Progress in 3D bioprinting technology for tissue/organ regenerative engineering

Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials Jg. 226; S. 119536
Hauptverfasser: Matai, Ishita, Kaur, Gurvinder, Seyedsalehi, Amir, McClinton, Aneesah, Laurencin, Cato T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 01.01.2020
Schlagworte:
ISSN:0142-9612, 1878-5905, 1878-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.
AbstractList Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.
Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.
ArticleNumber 119536
Author Seyedsalehi, Amir
Matai, Ishita
Kaur, Gurvinder
Laurencin, Cato T.
McClinton, Aneesah
Author_xml – sequence: 1
  givenname: Ishita
  surname: Matai
  fullname: Matai, Ishita
  organization: Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
– sequence: 2
  givenname: Gurvinder
  surname: Kaur
  fullname: Kaur, Gurvinder
  organization: Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
– sequence: 3
  givenname: Amir
  surname: Seyedsalehi
  fullname: Seyedsalehi, Amir
  organization: Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
– sequence: 4
  givenname: Aneesah
  surname: McClinton
  fullname: McClinton, Aneesah
  organization: Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
– sequence: 5
  givenname: Cato T.
  surname: Laurencin
  fullname: Laurencin, Cato T.
  email: laurencin@uchc.edu
  organization: Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31648135$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVISTYffyGYnnrxRmNZstRTm-9CID00ZyFrx662XimVtIH991HYBEJOexIDzzwa3veI7PvgkZCvQOdAQZwv570LK5MxOjOleUNBzQEUZ2KPzEB2suaK8n0yo9A2tRLQHJKjlJa0zLRtDsghA9FKYHxGHn7HMEZMqXK-YldVMT9F57PzY5XR_vVhCuOmGkKssktpjechjsZXEUf0GE12z1ihH53Hco4fT8iXoRyFp2_vMXm8uf5zeVffP9z-uvx5X1vOZK5lZxTarpUUVcfRWsDOdK0Y-p4zK1oj-kYNIEFQ3kHP-gGtZEooYTjHfmDH5NvW-xTD_zWmrFcuWZwm4zGsk26YLEF00MIOKFWtYoUu6Nkbuu5XuNAlipWJG_2eVwF-bAEbQ0oRB21dLiEEn6NxkwaqXyvSS_2xIv1akd5WVBTfPynef9lp-Wq7jCXbZ4dRJ-vQW1y4iDbrRXC7aS4-aezkvLNm-oebXSUvSAbLjg
CitedBy_id crossref_primary_10_1002_bit_28301
crossref_primary_10_1038_s41392_024_02104_8
crossref_primary_10_3389_fbioe_2023_1214715
crossref_primary_10_1016_j_apmt_2024_102364
crossref_primary_10_1002_admt_202400620
crossref_primary_10_18311_jmmf_2025_49339
crossref_primary_10_1002_advs_202200670
crossref_primary_10_1007_s40883_023_00323_z
crossref_primary_10_1016_j_actbio_2022_08_014
crossref_primary_10_3390_foods12132614
crossref_primary_10_1002_adfm_202100027
crossref_primary_10_1007_s10741_020_09989_x
crossref_primary_10_1186_s12943_025_02240_x
crossref_primary_10_1016_j_drudis_2021_02_002
crossref_primary_10_1007_s42242_024_00273_7
crossref_primary_10_1088_1748_605X_ab9422
crossref_primary_10_3390_membranes12090902
crossref_primary_10_1002_adfm_202400431
crossref_primary_10_1007_s10853_019_04259_0
crossref_primary_10_1177_20417314221083414
crossref_primary_10_3390_ijms252111426
crossref_primary_10_3390_ijms21228694
crossref_primary_10_1038_s41598_024_80973_3
crossref_primary_10_1002_advs_202403049
crossref_primary_10_1155_2022_8998451
crossref_primary_10_1039_D0BM01485K
crossref_primary_10_1016_j_ijbiomac_2024_137253
crossref_primary_10_3389_fbioe_2025_1643430
crossref_primary_10_3390_ijms23158567
crossref_primary_10_1016_j_actbio_2024_12_005
crossref_primary_10_1016_j_colsurfb_2021_112041
crossref_primary_10_3390_ijms26115316
crossref_primary_10_1007_s10853_021_06229_x
crossref_primary_10_1038_s41392_024_01852_x
crossref_primary_10_1016_j_drudis_2022_103426
crossref_primary_10_3389_fbioe_2024_1480772
crossref_primary_10_1002_adhm_202403781
crossref_primary_10_1007_s40615_024_02140_8
crossref_primary_10_3390_ma18030502
crossref_primary_10_1002_adma_202408308
crossref_primary_10_1007_s42242_022_00192_5
crossref_primary_10_3390_bios15030176
crossref_primary_10_3390_mi12121517
crossref_primary_10_1016_j_mtbio_2025_102299
crossref_primary_10_1002_iub_70036
crossref_primary_10_1002_advs_202207089
crossref_primary_10_1186_s12938_024_01226_y
crossref_primary_10_1007_s40964_022_00373_9
crossref_primary_10_1016_j_carbpol_2023_121050
crossref_primary_10_3390_biomedicines11102678
crossref_primary_10_3390_jfb16070232
crossref_primary_10_1002_adfm_202215220
crossref_primary_10_1042_EBC20200130
crossref_primary_10_3390_gels9090689
crossref_primary_10_1002_smll_202004900
crossref_primary_10_1089_wound_2024_0138
crossref_primary_10_2147_IJN_S254094
crossref_primary_10_1002_advs_202304989
crossref_primary_10_1039_D5AN00105F
crossref_primary_10_3390_ma17184560
crossref_primary_10_1016_j_matdes_2023_111591
crossref_primary_10_1002_admt_202200029
crossref_primary_10_1016_j_acuro_2021_09_009
crossref_primary_10_56871_MHCO_2025_27_84_012
crossref_primary_10_1002_slct_202003978
crossref_primary_10_1007_s40430_024_04950_7
crossref_primary_10_1088_2631_7990_acde21
crossref_primary_10_1016_j_cell_2020_12_002
crossref_primary_10_1002_bit_28452
crossref_primary_10_1186_s12896_024_00848_3
crossref_primary_10_34133_bmr_0174
crossref_primary_10_1016_j_ijbiomac_2024_138681
crossref_primary_10_1177_20417314231185848
crossref_primary_10_34172_apb_2024_032
crossref_primary_10_3390_ijms22020830
crossref_primary_10_3390_app11188298
crossref_primary_10_1007_s42247_021_00285_4
crossref_primary_10_1002_ibra_12005
crossref_primary_10_3389_fmats_2024_1446035
crossref_primary_10_1002_elsc_202300226
crossref_primary_10_3389_fbioe_2022_847344
crossref_primary_10_1111_1751_7915_14360
crossref_primary_10_1016_j_jare_2024_09_011
crossref_primary_10_1042_EBC20200153
crossref_primary_10_1002_adhm_202401025
crossref_primary_10_3390_pharmaceutics15082094
crossref_primary_10_3389_fsurg_2022_988843
crossref_primary_10_3390_ma13132891
crossref_primary_10_4103_1673_5374_332131
crossref_primary_10_1088_1758_5090_ac9809
crossref_primary_10_2174_0113892010306310240605050448
crossref_primary_10_3390_polym14153222
crossref_primary_10_3390_life12060903
crossref_primary_10_1002_biot_202100074
crossref_primary_10_1016_j_biomaterials_2020_120465
crossref_primary_10_1093_rb_rbae094
crossref_primary_10_1016_j_bioactmat_2022_01_024
crossref_primary_10_1016_j_ijbiomac_2025_147532
crossref_primary_10_3390_nano11092456
crossref_primary_10_1002_adhm_202203044
crossref_primary_10_1002_bit_28996
crossref_primary_10_1016_j_biomaterials_2025_123196
crossref_primary_10_1016_j_ijbiomac_2025_146461
crossref_primary_10_3390_nano11123215
crossref_primary_10_34133_bmr_0031
crossref_primary_10_3390_cancers15204996
crossref_primary_10_1186_s12967_024_05954_6
crossref_primary_10_1016_j_ceramint_2025_04_073
crossref_primary_10_1016_j_pmatsci_2024_101293
crossref_primary_10_1155_2020_2689701
crossref_primary_10_1158_2326_6066_CIR_24_1144
crossref_primary_10_1002_smsc_202400261
crossref_primary_10_1002_adhm_202403583
crossref_primary_10_1016_j_nantod_2021_101077
crossref_primary_10_1016_j_compositesb_2024_111256
crossref_primary_10_3389_fsurg_2021_731031
crossref_primary_10_1177_09544062241307455
crossref_primary_10_3390_jfb15110345
crossref_primary_10_1016_j_matdes_2024_112853
crossref_primary_10_1038_s41467_025_62996_0
crossref_primary_10_1016_j_actbio_2022_11_058
crossref_primary_10_1186_s13619_022_00113_y
crossref_primary_10_1016_j_sempedsurg_2024_151385
crossref_primary_10_1016_j_bioadv_2022_212916
crossref_primary_10_1016_j_progpolymsci_2021_101472
crossref_primary_10_1038_s41591_024_03489_3
crossref_primary_10_1007_s10439_022_02955_8
crossref_primary_10_1097_IMNA_D_24_00007
crossref_primary_10_3389_fsurg_2022_985110
crossref_primary_10_63580_iti_fi_45744
crossref_primary_10_3390_gels8100603
crossref_primary_10_1016_j_nxmate_2024_100187
crossref_primary_10_1097_TP_0000000000004668
crossref_primary_10_3390_pharmaceutics17081088
crossref_primary_10_1007_s10853_021_06829_7
crossref_primary_10_1002_admt_202101636
crossref_primary_10_1002_btm2_10497
crossref_primary_10_1089_3dp_2022_0281
crossref_primary_10_1038_s41378_021_00277_8
crossref_primary_10_1038_s43586_023_00251_w
crossref_primary_10_1063_5_0023206
crossref_primary_10_52711_0975_4377_2025_00020
crossref_primary_10_1016_j_bprint_2020_e00120
crossref_primary_10_1016_j_bioactmat_2021_08_034
crossref_primary_10_3389_frlct_2024_1383783
crossref_primary_10_1177_03913988231218566
crossref_primary_10_1002_jbm_a_37325
crossref_primary_10_1016_j_actbio_2022_09_034
crossref_primary_10_3390_jfb16060227
crossref_primary_10_1111_cpr_13123
crossref_primary_10_1016_j_tibtech_2022_03_009
crossref_primary_10_1007_s11886_023_01881_y
crossref_primary_10_1016_j_cis_2024_103163
crossref_primary_10_1002_adfm_202314171
crossref_primary_10_1007_s11051_023_05676_8
crossref_primary_10_3390_bioengineering11070664
crossref_primary_10_1002_jbm_b_34602
crossref_primary_10_1088_1758_5090_adb890
crossref_primary_10_1186_s12951_024_03052_9
crossref_primary_10_1155_2022_7907191
crossref_primary_10_1016_j_bprint_2025_e00392
crossref_primary_10_3390_biomimetics7010003
crossref_primary_10_1016_j_bprint_2025_e00391
crossref_primary_10_1088_1748_605X_ade18d
crossref_primary_10_1002_term_3293
crossref_primary_10_3390_bioengineering9110696
crossref_primary_10_3390_pharmaceutics15020416
crossref_primary_10_1016_j_colsurfb_2025_115134
crossref_primary_10_1088_1758_5090_ad2081
crossref_primary_10_1177_20417314211027677
crossref_primary_10_1016_j_biomaterials_2020_120556
crossref_primary_10_1021_acsbiomaterials_5c01060
crossref_primary_10_3389_fbioe_2025_1454903
crossref_primary_10_3390_bioengineering10080910
crossref_primary_10_1088_2631_7990_ada7a8
crossref_primary_10_1007_s12663_023_02063_7
