10_1134_S1990519X22050042 crossref_primary_10_1016_j_cej_2024_155650 crossref_primary_10_1002_pat_6206 crossref_primary_10_3390_pharmaceutics15010068 crossref_primary_10_1002_adfm_202200249 crossref_primary_10_1007_s10853_021_06439_3 crossref_primary_10_1088_2631_7990_ada836 crossref_primary_10_1002_VIW_20200016 crossref_primary_10_1089_ten_tec_2022_0105 crossref_primary_10_1002_admt_201901044 crossref_primary_10_3390_coatings12010071 crossref_primary_10_3390_nano13172455 crossref_primary_10_1002_adma_202301670 crossref_primary_10_1002_advs_202100798 crossref_primary_10_1016_j_stlm_2022_100066 crossref_primary_10_1177_08853282221102669 crossref_primary_10_1016_j_bone_2021_116256 crossref_primary_10_1089_wound_2020_1287 crossref_primary_10_3389_fbioe_2023_1190171 crossref_primary_10_3390_ijms231911642 crossref_primary_10_1016_j_ijbiomac_2024_139174 crossref_primary_10_1089_ten_tea_2024_0149 crossref_primary_10_1089_ten_tec_2022_0214 crossref_primary_10_1016_j_bios_2022_114758 crossref_primary_10_1088_1758_5090_aced23 crossref_primary_10_1002_SMMD_20220002 crossref_primary_10_1016_j_mattod_2021_04_016 crossref_primary_10_1016_j_ijbiomac_2023_123659 crossref_primary_10_3389_fbioe_2020_00083 crossref_primary_10_3390_ijms24066008 crossref_primary_10_3233_THC_220393 crossref_primary_10_1016_j_jconrel_2021_03_040 crossref_primary_10_3390_gels11060422 crossref_primary_10_1088_1748_605X_ac5949 crossref_primary_10_1177_20417314221119895 crossref_primary_10_3390_pharmaceutics13050621 crossref_primary_10_1016_j_iliver_2024_100080 crossref_primary_10_3389_fbioe_2023_1093101 crossref_primary_10_1016_j_ijbiomac_2022_07_206 crossref_primary_10_3390_fluids10080206 crossref_primary_10_1016_j_copbio_2021_08_012 crossref_primary_10_1002_pi_6298 crossref_primary_10_1088_1758_5090_add49e crossref_primary_10_1016_j_cej_2021_130961 crossref_primary_10_1002_adma_202200512 crossref_primary_10_1002_smll_202409321 crossref_primary_10_3390_cells12091230 crossref_primary_10_1016_j_bprint_2021_e00184 crossref_primary_10_1002_adma_202200750 crossref_primary_10_3390_biom12010124 crossref_primary_10_3390_jpm13050852 crossref_primary_10_3389_fcell_2021_661802 crossref_primary_10_1111_jcmm_18236 crossref_primary_10_3389_fbioe_2022_865770 crossref_primary_10_1002_adfm_202315488 crossref_primary_10_1016_j_cej_2025_165273 crossref_primary_10_1002_bab_1911 crossref_primary_10_1016_j_bioactmat_2024_08_040 crossref_primary_10_1016_j_lfs_2024_122992 crossref_primary_10_58245_ipsi_tir_2502_02 crossref_primary_10_1088_1758_5090_adc03a crossref_primary_10_3390_ma15186398 crossref_primary_10_3390_bioengineering10010057 crossref_primary_10_3390_cells12162067 crossref_primary_10_1002_adma_202304738 crossref_primary_10_1016_j_jconrel_2023_04_023 crossref_primary_10_1088_1748_605X_ab797a crossref_primary_10_1186_s12951_023_02003_0 crossref_primary_10_1016_j_bprint_2021_e00171 crossref_primary_10_1016_j_bprint_2021_e00176 crossref_primary_10_1016_j_eurpolymj_2020_109988 crossref_primary_10_2217_rme_2021_0016 crossref_primary_10_1007_s00404_023_06912_1 crossref_primary_10_1002_VIW_20250107 crossref_primary_10_1016_j_bcp_2023_115586 crossref_primary_10_1088_1748_605X_ac6b06 crossref_primary_10_1038_s41467_022_31002_2 crossref_primary_10_1089_ten_teb_2020_0223 crossref_primary_10_1016_j_cclet_2024_110686 crossref_primary_10_1063_5_0031475 crossref_primary_10_1155_2022_1953861 crossref_primary_10_3389_fphar_2023_1150151 crossref_primary_10_3389_fbioe_2023_1169893 crossref_primary_10_1016_j_addr_2021_02_013 crossref_primary_10_1002_ardp_202400854 crossref_primary_10_1016_j_actbio_2022_03_011 crossref_primary_10_3389_fbioe_2022_841583 crossref_primary_10_1002_adfm_202109810 crossref_primary_10_5757_ASCT_2023_32_1_1 crossref_primary_10_1016_j_trac_2024_117905 crossref_primary_10_3389_fncel_2020_558381 crossref_primary_10_1016_j_rbmo_2024_104273 crossref_primary_10_1111_jre_13126 crossref_primary_10_1515_mr_2024_0089 crossref_primary_10_1016_j_pmatsci_2023_101124 crossref_primary_10_3390_polym16101426 crossref_primary_10_3390_biom14070861 crossref_primary_10_3390_biom11060863 crossref_primary_10_1007_s13346_023_01437_1 crossref_primary_10_1016_j_matdes_2024_112886 crossref_primary_10_1016_j_eurpolymj_2024_113093 crossref_primary_10_1016_j_jconrel_2023_12_051 crossref_primary_10_3390_ijms23126564 crossref_primary_10_1002_adhm_202401419 crossref_primary_10_1016_j_eurpolymj_2023_111863 crossref_primary_10_1021_acsabm_5c00278 crossref_primary_10_1016_j_colsurfa_2023_131288 crossref_primary_10_1002_bmm2_70027 crossref_primary_10_3390_ijms26020696 crossref_primary_10_1002_adma_202207483 crossref_primary_10_1007_s11242_021_01618_x crossref_primary_10_1039_D2BM02111K crossref_primary_10_1007_s11837_020_04382_3 crossref_primary_10_1002_adfm_202200710 crossref_primary_10_1016_j_bprint_2022_e00255 crossref_primary_10_1016_j_bioadv_2023_213499 crossref_primary_10_1093_rb_rbad032 crossref_primary_10_1002_mame_202100338 crossref_primary_10_1089_ten_teb_2023_0280 crossref_primary_10_3389_fbioe_2024_1393641 crossref_primary_10_3390_ph14040362 crossref_primary_10_3390_polym13040563 crossref_primary_10_1002_bit_28588 crossref_primary_10_1016_j_glohj_2022_11_001 crossref_primary_10_1002_btm2_10559 crossref_primary_10_3390_cimb47040287 crossref_primary_10_1016_j_actbio_2023_04_034 crossref_primary_10_1039_D5LC00014A crossref_primary_10_3390_jfb13040249 crossref_primary_10_1515_auto_2024_0070 crossref_primary_10_3389_fbioe_2025_1629608 crossref_primary_10_1007_s41403_021_00291_2 crossref_primary_10_1016_j_apmt_2022_101510 crossref_primary_10_1039_D5TB00290G crossref_primary_10_1039_D5PM00142K crossref_primary_10_1080_10667857_2025_2530639 crossref_primary_10_15541_jim20250002 crossref_primary_10_1016_j_bprint_2023_e00305 crossref_primary_10_3390_magnetochemistry10080052 crossref_primary_10_3390_bioengineering9110605 crossref_primary_10_1016_j_jddst_2024_105722 crossref_primary_10_1038_s41598_020_78977_w crossref_primary_10_1016_j_mtchem_2024_102016 crossref_primary_10_1007_s42765_024_00469_7 crossref_primary_10_1111_cpr_13417 crossref_primary_10_1016_j_ijbiomac_2024_131623 crossref_primary_10_17482_uumfd_991197 crossref_primary_10_3390_cells9020420 crossref_primary_10_1038_s41598_020_74191_w crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_3390_gels9030195 crossref_primary_10_1088_1758_5090_acc42c crossref_primary_10_3390_polym14235068 crossref_primary_10_1016_j_apmt_2021_101227 crossref_primary_10_1557_s43577_022_00343_0 crossref_primary_10_3390_mi14081648 crossref_primary_10_1016_j_bioadv_2024_213770 crossref_primary_10_1016_j_cden_2021_06_004 crossref_primary_10_1016_j_actbio_2022_02_035 crossref_primary_10_3390_ijms23105831 crossref_primary_10_15541_jim20250014 crossref_primary_10_3390_polym15092083 crossref_primary_10_1016_j_ijbiomac_2023_123952 crossref_primary_10_1177_11795972241288099 crossref_primary_10_1039_D4RA00075G crossref_primary_10_1016_j_tice_2024_102418 crossref_primary_10_3390_polym13224028 crossref_primary_10_1016_j_drudis_2022_02_020 crossref_primary_10_1016_j_ijbiomac_2025_146031 crossref_primary_10_1016_j_isci_2025_112532 crossref_primary_10_1016_j_actbio_2021_01_044 crossref_primary_10_1002_adom_202203038 crossref_primary_10_1016_j_bioactmat_2022_02_009 crossref_primary_10_1002_mame_202300422 crossref_primary_10_1016_j_jmst_2024_01_001 crossref_primary_10_1111_jcpe_14036 crossref_primary_10_1186_s13065_025_01390_9 crossref_primary_10_2217_3dp_2020_0008 crossref_primary_10_3390_ijms242216316 crossref_primary_10_1088_1758_5090_acab36 crossref_primary_10_3390_mi11070658 crossref_primary_10_1002_adfm_202419680 crossref_primary_10_1002_adhm_202402415 crossref_primary_10_3390_gels10040220 crossref_primary_10_3390_cells10092352 crossref_primary_10_3390_gels8070420 crossref_primary_10_3390_jcm9072238 crossref_primary_10_1016_j_drudis_2024_104208 crossref_primary_10_1016_j_mtbio_2025_102105 crossref_primary_10_1016_j_pmatsci_2025_101527 crossref_primary_10_3389_fchem_2020_610232 crossref_primary_10_1177_20417314241282476 crossref_primary_10_2147_DDDT_S344036 crossref_primary_10_3389_fphys_2022_836480 crossref_primary_10_1108_RPJ_02_2023_0041 crossref_primary_10_1016_j_bprint_2022_e00203 crossref_primary_10_1016_j_bprint_2022_e00201 crossref_primary_10_3389_fbioe_2022_1036375 crossref_primary_10_1002_adhm_202202110 crossref_primary_10_1007_s00371_023_03187_0 crossref_primary_10_1002_adhm_202100523 crossref_primary_10_1177_20417314251328128 crossref_primary_10_3389_fbioe_2023_1205792 crossref_primary_10_1007_s40883_021_00229_8 crossref_primary_10_3390_jfb13030118 crossref_primary_10_1016_j_bioactmat_2021_09_004 crossref_primary_10_1109_TIM_2025_3564022 crossref_primary_10_3389_fcell_2024_1385399 crossref_primary_10_1109_JSEN_2023_3242094 crossref_primary_10_1002_btm2_10307 crossref_primary_10_1002_advs_202511099 crossref_primary_10_1007_s10439_024_03580_3 crossref_primary_10_1002_btm2_10303 crossref_primary_10_1007_s12015_022_10421_0 crossref_primary_10_1007_s00441_021_03414_x crossref_primary_10_3390_ijms23158589 crossref_primary_10_1016_j_bprint_2020_e00095 crossref_primary_10_1016_j_bprint_2022_e00211 crossref_primary_10_1038_s41569_020_0422_8 crossref_primary_10_1557_s43579_025_00804_y crossref_primary_10_3390_ijms24032660 crossref_primary_10_3389_fendo_2023_1287789 crossref_primary_10_1016_j_bprint_2021_e00156 crossref_primary_10_1002_adma_202107759 crossref_primary_10_3389_fmed_2022_947649 crossref_primary_10_1016_j_cjmeam_2022_100011 crossref_primary_10_1016_j_ijbiomac_2020_07_043 |
| Cites_doi | 10.2217/nnm.10.14 10.1016/j.mattod.2017.06.005 10.1088/1758-5090/ab02c9 10.1088/1758-5082/2/4/045004 10.1126/science.289.5481.879 10.1088/1758-5090/9/1/015006 10.1021/acsami.6b10673 10.1021/bm200178w 10.1115/1.3128729 10.1002/app.42458 10.1126/science.1226340 10.1016/j.actbio.2013.09.003 10.1177/2472555218766842 10.1039/C8RA07533F 10.15302/J-ENG-2015062 10.1002/adma.201305506 10.1016/j.cej.2015.12.079 10.1002/jbm.a.34970 10.1002/adma.201001436 10.1016/B978-0-12-800972-7.00013-X 10.5185/amlett.2011.1211 10.1016/j.colsurfb.2019.06.069 10.1089/ten.tea.2016.0353 10.1088/1758-5090/8/1/014101 10.1007/s10439-016-1640-4 10.3390/jfb2030119 10.1002/adhm.201600095 10.1038/srep34845 10.1016/j.bios.2004.08.047 10.1016/j.biomaterials.2011.08.071 10.1016/j.apsusc.2010.11.049 10.1002/biot.200600058 10.1088/1758-5090/8/3/035020 10.1371/journal.pone.0101627 10.1002/anie.201409846 10.1038/nbt.2958 10.1016/j.ijpharm.2015.02.033 10.14227/DT250118P24 10.1088/1758-5082/5/2/025004 10.1038/srep13987 10.1186/s13036-015-0001-4 10.1016/j.biomaterials.2015.05.031 10.1016/j.biomaterials.2010.05.055 10.1088/1758-5082/6/3/035020 10.1002/biot.201400635 10.1088/1748-605X/aaa5b6 10.1088/1758-5090/ab19fd 10.1039/c3bm60132c 10.1089/ten.tea.2008.0653 10.1039/C4BM00234B 10.1016/j.actbio.2014.09.033 10.1039/C3LC50634G 10.1002/biot.200900004 10.1002/bit.24455 10.1088/1758-5082/5/4/045007 10.1088/1758-5090/aa8dd8 10.3389/fbioe.2017.00023 10.32474/ANOAJ.2018.01.000113 10.1016/j.expneurol.2010.02.014 10.1002/sctm.17-0148 10.1073/pnas.1524813113 10.1039/C8SM02573H 10.1038/nprot.2013.125 10.1038/nrm1858 10.1088/1758-5090/aa6bad 10.1002/adhm.201700015 10.1088/1758-5090/aa8cb7 10.1002/adma.201570182 10.3390/molecules21050539 10.1016/j.msec.2019.02.008 10.1126/science.1189345 10.1002/term.1682 10.4174/astr.2017.92.2.67 10.1088/1758-5090/8/3/032001 10.1088/1758-5090/ab0692 10.1088/1758-5090/ab0631 10.1088/1758-5090/8/1/014103 10.1016/j.jsamd.2016.04.001 10.1557/mrs2007.11 10.1155/2017/8910821 10.1179/1743280414Y.0000000040 10.1002/jbm.a.34797 10.1089/ten.tec.2009.0179 10.1002/jbm.a.34420 10.1016/j.tibtech.2012.10.005 10.1088/1758-5082/4/2/022001 10.1002/mame.201900353 10.1002/biot.201000340 10.1007/s00441-011-1215-5 10.1039/c004285d 10.1021/acs.nanolett.5b02859 10.1002/adma.201405076 10.1007/s10439-016-1643-1 10.1158/1538-7445.AM2018-5022 10.1088/1758-5090/aa6265 10.1089/ten.a.2007.0004 10.1016/j.tice.2018.03.009 10.1016/j.biomaterials.2012.04.050 10.1186/1747-5341-4-2 10.3390/ijms18040683 10.1016/j.biomaterials.2007.09.032 10.1016/j.bprint.2018.02.003 10.1016/j.biomaterials.2014.07.002 10.1038/s41598-017-05699-x 10.2174/138620709788681907 10.1002/term.555 10.1016/j.biomaterials.2015.05.043 10.1038/s41427-018-0015-8 10.1016/j.biomaterials.2009.07.056 10.1056/NEJMc1206319 10.1016/j.biomaterials.2011.11.003 10.1021/la501430x 10.1016/j.biomaterials.2014.03.050 10.1016/S0168-8278(18)30330-1 10.1088/1758-5090/7/3/035006 10.1016/j.biomaterials.2015.07.022 10.1016/j.actbio.2017.05.025 10.1002/biot.201400305 10.1016/j.actbio.2013.10.016 10.1007/s11548-018-1793-8 10.1088/1758-5082/5/4/045006 10.1016/j.matlet.2016.12.127 10.1021/nl072798r 10.1088/1758-5082/5/3/035001 10.1088/1758-5082/2/1/014110 10.1088/1758-5082/6/3/035004 10.1088/1758-5090/aa71c8 10.2147/IJN.S38635 10.1039/C9TB00669A 10.1088/1758-5090/aaec52 10.1016/j.biomaterials.2015.08.028 10.1088/1758-5090/7/4/045002 10.1089/ten.tec.2014.0149 10.1016/j.biomaterials.2016.06.012 10.1089/ten.tec.2012.0157 10.1039/c3tb21280g 10.1038/nm.2193 10.2217/3dp-2017-0006 10.1002/advs.201900344 10.1016/j.actbio.2014.06.034 10.1038/s41598-018-38366-w 10.1088/1758-5090/aa869f 10.3350/cmh.2016.22.1.7 10.1016/j.biomaterials.2010.04.045 10.1016/j.jmbbm.2017.09.031 10.1016/j.biomaterials.2004.04.011 10.1126/scitranslmed.3004890 10.1115/1.4028512 10.1016/j.biomaterials.2010.09.035 10.1039/b704965j 10.1002/jbm.b.30325 10.1088/1758-5090/8/4/045002 10.1088/1758-5090/7/3/031002 10.1126/science.1188302 10.1007/s11427-015-4850-3 10.1016/S0140-6736(10)60668-X 10.1002/bit.22762 10.1149/2.0071504jss 10.1016/j.biomaterials.2016.09.003 10.1016/j.tins.2017.11.001 10.3390/ma10020190 10.1097/SLA.0000000000002141 10.1109/JMEMS.2006.878879 10.1002/adma.201302042 10.1186/s12967-016-1028-0 10.1016/j.biomaterials.2008.12.009 10.1016/j.tibtech.2015.04.005 10.1016/j.biomaterials.2012.01.048 10.1016/j.actbio.2017.08.005 10.1021/acsbiomaterials.6b00614 10.1088/1758-5082/3/3/034112 10.1038/nbt.3413 10.1016/j.jconrel.2016.06.015 10.1016/j.biomaterials.2009.05.050 10.1002/mabi.201800068 10.1016/j.biomaterials.2014.01.064 10.1557/mrs.2011.272 10.1016/j.bprint.2017.12.001 10.1038/srep07974 10.1016/j.actbio.2013.12.005 10.1089/ten.tec.2011.0185 10.1016/j.drudis.2016.04.006 10.1016/j.jiec.2018.12.023 10.1088/1758-5082/2/2/022001 10.1007/s40883-019-00102-9 10.1002/adma.201504122 10.1021/acsbiomaterials.7b00266 10.1016/j.actbio.2013.07.009 10.1038/ncomms4935 10.1089/biores.2013.0031 10.1136/bmjopen-2017-016891 10.1007/978-3-319-40498-1 10.1557/PROC-845-AA2.8 10.1177/2472630319854337 10.1016/j.jconrel.2014.04.007 10.1039/C8TB01344F 10.1002/mabi.201200471 10.1089/ten.tea.2009.0798 10.1023/B:BMMD.0000031751.67267.9f 10.1002/term.2476 10.1089/ten.tea.2011.0001 10.1088/1758-5082/6/3/035022 10.1016/j.actbio.2015.07.030 10.3390/jfb9010022 10.1039/C7BM00765E 10.1039/C8BM01286E 10.1002/bit.24591 10.1088/1758-5082/5/4/045010 10.1109/TBME.2013.2243912 10.1038/s41598-018-31848-x 10.1016/j.progpolymsci.2011.11.007 10.2352/J.ImagingSci.Technol.1998.42.1.art00007 10.1557/mrs.2015.5 10.1517/14712598.3.5.701 10.1517/14712598.7.8.1123 10.1080/19475411.2019.1591541 10.1088/1758-5082/3/2/025001 10.1063/1.337287 10.1002/adhm.201500193 10.1146/annurev-matsci-070909-104502 10.1371/journal.pone.0057741 10.1089/biores.2013.0046 10.1016/j.actbio.2014.09.023 10.1016/j.colsurfb.2019.03.063 10.1088/1758-5090/8/1/015007 |
| ContentType | Journal Article |
| Copyright | 2019 Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2019 – notice: Published by Elsevier Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2019.119536 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| EISSN | 1878-5905 |
| ExternalDocumentID | 31648135 10_1016_j_biomaterials_2019_119536 S0142961219306350 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c538t-87a9ec7480e975ecc1e7a746fbb53c64a6b29f18160571b3bfec839696a55ebf3 |
| ISICitedReferencesCount | 811 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498330900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sun Sep 28 10:32:25 EDT 2025 Sat Sep 27 18:38:47 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 Tue Nov 18 21:10:15 EST 2025 Sat Nov 29 07:24:04 EST 2025 Fri Feb 23 02:22:57 EST 2024 Tue Oct 14 19:30:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bioinks Regenerative engineering Bioprinting Three-dimensional Tissue engineering Artificial tissues |
| Language | English |
| License | Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c538t-87a9ec7480e975ecc1e7a746fbb53c64a6b29f18160571b3bfec839696a55ebf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 31648135 |