crossref_primary_10_1002_advs_202205041
crossref_primary_10_1016_j_bioactmat_2021_10_029
crossref_primary_10_1186_s12951_024_02455_y
crossref_primary_10_1016_j_ijbiomac_2021_12_077
crossref_primary_10_1039_D0RA07795J
crossref_primary_10_1039_D3BM01934A
crossref_primary_10_2217_rme_2020_0091
crossref_primary_10_1016_j_addr_2023_114823
crossref_primary_10_1089_ten_tea_2024_0112
crossref_primary_10_1142_S1793984425410041
crossref_primary_10_3390_jfb14020096
crossref_primary_10_3389_fbioe_2022_998988
crossref_primary_10_1177_20417314241309183
crossref_primary_10_1016_j_bprint_2020_e00100
crossref_primary_10_1111_1750_3841_70049
crossref_primary_10_1016_j_jbiotec_2024_01_015
crossref_primary_10_1088_1758_5090_ac7ad8
crossref_primary_10_3390_cells10051268
crossref_primary_10_1039_D3BM00626C
crossref_primary_10_2217_nnm_2021_0454
crossref_primary_10_1016_j_ijbiomac_2025_146764
crossref_primary_10_1002_adbi_202000024
crossref_primary_10_1002_adfm_202405966
crossref_primary_10_1002_smll_202309269
crossref_primary_10_1016_j_carbpol_2023_121484
crossref_primary_10_1038_s41596_021_00622_1
crossref_primary_10_1016_j_bios_2020_112849
crossref_primary_10_1016_j_bprint_2024_e00357
crossref_primary_10_3390_bioengineering10060667
crossref_primary_10_1089_ten_tea_2022_0227
crossref_primary_10_1039_D2BM00784C
crossref_primary_10_3390_bios12111045
crossref_primary_10_3390_gels7030144
crossref_primary_10_1016_j_actbio_2020_03_033
crossref_primary_10_1016_j_actbio_2021_04_016
crossref_primary_10_3389_fbioe_2021_639765
crossref_primary_10_1016_j_jddst_2025_106872
crossref_primary_10_1016_j_jconrel_2020_11_044
crossref_primary_10_1177_20417314211028574
crossref_primary_10_32749_nucleodoconhecimento_com_br_salud_tratamiento_de_ulcera
crossref_primary_10_3390_biom15081055
crossref_primary_10_1039_D1MH01632F
crossref_primary_10_1039_D1BM01794B
crossref_primary_10_1088_1758_5090_ad28f0
crossref_primary_10_1016_j_bioadv_2024_214017
crossref_primary_10_3389_fonc_2023_1143600
crossref_primary_10_1021_acsbiomaterials_4c02473
crossref_primary_10_3390_biomimetics8020246
crossref_primary_10_1002_adhm_202201989
crossref_primary_10_34172_joddd_2022_001
crossref_primary_10_1016_j_jconrel_2023_01_048
crossref_primary_10_3390_ijerph182010806
crossref_primary_10_1016_j_cej_2024_152469
crossref_primary_10_1007_s10845_023_02141_0
crossref_primary_10_1016_j_colsurfb_2023_113506
crossref_primary_10_1016_j_tibtech_2025_03_006
crossref_primary_10_1039_D2BM00109H
crossref_primary_10_1186_s41205_022_00133_z
crossref_primary_10_3390_polym12102262
crossref_primary_10_1016_j_bprint_2025_e00407
crossref_primary_10_1002_bit_28850
crossref_primary_10_1016_j_matdes_2023_111885
crossref_primary_10_3390_jfb16030097
crossref_primary_10_1002_adfm_202010609
crossref_primary_10_1002_advs_202205059
crossref_primary_10_1002_cbic_202400378
crossref_primary_10_1016_j_tice_2025_103024
crossref_primary_10_7759_cureus_41624
crossref_primary_10_1007_s42242_020_00120_5
crossref_primary_10_3390_ma13102278
crossref_primary_10_1007_s40430_023_04495_1
crossref_primary_10_1088_1758_5090_ad3a14
crossref_primary_10_1016_j_bprint_2024_e00335
crossref_primary_10_1016_j_actbio_2025_04_021
crossref_primary_10_1021_acsbiomaterials_4c02245
crossref_primary_10_1002_adhm_202201877
crossref_primary_10_1016_j_actbio_2025_05_068
crossref_primary_10_7238_artnodes_v0i37_432976
crossref_primary_10_1002_jbm_a_37774
crossref_primary_10_3390_gels10070430
crossref_primary_10_1002_adhm_202001600
crossref_primary_10_1002_app_52227
crossref_primary_10_1002_smll_202300311
crossref_primary_10_3389_fbioe_2020_589094
crossref_primary_10_3390_bioengineering9100580
crossref_primary_10_1038_s43587_025_00858_6
crossref_primary_10_3390_biomedicines11041056
crossref_primary_10_3390_jfb16090349
crossref_primary_10_1002_advs_202302539
crossref_primary_10_3390_life15050787
crossref_primary_10_1088_1748_605X_ad270a
crossref_primary_10_1016_j_bioactmat_2023_08_018
crossref_primary_10_1016_j_bprint_2024_e00381
crossref_primary_10_1002_adfm_202105080
crossref_primary_10_2147_IJN_S435845
crossref_primary_10_3390_biom14091066
crossref_primary_10_1038_s41598_022_05174_2
crossref_primary_10_1016_j_bprint_2025_e00423
crossref_primary_10_3389_fbioe_2022_866148
crossref_primary_10_3389_fbioe_2022_905438
crossref_primary_10_3390_jfb16010028
crossref_primary_10_1007_s42242_021_00165_0
crossref_primary_10_1016_j_addma_2021_102251
crossref_primary_10_1016_j_mtbio_2025_101835
crossref_primary_10_17323_2500_2597_2022_1_6_20
crossref_primary_10_1007_s42242_022_00187_2
crossref_primary_10_2147_IJN_S448905
crossref_primary_10_2147_IJN_S503445
crossref_primary_10_3390_ijms21165792
crossref_primary_10_1186_s40164_025_00647_2
crossref_primary_10_1016_j_ijporl_2022_111253
crossref_primary_10_1016_j_biomaterials_2024_122880
crossref_primary_10_1007_s12551_023_01141_x
crossref_primary_10_1016_j_actbio_2025_03_009
crossref_primary_10_3389_fbioe_2022_985692
crossref_primary_10_1016_j_matpr_2022_05_325
crossref_primary_10_1016_j_tips_2021_06_002
crossref_primary_10_3390_biomedicines12020453
crossref_primary_10_3389_fbioe_2022_853193
crossref_primary_10_3390_biom14081019
crossref_primary_10_1007_s12015_021_10299_4
crossref_primary_10_1098_rsta_2020_0344
crossref_primary_10_1016_j_mtcomm_2025_112094
crossref_primary_10_1088_1758_5090_ac1259
crossref_primary_10_3390_ph17070897
crossref_primary_10_3390_polym12040919
crossref_primary_10_3390_polym16172456
crossref_primary_10_1016_j_carbpol_2021_117793
crossref_primary_10_1016_j_jmst_2023_04_015
crossref_primary_10_3390_pharmaceutics15122743
crossref_primary_10_1016_j_carbpol_2021_117791
crossref_primary_10_1002_smll_202305940
crossref_primary_10_1016_j_ijbiomac_2023_124364
crossref_primary_10_2147_IJN_S522198
crossref_primary_10_3390_ma13214819
crossref_primary_10_1002_jbm_b_35520
crossref_primary_10_1016_j_bioactmat_2024_01_004
crossref_primary_10_1089_ten_teb_2024_0227
crossref_primary_10_1016_j_eurpolymj_2024_113210
crossref_primary_10_26599_NR_2025_94907084
crossref_primary_10_3390_pharmaceutics13040564
crossref_primary_10_1002_advs_202404580
crossref_primary_10_1016_j_jconrel_2021_04_003
crossref_primary_10_3390_bioengineering9030109
crossref_primary_10_1002_adhm_202000208
crossref_primary_10_1016_j_amf_2024_200113
crossref_primary_10_1016_j_apmt_2024_102546
crossref_primary_10_1007_s10765_020_02770_0
crossref_primary_10_1007_s10047_022_01360_1
crossref_primary_10_1016_j_bioactmat_2024_01_015
crossref_primary_10_1080_09205063_2024_2449294
crossref_primary_10_1080_15323269_2025_2474408
crossref_primary_10_3389_fbioe_2022_976960
crossref_primary_10_1016_j_copbio_2021_10_011
crossref_primary_10_1039_D5TB01489A
crossref_primary_10_3390_polym16243550
crossref_primary_10_1063_5_0176301
crossref_primary_10_2147_IJN_S432468
crossref_primary_10_3390_app14219919
crossref_primary_10_1016_j_trac_2024_117569
crossref_primary_10_1088_1748_605X_add9db
crossref_primary_10_3390_polym17070948
crossref_primary_10_1080_21655979_2023_2274150
crossref_primary_10_1002_EXP_20210083
crossref_primary_10_3389_fbioe_2021_682498
crossref_primary_10_3389_fcell_2022_953408
crossref_primary_10_3390_ma14174891
crossref_primary_10_1039_D3MH00849E
crossref_primary_10_1002_adhm_202001404
crossref_primary_10_1088_1742_6596_2798_1_012013
crossref_primary_10_1002_adfm_202211323
crossref_primary_10_1088_2516_1091_ad10b4
crossref_primary_10_1016_j_bioactmat_2020_10_021
crossref_primary_10_21202_2782_2923_2025_2_448_463
crossref_primary_10_2147_IJN_S353062
crossref_primary_10_3390_bioengineering9030093
crossref_primary_10_3390_jfb14100497
crossref_primary_10_1002_admt_202301785
crossref_primary_10_1016_j_ijbiomac_2024_131281
crossref_primary_10_1002_jbm_a_36979
crossref_primary_10_1002_EXP_20230126
crossref_primary_10_1016_j_actbio_2020_08_017
crossref_primary_10_3389_fonc_2022_810774
crossref_primary_10_1007_s40843_023_2809_x
crossref_primary_10_1016_j_colsurfb_2021_111980
crossref_primary_10_1007_s00398_021_00469_4
crossref_primary_10_3390_ph16030454
crossref_primary_10_1016_j_actbio_2024_09_056
crossref_primary_10_1021_cbe_4c00079
crossref_primary_10_1080_00914037_2023_2201947
crossref_primary_10_3390_pharmaceutics15061750
crossref_primary_10_1016_j_biomaterials_2022_121639
crossref_primary_10_1007_s42242_022_00189_0
crossref_primary_10_1016_j_carbpol_2025_124357
crossref_primary_10_2217_nnm_2021_0285
crossref_primary_10_1088_1758_5090_ad1b1f
crossref_primary_10_1016_j_biomaterials_2021_121131
crossref_primary_10_1016_j_jmst_2022_03_009
crossref_primary_10_3390_jfb13040214
crossref_primary_10_1080_09205063_2022_2145867
crossref_primary_10_1088_1758_5090_abec2c
crossref_primary_10_3390_bioengineering10030287
crossref_primary_10_3390_mi11090826
crossref_primary_10_1016_j_addr_2025_115649
crossref_primary_10_3390_mi12030294
crossref_primary_10_3389_fbioe_2022_1011800
crossref_primary_10_3390_polym14235143
crossref_primary_10_1002_app_49888
crossref_primary_10_1016_j_mvr_2022_104321
crossref_primary_10_1089_3dp_2020_0337
crossref_primary_10_1016_j_addr_2024_115347
crossref_primary_10_3389_fimmu_2025_1622508
crossref_primary_10_1007_s43152_023_00050_1
crossref_primary_10_1002_jbm_a_37954
crossref_primary_10_1021_acsami_5c06168
crossref_primary_10_1039_D3MH00528C
crossref_primary_10_1016_j_tibtech_2020_04_013
crossref_primary_10_1097_HEP_0000000000001321
crossref_primary_10_3390_biophysica5020013
crossref_primary_10_3390_nano12132190
crossref_primary_10_1186_s40824_022_00338_7
crossref_primary_10_1007_s40883_022_00278_7
crossref_primary_10_3390_md21050299
crossref_primary_10_3390_medsci9030055
crossref_primary_10_3390_ma13183980
crossref_primary_10_3390_molecules28093683
crossref_primary_10_1007_s44174_022_00021_4
crossref_primary_10_1016_j_bprint_2023_e00321
crossref_primary_10_3390_cells11152439
crossref_primary_10_1039_D0BM00973C
crossref_primary_10_1161_CIRCRESAHA_122_321670
crossref_primary_10_1007_s40883_020_00166_y
crossref_primary_10_1016_j_progpolymsci_2023_101755
crossref_primary_10_2147_IJN_S494364
crossref_primary_10_1016_j_actbio_2020_09_033
crossref_primary_10_1016_j_mtcomm_2025_113049
crossref_primary_10_1002_VIW_20210018
crossref_primary_10_3390_bioengineering10020213
crossref_primary_10_1016_j_bios_2024_117103
crossref_primary_10_1002_adhm_202100968
crossref_primary_10_1002_admt_202201926
crossref_primary_10_1016_j_cej_2021_129129
crossref_primary_10_1089_ten_teb_2021_0133
crossref_primary_10_1016_j_snb_2021_129594
crossref_primary_10_1016_j_tibtech_2022_07_011
crossref_primary_10_3390_gels10100644
crossref_primary_10_1002_adtp_202300425
crossref_primary_10_1016_j_actbio_2022_05_009
crossref_primary_10_3390_biomedicines13030731
crossref_primary_10_3390_jfb14040196
crossref_primary_10_3390_pharmaceutics15010255
crossref_primary_10_3390_mi11090855
crossref_primary_10_37188_lam_2025_021
crossref_primary_10_1002_mco2_437
crossref_primary_10_1093_rb_rbaa042
crossref_primary_10_1007_s12221_023_00438_8
crossref_primary_10_1002_bmm2_12070
crossref_primary_10_1016_j_ijbiomac_2021_09_014
crossref_primary_10_1002_adhm_202401944
crossref_primary_10_1096_fj_202400991R
crossref_primary_10_3390_bioengineering10070787
crossref_primary_10_3390_polym13142350
crossref_primary_10_1002_smll_202506259
crossref_primary_10_1063_5_0087852
crossref_primary_10_3390_ma15134468
crossref_primary_10_1002_mame_202500251
crossref_primary_10_1039_D0QM01099E
crossref_primary_10_1039_D3NR00205E
crossref_primary_10_1002_smll_202201869
crossref_primary_10_1093_rb_rbac105
crossref_primary_10_3389_fbioe_2022_904629
crossref_primary_10_3390_biomedicines11030794
crossref_primary_10_1039_D3MH00755C
crossref_primary_10_1016_j_bprint_2023_e00264
crossref_primary_10_3389_fphys_2022_1034603
crossref_primary_10_1002_adma_202210769
crossref_primary_10_1016_j_carbpol_2024_122805
crossref_primary_10_1016_j_mtbio_2024_101391
crossref_primary_10_3390_jcm10214966
crossref_primary_10_1002_bit_28182
crossref_primary_10_1016_j_actbio_2021_03_067
crossref_primary_10_3390_ijms26178422
crossref_primary_10_1002_mba2_63
crossref_primary_10_3389_fbioe_2024_1358246
crossref_primary_10_1016_j_jconrel_2022_11_035
crossref_primary_10_3390_gels9110890
crossref_primary_10_3390_fib13060083
crossref_primary_10_1088_1758_5090_ad2536
crossref_primary_10_3390_cells10071749
crossref_primary_10_1016_j_carbpol_2023_121441
crossref_primary_10_1080_17452759_2024_2378003
crossref_primary_10_1016_j_compstruct_2025_118848
crossref_primary_10_1089_dtom_2024_0007
crossref_primary_10_1016_j_mtbio_2025_101449
crossref_primary_10_1038_s41596_025_01221_0
crossref_primary_10_1089_ten_tea_2020_0350
crossref_primary_10_1016_j_bone_2023_116746
crossref_primary_10_1002_adhm_202100934
crossref_primary_10_3389_fmed_2024_1521851
crossref_primary_10_3389_fphar_2022_1033043
crossref_primary_10_1088_1748_605X_acc99a
crossref_primary_10_1080_09205063_2025_2505350
crossref_primary_10_1007_s00449_021_02650_3
crossref_primary_10_1002_advs_202202278
crossref_primary_10_1016_j_tibtech_2020_11_003
crossref_primary_10_3389_fbioe_2023_1303053
crossref_primary_10_1134_S1990519X22050042
crossref_primary_10_1016_j_cej_2024_155650
crossref_primary_10_1002_pat_6206
crossref_primary_10_3390_pharmaceutics15010068
crossref_primary_10_1002_adfm_202200249
crossref_primary_10_1007_s10853_021_06439_3
crossref_primary_10_1088_2631_7990_ada836
crossref_primary_10_1002_VIW_20200016
crossref_primary_10_1089_ten_tec_2022_0105
crossref_primary_10_1002_admt_201901044
crossref_primary_10_3390_coatings12010071
crossref_primary_10_3390_nano13172455
crossref_primary_10_1002_adma_202301670
crossref_primary_10_1002_advs_202100798
crossref_primary_10_1016_j_stlm_2022_100066
crossref_primary_10_1177_08853282221102669
crossref_primary_10_1016_j_bone_2021_116256
crossref_primary_10_1089_wound_2020_1287
crossref_primary_10_3389_fbioe_2023_1190171
crossref_primary_10_3390_ijms231911642
crossref_primary_10_1016_j_ijbiomac_2024_139174
crossref_primary_10_1089_ten_tea_2024_0149
crossref_primary_10_1089_ten_tec_2022_0214
crossref_primary_10_1016_j_bios_2022_114758
crossref_primary_10_1088_1758_5090_aced23
crossref_primary_10_1002_SMMD_20220002
crossref_primary_10_1016_j_mattod_2021_04_016
crossref_primary_10_1016_j_ijbiomac_2023_123659
crossref_primary_10_3389_fbioe_2020_00083
crossref_primary_10_3390_ijms24066008
crossref_primary_10_3233_THC_220393
crossref_primary_10_1016_j_jconrel_2021_03_040
crossref_primary_10_3390_gels11060422
crossref_primary_10_1088_1748_605X_ac5949
crossref_primary_10_1177_20417314221119895
crossref_primary_10_3390_pharmaceutics13050621
crossref_primary_10_1016_j_iliver_2024_100080
crossref_primary_10_3389_fbioe_2023_1093101
crossref_primary_10_1016_j_ijbiomac_2022_07_206
crossref_primary_10_3390_fluids10080206
crossref_primary_10_1016_j_copbio_2021_08_012
crossref_primary_10_1002_pi_6298
crossref_primary_10_1088_1758_5090_add49e
crossref_primary_10_1016_j_cej_2021_130961
crossref_primary_10_1002_adma_202200512
crossref_primary_10_1002_smll_202409321
crossref_primary_10_3390_cells12091230
crossref_primary_10_1016_j_bprint_2021_e00184
crossref_primary_10_1002_adma_202200750
crossref_primary_10_3390_biom12010124
crossref_primary_10_3390_jpm13050852
crossref_primary_10_3389_fcell_2021_661802
crossref_primary_10_1111_jcmm_18236
crossref_primary_10_3389_fbioe_2022_865770
crossref_primary_10_1002_adfm_202315488
crossref_primary_10_1016_j_cej_2025_165273
crossref_primary_10_1002_bab_1911
crossref_primary_10_1016_j_bioactmat_2024_08_040
crossref_primary_10_1016_j_lfs_2024_122992
crossref_primary_10_58245_ipsi_tir_2502_02
crossref_primary_10_1088_1758_5090_adc03a
crossref_primary_10_3390_ma15186398
crossref_primary_10_3390_bioengineering10010057
crossref_primary_10_3390_cells12162067
crossref_primary_10_1002_adma_202304738
crossref_primary_10_1016_j_jconrel_2023_04_023
crossref_primary_10_1088_1748_605X_ab797a
crossref_primary_10_1186_s12951_023_02003_0
crossref_primary_10_1016_j_bprint_2021_e00171
crossref_primary_10_1016_j_bprint_2021_e00176
crossref_primary_10_1016_j_eurpolymj_2020_109988
crossref_primary_10_2217_rme_2021_0016
crossref_primary_10_1007_s00404_023_06912_1
crossref_primary_10_1002_VIW_20250107
crossref_primary_10_1016_j_bcp_2023_115586
crossref_primary_10_1088_1748_605X_ac6b06
crossref_primary_10_1038_s41467_022_31002_2
crossref_primary_10_1089_ten_teb_2020_0223
crossref_primary_10_1016_j_cclet_2024_110686
crossref_primary_10_1063_5_0031475
crossref_primary_10_1155_2022_1953861
crossref_primary_10_3389_fphar_2023_1150151
crossref_primary_10_3389_fbioe_2023_1169893
crossref_primary_10_1016_j_addr_2021_02_013
crossref_primary_10_1002_ardp_202400854
crossref_primary_10_1016_j_actbio_2022_03_011
crossref_primary_10_3389_fbioe_2022_841583
crossref_primary_10_1002_adfm_202109810
crossref_primary_10_5757_ASCT_2023_32_1_1
crossref_primary_10_1016_j_trac_2024_117905
crossref_primary_10_3389_fncel_2020_558381
crossref_primary_10_1016_j_rbmo_2024_104273
crossref_primary_10_1111_jre_13126
crossref_primary_10_1515_mr_2024_0089
crossref_primary_10_1016_j_pmatsci_2023_101124
crossref_primary_10_3390_polym16101426
crossref_primary_10_3390_biom14070861
crossref_primary_10_3390_biom11060863
crossref_primary_10_1007_s13346_023_01437_1
crossref_primary_10_1016_j_matdes_2024_112886
crossref_primary_10_1016_j_eurpolymj_2024_113093
crossref_primary_10_1016_j_jconrel_2023_12_051
crossref_primary_10_3390_ijms23126564
crossref_primary_10_1002_adhm_202401419
crossref_primary_10_1016_j_eurpolymj_2023_111863
crossref_primary_10_1021_acsabm_5c00278
crossref_primary_10_1016_j_colsurfa_2023_131288
crossref_primary_10_1002_bmm2_70027
crossref_primary_10_3390_ijms26020696
crossref_primary_10_1002_adma_202207483
crossref_primary_10_1007_s11242_021_01618_x
crossref_primary_10_1039_D2BM02111K
crossref_primary_10_1007_s11837_020_04382_3
crossref_primary_10_1002_adfm_202200710
crossref_primary_10_1016_j_bprint_2022_e00255
crossref_primary_10_1016_j_bioadv_2023_213499
crossref_primary_10_1093_rb_rbad032
crossref_primary_10_1002_mame_202100338
crossref_primary_10_1089_ten_teb_2023_0280
crossref_primary_10_3389_fbioe_2024_1393641
crossref_primary_10_3390_ph14040362
crossref_primary_10_3390_polym13040563
crossref_primary_10_1002_bit_28588
crossref_primary_10_1016_j_glohj_2022_11_001
crossref_primary_10_1002_btm2_10559
crossref_primary_10_3390_cimb47040287
crossref_primary_10_1016_j_actbio_2023_04_034
crossref_primary_10_1039_D5LC00014A
crossref_primary_10_3390_jfb13040249
crossref_primary_10_1515_auto_2024_0070
crossref_primary_10_3389_fbioe_2025_1629608
crossref_primary_10_1007_s41403_021_00291_2
crossref_primary_10_1016_j_apmt_2022_101510
crossref_primary_10_1039_D5TB00290G
crossref_primary_10_1039_D5PM00142K
crossref_primary_10_1080_10667857_2025_2530639
crossref_primary_10_15541_jim20250002
crossref_primary_10_1016_j_bprint_2023_e00305
crossref_primary_10_3390_magnetochemistry10080052
crossref_primary_10_3390_bioengineering9110605
crossref_primary_10_1016_j_jddst_2024_105722
crossref_primary_10_1038_s41598_020_78977_w