| PQID | 2309493787 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2388787141 proquest_miscellaneous_2309493787 pubmed_primary_31648135 crossref_citationtrail_10_1016_j_biomaterials_2019_119536 crossref_primary_10_1016_j_biomaterials_2019_119536 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119536 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119536 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lee, Sing, Zhou, Yeong (bib79) 2018; 4 Zhou, Zhu, Nowicki, Miao, Cui, Holmes, Glazer, Zhang (bib254) 2016; 8 Homan, Kolesky, Skylar-Scott, Herrmann, Obuobi, Moisan, Lewis (bib267) 2016; 6 Ouyang, Yao, Zhao, Sun (bib94) 2016; 8 Yu (bib226) 2016; 22 Mapili, Lu, Chen, Roy (bib70) 2005; 75 Tayyeb, Azam, Nisar, Nawaz, Qaisar, Ali (bib228) 2017 Parker, Ghosh, Abdulla, Wang, Kim, Samanipour (bib74) 2015; 7 Jockenhoevel, Deiwick, Wilhelmi, Schlie, Gruene, Haverich, Koch, Diamantouros, Hess, Chichkov, Pflaum (bib147) 2011; 17 (bib36) 1997 Kelly, Awad, Olvera, Graeve, Inzana, Kates, Schwarz, Fuller (bib213) 2014; 35 Poldervaart, Gremmels, Van Deventer, Fledderus, Öner, Verhaar, Dhert, Alblas (bib157) 2014; 184 Lee, Choi, Yong, Pati, Shim, Kang, Kang, Park, Cho (bib231) 2016; 8 Derby (bib7) 2012; 338 Loai, Kingston, Wang, Philpott, Tao, Cheng (bib271) 2019 Gudapati, Yan, Huang, Chrisey (bib129) 2014; 6 Hasan, Demirci, Rizvi, Xu, Moon, Celli (bib250) 2011; 6 Diment, Thompson, Bergmann (bib275) 2017; 7 Marcolongo, Sun, Gandhi, Khalil, Yan, Barbee, Nair (bib133) 2009; 4 Wang, Xiong, Sun, Ouyang, Heng, Lu, Bunpetch, Zhang, Wu, Zhang (bib195) 2017; 7 Boland, Xu, Damon, Cui (bib30) 2006 Ojansivu, Rashad, Ahlinder, Massera, Mishra, Syverud, Finne-Wistrand, Miettinen, Mustafa (bib217) 2019 Kim, Kang, Jeong, Paik, Kim, Park, Kim, Park, Choi (bib229) 2017; 92 Li, He, Zhou, Zhou, Bai, Lee, Mao (bib206) 2015; 40 Temple, Hutton, Hung, Huri, Cook, Kondragunta, Jia, Grayson (bib212) 2014; 102 Calvert (bib56) 2001 Skardal, Zhang, Prestwich (bib168) 2010; 31 Baraniak, McDevitt (bib252) 2012; 347 Guillotin, Souquet, Catros, Duocastella, Pippenger, Bellance, Bareille, Rémy, Bordenave, Amédée j, Guillemot (bib91) 2010; 31 Wang, Samanipour, Kim (bib259) 2016 Kang, Hockaday, Butcher (bib126) 2013; 5 Shanks, Greek, Greek (bib23) 2009; 4 Noor, Shapira, Edri, Gal, Wertheim, Dvir (bib204) 2019; 1900344 Park, Choi, Shim, Lee, Park, Kim, Doh, Cho (bib150) 2014; 6 Chia, Wu (bib64) 2015; 9 Atala, Yoo, Zhao, Dice, Binder, Xu, Albanna (bib104) 2012; 5 Markwald, Visconti, Tan, Pollard, Yao, Trusk, Mei, Yost, Rodriguez, Richards, Jia (bib136) 2014; 10 Gaetani, Doevendans, Metz, Alblas, Messina, Giacomello, Sluijter (bib202) 2012; 33 Gu, Tomaskovic-Crook, Lozano, Chen, Kapsa, Zhou, Wallace, Crook (bib239) 2016; 5 Marga, Jakab, Khatiwala, Shepherd, Dorfman, Hubbard, Colbert, Gabor (bib8) 2012; 4 Cidonio, Alcala-Orozco, Lim, Glinka, Mutreja, Kim, Dawson, Woodfield, Oreffo (bib179) 2019; 11 Khalil, Sun (bib12) 2010; 131 Owens, Marga, Forgacs, Heesch (bib124) 2013; 5 Melchels, Domingos, Klein, Malda, Bartolo, Hutmacher (bib20) 2012; 37 Zhang, Yu, Chen, Ozbolat (bib130) 2013; 5 Zein, Hanouneh, Bishop, Samaan, Eghtesad, Quintini, Miller, Yerian, Klatte (bib274) 2013; 19 Wüst, Müller, Hofmann, Wüst, Müller, Hofmann (bib21) 2011; 2 Ewald, Schweinlin, Schacht, Jüngst, Scheibel, Groll (bib101) 2015; 54 Ortmann, Vallier, Zacharis, Wesley, Tomaz (bib263) 2018; 68 Barron, Wu, Ladouceur, Ringeisen (bib51) 2004; 6 Fielding, Bose (bib210) 2013; 9 Keriquel, Oliveira, Rémy, Ziane, Rousseau, Rey, Catros, Amédée (bib52) 2017 Balakhovsky, Ostrovskiy, Khesuani (bib277) 2017 Ringeisen, Othon, Barron, Young, Spargo (bib54) 2006; 1 Choi, Kim, Park, Park, Kim, Na, Kim, Kwon, Cho, Kim, Park, Jang, Kim, Park (bib198) 2016; 112 Williams, Touroo, Church, Hoying (bib134) 2013; 2 Ma, Xu, Huang, Liu, Ling, Lu, Zhang (bib253) 2015; 1 Ott, Clippinger, Conrad, Schuetz, Pomerantseva, Ikonomou, Kotton, Vacanti (bib235) 2010; 16 Levato, Visser, Planell, Engel, Malda, Mateos-Timoneda (bib106) 2014; 6 Gorkin, in het Panhuis, Romero-Ortega, Wallace, Stewart, Thompson, Stevens, Lozano, Gilmore (bib149) 2015; 67 Lee, Polio, Lee, Dai, Menon, Carroll, Yoo (bib237) 2010; 223 Tseng, Balaoing, Grigoryan, Raphael, Killian, Souza, Grande-Allen (bib78) 2014; 10 Ng, Yeong, Naing (bib193) 2016; 2 Chang, Nam, Sun (bib60) 2008; 14 Zhang, Yu, Akkouch, Dababneh, Dolati, Ozbolat (bib131) 2015; 3 Arslan-Yildiz, El Assal, Chen, Guven, Inci, Demirci (bib4) 2016; 8 Hue (bib33) 1998; 42 Kholodenko, Yarygin (bib227) 2017 Gauvin, Chen, Lee, Soman, Zorlutuna, Nichol, Bae, Chen, Khademhosseini (bib73) 2012; 33 Carrow, Kerativitayanan, Jaiswal, Lokhande, Gaharwar (bib96) 2015 Duan, Hockaday, Kang, Butcher (bib119) 2013; 101 A (bib35) 1994 Atapattu, Utama, O'Mahony, Fife, Baek, Allard, O'Mahony, Ribeiro, Gaus, Gooding, Kavallaris (bib261) 2018; 78 Whatley, Li, Zhang, Wen (bib81) 2014; 102 Gasperini, Maniglio, Motta, Migliaresi (bib128) 2015; 21 Billiet, Vandenhaute, Schelfhout, Van Vlierberghe, Dubruel (bib22) 2012; 33 Derby (bib31) 2010; 40 Xu, Jin, Gregory, Hickman, Boland (bib38) 2005; 26 Freeman, Ramos, Alexis Chando, Zhou, Reeser, Jin, Soman, Ye (bib172) 2019 Boland, Aho, Zile, Xu, Baicu (bib200) 2009; 1 Dinca, Kasotakis, Catherine, Mourka, Ranella, Ovsianikov, Chichkov, Farsari, Mitraki, Fotakis (bib50) 2008; 8 van der Stok, Öner, Dhert, Weinans, Wang, Poldervaart, Alblas, Leeuwenburgh (bib159) 2013; 8 Snyder, Hamid, Wang, Chang, Emami, Wu, Sun (bib247) 2011; 3 Almela, Al-Sahaf, Brook, Khoshroo, Rasoulianboroujeni, Fahimipour, Tahriri, Dashtimoghadam, Bolt, Tayebi, Moharamzadeh (bib257) 2018; 52 Albanna, Binder, Murphy, Kim, Qasem, Zhao, Tan, El-Amin, Dice, Marco, Green, Xu, Skardal, Holmes, Jackson, Atala, Yoo (bib197) 2019; 9 Gao, He, zhong Fu, Liu, Ma (bib37) 2015; 61 Campbell, Weiss (bib276) 2007; 7 Knowlton, Anand, Shah, Tasoglu (bib19) 2018; 41 Dokmeci, Araujo, Bhise, Vrana, Ghaemmaghami, Zorlutuna, Manoharan, Bertassoni, Cardoso, Khademhosseini, Cristino (bib145) 2014; 6 Liu, Wang, Steinhoff, Gaebel, Toelk, Ma, Wang, Mark, Li, Gruene, Koch, Guan, Chichkov, Klopsch (bib201) 2011; 32 Malda, Pot, Schuurman, van Weeren, Khristov, Dhert (bib63) 2011; 3 Ozbolat, Peng, Ozbolat (bib93) 2016; 21 (bib216) 2018 Kériquel, Ali, Fricain, Fontaine, Guillotin, Rémy, Amédée-Vilamitjana, Bareille, Catros, Guillemot (bib11) 2011; 36 Griffith, Swartz (bib17) 2006; 7 Williams, Thayer, Martinez, Gatenholm, Khademhosseini (bib98) 2018; 9 Tseng, Gage, Shen, Haisler, Neeley, Shiao, Chen, Desai, Liao, Hebel, Raphael, Becker, Souza (bib82) 2015; 5 Saunders, Gough, Derby (bib44) 2004; 845 Horvath, Umehara, Jud, Blank, Petri-Fink, Rothen-Rutishauser (bib158) 2015; 5 Zorlutuna, Bashir, Kong, Chan, Jeong (bib69) 2010; 10 Souquet, Fricain, Rémy, Guillotin, Faucon, Amédée, Guillemot, Catros, Lopez, Bareille, Pippenger, Bellance, Chabassier (bib109) 2009; 6 Nandi, Mandal, Singh, Bhunia, Moses (bib205) 2018; 6 Abdel Fattah, Meleca, Mishriki, Lelic, Geng, Sahu, Ghosh, Puri (bib80) 2016; 2 Kesti, Müller, Becher, Schnabelrauch, D'Este, Eglin, Zenobi-Wong (bib151) 2015; 11 Pati, Jang, Ha, Won Kim, Rhie, Shim, Kim, Cho (bib155) 2014; 5 Catros, Desbat, Pippenger, Lebraud, Amédée, Guillemot, Remy, Guillotin, Bareille, Fricain (bib162) 2011; 3 Yi, Choi, Shin, Min, Gupta, Nyeo, Kyong, Mi, Cheol, Cho (bib245) 2016; 238 Trasatti, Yoo, Singh, Xu, Lee, Tran, Dai, Bjornsson, Karande (bib137) 2013; 20 Gu, Hao, Lu, Wang, Wallace, Zhou (bib66) 2015; 58 Gaebel, Sorg, Reimers, Vogt, Schlie, Gruene, Steinhoff, Polchow, Stoelting, Koch, Ma, Chichkov, Kuhn (bib192) 2009; 16 Heo, Lee, Timsina, Qiu, Castro, Zhang (bib240) 2019; 99 Kim, Shim, Hwang, Lee, Kim, Kim, Kim, Lee, Kim, Cho, Jang (bib246) 2019 Zhang, Duchamp, Ellisen, Moses, Khademhosseini (bib256) 2017 Lee, Nowicki, Harris, Zhang (bib75) 2016; 23 Skardal, Devarasetty, Kang, Mead, Bishop, Shupe, Lee, Jackson, Yoo, Soker, Atala (bib156) 2015; 25 Mao, Lee, Yao, Mendelson, Cook, Moioli (bib220) 2010; 376 Choi, Lin, Cheng, Chang (bib32) 2015; 4 Al-Abedalla, Lopez-Cabarcos, Bassett, Alkhraisat, Barralet, Gbureck, Torres, Tamimi (bib214) 2014; 35 Ovsianikov, Lin, Hölzl, Tytgat, Van Vlierberghe, Gu (bib92) 2016; 8 Banerjee, Arha, Choudhary, Ashton, Bhatia, Schaffer, Kane (bib118) 2009; 30 Xu, Sridharan, Durmus, Wang, Yavuz, Gurkan, Demirci (bib148) 2011; 6 Saunders, Bosworth, Gough, Derby, Reis (bib45) 2004; 784 Pati, Rhie, Cho, Jang, Han, Ha (bib108) 2015; 62 V Murphy, Atala (bib2) 2014; 32 Ni, Zhuo (bib185) 2019; 9 Catros, Guillotin, Bačáková, Fricain, Guillemot (bib55) 2011; 257 Gungor-Ozkerim, Inci, Zhang, Khademhosseini, Dokmeci (bib95) 2018; 6 Law, Doney, Glover, Qin, Aman, Sercombe, Liew, Dilley, Doyle (bib176) 2018; 77 Vijayavenkataraman, Lu, Fuh (bib190) 2016; 8 Goldshmid, Seliktar (bib117) 2017; 3 (bib188) 2017 Zhang, Demir, Gu (bib279) 2019; 10 Lu, Li, Chen (bib26) 2013; 8 Chen, Zou (bib184) 2019; 4 Wüst, Godla, Müller, Hofmann (bib161) 2014; 10 Saunders, Gough, Derby (bib43) 2008; 29 Raphael, Khalil, Workman, Smith, Brown, Streuli, Saiani, Domingos (bib180) 2017; 190 Li, Chen, Fan, Zhou (bib18) 2016; 14 Jessop, Al-Sabah, Gao, Kyle, Thomas, Badiei, Hawkins, Whitaker (bib175) 2019; 11 Arab, Rauf, Al-Harbi, Hauser (bib187) 2018; 4 Kwak, Shin, Lee, Hyun (bib177) 2019; 72 Li, Xing, Bai, Yan (bib181) 2019; 15 Tarafder, Davies, Bandyopadhyay, Bose (bib209) 2013; 1 Walker, Fisher, Weiss, Phillippi, Miller, Campbell (bib164) 2009; 12 Miao, Castro, Nowicki, Xia, Cui, Zhou, Zhu, Lee, Sarkar, Vozzi, Tabata, Fisher, Zhang (bib278) 2017; 20 Rathan, Dejob, Schipani, Haffner, Möbius, Kelly (bib225) 2019; 1801501 Sun, Soh (bib264) 2015; 27 Souza, Tseng, Gage, Mani, Desai, Leonard, Liao, Longo, Refuerzo, Godin (bib83) 2017; 18 Zopf, Hollister, Nelson, Ohye, Green (bib273) 2013; 368 Sachdev, Raj, Matai (bib249) 2019 Tang, Daneshmandi, Awale, Nair, Laurencin (bib1) 2019; 5 Zhang, Arneri, Bersini, Shin, Zhu, Goli-Malekabadi, Aleman, Colosi, Busignani, Dell'Erba, Bishop, Shupe, Demarchi, Moretti, Rasponi, Dokmeci, Atala, Khademhosseini (bib199) 2016; 110 Leberfinger, Ravnic, Dhawan, Ozbolat (bib27) 2017; 6 Xin, Chimene, Garza, Gaharwar, Alge (bib169) 2019; 7 Moon, Hasan, Song, Xu, Keles, Manzur, Mikkilineni, Hong, Nagatomi, Haeggstrom, Khademhosseini, Demirci (bib139) 2010; 16 Malda, Visser, Melchels, Jüngst, Hennink, Dhert, Groll, Hutmacher (bib5) 2013; 25 Lee, Kang, Lee, Kim, Lee, Cho (bib207) 2011; 32 Chang, Emami, Wu, Sun (bib99) 2010; 2 Guillemot, Mironov, Nakamura (bib10) 2010; 2 Jammalamadaka, Tappa (bib62) 2018; 9 Pescosolido, Schuurman, Malda, Matricardi, Alhaique, Coviello, Vanderburgh (10.1016/j.biomaterials.2019.119536_bib260) 2017; 45 Malda (10.1016/j.biomaterials.2019.119536_bib63) 2011; 3 Dinca (10.1016/j.biomaterials.2019.119536_bib50) 2008; 8 Yu (10.1016/j.biomaterials.2019.119536_bib226) 2016; 22 Wüst (10.1016/j.biomaterials.2019.119536_bib21) 2011; 2 Pati (10.1016/j.biomaterials.2019.119536_bib88) 2015 Wüst (10.1016/j.biomaterials.2019.119536_bib161) 2014; 10 Gauvin (10.1016/j.biomaterials.2019.119536_bib73) 2012; 33 Zhou (10.1016/j.biomaterials.2019.119536_bib254) 2016; 8 Abdel Fattah (10.1016/j.biomaterials.2019.119536_bib80) 2016; 2 Kundu (10.1016/j.biomaterials.2019.119536_bib170) 2015; 9 Walker (10.1016/j.biomaterials.2019.119536_bib164) 2009; 12 Boland (10.1016/j.biomaterials.2019.119536_bib30) 2006 Lee (10.1016/j.biomaterials.2019.119536_bib140) 2015; 4 Saunders (10.1016/j.biomaterials.2019.119536_bib43) 2008; 29 Gorkin (10.1016/j.biomaterials.2019.119536_bib149) 2015; 67 Blaeser (10.1016/j.biomaterials.2019.119536_bib100) 2014; 21 Prestwich (10.1016/j.biomaterials.2019.119536_bib107) 2010; 22 Dababneh (10.1016/j.biomaterials.2019.119536_bib13) 2014; 136 Hribar (10.1016/j.biomaterials.2019.119536_bib71) 2014; 14 Mouser (10.1016/j.biomaterials.2019.119536_bib111) 2017; 9 Markwald (10.1016/j.biomaterials.2019.119536_bib136) 2014; 10 Tang (10.1016/j.biomaterials.2019.119536_bib1) 2019; 5 Kholodenko (10.1016/j.biomaterials.2019.119536_bib227) 2017 Loo (10.1016/j.biomaterials.2019.119536_bib186) 2015; 15 Miao (10.1016/j.biomaterials.2019.119536_bib278) 2017; 20 Lu (10.1016/j.biomaterials.2019.119536_bib26) 2013; 8 Lee (10.1016/j.biomaterials.2019.119536_bib75) 2016; 23 Pagliuca (10.1016/j.biomaterials.2019.119536_bib243) 2014 Catros (10.1016/j.biomaterials.2019.119536_bib162) 2011; 3 Tayyeb (10.1016/j.biomaterials.2019.119536_bib228) 2017 Akkouch (10.1016/j.biomaterials.2019.119536_bib244) 2015; 7 Banerjee (10.1016/j.biomaterials.2019.119536_bib118) 2009; 30 Jessop (10.1016/j.biomaterials.2019.119536_bib175) 2019; 11 Pereira (10.1016/j.biomaterials.2019.119536_bib58) 2015; 132 Liu (10.1016/j.biomaterials.2019.119536_bib171) 2019; 181 Haring (10.1016/j.biomaterials.2019.119536_bib241) 2019; 11 Ravnic (10.1016/j.biomaterials.2019.119536_bib270) 2017; 266 Guillemot (10.1016/j.biomaterials.2019.119536_bib53) 2010; 5 Kim (10.1016/j.biomaterials.2019.119536_bib194) 2017; 9 Dubbin (10.1016/j.biomaterials.2019.119536_bib165) 2017; 9 Nakamura (10.1016/j.biomaterials.2019.119536_bib146) 2010; 2 Ni (10.1016/j.biomaterials.2019.119536_bib185) 2019; 9 Duarte Campos (10.1016/j.biomaterials.2019.119536_bib120) 2013; 5 Burke (10.1016/j.biomaterials.2019.119536_bib89) 2017; 1 Guillotin (10.1016/j.biomaterials.2019.119536_bib91) 2010; 31 Ma (10.1016/j.biomaterials.2019.119536_bib258) 2018; 10 Michael (10.1016/j.biomaterials.2019.119536_bib121) 2013; 8 Choi (10.1016/j.biomaterials.2019.119536_bib198) 2016; 112 Li (10.1016/j.biomaterials.2019.119536_bib224) 2018 Kim (10.1016/j.biomaterials.2019.119536_bib246) 2019 Zhang (10.1016/j.biomaterials.2019.119536_bib279) 2019; 10 Ovsianikov (10.1016/j.biomaterials.2019.119536_bib92) 2016; 8 Xin (10.1016/j.biomaterials.2019.119536_bib169) 2019; 7 Witowski (10.1016/j.biomaterials.2019.119536_bib272) 2018; 13 Campbell (10.1016/j.biomaterials.2019.119536_bib276) 2007; 7 Byambaa (10.1016/j.biomaterials.2019.119536_bib215) 2017; 6 Jensen (10.1016/j.biomaterials.2019.119536_bib211) 2014; 102 Ewald (10.1016/j.biomaterials.2019.119536_bib101) 2015; 54 Müller (10.1016/j.biomaterials.2019.119536_bib113) 2015; 7 Cidonio (10.1016/j.biomaterials.2019.119536_bib179) 2019; 11 Zhang (10.1016/j.biomaterials.2019.119536_bib130) 2013; 5 Pati (10.1016/j.biomaterials.2019.119536_bib108) 2015; 62 Colina (10.1016/j.biomaterials.2019.119536_bib49) 2005; 20 Owens (10.1016/j.biomaterials.2019.119536_bib124) 2013; 5 Ouyang (10.1016/j.biomaterials.2019.119536_bib94) 2016; 8 Xu (10.1016/j.biomaterials.2019.119536_bib38) 2005; 26 Jammalamadaka (10.1016/j.biomaterials.2019.119536_bib62) 2018; 9 Ji (10.1016/j.biomaterials.2019.119536_bib87) 2017; 5 Dokmeci (10.1016/j.biomaterials.2019.119536_bib145) 2014; 6 Tseng (10.1016/j.biomaterials.2019.119536_bib78) 2014; 10 Marga (10.1016/j.biomaterials.2019.119536_bib8) 2012; 4 Lee (10.1016/j.biomaterials.2019.119536_bib219) 2009; 15 Zhang (10.1016/j.biomaterials.2019.119536_bib256) 2017 Bohandy (10.1016/j.biomaterials.2019.119536_bib47) 1986; 60 Gao (10.1016/j.biomaterials.2019.119536_bib160) 2014; 9 Jockenhoevel (10.1016/j.biomaterials.2019.119536_bib147) 2011; 17 Ozbolat (10.1016/j.biomaterials.2019.119536_bib16) 2013; 60 Baillargeon (10.1016/j.biomaterials.2019.119536_bib85) 2019 Ott (10.1016/j.biomaterials.2019.119536_bib235) 2010; 16 Sun (10.1016/j.biomaterials.2019.119536_bib264) 2015; 27 Melchels (10.1016/j.biomaterials.2019.119536_bib15) 2014; 2 Cushnie (10.1016/j.biomaterials.2019.119536_bib127) 2014; 9 Kang (10.1016/j.biomaterials.2019.119536_bib269) 2016; 34 Gudapati (10.1016/j.biomaterials.2019.119536_bib90) 2016; 102 Loai (10.1016/j.biomaterials.2019.119536_bib271) 2019 Calvert (10.1016/j.biomaterials.2019.119536_bib56) 2001 Arab (10.1016/j.biomaterials.2019.119536_bib187) 2018; 4 Zhang (10.1016/j.biomaterials.2019.119536_bib199) 2016; 110 Mapili (10.1016/j.biomaterials.2019.119536_bib70) 2005; 75 Poldervaart (10.1016/j.biomaterials.2019.119536_bib157) 2014; 184 Zhao (10.1016/j.biomaterials.2019.119536_bib125) 2015; 7 Gu (10.1016/j.biomaterials.2019.119536_bib239) 2016; 5 Billiet (10.1016/j.biomaterials.2019.119536_bib22) 2012; 33 Maiullari (10.1016/j.biomaterials.2019.119536_bib203) 2018; 8 (10.1016/j.biomaterials.2019.119536_bib36) 1997 Ma (10.1016/j.biomaterials.2019.119536_bib253) 2015; 1 Ortmann (10.1016/j.biomaterials.2019.119536_bib263) 2018; 68 Chang (10.1016/j.biomaterials.2019.119536_bib99) 2010; 2 Homan (10.1016/j.biomaterials.2019.119536_bib267) 2016; 6 Gu (10.1016/j.biomaterials.2019.119536_bib66) 2015; 58 Demirci (10.1016/j.biomaterials.2019.119536_bib68) 2007; 7 Zhang (10.1016/j.biomaterials.2019.119536_bib122) 2013; 5 Nandi (10.1016/j.biomaterials.2019.119536_bib205) 2018; 6 Lee (10.1016/j.biomaterials.2019.119536_bib207) 2011; 32 Kingsley (10.1016/j.biomaterials.2019.119536_bib132) 2013; 5 Ozbolat (10.1016/j.biomaterials.2019.119536_bib9) 2015; 33 Jakab (10.1016/j.biomaterials.2019.119536_bib248) 2010; 2 Duarte Campos (10.1016/j.biomaterials.2019.119536_bib105) 2013; 2 Daly (10.1016/j.biomaterials.2019.119536_bib143) 2016; 8 Ozbolat (10.1016/j.biomaterials.2019.119536_bib93) 2016; 21 Gaetani (10.1016/j.biomaterials.2019.119536_bib202) 2012; 33 Souza (10.1016/j.biomaterials.2019.119536_bib83) 2017; 18 Gungor-Ozkerim (10.1016/j.biomaterials.2019.119536_bib95) 2018; 6 Li (10.1016/j.biomaterials.2019.119536_bib181) 2019; 15 (10.1016/j.biomaterials.2019.119536_bib188) 2017 Guillemot (10.1016/j.biomaterials.2019.119536_bib10) 2010; 2 Arnold (10.1016/j.biomaterials.2019.119536_bib46) 2007; 32 Duan (10.1016/j.biomaterials.2019.119536_bib119) 2013; 101 A Albanna (10.1016/j.biomaterials.2019.119536_bib197) 2019; 9 Chen (10.1016/j.biomaterials.2019.119536_bib178) 2019; 179 Levato (10.1016/j.biomaterials.2019.119536_bib106) 2014; 6 Chen (10.1016/j.biomaterials.2019.119536_bib184) 2019; 4 Kériquel (10.1016/j.biomaterials.2019.119536_bib11) 2011; 36 Saunders (10.1016/j.biomaterials.2019.119536_bib44) 2004; 845 Kesti (10.1016/j.biomaterials.2019.119536_bib151) 2015; 11 (10.1016/j.biomaterials.2019.119536_bib216) 2018 Busbee (10.1016/j.biomaterials.2019.119536_bib103) 2014; 26 Raphael (10.1016/j.biomaterials.2019.119536_bib180) 2017; 190 Gasperini (10.1016/j.biomaterials.2019.119536_bib128) 2015; 21 Keriquel (10.1016/j.biomaterials.2019.119536_bib52) 2017 Moon (10.1016/j.biomaterials.2019.119536_bib139) 2010; 16 Hou (10.1016/j.biomaterials.2019.119536_bib84) 2018; 23 Cubo (10.1016/j.biomaterials.2019.119536_bib189) 2016; 9 Yi (10.1016/j.biomaterials.2019.119536_bib245) 2016; 238 Chang (10.1016/j.biomaterials.2019.119536_bib60) 2008; 14 Di Bella (10.1016/j.biomaterials.2019.119536_bib223) 2018; 12 Wang (10.1016/j.biomaterials.2019.119536_bib259) 2016 Knowlton (10.1016/j.biomaterials.2019.119536_bib19) 2018; 41 Mao (10.1016/j.biomaterials.2019.119536_bib220) 2010; 376 (10.1016/j.biomaterials.2019.119536_bib35) 1994 Lee (10.1016/j.biomaterials.2019.119536_bib237) 2010; 223 Derby (10.1016/j.biomaterials.2019.119536_bib7) 2012; 338 Mandrycky (10.1016/j.biomaterials.2019.119536_bib3) 2017; 34 Marcolongo (10.1016/j.biomaterials.2019.119536_bib133) 2009; 4 Kim (10.1016/j.biomaterials.2019.119536_bib229) 2017; 92 Gao (10.1016/j.biomaterials.2019.119536_bib37) 2015; 61 Barron (10.1016/j.biomaterials.2019.119536_bib51) 2004; 6 Lee (10.1016/j.biomaterials.2019.119536_bib79) 2018; 4 Park (10.1016/j.biomaterials.2019.119536_bib150) 2014; 6 Skardal (10.1016/j.biomaterials.2019.119536_bib156) 2015; 25 Tseng (10.1016/j.biomaterials.2019.119536_bib77) 2013; 19 Prestwich (10.1016/j.biomaterials.2019.119536_bib152) 2010; 16 Whatley (10.1016/j.biomaterials.2019.119536_bib81) 2014; 102 Cui (10.1016/j.biomaterials.2019.119536_bib40) 2009; 30 Liu (10.1016/j.biomaterials.2019.119536_bib201) 2011; 32 Groll (10.1016/j.biomaterials.2019.119536_bib97) 2018; 11 Zorlutuna (10.1016/j.biomaterials.2019.119536_bib69) 2010; 10 Hsieh (10.1016/j.biomaterials.2019.119536_bib238) 2015; 71 (10.1016/j.biomaterials.2019.119536_bib34) 1994 Gao (10.1016/j.biomaterials.2019.119536_bib41) 2015; 10 Hong (10.1016/j.biomaterials.2019.119536_bib167) 2015; 27 Noor (10.1016/j.biomaterials.2019.119536_bib204) 2019; 1900344 Atala (10.1016/j.biomaterials.2019.119536_bib14) 2012; 4 Ojansivu (10.1016/j.biomaterials.2019.119536_bib217) 2019 Lee (10.1016/j.biomaterials.2019.119536_bib231) 2016; 8 Tseng (10.1016/j.biomaterials.2019.119536_bib82) 2015; 5 Zhao (10.1016/j.biomaterials.2019.119536_bib265) 2018; 25 O'Connell (10.1016/j.biomaterials.2019.119536_bib221) 2016; 8 Parker (10.1016/j.biomaterials.2019.119536_bib74) 2015; 7 Fedorovich (10.1016/j.biomaterials.2019.119536_bib116) 2011; 17 Williams (10.1016/j.biomaterials.2019.119536_bib134) 2013; 2 Rutz (10.1016/j.biomaterials.2019.119536_bib166) 2015; 27 Hasan (10.1016/j.biomaterials.2019.119536_b |