crossref_primary_10_1016_j_mtchem_2024_102016
crossref_primary_10_1007_s42765_024_00469_7
crossref_primary_10_1111_cpr_13417
crossref_primary_10_1016_j_ijbiomac_2024_131623
crossref_primary_10_17482_uumfd_991197
crossref_primary_10_3390_cells9020420
crossref_primary_10_1038_s41598_020_74191_w
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_3390_gels9030195
crossref_primary_10_1088_1758_5090_acc42c
crossref_primary_10_3390_polym14235068
crossref_primary_10_1016_j_apmt_2021_101227
crossref_primary_10_1557_s43577_022_00343_0
crossref_primary_10_3390_mi14081648
crossref_primary_10_1016_j_bioadv_2024_213770
crossref_primary_10_1016_j_cden_2021_06_004
crossref_primary_10_1016_j_actbio_2022_02_035
crossref_primary_10_3390_ijms23105831
crossref_primary_10_15541_jim20250014
crossref_primary_10_3390_polym15092083
crossref_primary_10_1016_j_ijbiomac_2023_123952
crossref_primary_10_1177_11795972241288099
crossref_primary_10_1039_D4RA00075G
crossref_primary_10_1016_j_tice_2024_102418
crossref_primary_10_3390_polym13224028
crossref_primary_10_1016_j_drudis_2022_02_020
crossref_primary_10_1016_j_ijbiomac_2025_146031
crossref_primary_10_1016_j_isci_2025_112532
crossref_primary_10_1016_j_actbio_2021_01_044
crossref_primary_10_1002_adom_202203038
crossref_primary_10_1016_j_bioactmat_2022_02_009
crossref_primary_10_1002_mame_202300422
crossref_primary_10_1016_j_jmst_2024_01_001
crossref_primary_10_1111_jcpe_14036
crossref_primary_10_1186_s13065_025_01390_9
crossref_primary_10_2217_3dp_2020_0008
crossref_primary_10_3390_ijms242216316
crossref_primary_10_1088_1758_5090_acab36
crossref_primary_10_3390_mi11070658
crossref_primary_10_1002_adfm_202419680
crossref_primary_10_1002_adhm_202402415
crossref_primary_10_3390_gels10040220
crossref_primary_10_3390_cells10092352
crossref_primary_10_3390_gels8070420
crossref_primary_10_3390_jcm9072238
crossref_primary_10_1016_j_drudis_2024_104208
crossref_primary_10_1016_j_mtbio_2025_102105
crossref_primary_10_1016_j_pmatsci_2025_101527
crossref_primary_10_3389_fchem_2020_610232
crossref_primary_10_1177_20417314241282476
crossref_primary_10_2147_DDDT_S344036
crossref_primary_10_3389_fphys_2022_836480
crossref_primary_10_1108_RPJ_02_2023_0041
crossref_primary_10_1016_j_bprint_2022_e00203
crossref_primary_10_1016_j_bprint_2022_e00201
crossref_primary_10_3389_fbioe_2022_1036375
crossref_primary_10_1002_adhm_202202110
crossref_primary_10_1007_s00371_023_03187_0
crossref_primary_10_1002_adhm_202100523
crossref_primary_10_1177_20417314251328128
crossref_primary_10_3389_fbioe_2023_1205792
crossref_primary_10_1007_s40883_021_00229_8
crossref_primary_10_3390_jfb13030118
crossref_primary_10_1016_j_bioactmat_2021_09_004
crossref_primary_10_1109_TIM_2025_3564022
crossref_primary_10_3389_fcell_2024_1385399
crossref_primary_10_1109_JSEN_2023_3242094
crossref_primary_10_1002_btm2_10307
crossref_primary_10_1002_advs_202511099
crossref_primary_10_1007_s10439_024_03580_3
crossref_primary_10_1002_btm2_10303
crossref_primary_10_1007_s12015_022_10421_0
crossref_primary_10_1007_s00441_021_03414_x
crossref_primary_10_3390_ijms23158589
crossref_primary_10_1016_j_bprint_2020_e00095
crossref_primary_10_1016_j_bprint_2022_e00211
crossref_primary_10_1038_s41569_020_0422_8
crossref_primary_10_1557_s43579_025_00804_y
crossref_primary_10_3390_ijms24032660
crossref_primary_10_3389_fendo_2023_1287789
crossref_primary_10_1016_j_bprint_2021_e00156
crossref_primary_10_1002_adma_202107759
crossref_primary_10_3389_fmed_2022_947649
crossref_primary_10_1016_j_cjmeam_2022_100011
crossref_primary_10_1016_j_ijbiomac_2020_07_043
Cites_doi 10.2217/nnm.10.14
10.1016/j.mattod.2017.06.005
10.1088/1758-5090/ab02c9
10.1088/1758-5082/2/4/045004
10.1126/science.289.5481.879
10.1088/1758-5090/9/1/015006
10.1021/acsami.6b10673
10.1021/bm200178w
10.1115/1.3128729
10.1002/app.42458
10.1126/science.1226340
10.1016/j.actbio.2013.09.003
10.1177/2472555218766842
10.1039/C8RA07533F
10.15302/J-ENG-2015062
10.1002/adma.201305506
10.1016/j.cej.2015.12.079
10.1002/jbm.a.34970
10.1002/adma.201001436
10.1016/B978-0-12-800972-7.00013-X
10.5185/amlett.2011.1211
10.1016/j.colsurfb.2019.06.069
10.1089/ten.tea.2016.0353
10.1088/1758-5090/8/1/014101
10.1007/s10439-016-1640-4
10.3390/jfb2030119
10.1002/adhm.201600095
10.1038/srep34845
10.1016/j.bios.2004.08.047
10.1016/j.biomaterials.2011.08.071
10.1016/j.apsusc.2010.11.049
10.1002/biot.200600058
10.1088/1758-5090/8/3/035020
10.1371/journal.pone.0101627
10.1002/anie.201409846
10.1038/nbt.2958
10.1016/j.ijpharm.2015.02.033
10.14227/DT250118P24
10.1088/1758-5082/5/2/025004
10.1038/srep13987
10.1186/s13036-015-0001-4
10.1016/j.biomaterials.2015.05.031
10.1016/j.biomaterials.2010.05.055
10.1088/1758-5082/6/3/035020
10.1002/biot.201400635
10.1088/1748-605X/aaa5b6
10.1088/1758-5090/ab19fd
10.1039/c3bm60132c
10.1089/ten.tea.2008.0653
10.1039/C4BM00234B
10.1016/j.actbio.2014.09.033
10.1039/C3LC50634G
10.1002/biot.200900004
10.1002/bit.24455
10.1088/1758-5082/5/4/045007
10.1088/1758-5090/aa8dd8
10.3389/fbioe.2017.00023
10.32474/ANOAJ.2018.01.000113
10.1016/j.expneurol.2010.02.014
10.1002/sctm.17-0148
10.1073/pnas.1524813113
10.1039/C8SM02573H
10.1038/nprot.2013.125
10.1038/nrm1858
10.1088/1758-5090/aa6bad
10.1002/adhm.201700015
10.1088/1758-5090/aa8cb7
10.1002/adma.201570182
10.3390/molecules21050539
10.1016/j.msec.2019.02.008
10.1126/science.1189345
10.1002/term.1682
10.4174/astr.2017.92.2.67
10.1088/1758-5090/8/3/032001
10.1088/1758-5090/ab0692
10.1088/1758-5090/ab0631
10.1088/1758-5090/8/1/014103
10.1016/j.jsamd.2016.04.001
10.1557/mrs2007.11
10.1155/2017/8910821
10.1179/1743280414Y.0000000040
10.1002/jbm.a.34797
10.1089/ten.tec.2009.0179
10.1002/jbm.a.34420
10.1016/j.tibtech.2012.10.005
10.1088/1758-5082/4/2/022001
10.1002/mame.201900353
10.1002/biot.201000340
10.1007/s00441-011-1215-5
10.1039/c004285d
10.1021/acs.nanolett.5b02859
10.1002/adma.201405076
10.1007/s10439-016-1643-1
10.1158/1538-7445.AM2018-5022
10.1088/1758-5090/aa6265
10.1089/ten.a.2007.0004
10.1016/j.tice.2018.03.009
10.1016/j.biomaterials.2012.04.050
10.1186/1747-5341-4-2
10.3390/ijms18040683
10.1016/j.biomaterials.2007.09.032
10.1016/j.bprint.2018.02.003
10.1016/j.biomaterials.2014.07.002
10.1038/s41598-017-05699-x
10.2174/138620709788681907
10.1002/term.555
10.1016/j.biomaterials.2015.05.043
10.1038/s41427-018-0015-8
10.1016/j.biomaterials.2009.07.056
10.1056/NEJMc1206319
10.1016/j.biomaterials.2011.11.003
10.1021/la501430x
10.1016/j.biomaterials.2014.03.050
10.1016/S0168-8278(18)30330-1
10.1088/1758-5090/7/3/035006
10.1016/j.biomaterials.2015.07.022
10.1016/j.actbio.2017.05.025
10.1002/biot.201400305
10.1016/j.actbio.2013.10.016
10.1007/s11548-018-1793-8
10.1088/1758-5082/5/4/045006
10.1016/j.matlet.2016.12.127
10.1021/nl072798r
10.1088/1758-5082/5/3/035001
10.1088/1758-5082/2/1/014110
10.1088/1758-5082/6/3/035004
10.1088/1758-5090/aa71c8
10.2147/IJN.S38635
10.1039/C9TB00669A
10.1088/1758-5090/aaec52
10.1016/j.biomaterials.2015.08.028
10.1088/1758-5090/7/4/045002
10.1089/ten.tec.2014.0149
10.1016/j.biomaterials.2016.06.012
10.1089/ten.tec.2012.0157
10.1039/c3tb21280g
10.1038/nm.2193
10.2217/3dp-2017-0006
10.1002/advs.201900344
10.1016/j.actbio.2014.06.034
10.1038/s41598-018-38366-w
10.1088/1758-5090/aa869f
10.3350/cmh.2016.22.1.7
10.1016/j.biomaterials.2010.04.045
10.1016/j.jmbbm.2017.09.031
10.1016/j.biomaterials.2004.04.011
10.1126/scitranslmed.3004890
10.1115/1.4028512
10.1016/j.biomaterials.2010.09.035
10.1039/b704965j
10.1002/jbm.b.30325
10.1088/1758-5090/8/4/045002
10.1088/1758-5090/7/3/031002
10.1126/science.1188302
10.1007/s11427-015-4850-3
10.1016/S0140-6736(10)60668-X
10.1002/bit.22762
10.1149/2.0071504jss
10.1016/j.biomaterials.2016.09.003
10.1016/j.tins.2017.11.001
10.3390/ma10020190
10.1097/SLA.0000000000002141
10.1109/JMEMS.2006.878879
10.1002/adma.201302042
10.1186/s12967-016-1028-0
10.1016/j.biomaterials.2008.12.009
10.1016/j.tibtech.2015.04.005
10.1016/j.biomaterials.2012.01.048
10.1016/j.actbio.2017.08.005
10.1021/acsbiomaterials.6b00614
10.1088/1758-5082/3/3/034112
10.1038/nbt.3413
10.1016/j.jconrel.2016.06.015
10.1016/j.biomaterials.2009.05.050
10.1002/mabi.201800068
10.1016/j.biomaterials.2014.01.064
10.1557/mrs.2011.272
10.1016/j.bprint.2017.12.001
10.1038/srep07974
10.1016/j.actbio.2013.12.005
10.1089/ten.tec.2011.0185
10.1016/j.drudis.2016.04.006
10.1016/j.jiec.2018.12.023
10.1088/1758-5082/2/2/022001
10.1007/s40883-019-00102-9
10.1002/adma.201504122
10.1021/acsbiomaterials.7b00266
10.1016/j.actbio.2013.07.009
10.1038/ncomms4935
10.1089/biores.2013.0031
10.1136/bmjopen-2017-016891
10.1007/978-3-319-40498-1
10.1557/PROC-845-AA2.8
10.1177/2472630319854337
10.1016/j.jconrel.2014.04.007
10.1039/C8TB01344F
10.1002/mabi.201200471
10.1089/ten.tea.2009.0798
10.1023/B:BMMD.0000031751.67267.9f
10.1002/term.2476
10.1089/ten.tea.2011.0001
10.1088/1758-5082/6/3/035022
10.1016/j.actbio.2015.07.030
10.3390/jfb9010022
10.1039/C7BM00765E
10.1039/C8BM01286E
10.1002/bit.24591
10.1088/1758-5082/5/4/045010
10.1109/TBME.2013.2243912
10.1038/s41598-018-31848-x
10.1016/j.progpolymsci.2011.11.007
10.2352/J.ImagingSci.Technol.1998.42.1.art00007
10.1557/mrs.2015.5
10.1517/14712598.3.5.701
10.1517/14712598.7.8.1123
10.1080/19475411.2019.1591541
10.1088/1758-5082/3/2/025001
10.1063/1.337287
10.1002/adhm.201500193
10.1146/annurev-matsci-070909-104502
10.1371/journal.pone.0057741
10.1089/biores.2013.0046
10.1016/j.actbio.2014.09.023
10.1016/j.colsurfb.2019.03.063
10.1088/1758-5090/8/1/015007
ContentType Journal Article
Copyright 2019
Published by Elsevier Ltd.
Copyright_xml – notice: 2019
– notice: Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2019.119536
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1878-5905
ExternalDocumentID 31648135
10_1016_j_biomaterials_2019_119536
S0142961219306350
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-87a9ec7480e975ecc1e7a746fbb53c64a6b29f18160571b3bfec839696a55ebf3
ISICitedReferencesCount 811
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498330900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sun Sep 28 10:32:25 EDT 2025
Sat Sep 27 18:38:47 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Tue Nov 18 21:10:15 EST 2025
Sat Nov 29 07:24:04 EST 2025
Fri Feb 23 02:22:57 EST 2024
Tue Oct 14 19:30:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bioinks
Regenerative engineering
Bioprinting
Three-dimensional
Tissue engineering
Artificial tissues
Language English
License Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-87a9ec7480e975ecc1e7a746fbb53c64a6b29f18160571b3bfec839696a55ebf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31648135
PQID 2309493787
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388787141
proquest_miscellaneous_2309493787
pubmed_primary_31648135
crossref_citationtrail_10_1016_j_biomaterials_2019_119536
crossref_primary_10_1016_j_biomaterials_2019_119536
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119536
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119536
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lee, Sing, Zhou, Yeong (bib79) 2018; 4
Zhou, Zhu, Nowicki, Miao, Cui, Holmes, Glazer, Zhang (bib254) 2016; 8
Homan, Kolesky, Skylar-Scott, Herrmann, Obuobi, Moisan, Lewis (bib267) 2016; 6
Ouyang, Yao, Zhao, Sun (bib94) 2016; 8
Yu (bib226) 2016; 22
Mapili, Lu, Chen, Roy (bib70) 2005; 75
Tayyeb, Azam, Nisar, Nawaz, Qaisar, Ali (bib228) 2017
Parker, Ghosh, Abdulla, Wang, Kim, Samanipour (bib74) 2015; 7
Jockenhoevel, Deiwick, Wilhelmi, Schlie, Gruene, Haverich, Koch, Diamantouros, Hess, Chichkov, Pflaum (bib147) 2011; 17
(bib36) 1997
Kelly, Awad, Olvera, Graeve, Inzana, Kates, Schwarz, Fuller (bib213) 2014; 35
Poldervaart, Gremmels, Van Deventer, Fledderus, Öner, Verhaar, Dhert, Alblas (bib157) 2014; 184
Lee, Choi, Yong, Pati, Shim, Kang, Kang, Park, Cho (bib231) 2016; 8
Derby (bib7) 2012; 338
Loai, Kingston, Wang, Philpott, Tao, Cheng (bib271) 2019
Gudapati, Yan, Huang, Chrisey (bib129) 2014; 6
Hasan, Demirci, Rizvi, Xu, Moon, Celli (bib250) 2011; 6
Diment, Thompson, Bergmann (bib275) 2017; 7
Marcolongo, Sun, Gandhi, Khalil, Yan, Barbee, Nair (bib133) 2009; 4
Wang, Xiong, Sun, Ouyang, Heng, Lu, Bunpetch, Zhang, Wu, Zhang (bib195) 2017; 7
Boland, Xu, Damon, Cui (bib30) 2006
Ojansivu, Rashad, Ahlinder, Massera, Mishra, Syverud, Finne-Wistrand, Miettinen, Mustafa (bib217) 2019
Kim, Kang, Jeong, Paik, Kim, Park, Kim, Park, Choi (bib229) 2017; 92
Li, He, Zhou, Zhou, Bai, Lee, Mao (bib206) 2015; 40
Temple, Hutton, Hung, Huri, Cook, Kondragunta, Jia, Grayson (bib212) 2014; 102
Calvert (bib56) 2001
Skardal, Zhang, Prestwich (bib168) 2010; 31
Baraniak, McDevitt (bib252) 2012; 347
Guillotin, Souquet, Catros, Duocastella, Pippenger, Bellance, Bareille, Rémy, Bordenave, Amédée j, Guillemot (bib91) 2010; 31
Wang, Samanipour, Kim (bib259) 2016
Kang, Hockaday, Butcher (bib126) 2013; 5
Shanks, Greek, Greek (bib23) 2009; 4
Noor, Shapira, Edri, Gal, Wertheim, Dvir (bib204) 2019; 1900344
Park, Choi, Shim, Lee, Park, Kim, Doh, Cho (bib150) 2014; 6
Chia, Wu (bib64) 2015; 9
Atala, Yoo, Zhao, Dice, Binder, Xu, Albanna (bib104) 2012; 5
Markwald, Visconti, Tan, Pollard, Yao, Trusk, Mei, Yost, Rodriguez, Richards, Jia (bib136) 2014; 10
Gaetani, Doevendans, Metz, Alblas, Messina, Giacomello, Sluijter (bib202) 2012; 33
Gu, Tomaskovic-Crook, Lozano, Chen, Kapsa, Zhou, Wallace, Crook (bib239) 2016; 5
Marga, Jakab, Khatiwala, Shepherd, Dorfman, Hubbard, Colbert, Gabor (bib8) 2012; 4
Cidonio, Alcala-Orozco, Lim, Glinka, Mutreja, Kim, Dawson, Woodfield, Oreffo (bib179) 2019; 11
Khalil, Sun (bib12) 2010; 131
Owens, Marga, Forgacs, Heesch (bib124) 2013; 5
Melchels, Domingos, Klein, Malda, Bartolo, Hutmacher (bib20) 2012; 37
Zhang, Yu, Chen, Ozbolat (bib130) 2013; 5
Zein, Hanouneh, Bishop, Samaan, Eghtesad, Quintini, Miller, Yerian, Klatte (bib274) 2013; 19
Wüst, Müller, Hofmann, Wüst, Müller, Hofmann (bib21) 2011; 2
Ewald, Schweinlin, Schacht, Jüngst, Scheibel, Groll (bib101) 2015; 54
Ortmann, Vallier, Zacharis, Wesley, Tomaz (bib263) 2018; 68
Barron, Wu, Ladouceur, Ringeisen (bib51) 2004; 6
Fielding, Bose (bib210) 2013; 9
Keriquel, Oliveira, Rémy, Ziane, Rousseau, Rey, Catros, Amédée (bib52) 2017
Balakhovsky, Ostrovskiy, Khesuani (bib277) 2017
Ringeisen, Othon, Barron, Young, Spargo (bib54) 2006; 1
Choi, Kim, Park, Park, Kim, Na, Kim, Kwon, Cho, Kim, Park, Jang, Kim, Park (bib198) 2016; 112
Williams, Touroo, Church, Hoying (bib134) 2013; 2
Ma, Xu, Huang, Liu, Ling, Lu, Zhang (bib253) 2015; 1
Ott, Clippinger, Conrad, Schuetz, Pomerantseva, Ikonomou, Kotton, Vacanti (bib235) 2010; 16
Levato, Visser, Planell, Engel, Malda, Mateos-Timoneda (bib106) 2014; 6
Gorkin, in het Panhuis, Romero-Ortega, Wallace, Stewart, Thompson, Stevens, Lozano, Gilmore (bib149) 2015; 67
Lee, Polio, Lee, Dai, Menon, Carroll, Yoo (bib237) 2010; 223
Tseng, Balaoing, Grigoryan, Raphael, Killian, Souza, Grande-Allen (bib78) 2014; 10
Ng, Yeong, Naing (bib193) 2016; 2
Chang, Nam, Sun (bib60) 2008; 14
Zhang, Yu, Akkouch, Dababneh, Dolati, Ozbolat (bib131) 2015; 3
Arslan-Yildiz, El Assal, Chen, Guven, Inci, Demirci (bib4) 2016; 8
Hue (bib33) 1998; 42
Kholodenko, Yarygin (bib227) 2017
Gauvin, Chen, Lee, Soman, Zorlutuna, Nichol, Bae, Chen, Khademhosseini (bib73) 2012; 33
Carrow, Kerativitayanan, Jaiswal, Lokhande, Gaharwar (bib96) 2015
Duan, Hockaday, Kang, Butcher (bib119) 2013; 101 A
(bib35) 1994
Atapattu, Utama, O'Mahony, Fife, Baek, Allard, O'Mahony, Ribeiro, Gaus, Gooding, Kavallaris (bib261) 2018; 78
Whatley, Li, Zhang, Wen (bib81) 2014; 102
Gasperini, Maniglio, Motta, Migliaresi (bib128) 2015; 21
Billiet, Vandenhaute, Schelfhout, Van Vlierberghe, Dubruel (bib22) 2012; 33
Derby (bib31) 2010; 40
Xu, Jin, Gregory, Hickman, Boland (bib38) 2005; 26
Freeman, Ramos, Alexis Chando, Zhou, Reeser, Jin, Soman, Ye (bib172) 2019
Boland, Aho, Zile, Xu, Baicu (bib200) 2009; 1
Dinca, Kasotakis, Catherine, Mourka, Ranella, Ovsianikov, Chichkov, Farsari, Mitraki, Fotakis (bib50) 2008; 8
van der Stok, Öner, Dhert, Weinans, Wang, Poldervaart, Alblas, Leeuwenburgh (bib159) 2013; 8
Snyder, Hamid, Wang, Chang, Emami, Wu, Sun (bib247) 2011; 3
Almela, Al-Sahaf, Brook, Khoshroo, Rasoulianboroujeni, Fahimipour, Tahriri, Dashtimoghadam, Bolt, Tayebi, Moharamzadeh (bib257) 2018; 52
Albanna, Binder, Murphy, Kim, Qasem, Zhao, Tan, El-Amin, Dice, Marco, Green, Xu, Skardal, Holmes, Jackson, Atala, Yoo (bib197) 2019; 9
Gao, He, zhong Fu, Liu, Ma (bib37) 2015; 61
Campbell, Weiss (bib276) 2007; 7
Knowlton, Anand, Shah, Tasoglu (bib19) 2018; 41
Dokmeci, Araujo, Bhise, Vrana, Ghaemmaghami, Zorlutuna, Manoharan, Bertassoni, Cardoso, Khademhosseini, Cristino (bib145) 2014; 6
Liu, Wang, Steinhoff, Gaebel, Toelk, Ma, Wang, Mark, Li, Gruene, Koch, Guan, Chichkov, Klopsch (bib201) 2011; 32
Malda, Pot, Schuurman, van Weeren, Khristov, Dhert (bib63) 2011; 3
Ozbolat, Peng, Ozbolat (bib93) 2016; 21
(bib216) 2018
Kériquel, Ali, Fricain, Fontaine, Guillotin, Rémy, Amédée-Vilamitjana, Bareille, Catros, Guillemot (bib11) 2011; 36
Griffith, Swartz (bib17) 2006; 7
Williams, Thayer, Martinez, Gatenholm, Khademhosseini (bib98) 2018; 9
Tseng, Gage, Shen, Haisler, Neeley, Shiao, Chen, Desai, Liao, Hebel, Raphael, Becker, Souza (bib82) 2015; 5
Saunders, Gough, Derby (bib44) 2004; 845
Horvath, Umehara, Jud, Blank, Petri-Fink, Rothen-Rutishauser (bib158) 2015; 5
Zorlutuna, Bashir, Kong, Chan, Jeong (bib69) 2010; 10
Souquet, Fricain, Rémy, Guillotin, Faucon, Amédée, Guillemot, Catros, Lopez, Bareille, Pippenger, Bellance, Chabassier (bib109) 2009; 6
Nandi, Mandal, Singh, Bhunia, Moses (bib205) 2018; 6
Abdel Fattah, Meleca, Mishriki, Lelic, Geng, Sahu, Ghosh, Puri (bib80) 2016; 2
Kesti, Müller, Becher, Schnabelrauch, D'Este, Eglin, Zenobi-Wong (bib151) 2015; 11
Pati, Jang, Ha, Won Kim, Rhie, Shim, Kim, Cho (bib155) 2014; 5
Catros, Desbat, Pippenger, Lebraud, Amédée, Guillemot, Remy, Guillotin, Bareille, Fricain (bib162) 2011; 3
Yi, Choi, Shin, Min, Gupta, Nyeo, Kyong, Mi, Cheol, Cho (bib245) 2016; 238
Trasatti, Yoo, Singh, Xu, Lee, Tran, Dai, Bjornsson, Karande (bib137) 2013; 20
Gu, Hao, Lu, Wang, Wallace, Zhou (bib66) 2015; 58