| References_xml | – volume: 845 year: 2004 ident: bib44 article-title: Ink Jet printing of mammalian primary cells for tissue engineering applications publication-title: MRS Proc – volume: 75 start-page: 414 year: 2005 end-page: 424 ident: bib70 article-title: Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 328 start-page: 1662 year: 2010 end-page: 1668 ident: bib234 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science – volume: 78 year: 2018 ident: bib261 article-title: Abstract 5022: precision medicine: high-throughput 3D bioprinting of embedded multicellular cancer spheroids publication-title: Cancer Res. – volume: 42 start-page: 49 year: 1998 end-page: 62 ident: bib33 article-title: Progress and trends in ink-jet printing technology publication-title: J. Imaging Sci. Technol. – volume: 6 year: 2014 ident: bib129 article-title: Alginate gelation-induced cell death during laser-assisted cell printing publication-title: Biofabrication – year: 2001 ident: bib56 article-title: Inkjet Printing for Materials and Devices – volume: 11 year: 2019 ident: bib179 article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks publication-title: Biofabrication – volume: 2 year: 2010 ident: bib146 article-title: Biomatrices and biomaterials for future developments of bioprinting and biofabrication publication-title: Biofabrication – volume: 32 start-page: 744 year: 2011 end-page: 752 ident: bib207 article-title: Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres publication-title: Biomaterials – volume: 33 start-page: 3824 year: 2012 end-page: 3834 ident: bib73 article-title: Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography publication-title: Biomaterials – volume: 92 start-page: 67 year: 2017 end-page: 72 ident: bib229 article-title: Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure publication-title: Ann. Surg. Treat. Res. – volume: 12 start-page: 1831 year: 2011 end-page: 1838 ident: bib102 article-title: Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting publication-title: Biomacromolecules – volume: 6 start-page: 2494 year: 2009 end-page: 2500 ident: bib109 article-title: High-throughput laser printing of cells and biomaterials for tissue engineering publication-title: Acta Biomater. – volume: 3 start-page: 3433 year: 2017 end-page: 3446 ident: bib117 article-title: Hydrogel modulus affects proliferation rate and pluripotency of human mesenchymal stem cells grown in three-dimensional culture publication-title: ACS Biomater. Sci. Eng. – volume: 20 start-page: 473 year: 2013 end-page: 484 ident: bib137 article-title: Design and fabrication of human skin by three-dimensional bioprinting publication-title: Tissue Eng. Part C Methods – year: 2017 ident: bib188 publication-title: Preparation and Applications of RGD Conjugated Polysaccharide Bioinks with or without Fibrin for 3D Bioprinting of Human Skin with Novel Printing Head for Use as Model for Testing Cosmetics and for Transplantation – volume: 9 start-page: 1 year: 2019 end-page: 15 ident: bib197 article-title: In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds publication-title: Sci. Rep. – volume: 35 start-page: 8810 year: 2014 end-page: 8819 ident: bib144 article-title: Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells publication-title: Biomaterials – volume: 8 year: 2016 ident: bib4 article-title: Towards artificial tissue models: past, present, and future of 3D bioprinting publication-title: Biofabrication – volume: 31 start-page: 10 year: 2013 end-page: 19 ident: bib6 article-title: Bioprinting for stem cell research publication-title: Trends Biotechnol. – volume: 10 year: 2017 ident: bib112 article-title: Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing publication-title: Materials – volume: 5 year: 2013 ident: bib122 article-title: Mechanical characterization of bioprinted in vitro soft tissue models publication-title: Biofabrication – volume: 10 start-page: 4323 year: 2014 end-page: 4331 ident: bib136 article-title: Engineering alginate as bioink for bioprinting publication-title: Acta Biomater. – volume: 22 start-page: 7 year: 2016 end-page: 17 ident: bib226 article-title: A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016 publication-title: Clin. Mol. Hepatol. – volume: 16 start-page: 927 year: 2010 end-page: 933 ident: bib235 article-title: Regeneration and orthotopic transplantation of a bioartificial lung publication-title: Nat. Med. – volume: 289 start-page: 38 year: 2016 end-page: 47 ident: bib115 article-title: A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels publication-title: Chem. Eng. J. – volume: 9 year: 2014 ident: bib127 article-title: Simple signaling molecules for inductive bone regenerative engineering publication-title: PLoS One – volume: 3 start-page: 134 year: 2015 end-page: 143 ident: bib131 article-title: In vitro study of directly bioprinted perfusable vasculature conduits publication-title: Biomater. Sci. – volume: 34 start-page: 312 year: 2016 end-page: 319 ident: bib269 article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity publication-title: Nat. Biotechnol. – volume: 10 start-page: 31 year: 2018 end-page: 44 ident: bib258 article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer publication-title: NPG Asia Mater. – volume: 3 year: 2011 ident: bib63 article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties publication-title: Biofabrication – volume: 6 start-page: 1940 year: 2017 end-page: 1948 ident: bib27 article-title: Concise review: bioprinting of stem cells for transplantable tissue fabrication publication-title: Stem cells transl. Med. – start-page: 910 year: 2006 end-page: 917 ident: bib30 article-title: Application of Inkjet Printing to Tissue Engineering – volume: 9 start-page: 9137 year: 2013 end-page: 9148 ident: bib210 article-title: SiO2and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo publication-title: Acta Biomater. – volume: 5 year: 2015 ident: bib158 article-title: Engineering an in vitro air-blood barrier by 3D bioprinting publication-title: Sci. Rep. – volume: 6 start-page: 915 year: 2018 end-page: 946 ident: bib95 article-title: Bioinks for 3D bioprinting: an overview publication-title: Biomater. Sci. – volume: 25 start-page: 24 year: 2015 end-page: 34 ident: bib156 article-title: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs publication-title: Acta Biomater. – volume: 10 start-page: 2062 year: 2010 ident: bib69 article-title: Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation publication-title: Lab Chip – volume: 102 start-page: 1537 year: 2014 end-page: 1547 ident: bib81 article-title: Magnetic-directed patterning of cell spheroids publication-title: J. Biomed. Mater. Res. A – volume: 5 start-page: 1429 year: 2016 end-page: 1438 ident: bib239 article-title: Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells publication-title: Adv. Healthc. Mater. – volume: 16 start-page: 2675 year: 2010 end-page: 2685 ident: bib152 article-title: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting publication-title: Tissue Eng. A – volume: 494 start-page: 585 year: 2015 end-page: 592 ident: bib42 article-title: Printing technologies for biomolecule and cell-based applications publication-title: Int. J. Pharm. – volume: 12 start-page: 611 year: 2018 end-page: 621 ident: bib223 article-title: handheld three-dimensional bioprinting for cartilage regeneration publication-title: J. Tissue Eng. Regenerat. Med. – volume: 7 year: 2015 ident: bib125 article-title: The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology publication-title: Biofabrication – volume: 10 start-page: 205 year: 2019 end-page: 224 ident: bib279 article-title: Developments in 4D-printing: a review on current smart materials, technologies, and applications publication-title: Int. J. Smart Nano Mater. – volume: 113 start-page: 1522 year: 2016 end-page: 1527 ident: bib65 article-title: Three-dimensional manipulation of single cells using surface acoustic waves publication-title: Proc. Natl. Acad. Sci. – volume: 35 start-page: 49 year: 2013 end-page: 62 ident: bib86 article-title: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability publication-title: Biomaterials – volume: 6 year: 2014 ident: bib150 article-title: A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting publication-title: Biofabrication – volume: 3 year: 2011 ident: bib162 article-title: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite publication-title: Biofabrication – volume: 8 start-page: 1940 year: 2013 end-page: 1949 ident: bib76 article-title: Three-dimensional cell culturing by magnetic levitation publication-title: Nat. Protoc. – volume: 2 start-page: 374 year: 2013 end-page: 384 ident: bib105 article-title: Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs publication-title: Bioresour. Open Access – volume: 13 start-page: 551 year: 2013 end-page: 561 ident: bib153 article-title: Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs publication-title: Macromol. Biosci. – volume: 2 start-page: 2133 year: 2016 end-page: 2138 ident: bib80 article-title: In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis publication-title: ACS Biomater. Sci. Eng. – volume: 4 start-page: 120 year: 2019 end-page: 131 ident: bib184 article-title: Self-assemble peptide biomaterials and their biomedical applications publication-title: Bioact. Mater – volume: 2 year: 2016 ident: bib193 article-title: Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering publication-title: Int. J. Bioprint. – volume: 14 start-page: 271 year: 2016 ident: bib18 article-title: Recent advances in bioprinting techniques: approaches, applications and future prospects publication-title: J. Transl. Med. – volume: 12 start-page: 604 year: 2009 end-page: 618 ident: bib164 article-title: Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates publication-title: Comb. Chem. High Throughput Screen. – volume: 5 start-page: 233 year: 2019 end-page: 251 ident: bib1 article-title: Skeletal muscle regenerative engineering publication-title: Regen. Eng. Transl. Med. – volume: 30 start-page: 6221 year: 2009 end-page: 6227 ident: bib40 article-title: Human microvasculature fabrication using thermal inkjet printing technology publication-title: Biomaterials – volume: 35 start-page: 4026 year: 2014 end-page: 4034 ident: bib213 article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration publication-title: Biomaterials – volume: 109 start-page: 3152 year: 2012 end-page: 3160 ident: bib25 article-title: Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes publication-title: Biotechnol. Bioeng. – volume: 8 start-page: 1 year: 2016 end-page: 12 ident: bib94 article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells publication-title: Biofabrication – volume: 33 start-page: 1782 year: 2012 end-page: 1790 ident: bib202 article-title: Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells publication-title: Biomaterials – volume: 9 start-page: 1 year: 2018 end-page: 6 ident: bib174 article-title: 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink publication-title: Bioprinting – volume: 40 start-page: 145 year: 2015 end-page: 154 ident: bib206 article-title: 3D printing for regenerative medicine: from bench to bedside publication-title: MRS Bull. – volume: 26 start-page: 3124 year: 2014 end-page: 3130 ident: bib103 article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs publication-title: Adv. Mater. – volume: 9 year: 2017 ident: bib194 article-title: Direct 3D cell-printing of human skin with functional transwell system publication-title: Biofabrication – volume: 5 year: 2013 ident: bib124 article-title: Biofabrication and testing of a fully cellular nerve graft publication-title: Biofabrication – volume: 109 start-page: 1855 year: 2012 end-page: 1863 ident: bib138 article-title: Skin tissue generation by laser cell printing publication-title: Biotechnol. Bioeng. – volume: 8 start-page: 538 year: 2008 end-page: 543 ident: bib50 article-title: Directed three-dimensional patterning of self-assembled peptide fibrils publication-title: Nano Lett. – volume: 1 start-page: 165 year: 2017 end-page: 179 ident: bib89 article-title: Bioprinting: uncovering the utility layer-by-layer publication-title: J. 3D Print. Med. – volume: 27 start-page: 1607 year: 2015 end-page: 1614 ident: bib166 article-title: A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels publication-title: Adv. Mater. – volume: 110 start-page: 45 year: 2016 end-page: 59 ident: bib199 article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip publication-title: Biomaterials – volume: 22 start-page: 4736 year: 2010 end-page: 4740 ident: bib107 article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels publication-title: Adv. Mater. – volume: 31 start-page: 6173 year: 2010 end-page: 6181 ident: bib168 article-title: Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates publication-title: Biomaterials – volume: 72 start-page: 232 year: 2019 end-page: 240 ident: bib177 article-title: Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing publication-title: J. Ind. Eng. Chem. – volume: 1 start-page: 269 year: 2015 end-page: 274 ident: bib253 article-title: Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids publication-title: Engineering – year: 2019 ident: bib271 article-title: Clinical perspectives on 3D bioprinting paradigms for regenerative medicine publication-title: Regen. Med. Front. – volume: 6 year: 2014 ident: bib251 article-title: Three-dimensional printing of hela cells for cervical tumor model in vitro publication-title: Biofabrication – volume: 13 year: 2018 ident: bib196 article-title: Tyrosinase-doped bioink for 3D bioprinting of living skin constructs publication-title: Biomed. Mater. – volume: 5 year: 2012 ident: bib104 article-title: Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications publication-title: Biofabrication – year: 1997 ident: bib36 publication-title: Ink Drop Volume Variance Compensation for Inkjet Printing – volume: 67 start-page: 264 year: 2015 end-page: 273 ident: bib149 article-title: 3D printing of layered brain-like structures using peptide modified gellan gum substrates publication-title: Biomaterials – volume: 68 start-page: S55 year: 2018 ident: bib263 article-title: A novel differentiation system to produce hepatocytes for disease modelling and drug screening publication-title: J. Hepatol. – volume: 5 year: 2013 ident: bib126 article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels publication-title: Biofabrication – volume: 10 start-page: 630 year: 2014 end-page: 640 ident: bib59 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. – volume: 2 start-page: 2282 year: 2014 end-page: 2289 ident: bib15 article-title: Development and characterisation of a new bioink for additive tissue manufacturing publication-title: J. Mater. Chem. B. – volume: 102 start-page: 4317 year: 2014 end-page: 4325 ident: bib212 article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds publication-title: J. Biomed. Mater. Res. A – year: 2018 ident: bib216 article-title: A novel technique for tissue engineering periosteum using three- dimensional bioprinting presenter : Brandon Alba , BA Co-Authors : Pooja Swami , MS ; Neil Affiliation : Donald and barbara Zucker School of medicine at Hofstra/Northwell publication-title: Harnessing Mech – volume: 7 start-page: 1179 year: 2019 end-page: 1187 ident: bib169 article-title: Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting publication-title: Biomater. Sci. – volume: 4 start-page: 1168 year: 2009 end-page: 1177 ident: bib133 article-title: Characterization of cell viability during bioprinting processes publication-title: Biotechnol. J. – volume: 34 start-page: 422 year: 2017 end-page: 434 ident: bib3 article-title: 3D bioprinting for engineering complex tissues – volume: 25 start-page: 24 year: 2018 end-page: 28 ident: bib265 article-title: A new model of a 3D-printed shell with convex drug release profile publication-title: Dissolution Technol. – volume: 41 start-page: 31 year: 2018 end-page: 46 ident: bib19 article-title: Bioprinting for neural tissue engineering publication-title: Trends Neurosci. – volume: 2 start-page: 448 year: 2013 end-page: 454 ident: bib134 article-title: Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system publication-title: Bioresour. Open Access – volume: 184 start-page: 58 year: 2014 end-page: 66 ident: bib157 article-title: Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture publication-title: J. Control. Release – volume: 99 start-page: 582 year: 2019 end-page: 590 ident: bib240 article-title: Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering publication-title: Mater. Sci. Eng. C – volume: 8 year: 2013 ident: bib121 article-title: Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice publication-title: PLoS One – year: 2018 ident: bib224 article-title: 3D Printing of a Lithium-Calcium-Silicate Crystal Bioscaffold with Dual Bioactivities for Osteochondral Interface Reconstruction – volume: 8 year: 2013 ident: bib159 article-title: Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats publication-title: PLoS One – volume: 33 start-page: 395 year: 2015 end-page: 400 ident: bib9 article-title: Bioprinting scale-up tissue and organ constructs for transplantation publication-title: Trends Biotechnol. – start-page: 1 year: 2019 end-page: 13 ident: bib172 article-title: A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs publication-title: Acta Biomater. – volume: 9 year: 2017 ident: bib165 article-title: Quantitative criteria to benchmark new and existing bio-inks for cell compatibility publication-title: Biofabrication – volume: 60 start-page: 691 year: 2013 end-page: 699 ident: bib16 article-title: Bioprinting toward organ fabrication: challenges and future trends publication-title: IEEE Trans. Biomed. Eng. – volume: 11 year: 2018 ident: bib97 article-title: A definition of bioinks and their distinction from biomaterial inks publication-title: Biofabrication – volume: 7 year: 2015 ident: bib244 article-title: Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering publication-title: Biofabrication – volume: 9 year: 2017 ident: bib111 article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs publication-title: Biofabrication – year: 2019 ident: bib85 article-title: Automating a magnetic 3D spheroid model technology for high-throughput screening publication-title: SLAS Technol. – volume: 13 start-page: 1473 year: 2018 end-page: 1478 ident: bib272 article-title: From ideas to long-term studies: 3D printing clinical trials review publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 8 year: 2016 ident: bib266 article-title: A liver-on-a-chip platform with bioprinted hepatic spheroids publication-title: Biofabrication – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: bib2 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. – volume: 8 start-page: 337 year: 2013 end-page: 350 ident: bib26 article-title: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering publication-title: Int. J. Nanomed. – volume: 14 start-page: 268 year: 2014 end-page: 275 ident: bib71 article-title: Light-assisted direct-write of 3D functional biomaterials publication-title: Lab Chip – volume: 30 start-page: 4695 year: 2009 end-page: 4699 ident: bib118 article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells publication-title: Biomaterials – volume: 223 start-page: 645 year: 2010 end-page: 652 ident: bib237 article-title: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture publication-title: Exp. Neurol. – volume: 11 start-page: 162 year: 2015 end-page: 172 ident: bib151 article-title: A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation publication-title: Acta Biomater. – start-page: 1 year: 2017 end-page: 22 ident: bib277 article-title: Emerging business models toward commercialization of bioprinting technology publication-title: 3D Print. Biofabrication – volume: 10 start-page: 173 year: 2014 end-page: 182 ident: bib78 article-title: A three-dimensional co-culture model of the aortic valve using magnetic levitation publication-title: Acta Biomater. – volume: 4 start-page: 1359 year: 2015 end-page: 1368 ident: bib140 article-title: A new approach for fabricating collagen/ecm-based bioinks using preosteoblasts and human adipose stem cells publication-title: Adv. Healthc. Mater. – volume: 45 start-page: 164 year: 2017 end-page: 179 ident: bib260 article-title: 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening publication-title: Ann. Biomed. Eng. – volume: 35 start-page: 5436 year: 2014 end-page: 5445 ident: bib214 article-title: Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site publication-title: Biomaterials – year: 2018 ident: bib262 article-title: Abstract 5018: bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel publication-title: Tumor Biol. – volume: 60 start-page: 1538 year: 1986 end-page: 1539 ident: bib47 article-title: Metal deposition from a supported metal film using an excimer laser publication-title: J. Appl. Phys. – volume: 54 start-page: 2816 year: 2015 end-page: 2820 ident: bib101 article-title: Biofabrication of cell-loaded 3D spider silk constructs publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 630 year: 2014 end-page: 640 ident: bib161 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. – volume: 102 start-page: 2993 year: 2014 end-page: 3003 ident: bib211 article-title: Surface-modified functionalized polycaprolactone scaffolds for bone repair: publication-title: J. Biomed. Mater. Res. A – volume: 20 start-page: 577 year: 2017 end-page: 591 ident: bib278 article-title: 4D printing of polymeric materials for tissue and organ regeneration publication-title: Mater. Today – volume: 31 start-page: 7250 year: 2010 end-page: 7256 ident: bib91 article-title: Laser assisted bioprinting of engineered tissue with high cell density and microscale organization publication-title: Biomaterials – volume: 32 start-page: 23 year: 2007 end-page: 32 ident: bib46 article-title: Laser direct-write techniques for printing of complex materials publication-title: MRS Bull. – volume: 15 start-page: 3923 year: 2009 end-page: 3930 ident: bib219 article-title: Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo publication-title: Tissue Eng. A – volume: 10 start-page: 1836 year: 2014 end-page: 1846 ident: bib154 article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells publication-title: Acta Biomater. – volume: 102 start-page: 20 year: 2016 end-page: 42 ident: bib90 article-title: A comprehensive review on droplet-based bioprinting: past, present and future publication-title: Biomaterials – volume: 23 start-page: 491 year: 2016 end-page: 502 ident: bib75 article-title: Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning publication-title: Tissue Eng. A – volume: 9 start-page: 1304 year: 2014 end-page: 1311 ident: bib160 article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells publication-title: Biotechnol. J. – year: 1994 ident: bib34 publication-title: Print Quality Optimization for a Color Ink-Jet Printer by Using a Larger Nozzle for the Black Ink Only – volume: 1 start-page: 930 year: 2006 end-page: 948 ident: bib54 article-title: Jet-based methods to print living cells publication-title: Biotechnol. J. – volume: 19 start-page: 1304 year: 2013 end-page: 1310 ident: bib274 article-title: Three-dimensional print of a liver for preoperative planning in living donor liver transplantation, Liver Transplant – start-page: 1 year: 2017 end-page: 10 ident: bib52 article-title: In Situ Printing of Mesenchymal Stromal Cells , by Laser-Assisted Bioprinting , for in Vivo Bone Regeneration Applications – volume: 27 start-page: 4034 year: 2015 ident: bib167 article-title: 3D printing: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures publication-title: Adv. Mater. – volume: 1900344 start-page: 1900344 year: 2019 ident: bib204 article-title: 3D printing of personalized thick and perfusable cardiac patches and hearts publication-title: Adv. Sci. – volume: 16 start-page: 847 year: 2009 end-page: 854 ident: bib192 article-title: Laser printing of skin cells and human stem cells publication-title: Tissue Eng. C Methods – volume: 2 year: 2010 ident: bib10 article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux publication-title: Biofabrication – volume: 112 start-page: 264 year: 2016 end-page: 274 ident: bib198 article-title: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair publication-title: Biomaterials – volume: 132 year: 2015 ident: bib58 article-title: 3D bioprinting of photocrosslinkable hydrogel constructs publication-title: J. Appl. Polym. Sci. – year: 2017 ident: bib228 article-title: Regenerative medicine in liver cirrhosis: promises and pitfalls publication-title: Liver Cirrhosis - Updat. Curr. Challenges – volume: 7 start-page: 1139 year: 2007 end-page: 1145 ident: bib68 article-title: Single cell epitaxy by acoustic picolitre droplets publication-title: Lab Chip – volume: 5 year: 2013 ident: bib120 article-title: Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid publication-title: Biofabrication – volume: 61 start-page: 41 year: 2017 end-page: 53 ident: bib142 article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells publication-title: Acta Biomater. – volume: 36 start-page: 1015 year: 2011 end-page: 1019 ident: bib11 article-title: Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine publication-title: MRS Bull. – volume: 32 start-page: 9218 year: 2011 end-page: 9230 ident: bib201 article-title: Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration publication-title: Biomaterials – volume: 19 start-page: 665 year: 2013 end-page: 675 ident: bib77 article-title: Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation publication-title: Tissue Eng. C Methods – volume: 347 start-page: 701 year: 2012 end-page: 711 ident: bib252 article-title: Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential publication-title: Cell Tissue Res. – volume: 7 year: 2015 ident: bib230 article-title: Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D publication-title: Biofabrication – volume: 7 year: 2017 ident: bib275 article-title: Clinical efficacy and effectiveness of 3D printing: a systematic review publication-title: BMJ Open – volume: 8 start-page: 30017 year: 2016 end-page: 30026 ident: bib254 article-title: 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2010 ident: bib99 article-title: Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model publication-title: Biofabrication – volume: 25 start-page: 5011 year: 2013 end-page: 5028 ident: bib5 article-title: 25th Anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. – volume: 33 start-page: 6020 year: 2012 end-page: 6041 ident: bib22 article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering publication-title: Biomaterials – volume: 17 start-page: 2473 year: 2011 end-page: 2486 ident: bib116 article-title: Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors publication-title: Tissue Eng. A – volume: 7 start-page: 1123 year: 2007 end-page: 1127 ident: bib276 article-title: Tissue engineering with the aid of inkjet printers publication-title: Expert Opin. Biol. Ther. – volume: 40 start-page: 395 year: 2010 end-page: 414 ident: bib31 article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution publication-title: Annu. Rev. Mater. Res. – volume: 4 start-page: P3044 year: 2015 end-page: P3051 ident: bib32 article-title: Printed oxide thin film transistors: a mini review publication-title: ECS J. Solid State Sci. Technol. – volume: 37 start-page: 1079 year: 2012 end-page: 1104 ident: bib20 article-title: Additive manufacturing of tissues and organs publication-title: Prog. Polym. Sci. – year: 2019 ident: bib233 publication-title: 3D Printed Lungs – the Future of Treating Asbestos Illnesses? – volume: 58 start-page: 411 year: 2015 end-page: 419 ident: bib66 article-title: Three-dimensional bio-printing publication-title: Sci. China Life Sci. – volume: 329 start-page: 538 year: 2010 end-page: 541 ident: bib236 article-title: Tissue-engineered lungs for in vivo implantation publication-title: Science – volume: 7 year: 2015 ident: bib74 article-title: A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks publication-title: Biofabrication – volume: 16 start-page: 1749 year: 2009 end-page: 1759 ident: bib163 article-title: Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation publication-title: Tissue Eng. A – volume: 131 start-page: 111002 year: 2010 ident: bib12 article-title: Bioprinting endothelial cells with alginate for 3D tissue constructs publication-title: J. Biomech. Eng. – volume: 10 start-page: 1568 year: 2015 end-page: 1577 ident: bib41 article-title: Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging publication-title: Biotechnol. J. – volume: 8 start-page: 1 year: 2016 end-page: 10 ident: bib143 article-title: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage publication-title: Biofabrication – volume: 9 year: 2018 ident: bib62 article-title: Recent advances in biomaterials for 3D printing and tissue engineering publication-title: J. Funct. Biomater. – volume: 289 start-page: 879 year: 2000 end-page: 881 ident: bib48 article-title: Materials processing: the power of direct writing publication-title: Science – volume: 30 start-page: 9130 year: 2014 end-page: 9138 ident: bib135 article-title: Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink publication-title: Langmuir – volume: 1900353 start-page: 1900353 year: 2019 ident: bib182 article-title: Development of a self‐assembled peptide/methylcellulose‐based bioink for 3D bioprinting publication-title: Macromol. Mater. Eng. – volume: 8 year: 2016 ident: bib92 article-title: Bioink properties before, during and after 3D bioprinting publication-title: Biofabrication – volume: 16 start-page: 157 year: 2010 end-page: 166 ident: bib139 article-title: Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets publication-title: Tissue Eng. C Methods – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: bib222 article-title: Handheld co-axial bioprinting: application to in situ surgical cartilage repair publication-title: Sci. Rep. – volume: 26 start-page: 93 year: 2005 end-page: 99 ident: bib38 article-title: Inkjet printing of viable mammalian cells publication-title: Biomaterials – volume: 11 year: 2019 ident: bib241 article-title: Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues publication-title: Biofabrication – volume: 9 start-page: 1286 year: 2015 end-page: 1297 ident: bib170 article-title: An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering publication-title: J. Tissue Eng. Regenerat. Med. – volume: 77 start-page: 389 year: 2018 end-page: 399 ident: bib176 article-title: Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting publication-title: J. Mech. Behav. Biomed. Mater. – year: 2015 ident: bib88 article-title: Extrusion bioprinting – volume: 1 start-page: 1250 year: 2013 end-page: 1259 ident: bib209 article-title: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model publication-title: Biomater. Sci. – volume: 4 start-page: 1 year: 2018 end-page: 13 ident: bib187 article-title: Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells publication-title: Int. J. Bioprint. – volume: 5 year: 2013 ident: bib123 article-title: Biofabrication of multi-material anatomically shaped tissue constructs publication-title: Biofabrication – volume: 8 start-page: 1 year: 2018 ident: bib203 article-title: A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes publication-title: Sci. Rep. – volume: 3 start-page: 701 year: 2003 end-page: 704 ident: bib57 article-title: Printing technology to produce living tissue publication-title: Expert Opin. Biol. Ther. – volume: 8 year: 2016 ident: bib190 article-title: 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes publication-title: Biofabrication – volume: 238 start-page: 231 year: 2016 end-page: 241 ident: bib245 article-title: A 3D-printed local drug delivery patch for pancreatic cancer growth suppression publication-title: J. Control. Release – volume: 368 start-page: 2043 year: 2013 end-page: 2045 ident: bib273 article-title: Bioresorbable airway splint created with a three-dimensional printer publication-title: N. Engl. J. Med. – volume: 338 start-page: 921 year: 2012 end-page: 926 ident: bib7 article-title: Printing and prototyping of tissues and scaffolds publication-title: Science – volume: 4 year: 2012 ident: bib14 article-title: Engineering complex tissues publication-title: Sci. Transl. Med. – volume: 5 start-page: 507 year: 2010 end-page: 515 ident: bib53 article-title: Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering publication-title: Nanomedicine – volume: 15 start-page: 1704 year: 2019 end-page: 1715 ident: bib181 article-title: Recent advances of self-assembling peptide-based