Gaebel, Sorg, Reimers, Vogt, Schlie, Gruene, Steinhoff, Polchow, Stoelting, Koch, Ma, Chichkov, Kuhn (bib192) 2009; 16
Heo, Lee, Timsina, Qiu, Castro, Zhang (bib240) 2019; 99
Kim, Shim, Hwang, Lee, Kim, Kim, Kim, Lee, Kim, Cho, Jang (bib246) 2019
Zhang, Duchamp, Ellisen, Moses, Khademhosseini (bib256) 2017
Lee, Nowicki, Harris, Zhang (bib75) 2016; 23
Skardal, Devarasetty, Kang, Mead, Bishop, Shupe, Lee, Jackson, Yoo, Soker, Atala (bib156) 2015; 25
Mao, Lee, Yao, Mendelson, Cook, Moioli (bib220) 2010; 376
Choi, Lin, Cheng, Chang (bib32) 2015; 4
Al-Abedalla, Lopez-Cabarcos, Bassett, Alkhraisat, Barralet, Gbureck, Torres, Tamimi (bib214) 2014; 35
Ovsianikov, Lin, Hölzl, Tytgat, Van Vlierberghe, Gu (bib92) 2016; 8
Banerjee, Arha, Choudhary, Ashton, Bhatia, Schaffer, Kane (bib118) 2009; 30
Xu, Sridharan, Durmus, Wang, Yavuz, Gurkan, Demirci (bib148) 2011; 6
Saunders, Bosworth, Gough, Derby, Reis (bib45) 2004; 784
Pati, Rhie, Cho, Jang, Han, Ha (bib108) 2015; 62
V Murphy, Atala (bib2) 2014; 32
Ni, Zhuo (bib185) 2019; 9
Catros, Guillotin, Bačáková, Fricain, Guillemot (bib55) 2011; 257
Gungor-Ozkerim, Inci, Zhang, Khademhosseini, Dokmeci (bib95) 2018; 6
Law, Doney, Glover, Qin, Aman, Sercombe, Liew, Dilley, Doyle (bib176) 2018; 77
Vijayavenkataraman, Lu, Fuh (bib190) 2016; 8
Goldshmid, Seliktar (bib117) 2017; 3
(bib188) 2017
Zhang, Demir, Gu (bib279) 2019; 10
Lu, Li, Chen (bib26) 2013; 8
Chen, Zou (bib184) 2019; 4
Wüst, Godla, Müller, Hofmann (bib161) 2014; 10
Saunders, Gough, Derby (bib43) 2008; 29
Raphael, Khalil, Workman, Smith, Brown, Streuli, Saiani, Domingos (bib180) 2017; 190
Li, Chen, Fan, Zhou (bib18) 2016; 14
Jessop, Al-Sabah, Gao, Kyle, Thomas, Badiei, Hawkins, Whitaker (bib175) 2019; 11
Arab, Rauf, Al-Harbi, Hauser (bib187) 2018; 4
Kwak, Shin, Lee, Hyun (bib177) 2019; 72
Li, Xing, Bai, Yan (bib181) 2019; 15
Tarafder, Davies, Bandyopadhyay, Bose (bib209) 2013; 1
Walker, Fisher, Weiss, Phillippi, Miller, Campbell (bib164) 2009; 12
Miao, Castro, Nowicki, Xia, Cui, Zhou, Zhu, Lee, Sarkar, Vozzi, Tabata, Fisher, Zhang (bib278) 2017; 20
Rathan, Dejob, Schipani, Haffner, Möbius, Kelly (bib225) 2019; 1801501
Sun, Soh (bib264) 2015; 27
Souza, Tseng, Gage, Mani, Desai, Leonard, Liao, Longo, Refuerzo, Godin (bib83) 2017; 18
Zopf, Hollister, Nelson, Ohye, Green (bib273) 2013; 368
Sachdev, Raj, Matai (bib249) 2019
Tang, Daneshmandi, Awale, Nair, Laurencin (bib1) 2019; 5
Zhang, Arneri, Bersini, Shin, Zhu, Goli-Malekabadi, Aleman, Colosi, Busignani, Dell'Erba, Bishop, Shupe, Demarchi, Moretti, Rasponi, Dokmeci, Atala, Khademhosseini (bib199) 2016; 110
Leberfinger, Ravnic, Dhawan, Ozbolat (bib27) 2017; 6
Xin, Chimene, Garza, Gaharwar, Alge (bib169) 2019; 7
Moon, Hasan, Song, Xu, Keles, Manzur, Mikkilineni, Hong, Nagatomi, Haeggstrom, Khademhosseini, Demirci (bib139) 2010; 16
Malda, Visser, Melchels, Jüngst, Hennink, Dhert, Groll, Hutmacher (bib5) 2013; 25
Lee, Kang, Lee, Kim, Lee, Cho (bib207) 2011; 32
Chang, Emami, Wu, Sun (bib99) 2010; 2
Guillemot, Mironov, Nakamura (bib10) 2010; 2
Jammalamadaka, Tappa (bib62) 2018; 9
Pescosolido, Schuurman, Malda, Matricardi, Alhaique, Coviello,
Vanderburgh (10.1016/j.biomaterials.2019.119536_bib260) 2017; 45
Malda (10.1016/j.biomaterials.2019.119536_bib63) 2011; 3
Dinca (10.1016/j.biomaterials.2019.119536_bib50) 2008; 8
Yu (10.1016/j.biomaterials.2019.119536_bib226) 2016; 22
Wüst (10.1016/j.biomaterials.2019.119536_bib21) 2011; 2
Pati (10.1016/j.biomaterials.2019.119536_bib88) 2015
Wüst (10.1016/j.biomaterials.2019.119536_bib161) 2014; 10
Gauvin (10.1016/j.biomaterials.2019.119536_bib73) 2012; 33
Zhou (10.1016/j.biomaterials.2019.119536_bib254) 2016; 8
Abdel Fattah (10.1016/j.biomaterials.2019.119536_bib80) 2016; 2
Kundu (10.1016/j.biomaterials.2019.119536_bib170) 2015; 9
Walker (10.1016/j.biomaterials.2019.119536_bib164) 2009; 12
Boland (10.1016/j.biomaterials.2019.119536_bib30) 2006
Lee (10.1016/j.biomaterials.2019.119536_bib140) 2015; 4
Saunders (10.1016/j.biomaterials.2019.119536_bib43) 2008; 29
Gorkin (10.1016/j.biomaterials.2019.119536_bib149) 2015; 67
Blaeser (10.1016/j.biomaterials.2019.119536_bib100) 2014; 21
Prestwich (10.1016/j.biomaterials.2019.119536_bib107) 2010; 22
Dababneh (10.1016/j.biomaterials.2019.119536_bib13) 2014; 136
Hribar (10.1016/j.biomaterials.2019.119536_bib71) 2014; 14
Mouser (10.1016/j.biomaterials.2019.119536_bib111) 2017; 9
Markwald (10.1016/j.biomaterials.2019.119536_bib136) 2014; 10
Tang (10.1016/j.biomaterials.2019.119536_bib1) 2019; 5
Kholodenko (10.1016/j.biomaterials.2019.119536_bib227) 2017
Loo (10.1016/j.biomaterials.2019.119536_bib186) 2015; 15
Miao (10.1016/j.biomaterials.2019.119536_bib278) 2017; 20
Lu (10.1016/j.biomaterials.2019.119536_bib26) 2013; 8
Lee (10.1016/j.biomaterials.2019.119536_bib75) 2016; 23
Pagliuca (10.1016/j.biomaterials.2019.119536_bib243) 2014
Catros (10.1016/j.biomaterials.2019.119536_bib162) 2011; 3
Tayyeb (10.1016/j.biomaterials.2019.119536_bib228) 2017
Akkouch (10.1016/j.biomaterials.2019.119536_bib244) 2015; 7
Banerjee (10.1016/j.biomaterials.2019.119536_bib118) 2009; 30
Jessop (10.1016/j.biomaterials.2019.119536_bib175) 2019; 11
Pereira (10.1016/j.biomaterials.2019.119536_bib58) 2015; 132
Liu (10.1016/j.biomaterials.2019.119536_bib171) 2019; 181
Haring (10.1016/j.biomaterials.2019.119536_bib241) 2019; 11
Ravnic (10.1016/j.biomaterials.2019.119536_bib270) 2017; 266
Guillemot (10.1016/j.biomaterials.2019.119536_bib53) 2010; 5
Kim (10.1016/j.biomaterials.2019.119536_bib194) 2017; 9
Dubbin (10.1016/j.biomaterials.2019.119536_bib165) 2017; 9
Nakamura (10.1016/j.biomaterials.2019.119536_bib146) 2010; 2
Ni (10.1016/j.biomaterials.2019.119536_bib185) 2019; 9
Duarte Campos (10.1016/j.biomaterials.2019.119536_bib120) 2013; 5
Burke (10.1016/j.biomaterials.2019.119536_bib89) 2017; 1
Guillotin (10.1016/j.biomaterials.2019.119536_bib91) 2010; 31
Ma (10.1016/j.biomaterials.2019.119536_bib258) 2018; 10
Michael (10.1016/j.biomaterials.2019.119536_bib121) 2013; 8
Choi (10.1016/j.biomaterials.2019.119536_bib198) 2016; 112
Li (10.1016/j.biomaterials.2019.119536_bib224) 2018
Kim (10.1016/j.biomaterials.2019.119536_bib246) 2019
Zhang (10.1016/j.biomaterials.2019.119536_bib279) 2019; 10
Ovsianikov (10.1016/j.biomaterials.2019.119536_bib92) 2016; 8
Xin (10.1016/j.biomaterials.2019.119536_bib169) 2019; 7
Witowski (10.1016/j.biomaterials.2019.119536_bib272) 2018; 13
Campbell (10.1016/j.biomaterials.2019.119536_bib276) 2007; 7
Byambaa (10.1016/j.biomaterials.2019.119536_bib215) 2017; 6
Jensen (10.1016/j.biomaterials.2019.119536_bib211) 2014; 102
Ewald (10.1016/j.biomaterials.2019.119536_bib101) 2015; 54
Müller (10.1016/j.biomaterials.2019.119536_bib113) 2015; 7
Cidonio (10.1016/j.biomaterials.2019.119536_bib179) 2019; 11
Zhang (10.1016/j.biomaterials.2019.119536_bib130) 2013; 5
Pati (10.1016/j.biomaterials.2019.119536_bib108) 2015; 62
Colina (10.1016/j.biomaterials.2019.119536_bib49) 2005; 20
Owens (10.1016/j.biomaterials.2019.119536_bib124) 2013; 5
Ouyang (10.1016/j.biomaterials.2019.119536_bib94) 2016; 8
Xu (10.1016/j.biomaterials.2019.119536_bib38) 2005; 26
Jammalamadaka (10.1016/j.biomaterials.2019.119536_bib62) 2018; 9
Ji (10.1016/j.biomaterials.2019.119536_bib87) 2017; 5
Dokmeci (10.1016/j.biomaterials.2019.119536_bib145) 2014; 6
Tseng (10.1016/j.biomaterials.2019.119536_bib78) 2014; 10
Marga (10.1016/j.biomaterials.2019.119536_bib8) 2012; 4
Lee (10.1016/j.biomaterials.2019.119536_bib219) 2009; 15
Zhang (10.1016/j.biomaterials.2019.119536_bib256) 2017
Bohandy (10.1016/j.biomaterials.2019.119536_bib47) 1986; 60
Gao (10.1016/j.biomaterials.2019.119536_bib160) 2014; 9
Jockenhoevel (10.1016/j.biomaterials.2019.119536_bib147) 2011; 17
Ozbolat (10.1016/j.biomaterials.2019.119536_bib16) 2013; 60
Baillargeon (10.1016/j.biomaterials.2019.119536_bib85) 2019
Ott (10.1016/j.biomaterials.2019.119536_bib235) 2010; 16
Sun (10.1016/j.biomaterials.2019.119536_bib264) 2015; 27
Melchels (10.1016/j.biomaterials.2019.119536_bib15) 2014; 2
Cushnie (10.1016/j.biomaterials.2019.119536_bib127) 2014; 9
Kang (10.1016/j.biomaterials.2019.119536_bib269) 2016; 34
Gudapati (10.1016/j.biomaterials.2019.119536_bib90) 2016; 102
Loai (10.1016/j.biomaterials.2019.119536_bib271) 2019
Calvert (10.1016/j.biomaterials.2019.119536_bib56) 2001
Arab (10.1016/j.biomaterials.2019.119536_bib187) 2018; 4
Zhang (10.1016/j.biomaterials.2019.119536_bib199) 2016; 110
Mapili (10.1016/j.biomaterials.2019.119536_bib70) 2005; 75
Poldervaart (10.1016/j.biomaterials.2019.119536_bib157) 2014; 184
Zhao (10.1016/j.biomaterials.2019.119536_bib125) 2015; 7
Gu (10.1016/j.biomaterials.2019.119536_bib239) 2016; 5
Billiet (10.1016/j.biomaterials.2019.119536_bib22) 2012; 33
Maiullari (10.1016/j.biomaterials.2019.119536_bib203) 2018; 8
(10.1016/j.biomaterials.2019.119536_bib36) 1997
Ma (10.1016/j.biomaterials.2019.119536_bib253) 2015; 1
Ortmann (10.1016/j.biomaterials.2019.119536_bib263) 2018; 68
Chang (10.1016/j.biomaterials.2019.119536_bib99) 2010; 2
Homan (10.1016/j.biomaterials.2019.119536_bib267) 2016; 6
Gu (10.1016/j.biomaterials.2019.119536_bib66) 2015; 58
Demirci (10.1016/j.biomaterials.2019.119536_bib68) 2007; 7
Zhang (10.1016/j.biomaterials.2019.119536_bib122) 2013; 5
Nandi (10.1016/j.biomaterials.2019.119536_bib205) 2018; 6
Lee (10.1016/j.biomaterials.2019.119536_bib207) 2011; 32
Kingsley (10.1016/j.biomaterials.2019.119536_bib132) 2013; 5
Ozbolat (10.1016/j.biomaterials.2019.119536_bib9) 2015; 33
Jakab (10.1016/j.biomaterials.2019.119536_bib248) 2010; 2
Duarte Campos (10.1016/j.biomaterials.2019.119536_bib105) 2013; 2
Daly (10.1016/j.biomaterials.2019.119536_bib143) 2016; 8
Ozbolat (10.1016/j.biomaterials.2019.119536_bib93) 2016; 21
Gaetani (10.1016/j.biomaterials.2019.119536_bib202) 2012; 33
Souza (10.1016/j.biomaterials.2019.119536_bib83) 2017; 18
Gungor-Ozkerim (10.1016/j.biomaterials.2019.119536_bib95) 2018; 6
Li (10.1016/j.biomaterials.2019.119536_bib181) 2019; 15
(10.1016/j.biomaterials.2019.119536_bib188) 2017
Guillemot (10.1016/j.biomaterials.2019.119536_bib10) 2010; 2
Arnold (10.1016/j.biomaterials.2019.119536_bib46) 2007; 32
Duan (10.1016/j.biomaterials.2019.119536_bib119) 2013; 101 A
Albanna (10.1016/j.biomaterials.2019.119536_bib197) 2019; 9
Chen (10.1016/j.biomaterials.2019.119536_bib178) 2019; 179
Levato (10.1016/j.biomaterials.2019.119536_bib106) 2014; 6
Chen (10.1016/j.biomaterials.2019.119536_bib184) 2019; 4
Kériquel (10.1016/j.biomaterials.2019.119536_bib11) 2011; 36
Saunders (10.1016/j.biomaterials.2019.119536_bib44) 2004; 845
Kesti (10.1016/j.biomaterials.2019.119536_bib151) 2015; 11
(10.1016/j.biomaterials.2019.119536_bib216) 2018
Busbee (10.1016/j.biomaterials.2019.119536_bib103) 2014; 26
Raphael (10.1016/j.biomaterials.2019.119536_bib180) 2017; 190
Gasperini (10.1016/j.biomaterials.2019.119536_bib128) 2015; 21
Keriquel (10.1016/j.biomaterials.2019.119536_bib52) 2017
Moon (10.1016/j.biomaterials.2019.119536_bib139) 2010; 16
Hou (10.1016/j.biomaterials.2019.119536_bib84) 2018; 23
Cubo (10.1016/j.biomaterials.2019.119536_bib189) 2016; 9
Yi (10.1016/j.biomaterials.2019.119536_bib245) 2016; 238
Chang (10.1016/j.biomaterials.2019.119536_bib60) 2008; 14
Di Bella (10.1016/j.biomaterials.2019.119536_bib223) 2018; 12
Wang (10.1016/j.biomaterials.2019.119536_bib259) 2016
Knowlton (10.1016/j.biomaterials.2019.119536_bib19) 2018; 41
Mao (10.1016/j.biomaterials.2019.119536_bib220) 2010; 376
(10.1016/j.biomaterials.2019.119536_bib35) 1994
Lee (10.1016/j.biomaterials.2019.119536_bib237) 2010; 223
Derby (10.1016/j.biomaterials.2019.119536_bib7) 2012; 338
Mandrycky (10.1016/j.biomaterials.2019.119536_bib3) 2017; 34
Marcolongo (10.1016/j.biomaterials.2019.119536_bib133) 2009; 4
Kim (10.1016/j.biomaterials.2019.119536_bib229) 2017; 92
Gao (10.1016/j.biomaterials.2019.119536_bib37) 2015; 61
Barron (10.1016/j.biomaterials.2019.119536_bib51) 2004; 6
Lee (10.1016/j.biomaterials.2019.119536_bib79) 2018; 4
Park (10.1016/j.biomaterials.2019.119536_bib150) 2014; 6
Skardal (10.1016/j.biomaterials.2019.119536_bib156) 2015; 25
Tseng (10.1016/j.biomaterials.2019.119536_bib77) 2013; 19
Prestwich (10.1016/j.biomaterials.2019.119536_bib152) 2010; 16
Whatley (10.1016/j.biomaterials.2019.119536_bib81) 2014; 102
Cui (10.1016/j.biomaterials.2019.119536_bib40) 2009; 30
Liu (10.1016/j.biomaterials.2019.119536_bib201) 2011; 32
Groll (10.1016/j.biomaterials.2019.119536_bib97) 2018; 11
Zorlutuna (10.1016/j.biomaterials.2019.119536_bib69) 2010; 10
Hsieh (10.1016/j.biomaterials.2019.119536_bib238) 2015; 71
(10.1016/j.biomaterials.2019.119536_bib34) 1994
Gao (10.1016/j.biomaterials.2019.119536_bib41) 2015; 10
Hong (10.1016/j.biomaterials.2019.119536_bib167) 2015; 27
Noor (10.1016/j.biomaterials.2019.119536_bib204) 2019; 1900344
Atala (10.1016/j.biomaterials.2019.119536_bib14) 2012; 4
Ojansivu (10.1016/j.biomaterials.2019.119536_bib217) 2019
Lee (10.1016/j.biomaterials.2019.119536_bib231) 2016; 8
Tseng (10.1016/j.biomaterials.2019.119536_bib82) 2015; 5
Zhao (10.1016/j.biomaterials.2019.119536_bib265) 2018; 25
O'Connell (10.1016/j.biomaterials.2019.119536_bib221) 2016; 8
Parker (10.1016/j.biomaterials.2019.119536_bib74) 2015; 7
Fedorovich (10.1016/j.biomaterials.2019.119536_bib116) 2011; 17
Williams (10.1016/j.biomaterials.2019.119536_bib134) 2013; 2
Rutz (10.1016/j.biomaterials.2019.119536_bib166) 2015; 27
Hasan (10.1016/j.biomaterials.2019.119536_b
References_xml – volume: 845
  year: 2004
  ident: bib44
  article-title: Ink Jet printing of mammalian primary cells for tissue engineering applications
  publication-title: MRS Proc
– volume: 75
  start-page: 414
  year: 2005
  end-page: 424
  ident: bib70
  article-title: Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 328
  start-page: 1662
  year: 2010
  end-page: 1668
  ident: bib234
  article-title: Reconstituting organ-level lung functions on a chip
  publication-title: Science
– volume: 78
  year: 2018
  ident: bib261
  article-title: Abstract 5022: precision medicine: high-throughput 3D bioprinting of embedded multicellular cancer spheroids
  publication-title: Cancer Res.
– volume: 42
  start-page: 49
  year: 1998
  end-page: 62
  ident: bib33
  article-title: Progress and trends in ink-jet printing technology
  publication-title: J. Imaging Sci. Technol.
– volume: 6
  year: 2014
  ident: bib129
  article-title: Alginate gelation-induced cell death during laser-assisted cell printing
  publication-title: Biofabrication
– year: 2001
  ident: bib56
  article-title: Inkjet Printing for Materials and Devices
– volume: 11
  year: 2019
  ident: bib179
  article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks
  publication-title: Biofabrication
– volume: 2
  year: 2010
  ident: bib146
  article-title: Biomatrices and biomaterials for future developments of bioprinting and biofabrication
  publication-title: Biofabrication
– volume: 32
  start-page: 744
  year: 2011
  end-page: 752
  ident: bib207
  article-title: Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
  publication-title: Biomaterials
– volume: 33
  start-page: 3824
  year: 2012
  end-page: 3834
  ident: bib73
  article-title: Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography
  publication-title: Biomaterials
– volume: 92
  start-page: 67
  year: 2017
  end-page: 72
  ident: bib229
  article-title: Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure
  publication-title: Ann. Surg. Treat. Res.
– volume: 12
  start-page: 1831
  year: 2011
  end-page: 1838
  ident: bib102
  article-title: Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting
  publication-title: Biomacromolecules
– volume: 6
  start-page: 2494
  year: 2009
  end-page: 2500
  ident: bib109
  article-title: High-throughput laser printing of cells and biomaterials for tissue engineering
  publication-title: Acta Biomater.
– volume: 3
  start-page: 3433
  year: 2017
  end-page: 3446
  ident: bib117
  article-title: Hydrogel modulus affects proliferation rate and pluripotency of human mesenchymal stem cells grown in three-dimensional culture
  publication-title: ACS Biomater. Sci. Eng.
– volume: 20
  start-page: 473
  year: 2013
  end-page: 484
  ident: bib137
  article-title: Design and fabrication of human skin by three-dimensional bioprinting
  publication-title: Tissue Eng. Part C Methods
– year: 2017
  ident: bib188
  publication-title: Preparation and Applications of RGD Conjugated Polysaccharide Bioinks with or without Fibrin for 3D Bioprinting of Human Skin with Novel Printing Head for Use as Model for Testing Cosmetics and for Transplantation
– volume: 9
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib197
  article-title: In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds
  publication-title: Sci. Rep.
– volume: 35
  start-page: 8810
  year: 2014
  end-page: 8819
  ident: bib144
  article-title: Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells
  publication-title: Biomaterials
– volume: 8
  year: 2016
  ident: bib4
  article-title: Towards artificial tissue models: past, present, and future of 3D bioprinting
  publication-title: Biofabrication
– volume: 31
  start-page: 10
  year: 2013
  end-page: 19
  ident: bib6
  article-title: Bioprinting for stem cell research
  publication-title: Trends Biotechnol.