hydrogels for biomedical applications publication-title: Soft Matter – volume: 784 year: 2004 ident: bib45 article-title: Selective cell delivery for 3D tissue culture and engineering publication-title: Eur. Cells Mater. – volume: 57 start-page: 26 year: 2017 end-page: 46 ident: bib24 article-title: 3D bioprinting for drug discovery and development in pharmaceutics publication-title: Acta Biomater. – volume: 5 year: 2013 ident: bib130 article-title: Characterization of printable cellular micro-fluidic channels for tissue engineering publication-title: Biofabrication – volume: 6 start-page: 34845 year: 2016 ident: bib267 article-title: Bioprinting of 3D convoluted renal proximal tubules on perfusable chips publication-title: Sci. Rep. – volume: 4 start-page: 2 year: 2009 ident: bib23 article-title: Are animal models predictive for humans? publication-title: Philos. Ethics Humanit. Med. – volume: 6 start-page: 204 year: 2011 end-page: 212 ident: bib250 article-title: A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform publication-title: Biotechnol. J. – volume: 62 start-page: 164 year: 2015 end-page: 175 ident: bib108 article-title: Biomimetic 3D tissue printing for soft tissue regeneration publication-title: Biomaterials – volume: 2 year: 2010 ident: bib248 article-title: Tissue engineering by self-assembly and bio-printing of living cells publication-title: Biofabrication – volume: 136 year: 2014 ident: bib13 article-title: A current state-of-the-art review publication-title: J. Manuf. Sci. Eng. – volume: 5 year: 2013 ident: bib132 article-title: Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads publication-title: Biofabrication – volume: 1 start-page: 1 year: 2016 end-page: 17 ident: bib61 article-title: Three-dimensional printing of biological matters publication-title: J. Sci. Adv. Mater. Devices. – volume: 9 year: 2017 ident: bib110 article-title: Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability publication-title: Biofabrication – volume: 59 start-page: 430 year: 2014 end-page: 448 ident: bib29 article-title: Inkjet printing biomaterials for tissue engineering: bioprinting publication-title: Int. Mater. Rev. – volume: 4 start-page: 0 year: 2018 end-page: 10 ident: bib79 article-title: 3D bioprinting processes: a perspective on classification and terminology publication-title: Int. J. Bioprint. – volume: 21 start-page: 123 year: 2015 end-page: 132 ident: bib128 article-title: An electrohydrodynamic bioprinter for alginate hydrogels containing living cells publication-title: Tissue Eng. C Methods – volume: 6 start-page: 1 year: 2017 end-page: 15 ident: bib215 article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue publication-title: Adv. Healthc. Mater. – volume: 18 year: 2017 ident: bib83 article-title: Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility publication-title: Int. J. Mol. Sci. – volume: 106 start-page: 963 year: 2010 end-page: 969 ident: bib39 article-title: Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells publication-title: Biotechnol. Bioeng. – volume: 11 start-page: 233 year: 2015 end-page: 246 ident: bib141 article-title: Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs publication-title: Acta Biomater. – volume: 376 start-page: 440 year: 2010 end-page: 448 ident: bib220 article-title: Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study publication-title: Lancet – volume: 6 year: 2014 ident: bib145 article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels publication-title: Biofabrication – volume: 257 start-page: 5142 year: 2011 end-page: 5147 ident: bib55 article-title: Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting publication-title: Appl. Surf. Sci. – start-page: 1 year: 2017 end-page: 17 ident: bib227 article-title: Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases publication-title: BioMed Res. Int. – volume: 6 start-page: 5671 year: 2018 end-page: 5688 ident: bib205 article-title: Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering publication-title: J. Mater. Chem. B. – volume: 45 start-page: 286 year: 2017 end-page: 296 ident: bib72 article-title: Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography publication-title: Ann. Biomed. Eng. – year: 2017 ident: bib256 article-title: Abstract 4828: recapitulating mammary ductal carcinoma microenvironment publication-title: Tumor Biol. – volume: 2 start-page: 119 year: 2011 end-page: 154 ident: bib21 article-title: Controlled Positioning of cells in biomaterials—approaches towards 3D tissue printing publication-title: J. Funct. Biomater. – volume: 11 year: 2019 ident: bib175 article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting publication-title: Biofabrication – year: 2019 ident: bib217 article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells publication-title: Biofabrication – volume: 15 start-page: 957 year: 2006 end-page: 966 ident: bib67 article-title: Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology publication-title: J. Microelectromechanical Syst. – volume: 9 start-page: 19 year: 2018 end-page: 36 ident: bib98 article-title: A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting publication-title: Bioprinting – start-page: 209 year: 2016 end-page: 233 ident: bib259 publication-title: Organ-on-a-chip Platforms for Drug Screening and Tissue Engineering – volume: 18 start-page: 1 year: 2018 end-page: 11 ident: bib173 article-title: Composite PLA/PEG/nHA/Dexamethasone scaffold prepared by 3D printing for bone regeneration publication-title: Macromol. Biosci. – volume: 7 start-page: 35006 year: 2015 ident: bib113 article-title: Nanostructured pluronic hydrogels as bioinks for 3D bioprinting publication-title: Biofabrication – volume: 7 start-page: 4538 year: 2019 end-page: 4551 ident: bib242 article-title: Bioprinting schwann cell-laden scaffolds from low-viscosity hydrogel compositions publication-title: J. Mater. Chem. B. – volume: 21 start-page: 539 year: 2016 ident: bib232 article-title: Biodegradable polymers and stem cells for bioprinting publication-title: Molecules – year: 2019 ident: bib249 article-title: 3D Printing for in Vitro and in Vivo Disease Models – volume: 61 start-page: 203 year: 2015 end-page: 215 ident: bib37 article-title: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery publication-title: Biomaterials – volume: 20 start-page: 1638 year: 2005 end-page: 1642 ident: bib49 article-title: DNA deposition through laser induced forward transfer publication-title: Biosens. Bioelectron. – volume: 71 start-page: 48 year: 2015 end-page: 57 ident: bib238 article-title: 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair publication-title: Biomaterials – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: bib195 article-title: A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization publication-title: Sci. Rep. – year: 2014 ident: bib243 article-title: Resource Generation of Functional Human Pancreatic β Cells in Vitro – volume: 6 year: 2014 ident: bib106 article-title: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers publication-title: Biofabrication – volume: 15 start-page: 6919 year: 2015 end-page: 6925 ident: bib186 article-title: Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures publication-title: Nano Lett. – year: 2019 ident: bib246 article-title: 3D Cell Printing of Islet-Laden Pancreatic Tissue-Derived Extracellular Matrix Bioink Constructs for Enhancing Pancreatic Functions – volume: 23 start-page: 574 year: 2018 end-page: 584 ident: bib84 article-title: Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening publication-title: SLAS Discov. – volume: 8 start-page: 0 year: 2016 ident: bib221 article-title: Development of the biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site publication-title: Biofabrication – volume: 190 start-page: 103 year: 2017 end-page: 106 ident: bib180 article-title: 3D cell bioprinting of self-assembling peptide-based hydrogels publication-title: Mater. Lett. – volume: 5 start-page: 1 year: 2015 end-page: 11 ident: bib82 article-title: A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging publication-title: Sci. Rep. – volume: 14 start-page: 41 year: 2008 end-page: 48 ident: bib60 article-title: Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing publication-title: Tissue Eng. A – volume: 4 year: 2012 ident: bib8 article-title: Toward engineering functional organ modules by additive manufacturing publication-title: Biofabrication – volume: 181 start-page: 1026 year: 2019 end-page: 1034 ident: bib171 article-title: 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels publication-title: Colloids Surfaces B Biointerfaces – volume: 6 start-page: 139 year: 2004 end-page: 147 ident: bib51 article-title: Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns publication-title: Biomed. Microdevices – volume: 1 year: 2018 ident: bib183 article-title: Printable self-assembled peptide bio-inks: promising future applications in nanomedicine publication-title: Arch. Nanomedicine Open Access J. – volume: 1801501 start-page: 1 year: 2019 end-page: 11 ident: bib225 article-title: Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering publication-title: Adv. Healthc. Mater. – volume: 27 start-page: 7847 year: 2015 end-page: 7853 ident: bib264 article-title: Printing tablets with fully customizable release profiles for personalized medicine publication-title: Adv. Mater. – volume: 9 start-page: 1 year: 2015 end-page: 14 ident: bib64 article-title: Recent advances in 3D printing of biomaterials publication-title: J. Biol. Eng. – volume: 21 start-page: 1257 year: 2016 end-page: 1271 ident: bib93 article-title: Application areas of 3D bioprinting publication-title: Drug Discov. Today – volume: 3 year: 2011 ident: bib247 article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip publication-title: Biofabrication – volume: 1 year: 2009 ident: bib200 article-title: Fabrication and characterization of bio-engineered cardiac pseudo tissues publication-title: Biofabrication – volume: 7 start-page: 631 year: 2013 end-page: 641 ident: bib208 article-title: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering publication-title: J. Tissue Eng. Regenerat. Med. – volume: 6 year: 2011 ident: bib148 article-title: Living bacterial sacrificial porogens to engineer decellularized porous scaffolds publication-title: PLoS One – volume: 17 start-page: 973 year: 2011 end-page: 982 ident: bib147 article-title: Laser printing of three-dimensional multicellular arrays for studies of cell–cell and cell–environment interactions publication-title: Tissue Eng. C Methods – start-page: 229 year: 2015 end-page: 248 ident: bib96 article-title: Chapter 13 – polymers for bioprinting publication-title: Essentials 3D Biofabrication Transl – volume: 52 start-page: 71 year: 2018 end-page: 77 ident: bib257 article-title: 3D printed tissue engineered model for bone invasion of oral cancer publication-title: Tissue Cell – volume: 266 start-page: 48 year: 2017 end-page: 58 ident: bib270 article-title: Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives publication-title: Ann. Surg. – volume: 2 start-page: 90 year: 2011 end-page: 99 ident: bib218 article-title: Cartilage tissue engineering: current scenario and challenges publication-title: Adv. Mater. Lett. – volume: 30 start-page: 1587 year: 2008 end-page: 1595 ident: bib191 article-title: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication publication-title: Biomaterials – volume: 29 start-page: 193 year: 2008 end-page: 203 ident: bib43 article-title: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing publication-title: Biomaterials – volume: 9 start-page: 0 year: 2017 end-page: 23 ident: bib114 article-title: Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis publication-title: Biofabrication – volume: 101 A start-page: 1255 year: 2013 end-page: 1264 ident: bib119 article-title: 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels publication-title: J. Biomed. Mater. Res. A – volume: 5 start-page: 1 year: 2014 end-page: 11 ident: bib155 article-title: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink publication-title: Nat. Commun. – volume: 7 start-page: 211 year: 2006 end-page: 224 ident: bib17 article-title: Capturing complex 3D tissue physiology in vitro publication-title: Nat. Rev. Mol. Cell Biol. – volume: 9 year: 2017 ident: bib255 article-title: Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue publication-title: Biofabrication – year: 1994 ident: bib35 publication-title: Method and Apparatus for Reducing the Size of Drops Ejected from a Thermal Ink Jet Printhead – volume: 18 start-page: 519 year: 2001 end-page: 523 ident: bib268 article-title: Microcontact printing of proteins on mixed self-assembled monolayers – volume: 9 start-page: 844 year: 2019 end-page: 852 ident: bib185 article-title: Applications of self-assembling ultrashort peptides in bionanotechnology publication-title: RSC Adv. – volume: 5 start-page: 1 year: 2017 end-page: 8 ident: bib87 article-title: Recent advances in bioink design for 3D bioprinting of tissues and organs publication-title: Front. Bioeng. Biotechnol. – volume: 179 start-page: 121 year: 2019 end-page: 127 ident: bib178 article-title: Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery publication-title: Colloids Surfaces B Biointerfaces – volume: 8 start-page: 15007 year: 2016 ident: bib231 article-title: Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering publication-title: Biofabrication – volume: 9 year: 2016 ident: bib189 article-title: 3D bioprinting of functional human skin: production and publication-title: Biofabrication – volume: 21 start-page: 740 year: 2014 end-page: 756 ident: bib100 article-title: The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages publication-title: Tissue Eng. A – volume: 5 start-page: 507 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib53 article-title: Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering publication-title: Nanomedicine doi: 10.2217/nnm.10.14 – volume: 20 start-page: 577 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib278 article-title: 4D printing of polymeric materials for tissue and organ regeneration publication-title: Mater. Today doi: 10.1016/j.mattod.2017.06.005 – volume: 11 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib241 article-title: Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues publication-title: Biofabrication doi: 10.1088/1758-5090/ab02c9 – volume: 2 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib99 article-title: Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model publication-title: Biofabrication doi: 10.1088/1758-5082/2/4/045004 – volume: 289 start-page: 879 year: 2000 ident: 10.1016/j.biomaterials.2019.119536_bib48 article-title: Materials processing: the power of direct writing publication-title: Science doi: 10.1126/science.289.5481.879 – volume: 9 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib189 article-title: 3D bioprinting of functional human skin: production and in vivo analysis publication-title: Biofabrication doi: 10.1088/1758-5090/9/1/015006 – volume: 8 start-page: 30017 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib254 article-title: 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10673 – volume: 12 start-page: 1831 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib102 article-title: Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting publication-title: Biomacromolecules doi: 10.1021/bm200178w – volume: 131 start-page: 111002 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib12 article-title: Bioprinting endothelial cells with alginate for 3D tissue constructs publication-title: J. Biomech. Eng. doi: 10.1115/1.3128729 – volume: 132 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib58 article-title: 3D bioprinting of photocrosslinkable hydrogel constructs publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42458 – volume: 338 start-page: 921 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib7 article-title: Printing and prototyping of tissues and scaffolds publication-title: Science doi: 10.1126/science.1226340 – volume: 10 start-page: 173 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib78 article-title: A three-dimensional co-culture model of the aortic valve using magnetic levitation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.09.003 – volume: 23 start-page: 574 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib84 article-title: Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening publication-title: SLAS Discov. doi: 10.1177/2472555218766842 – year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib88 – volume: 9 start-page: 844 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib185 article-title: Applications of self-assembling ultrashort peptides in bionanotechnology publication-title: RSC Adv. doi: 10.1039/C8RA07533F – volume: 1 start-page: 269 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib253 article-title: Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids publication-title: Engineering doi: 10.15302/J-ENG-2015062 – volume: 26 start-page: 3124 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib103 article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs publication-title: Adv. Mater. doi: 10.1002/adma.201305506 – volume: 289 start-page: 38 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib115 article-title: A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.079 – volume: 102 start-page: 2993 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib211 article-title: Surface-modified functionalized polycaprolactone scaffolds for bone repair: In vitro and in vivo experiments publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34970 – volume: 22 start-page: 4736 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib107 article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201001436 – start-page: 229 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib96 article-title: Chapter 13 – polymers for bioprinting publication-title: Essentials 3D Biofabrication Transl doi: 10.1016/B978-0-12-800972-7.00013-X – volume: 2 start-page: 90 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib218 article-title: Cartilage tissue engineering: current scenario and challenges publication-title: Adv. Mater. Lett. doi: 10.5185/amlett.2011.1211 – volume: 8 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib159 article-title: Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats publication-title: PLoS One – year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib224 – volume: 181 start-page: 1026 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib171 article-title: 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2019.06.069 – volume: 23 start-page: 491 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib75 article-title: Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2016.0353 – volume: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib266 article-title: A liver-on-a-chip platform with bioprinted hepatic spheroids publication-title: Biofabrication doi: 10.1088/1758-5090/8/1/014101 – volume: 45 start-page: 164 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib260 article-title: 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1640-4 – volume: 2 start-page: 119 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib21 article-title: Controlled Positioning of cells in biomaterials—approaches towards 3D tissue printing publication-title: J. Funct. Biomater. doi: 10.3390/jfb2030119 – volume: 5 start-page: 1429 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib239 article-title: Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201600095 – volume: 6 start-page: 34845 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib267 article-title: Bioprinting of 3D convoluted renal proximal tubules on perfusable chips publication-title: Sci. Rep. doi: 10.1038/srep34845 – volume: 20 start-page: 1638 year: 2005 ident: 10.1016/j.biomaterials.2019.119536_bib49 article-title: DNA deposition through laser induced forward transfer publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.08.047 – volume: 32 start-page: 9218 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib201 article-title: Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.071 – year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib249 – volume: 257 start-page: 5142 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib55 article-title: Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.11.049 – year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib271 article-title: Clinical perspectives on 3D bioprinting paradigms for regenerative medicine publication-title: Regen. Med. Front. – volume: 1 start-page: 930 year: 2006 ident: 10.1016/j.biomaterials.2019.119536_bib54 article-title: Jet-based methods to print living cells publication-title: Biotechnol. J. doi: 10.1002/biot.200600058 – volume: 18 start-page: 519 year: 2001 ident: 10.1016/j.biomaterials.2019.119536_bib268 article-title: Microcontact printing of proteins on mixed self-assembled monolayers – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib94 article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/035020 – volume: 9 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib127 article-title: Simple signaling molecules for inductive bone regenerative engineering publication-title: PLoS One doi: 10.1371/journal.pone.0101627 – volume: 54 start-page: 2816 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib101 article-title: Biofabrication of cell-loaded 3D spider silk constructs publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409846 – volume: 112 start-page: 264 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib198 article-title: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair publication-title: Biomaterials – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib2 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 – volume: 494 start-page: 585 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib42 article-title: Printing technologies for biomolecule and cell-based applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.02.033 – volume: 25 start-page: 24 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib265 article-title: A new model of a 3D-printed shell with convex drug release profile publication-title: Dissolution Technol. doi: 10.14227/DT250118P24 – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib130 article-title: Characterization of printable cellular micro-fluidic channels for tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5082/5/2/025004 – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib82 article-title: A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging publication-title: Sci. Rep. doi: 10.1038/srep13987 – volume: 9 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib64 article-title: Recent advances in 3D printing of biomaterials publication-title: J. Biol. Eng. doi: 10.1186/s13036-015-0001-4 – volume: 61 start-page: 203 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib37 article-title: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.05.031 – volume: 31 start-page: 7250 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib91 article-title: Laser assisted bioprinting of engineered tissue with high cell density and microscale organization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.055 – year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib256 article-title: Abstract 4828: recapitulating mammary ductal carcinoma microenvironment in vitro using sacrificial bioprinting – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib106 article-title: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers publication-title: Biofabrication doi: 10.1088/1758-5082/6/3/035020 – volume: 20 start-page: 473 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib137 article-title: Design and fabrication of human skin by three-dimensional bioprinting publication-title: Tissue Eng. Part C Methods – volume: 10 start-page: 1568 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib41 article-title: Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging publication-title: Biotechnol. J. doi: 10.1002/biot.201400635 – volume: 13 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib196 article-title: Tyrosinase-doped bioink for 3D bioprinting of living skin constructs publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aaa5b6 – volume: 11 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib179 article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks publication-title: Biofabrication doi: 10.1088/1758-5090/ab19fd – volume: 1 start-page: 1250 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib209 article-title: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model publication-title: Biomater. Sci. doi: 10.1039/c3bm60132c – volume: 15 start-page: 3923 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib219 article-title: Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2008.0653 – volume: 3 start-page: 134 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib131 article-title: In vitro study of directly bioprinted perfusable vasculature conduits publication-title: Biomater. Sci. doi: 10.1039/C4BM00234B – volume: 11 start-page: 162 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib151 article-title: A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.09.033 – volume: 14 start-page: 268 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib71 article-title: Light-assisted direct-write of 3D functional biomaterials publication-title: Lab Chip doi: 10.1039/C3LC50634G – volume: 4 start-page: 1168 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib133 article-title: Characterization of cell viability during bioprinting processes publication-title: Biotechnol. J. doi: 10.1002/biot.200900004 – volume: 109 start-page: 1855 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib138 article-title: Skin tissue generation by laser cell printing publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24455 – start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib277 article-title: Emerging business models toward commercialization of bioprinting technology – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib124 article-title: Biofabrication and testing of a fully cellular nerve graft publication-title: Biofabrication doi: 10.1088/1758-5082/5/4/045007 – volume: 9 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib110 article-title: Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability publication-title: Biofabrication doi: 10.1088/1758-5090/aa8dd8 – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib87 article-title: Recent advances in bioink design for 3D bioprinting of tissues and organs publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2017.00023 – volume: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib183 article-title: Printable self-assembled peptide bio-inks: promising future applications in nanomedicine publication-title: Arch. Nanomedicine Open Access J. doi: 10.32474/ANOAJ.2018.01.000113 – volume: 223 start-page: 645 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib237 article-title: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2010.02.014 – volume: 6 start-page: 1940 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib27 article-title: Concise review: bioprinting of stem cells for transplantable tissue fabrication publication-title: Stem cells transl. Med. doi: 10.1002/sctm.17-0148 – volume: 113 start-page: 1522 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib65 article-title: Three-dimensional manipulation of single cells using surface acoustic waves publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1524813113 – volume: 15 start-page: 1704 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib181 article-title: Recent advances of self-assembling peptide-based hydrogels for biomedical applications publication-title: Soft Matter doi: 10.1039/C8SM02573H – volume: 8 start-page: 1940 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib76 article-title: Three-dimensional cell culturing by magnetic levitation publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.125 – volume: 7 start-page: 211 year: 2006 ident: 10.1016/j.biomaterials.2019.119536_bib17 article-title: Capturing complex 3D tissue physiology in vitro publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1858 – volume: 3 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib63 article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties publication-title: Biofabrication – volume: 9 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib255 article-title: Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue publication-title: Biofabrication doi: 10.1088/1758-5090/aa6bad – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib215 article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700015 – volume: 9 start-page: 0 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib114 article-title: Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis publication-title: Biofabrication doi: 10.1088/1758-5090/aa8cb7 – volume: 27 start-page: 4034 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib167 article-title: 3D printing: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures publication-title: Adv. Mater. doi: 10.1002/adma.201570182 – volume: 21 start-page: 539 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib232 article-title: Biodegradable polymers and stem cells for bioprinting publication-title: Molecules doi: 10.3390/molecules21050539 – volume: 99 start-page: 582 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib240 article-title: Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.02.008 – volume: 329 start-page: 538 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib236 article-title: Tissue-engineered lungs for in vivo implantation publication-title: Science doi: 10.1126/science.1189345 – volume: 9 start-page: 1286 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib170 article-title: An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering publication-title: J. Tissue Eng. Regenerat. Med. doi: 10.1002/term.1682 – volume: 92 start-page: 67 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib229 article-title: Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure publication-title: Ann. Surg. Treat. Res. doi: 10.4174/astr.2017.92.2.67 – volume: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib190 article-title: 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/032001 – year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib217 article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells publication-title: Biofabrication doi: 10.1088/1758-5090/ab0692 – volume: 11 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib175 article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/ab0631 – volume: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib4 article-title: Towards artificial tissue models: past, present, and future of 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/8/1/014103 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib61 article-title: Three-dimensional printing of biological matters publication-title: J. Sci. Adv. Mater. Devices. doi: 10.1016/j.jsamd.2016.04.001 – volume: 32 start-page: 23 year: 2007 ident: 10.1016/j.biomaterials.2019.119536_bib46 article-title: Laser direct-write techniques for printing of complex materials publication-title: MRS Bull. doi: 10.1557/mrs2007.11 – start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib227 article-title: Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases publication-title: BioMed Res. Int. doi: 10.1155/2017/8910821 – volume: 59 start-page: 430 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib29 article-title: Inkjet printing biomaterials for tissue engineering: bioprinting publication-title: Int. Mater. Rev. doi: 10.1179/1743280414Y.0000000040 – volume: 102 start-page: 1537 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib81 article-title: Magnetic-directed patterning of cell spheroids publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34797 – volume: 16 start-page: 157 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib139 article-title: Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2009.0179 – volume: 101 A start-page: 1255 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib119 article-title: 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34420 – volume: 31 start-page: 10 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib6 article-title: Bioprinting for stem cell research publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2012.10.005 – volume: 4 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib8 article-title: Toward engineering functional organ modules by additive manufacturing publication-title: Biofabrication doi: 10.1088/1758-5082/4/2/022001 – volume: 1900353 start-page: 1900353 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib182 article-title: Development of a self‐assembled peptide/methylcellulose‐based bioink for 3D bioprinting publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201900353 – volume: 6 start-page: 204 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib250 article-title: A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform publication-title: Biotechnol. J. doi: 10.1002/biot.201000340 – volume: 347 start-page: 701 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib252 article-title: Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential publication-title: Cell Tissue Res. doi: 10.1007/s00441-011-1215-5 – volume: 4 start-page: 0 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib79 article-title: 3D bioprinting processes: a perspective on classification and terminology publication-title: Int. J. Bioprint. – volume: 10 start-page: 2062 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib69 article-title: Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation publication-title: Lab Chip doi: 10.1039/c004285d – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib145 article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels publication-title: Biofabrication – volume: 15 start-page: 6919 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib186 article-title: Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02859 – volume: 27 start-page: 1607 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib166 article-title: A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201405076 – volume: 45 start-page: 286 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib72 article-title: Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1643-1 – volume: 78 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib261 article-title: Abstract 5022: precision medicine: high-throughput 3D bioprinting of embedded multicellular cancer spheroids publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2018-5022 – volume: 9 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib111 article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs publication-title: Biofabrication doi: 10.1088/1758-5090/aa6265 – year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib188 – volume: 14 start-page: 41 year: 2008 ident: 10.1016/j.biomaterials.2019.119536_bib60 article-title: Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing publication-title: Tissue Eng. A doi: 10.1089/ten.a.2007.0004 – volume: 52 start-page: 71 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib257 article-title: 3D printed tissue engineered model for bone invasion of oral cancer publication-title: Tissue Cell doi: 10.1016/j.tice.2018.03.009 – volume: 33 start-page: 6020 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib22 article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.050 – volume: 19 start-page: 1304 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib274 article-title: Three-dimensional print of a liver for preoperative planning in living donor liver transplantation, Liver Transplant – volume: 4 start-page: 120 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib184 article-title: Self-assemble peptide biomaterials and their biomedical applications publication-title: Bioact. Mater – year: 2001 ident: 10.1016/j.biomaterials.2019.119536_bib56 – volume: 5 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib104 article-title: Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications publication-title: Biofabrication – volume: 4 start-page: 2 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib23 article-title: Are animal models predictive for humans? publication-title: Philos. Ethics Humanit. Med. doi: 10.1186/1747-5341-4-2 – start-page: 910 year: 2006 ident: 10.1016/j.biomaterials.2019.119536_bib30 – volume: 16 start-page: 1749 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib163 article-title: Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation publication-title: Tissue Eng. A – year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib216 article-title: A novel technique for tissue engineering periosteum using three- dimensional bioprinting presenter : Brandon Alba , BA Co-Authors : Pooja Swami , MS ; Neil Affiliation : Donald and barbara Zucker School of medicine at Hofstra/Northwell publication-title: Harnessing Mech – volume: 18 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib83 article-title: Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18040683 – volume: 21 start-page: 740 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib100 article-title: The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages publication-title: Tissue Eng. A – volume: 29 start-page: 193 year: 2008 ident: 10.1016/j.biomaterials.2019.119536_bib43 article-title: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.09.032 – volume: 9 start-page: 19 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib98 article-title: A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting publication-title: Bioprinting doi: 10.1016/j.bprint.2018.02.003 – volume: 35 start-page: 8810 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib144 article-title: Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.002 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib222 article-title: Handheld co-axial bioprinting: application to in situ surgical cartilage repair publication-title: Sci. Rep. doi: 10.1038/s41598-017-05699-x – volume: 34 start-page: 422 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib3 article-title: 3D bioprinting for engineering complex tissues – volume: 12 start-page: 604 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib164 article-title: Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/138620709788681907 – start-page: 1 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib172 article-title: A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs publication-title: Acta Biomater. – volume: 7 start-page: 631 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib208 article-title: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering publication-title: J. Tissue Eng. Regenerat. Med. doi: 10.1002/term.555 – volume: 62 start-page: 164 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib108 article-title: Biomimetic 3D tissue printing for soft tissue regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.05.043 – volume: 10 start-page: 31 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib258 article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0015-8 – volume: 30 start-page: 6221 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib40 article-title: Human microvasculature fabrication using thermal inkjet printing technology publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.056 – volume: 368 start-page: 2043 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib273 article-title: Bioresorbable airway splint created with a three-dimensional printer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc1206319 – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib187 article-title: Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells publication-title: Int. J. Bioprint. – volume: 33 start-page: 1782 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib202 article-title: Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.003 – volume: 30 start-page: 9130 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib135 article-title: Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink publication-title: Langmuir doi: 10.1021/la501430x – volume: 35 start-page: 5436 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib214 article-title: Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.050 – volume: 68 start-page: S55 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib263 article-title: A novel differentiation system to produce hepatocytes for disease modelling and drug screening publication-title: J. Hepatol. doi: 10.1016/S0168-8278(18)30330-1 – volume: 7 start-page: 35006 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib113 article-title: Nanostructured pluronic hydrogels as bioinks for 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/7/3/035006 – volume: 67 start-page: 264 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib149 article-title: 3D printing of layered brain-like structures using peptide modified gellan gum substrates publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.07.022 – volume: 57 start-page: 26 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib24 article-title: 3D bioprinting for drug discovery and development in pharmaceutics publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.05.025 – volume: 9 start-page: 1304 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib160 article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells publication-title: Biotechnol. J. doi: 10.1002/biot.201400305 – volume: 10 start-page: 630 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib161 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.016 – volume: 13 start-page: 1473 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib272 article-title: From ideas to long-term studies: 3D printing clinical trials review publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-018-1793-8 – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib132 article-title: Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads publication-title: Biofabrication doi: 10.1088/1758-5082/5/4/045006 – volume: 190 start-page: 103 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib180 article-title: 3D cell bioprinting of self-assembling peptide-based hydrogels publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.12.127 – volume: 8 start-page: 538 year: 2008 ident: 10.1016/j.biomaterials.2019.119536_bib50 article-title: Directed three-dimensional patterning of self-assembled peptide fibrils publication-title: Nano Lett. doi: 10.1021/nl072798r – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib126 article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels publication-title: Biofabrication doi: 10.1088/1758-5082/5/3/035001 – volume: 2 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib146 article-title: Biomatrices and biomaterials for future developments of bioprinting and biofabrication publication-title: Biofabrication doi: 10.1088/1758-5082/2/1/014110 – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib150 article-title: A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting publication-title: Biofabrication doi: 10.1088/1758-5082/6/3/035004 – year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib228 article-title: Regenerative medicine in liver cirrhosis: promises and pitfalls – volume: 10 start-page: 630 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib59 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.016 – volume: 9 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib194 article-title: Direct 3D cell-printing of human skin with functional transwell system publication-title: Biofabrication doi: 10.1088/1758-5090/aa71c8 – volume: 8 start-page: 337 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib26 article-title: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S38635 – volume: 7 start-page: 4538 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib242 article-title: Bioprinting schwann cell-laden scaffolds from low-viscosity hydrogel compositions publication-title: J. Mater. Chem. B. doi: 10.1039/C9TB00669A – volume: 11 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib97 article-title: A definition of bioinks and their distinction from biomaterial inks publication-title: Biofabrication doi: 10.1088/1758-5090/aaec52 – volume: 71 start-page: 48 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib238 article-title: 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.028 – year: 1994 ident: 10.1016/j.biomaterials.2019.119536_bib35 – volume: 7 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib125 article-title: The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology publication-title: Biofabrication doi: 10.1088/1758-5090/7/4/045002 – volume: 21 start-page: 123 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib128 article-title: An electrohydrodynamic bioprinter for alginate hydrogels containing living cells publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2014.0149 – start-page: 209 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib259 – volume: 102 start-page: 20 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib90 article-title: A comprehensive review on droplet-based bioprinting: past, present and future publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.012 – volume: 19 start-page: 665 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib77 article-title: Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2012.0157 – volume: 2 start-page: 2282 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib15 article-title: Development and characterisation of a new bioink for additive tissue manufacturing publication-title: J. Mater. Chem. B. doi: 10.1039/c3tb21280g – volume: 16 start-page: 927 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib235 article-title: Regeneration and orthotopic transplantation of a bioartificial lung publication-title: Nat. Med. doi: 10.1038/nm.2193 – volume: 1 start-page: 165 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib89 article-title: Bioprinting: uncovering the utility layer-by-layer publication-title: J. 3D Print. Med. doi: 10.2217/3dp-2017-0006 – volume: 1900344 start-page: 1900344 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib204 article-title: 3D printing of personalized thick and perfusable cardiac patches and hearts publication-title: Adv. Sci. doi: 10.1002/advs.201900344 – volume: 102 start-page: 4317 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib212 article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds publication-title: J. Biomed. Mater. Res. A – volume: 10 start-page: 4323 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib136 article-title: Engineering alginate as bioink for bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.06.034 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib197 article-title: In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds publication-title: Sci. Rep. doi: 10.1038/s41598-018-38366-w – volume: 9 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib165 article-title: Quantitative criteria to benchmark new and existing bio-inks for cell compatibility publication-title: Biofabrication doi: 10.1088/1758-5090/aa869f – volume: 22 start-page: 7 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib226 article-title: A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016 publication-title: Clin. Mol. Hepatol. doi: 10.3350/cmh.2016.22.1.7 – volume: 2 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib193 article-title: Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering publication-title: Int. J. Bioprint. – volume: 8 start-page: 0 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib221 article-title: Development of the biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site publication-title: Biofabrication – volume: 31 start-page: 6173 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib168 article-title: Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.045 – volume: 77 start-page: 389 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib176 article-title: Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.09.031 – volume: 2 issue: 3B’09 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib10 article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux publication-title: Biofabrication – volume: 26 start-page: 93 year: 2005 ident: 10.1016/j.biomaterials.2019.119536_bib38 article-title: Inkjet printing of viable mammalian cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.04.011 – volume: 4 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib14 article-title: Engineering complex tissues publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004890 – volume: 136 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib13 article-title: A current state-of-the-art review publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028512 – year: 1994 ident: 10.1016/j.biomaterials.2019.119536_bib34 – volume: 32 start-page: 744 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib207 article-title: Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.035 – volume: 7 start-page: 1139 year: 2007 ident: 10.1016/j.biomaterials.2019.119536_bib68 article-title: Single cell epitaxy by acoustic picolitre droplets publication-title: Lab Chip doi: 10.1039/b704965j – volume: 75 start-page: 414 year: 2005 ident: 10.1016/j.biomaterials.2019.119536_bib70 article-title: Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.30325 – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib143 article-title: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage publication-title: Biofabrication doi: 10.1088/1758-5090/8/4/045002 – volume: 7 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib244 article-title: Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5090/7/3/031002 – volume: 328 start-page: 1662 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib234 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science doi: 10.1126/science.1188302 – volume: 58 start-page: 411 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib66 article-title: Three-dimensional bio-printing publication-title: Sci. China Life Sci. doi: 10.1007/s11427-015-4850-3 – volume: 376 start-page: 440 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib220 article-title: Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study publication-title: Lancet doi: 10.1016/S0140-6736(10)60668-X – volume: 106 start-page: 963 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib39 article-title: Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22762 – year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib233 – volume: 4 start-page: P3044 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib32 article-title: Printed oxide thin film transistors: a mini review publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0071504jss – volume: 110 start-page: 45 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib199 article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.003 – volume: 41 start-page: 31 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib19 article-title: Bioprinting for neural tissue engineering publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.11.001 – volume: 10 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib112 article-title: Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing publication-title: Materials doi: 10.3390/ma10020190 – volume: 266 start-page: 48 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib270 article-title: Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002141 – volume: 15 start-page: 957 year: 2006 ident: 10.1016/j.biomaterials.2019.119536_bib67 article-title: Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2006.878879 – volume: 25 start-page: 5011 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib5 article-title: 25th Anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. doi: 10.1002/adma.201302042 – volume: 14 start-page: 271 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib18 article-title: Recent advances in