– volume: 10
  year: 2017
  ident: bib112
  article-title: Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing
  publication-title: Materials
– volume: 5
  year: 2013
  ident: bib122
  article-title: Mechanical characterization of bioprinted in vitro soft tissue models
  publication-title: Biofabrication
– volume: 10
  start-page: 4323
  year: 2014
  end-page: 4331
  ident: bib136
  article-title: Engineering alginate as bioink for bioprinting
  publication-title: Acta Biomater.
– volume: 22
  start-page: 7
  year: 2016
  end-page: 17
  ident: bib226
  article-title: A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016
  publication-title: Clin. Mol. Hepatol.
– volume: 16
  start-page: 927
  year: 2010
  end-page: 933
  ident: bib235
  article-title: Regeneration and orthotopic transplantation of a bioartificial lung
  publication-title: Nat. Med.
– volume: 289
  start-page: 38
  year: 2016
  end-page: 47
  ident: bib115
  article-title: A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2014
  ident: bib127
  article-title: Simple signaling molecules for inductive bone regenerative engineering
  publication-title: PLoS One
– volume: 3
  start-page: 134
  year: 2015
  end-page: 143
  ident: bib131
  article-title: In vitro study of directly bioprinted perfusable vasculature conduits
  publication-title: Biomater. Sci.
– volume: 34
  start-page: 312
  year: 2016
  end-page: 319
  ident: bib269
  article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
  publication-title: Nat. Biotechnol.
– volume: 10
  start-page: 31
  year: 2018
  end-page: 44
  ident: bib258
  article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
  publication-title: NPG Asia Mater.
– volume: 3
  year: 2011
  ident: bib63
  article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties
  publication-title: Biofabrication
– volume: 6
  start-page: 1940
  year: 2017
  end-page: 1948
  ident: bib27
  article-title: Concise review: bioprinting of stem cells for transplantable tissue fabrication
  publication-title: Stem cells transl. Med.
– start-page: 910
  year: 2006
  end-page: 917
  ident: bib30
  article-title: Application of Inkjet Printing to Tissue Engineering
– volume: 9
  start-page: 9137
  year: 2013
  end-page: 9148
  ident: bib210
  article-title: SiO2and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo
  publication-title: Acta Biomater.
– volume: 5
  year: 2015
  ident: bib158
  article-title: Engineering an in vitro air-blood barrier by 3D bioprinting
  publication-title: Sci. Rep.
– volume: 6
  start-page: 915
  year: 2018
  end-page: 946
  ident: bib95
  article-title: Bioinks for 3D bioprinting: an overview
  publication-title: Biomater. Sci.
– volume: 25
  start-page: 24
  year: 2015
  end-page: 34
  ident: bib156
  article-title: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs
  publication-title: Acta Biomater.
– volume: 10
  start-page: 2062
  year: 2010
  ident: bib69
  article-title: Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation
  publication-title: Lab Chip
– volume: 102
  start-page: 1537
  year: 2014
  end-page: 1547
  ident: bib81
  article-title: Magnetic-directed patterning of cell spheroids
  publication-title: J. Biomed. Mater. Res. A
– volume: 5
  start-page: 1429
  year: 2016
  end-page: 1438
  ident: bib239
  article-title: Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells
  publication-title: Adv. Healthc. Mater.
– volume: 16
  start-page: 2675
  year: 2010
  end-page: 2685
  ident: bib152
  article-title: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting
  publication-title: Tissue Eng. A
– volume: 494
  start-page: 585
  year: 2015
  end-page: 592
  ident: bib42
  article-title: Printing technologies for biomolecule and cell-based applications
  publication-title: Int. J. Pharm.
– volume: 12
  start-page: 611
  year: 2018
  end-page: 621
  ident: bib223
  article-title: handheld three-dimensional bioprinting for cartilage regeneration
  publication-title: J. Tissue Eng. Regenerat. Med.
– volume: 7
  year: 2015
  ident: bib125
  article-title: The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology
  publication-title: Biofabrication
– volume: 10
  start-page: 205
  year: 2019
  end-page: 224
  ident: bib279
  article-title: Developments in 4D-printing: a review on current smart materials, technologies, and applications
  publication-title: Int. J. Smart Nano Mater.
– volume: 113
  start-page: 1522
  year: 2016
  end-page: 1527
  ident: bib65
  article-title: Three-dimensional manipulation of single cells using surface acoustic waves
  publication-title: Proc. Natl. Acad. Sci.
– volume: 35
  start-page: 49
  year: 2013
  end-page: 62
  ident: bib86
  article-title: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
  publication-title: Biomaterials
– volume: 6
  year: 2014
  ident: bib150
  article-title: A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
  publication-title: Biofabrication
– volume: 3
  year: 2011
  ident: bib162
  article-title: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite
  publication-title: Biofabrication
– volume: 8
  start-page: 1940
  year: 2013
  end-page: 1949
  ident: bib76
  article-title: Three-dimensional cell culturing by magnetic levitation
  publication-title: Nat. Protoc.
– volume: 2
  start-page: 374
  year: 2013
  end-page: 384
  ident: bib105
  article-title: Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs
  publication-title: Bioresour. Open Access
– volume: 13
  start-page: 551
  year: 2013
  end-page: 561
  ident: bib153
  article-title: Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
  publication-title: Macromol. Biosci.
– volume: 2
  start-page: 2133
  year: 2016
  end-page: 2138
  ident: bib80
  article-title: In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis
  publication-title: ACS Biomater. Sci. Eng.
– volume: 4
  start-page: 120
  year: 2019
  end-page: 131
  ident: bib184
  article-title: Self-assemble peptide biomaterials and their biomedical applications
  publication-title: Bioact. Mater
– volume: 2
  year: 2016
  ident: bib193
  article-title: Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering
  publication-title: Int. J. Bioprint.
– volume: 14
  start-page: 271
  year: 2016
  ident: bib18
  article-title: Recent advances in bioprinting techniques: approaches, applications and future prospects
  publication-title: J. Transl. Med.
– volume: 12
  start-page: 604
  year: 2009
  end-page: 618
  ident: bib164
  article-title: Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates
  publication-title: Comb. Chem. High Throughput Screen.
– volume: 5
  start-page: 233
  year: 2019
  end-page: 251
  ident: bib1
  article-title: Skeletal muscle regenerative engineering
  publication-title: Regen. Eng. Transl. Med.
– volume: 30
  start-page: 6221
  year: 2009
  end-page: 6227
  ident: bib40
  article-title: Human microvasculature fabrication using thermal inkjet printing technology
  publication-title: Biomaterials
– volume: 35
  start-page: 4026
  year: 2014
  end-page: 4034
  ident: bib213
  article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
  publication-title: Biomaterials
– volume: 109
  start-page: 3152
  year: 2012
  end-page: 3160
  ident: bib25
  article-title: Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes
  publication-title: Biotechnol. Bioeng.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib94
  article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
  publication-title: Biofabrication
– volume: 33
  start-page: 1782
  year: 2012
  end-page: 1790
  ident: bib202
  article-title: Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
  publication-title: Biomaterials
– volume: 9
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib174
  article-title: 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink
  publication-title: Bioprinting
– volume: 40
  start-page: 145
  year: 2015
  end-page: 154
  ident: bib206
  article-title: 3D printing for regenerative medicine: from bench to bedside
  publication-title: MRS Bull.
– volume: 26
  start-page: 3124
  year: 2014
  end-page: 3130
  ident: bib103
  article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
  publication-title: Adv. Mater.
– volume: 9
  year: 2017
  ident: bib194
  article-title: Direct 3D cell-printing of human skin with functional transwell system
  publication-title: Biofabrication
– volume: 5
  year: 2013
  ident: bib124
  article-title: Biofabrication and testing of a fully cellular nerve graft
  publication-title: Biofabrication
– volume: 109
  start-page: 1855
  year: 2012
  end-page: 1863
  ident: bib138
  article-title: Skin tissue generation by laser cell printing
  publication-title: Biotechnol. Bioeng.
– volume: 8
  start-page: 538
  year: 2008
  end-page: 543
  ident: bib50
  article-title: Directed three-dimensional patterning of self-assembled peptide fibrils
  publication-title: Nano Lett.
– volume: 1
  start-page: 165
  year: 2017
  end-page: 179
  ident: bib89
  article-title: Bioprinting: uncovering the utility layer-by-layer
  publication-title: J. 3D Print. Med.
– volume: 27
  start-page: 1607
  year: 2015
  end-page: 1614
  ident: bib166
  article-title: A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
  publication-title: Adv. Mater.
– volume: 110
  start-page: 45
  year: 2016
  end-page: 59
  ident: bib199
  article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
  publication-title: Biomaterials
– volume: 22
  start-page: 4736
  year: 2010
  end-page: 4740
  ident: bib107
  article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels
  publication-title: Adv. Mater.
– volume: 31
  start-page: 6173
  year: 2010
  end-page: 6181
  ident: bib168
  article-title: Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
  publication-title: Biomaterials
– volume: 72
  start-page: 232
  year: 2019
  end-page: 240
  ident: bib177
  article-title: Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing
  publication-title: J. Ind. Eng. Chem.
– volume: 1
  start-page: 269
  year: 2015
  end-page: 274
  ident: bib253
  article-title: Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids
  publication-title: Engineering
– year: 2019
  ident: bib271
  article-title: Clinical perspectives on 3D bioprinting paradigms for regenerative medicine
  publication-title: Regen. Med. Front.
– volume: 6
  year: 2014
  ident: bib251
  article-title: Three-dimensional printing of hela cells for cervical tumor model in vitro
  publication-title: Biofabrication
– volume: 13
  year: 2018
  ident: bib196
  article-title: Tyrosinase-doped bioink for 3D bioprinting of living skin constructs
  publication-title: Biomed. Mater.
– volume: 5
  year: 2012
  ident: bib104
  article-title: Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
  publication-title: Biofabrication
– year: 1997
  ident: bib36
  publication-title: Ink Drop Volume Variance Compensation for Inkjet Printing
– volume: 67
  start-page: 264
  year: 2015
  end-page: 273
  ident: bib149
  article-title: 3D printing of layered brain-like structures using peptide modified gellan gum substrates
  publication-title: Biomaterials
– volume: 68
  start-page: S55
  year: 2018
  ident: bib263
  article-title: A novel differentiation system to produce hepatocytes for disease modelling and drug screening
  publication-title: J. Hepatol.
– volume: 5
  year: 2013
  ident: bib126
  article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels
  publication-title: Biofabrication
– volume: 10
  start-page: 630
  year: 2014
  end-page: 640
  ident: bib59
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
– volume: 2
  start-page: 2282
  year: 2014
  end-page: 2289
  ident: bib15
  article-title: Development and characterisation of a new bioink for additive tissue manufacturing
  publication-title: J. Mater. Chem. B.
– volume: 102
  start-page: 4317
  year: 2014
  end-page: 4325
  ident: bib212
  article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
  publication-title: J. Biomed. Mater. Res. A
– year: 2018
  ident: bib216
  article-title: A novel technique for tissue engineering periosteum using three- dimensional bioprinting presenter : Brandon Alba , BA Co-Authors : Pooja Swami , MS ; Neil Affiliation : Donald and barbara Zucker School of medicine at Hofstra/Northwell
  publication-title: Harnessing Mech
– volume: 7
  start-page: 1179
  year: 2019
  end-page: 1187
  ident: bib169
  article-title: Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting
  publication-title: Biomater. Sci.
– volume: 4
  start-page: 1168
  year: 2009
  end-page: 1177
  ident: bib133
  article-title: Characterization of cell viability during bioprinting processes
  publication-title: Biotechnol. J.
– volume: 34
  start-page: 422
  year: 2017
  end-page: 434
  ident: bib3
  article-title: 3D bioprinting for engineering complex tissues
– volume: 25
  start-page: 24
  year: 2018
  end-page: 28
  ident: bib265
  article-title: A new model of a 3D-printed shell with convex drug release profile
  publication-title: Dissolution Technol.
– volume: 41
  start-page: 31
  year: 2018
  end-page: 46
  ident: bib19
  article-title: Bioprinting for neural tissue engineering
  publication-title: Trends Neurosci.
– volume: 2
  start-page: 448
  year: 2013
  end-page: 454
  ident: bib134
  article-title: Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system
  publication-title: Bioresour. Open Access
– volume: 184
  start-page: 58
  year: 2014
  end-page: 66