bioprinting techniques: approaches, applications and future prospects publication-title: J. Transl. Med. doi: 10.1186/s12967-016-1028-0 – volume: 30 start-page: 1587 year: 2008 ident: 10.1016/j.biomaterials.2019.119536_bib191 article-title: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.009 – volume: 33 start-page: 395 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib9 article-title: Bioprinting scale-up tissue and organ constructs for transplantation publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.04.005 – volume: 6 start-page: 2494 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib109 article-title: High-throughput laser printing of cells and biomaterials for tissue engineering publication-title: Acta Biomater. – volume: 33 start-page: 3824 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib73 article-title: Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.048 – start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib52 – volume: 61 start-page: 41 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib142 article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.08.005 – volume: 2 start-page: 2133 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib80 article-title: In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00614 – volume: 3 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib247 article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip publication-title: Biofabrication doi: 10.1088/1758-5082/3/3/034112 – volume: 34 start-page: 312 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib269 article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3413 – volume: 238 start-page: 231 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib245 article-title: A 3D-printed local drug delivery patch for pancreatic cancer growth suppression publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.06.015 – volume: 30 start-page: 4695 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib118 article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.050 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib173 article-title: Composite PLA/PEG/nHA/Dexamethasone scaffold prepared by 3D printing for bone regeneration publication-title: Macromol. Biosci. doi: 10.1002/mabi.201800068 – volume: 35 start-page: 4026 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib213 article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.064 – volume: 16 start-page: 847 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib192 article-title: Laser printing of skin cells and human stem cells publication-title: Tissue Eng. C Methods – year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib246 – volume: 36 start-page: 1015 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib11 article-title: Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine publication-title: MRS Bull. doi: 10.1557/mrs.2011.272 – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib123 article-title: Biofabrication of multi-material anatomically shaped tissue constructs publication-title: Biofabrication – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib174 article-title: 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink publication-title: Bioprinting doi: 10.1016/j.bprint.2017.12.001 – volume: 6 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib148 article-title: Living bacterial sacrificial porogens to engineer decellularized porous scaffolds publication-title: PLoS One – volume: 5 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib158 article-title: Engineering an in vitro air-blood barrier by 3D bioprinting publication-title: Sci. Rep. doi: 10.1038/srep07974 – year: 1997 ident: 10.1016/j.biomaterials.2019.119536_bib36 – volume: 10 start-page: 1836 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib154 article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.12.005 – volume: 17 start-page: 973 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib147 article-title: Laser printing of three-dimensional multicellular arrays for studies of cell–cell and cell–environment interactions publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2011.0185 – volume: 21 start-page: 1257 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib93 article-title: Application areas of 3D bioprinting publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.04.006 – volume: 72 start-page: 232 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib177 article-title: Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.12.023 – volume: 35 start-page: 49 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib86 article-title: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability publication-title: Biomaterials – volume: 2 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib248 article-title: Tissue engineering by self-assembly and bio-printing of living cells publication-title: Biofabrication doi: 10.1088/1758-5082/2/2/022001 – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib251 article-title: Three-dimensional printing of hela cells for cervical tumor model in vitro publication-title: Biofabrication – volume: 5 start-page: 233 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib1 article-title: Skeletal muscle regenerative engineering publication-title: Regen. Eng. Transl. Med. doi: 10.1007/s40883-019-00102-9 – volume: 1801501 start-page: 1 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib225 article-title: Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering publication-title: Adv. Healthc. Mater. – volume: 27 start-page: 7847 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib264 article-title: Printing tablets with fully customizable release profiles for personalized medicine publication-title: Adv. Mater. doi: 10.1002/adma.201504122 – volume: 3 start-page: 3433 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib117 article-title: Hydrogel modulus affects proliferation rate and pluripotency of human mesenchymal stem cells grown in three-dimensional culture publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00266 – volume: 9 start-page: 9137 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib210 article-title: SiO2and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.07.009 – volume: 784 year: 2004 ident: 10.1016/j.biomaterials.2019.119536_bib45 article-title: Selective cell delivery for 3D tissue culture and engineering publication-title: Eur. Cells Mater. – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib155 article-title: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink publication-title: Nat. Commun. doi: 10.1038/ncomms4935 – volume: 2 start-page: 374 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib105 article-title: Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs publication-title: Bioresour. Open Access doi: 10.1089/biores.2013.0031 – volume: 7 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib275 article-title: Clinical efficacy and effectiveness of 3D printing: a systematic review publication-title: BMJ Open doi: 10.1136/bmjopen-2017-016891 – year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib243 – volume: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib92 article-title: Bioink properties before, during and after 3D bioprinting publication-title: Biofabrication doi: 10.1007/978-3-319-40498-1 – volume: 845 year: 2004 ident: 10.1016/j.biomaterials.2019.119536_bib44 article-title: Ink Jet printing of mammalian primary cells for tissue engineering applications publication-title: MRS Proc doi: 10.1557/PROC-845-AA2.8 – year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib85 article-title: Automating a magnetic 3D spheroid model technology for high-throughput screening publication-title: SLAS Technol. doi: 10.1177/2472630319854337 – volume: 184 start-page: 58 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib157 article-title: Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.04.007 – volume: 6 start-page: 5671 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib205 article-title: Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering publication-title: J. Mater. Chem. B. doi: 10.1039/C8TB01344F – volume: 13 start-page: 551 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib153 article-title: Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs publication-title: Macromol. Biosci. doi: 10.1002/mabi.201200471 – volume: 16 start-page: 2675 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib152 article-title: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2009.0798 – volume: 7 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib230 article-title: Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D publication-title: Biofabrication – volume: 6 start-page: 139 year: 2004 ident: 10.1016/j.biomaterials.2019.119536_bib51 article-title: Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns publication-title: Biomed. Microdevices doi: 10.1023/B:BMMD.0000031751.67267.9f – year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib262 article-title: Abstract 5018: bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel – volume: 12 start-page: 611 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib223 article-title: In situ handheld three-dimensional bioprinting for cartilage regeneration publication-title: J. Tissue Eng. Regenerat. Med. doi: 10.1002/term.2476 – volume: 17 start-page: 2473 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib116 article-title: Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2011.0001 – volume: 6 year: 2014 ident: 10.1016/j.biomaterials.2019.119536_bib129 article-title: Alginate gelation-induced cell death during laser-assisted cell printing publication-title: Biofabrication doi: 10.1088/1758-5082/6/3/035022 – volume: 25 start-page: 24 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib156 article-title: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.07.030 – volume: 9 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib62 article-title: Recent advances in biomaterials for 3D printing and tissue engineering publication-title: J. Funct. Biomater. doi: 10.3390/jfb9010022 – volume: 6 start-page: 915 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib95 article-title: Bioinks for 3D bioprinting: an overview publication-title: Biomater. Sci. doi: 10.1039/C7BM00765E – volume: 7 start-page: 1179 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib169 article-title: Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting publication-title: Biomater. Sci. doi: 10.1039/C8BM01286E – volume: 109 start-page: 3152 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib25 article-title: Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24591 – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib122 article-title: Mechanical characterization of bioprinted in vitro soft tissue models publication-title: Biofabrication doi: 10.1088/1758-5082/5/4/045010 – volume: 60 start-page: 691 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib16 article-title: Bioprinting toward organ fabrication: challenges and future trends publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2243912 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119536_bib203 article-title: A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes publication-title: Sci. Rep. doi: 10.1038/s41598-018-31848-x – volume: 37 start-page: 1079 year: 2012 ident: 10.1016/j.biomaterials.2019.119536_bib20 article-title: Additive manufacturing of tissues and organs publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.11.007 – volume: 42 start-page: 49 year: 1998 ident: 10.1016/j.biomaterials.2019.119536_bib33 article-title: Progress and trends in ink-jet printing technology publication-title: J. Imaging Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.1998.42.1.art00007 – volume: 7 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib74 article-title: A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks publication-title: Biofabrication – volume: 40 start-page: 145 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib206 article-title: 3D printing for regenerative medicine: from bench to bedside publication-title: MRS Bull. doi: 10.1557/mrs.2015.5 – volume: 3 start-page: 701 year: 2003 ident: 10.1016/j.biomaterials.2019.119536_bib57 article-title: Printing technology to produce living tissue publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.3.5.701 – volume: 7 start-page: 1123 year: 2007 ident: 10.1016/j.biomaterials.2019.119536_bib276 article-title: Tissue engineering with the aid of inkjet printers publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.7.8.1123 – volume: 10 start-page: 205 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib279 article-title: Developments in 4D-printing: a review on current smart materials, technologies, and applications publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2019.1591541 – volume: 3 year: 2011 ident: 10.1016/j.biomaterials.2019.119536_bib162 article-title: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite publication-title: Biofabrication doi: 10.1088/1758-5082/3/2/025001 – volume: 60 start-page: 1538 year: 1986 ident: 10.1016/j.biomaterials.2019.119536_bib47 article-title: Metal deposition from a supported metal film using an excimer laser publication-title: J. Appl. Phys. doi: 10.1063/1.337287 – volume: 4 start-page: 1359 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib140 article-title: A new approach for fabricating collagen/ecm-based bioinks using preosteoblasts and human adipose stem cells publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500193 – volume: 40 start-page: 395 year: 2010 ident: 10.1016/j.biomaterials.2019.119536_bib31 article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070909-104502 – volume: 8 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib121 article-title: Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice publication-title: PLoS One doi: 10.1371/journal.pone.0057741 – volume: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib120 article-title: Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid publication-title: Biofabrication – volume: 1 year: 2009 ident: 10.1016/j.biomaterials.2019.119536_bib200 article-title: Fabrication and characterization of bio-engineered cardiac pseudo tissues publication-title: Biofabrication – volume: 2 start-page: 448 year: 2013 ident: 10.1016/j.biomaterials.2019.119536_bib134 article-title: Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system publication-title: Bioresour. Open Access doi: 10.1089/biores.2013.0046 – volume: 11 start-page: 233 year: 2015 ident: 10.1016/j.biomaterials.2019.119536_bib141 article-title: Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.09.023 – volume: 179 start-page: 121 year: 2019 ident: 10.1016/j.biomaterials.2019.119536_bib178 article-title: Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2019.03.063 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119536_bib195 article-title: A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization publication-title: Sci. Rep. – volume: 8 start-page: 15007 year: 2016 ident: 10.1016/j.biomaterials.2019.119536_bib231 article-title: Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5090/8/1/015007 |
| SSID | ssj0014042 |
| Score | 2.7232094 |
| SecondaryResourceType | review_article |
| Snippet | Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 119536 |
| SubjectTerms | allografting artificial skin Artificial tissues biofabrication Bioinks Bioprinting cartilage drug evaluation extracellular matrix high-throughput screening methods liver lungs medicine neoplasms organ-on-a-chip physics Printing, Three-Dimensional Regenerative engineering Regenerative Medicine screening stem cells Technology Three-dimensional Tissue Engineering Tissue Scaffolds |
| Title | Progress in 3D bioprinting technology for tissue/organ regenerative engineering |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219306350 https://dx.doi.org/10.1016/j.biomaterials.2019.119536 https://www.ncbi.nlm.nih.gov/pubmed/31648135 https://www.proquest.com/docview/2309493787 https://www.proquest.com/docview/2388787141 |
| Volume | 226 |
| WOSCitedRecordID | wos000498330900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBggeEJSv8jEFCfFSZUsax46FeKhYB4Ou20Mn5S2KHQcyQVqaFo3_nrOduEFQFB54iaokVye-X3zn8_l-CL0kUtVgyRVpRp65OPSFy3KSw5wHjGnoZTw3RVwndDqN4pid13z3laYToGUZXV2xxX9VNZwDZauts_-gbvuncAJ-g9LhCGqHYyfFn6uMKzV-FeUgOBrwYq5id4YPwsbRTXah7nRoSVM7DZbyk65BrZOJ5KZO4S_rvsUcXFzzGptg9spwWp9Un4uVHeY_pmuNhndrGI3UFhobzJE_ZFaBYdJ8woPR18JeOhVqRbnhuYb2qzpcXcclhl4rLtGEKocuIyZJ-reB2sQMLg9467FVoh07UDXogj9Ux56eJccXk0kyG8ezV4tvriIOUwvsNYvKDtob0pDBwLY3OhnHH-xSEvY0g5J9nKbyrE7y29b8Ni9l2yxEeyOzu-hOPY1wRkb999A1WfbQ7VZxyR66eVqnTfTQDZ3nK6r76KxBh1OUTnDktNDhbNDhADocg45DjQ2njQ2nhY0H6OJ4PHv73q05NVwBpm0Fxi9lUlAceZLREL5fX9KUYpJzHgaC4JTwIcvB7YNpLvV5wHMpwIcmjKRhKHkePES75byUj5FDBQ-5qiqbUYzTzI8iQlX0QPpEbV_O-og1fZiIuuC84j35kjSZhZdJu_8T1f-J6f8-CqzswpRd6ST1ulFV0mwsBlOYAOg6Sb-x0rX7adzKzvIvGnQkMEarhbe0lPM13BR4DMM8IKJ_uwfMfUR97PfRIwMt--aBT3DkB-GTDtJP0a3N1_gM7a6Wa_kcXRffATXLfbRD42i__kR-AllKzPM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+3D+bioprinting+technology+for+tissue%2Forgan+regenerative+engineering&rft.jtitle=Biomaterials&rft.au=Matai%2C+Ishita&rft.au=Kaur%2C+Gurvinder&rft.au=Seyedsalehi%2C+Amir&rft.au=McClinton%2C+Aneesah&rft.date=2020-01-01&rft.issn=0142-9612&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119536&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |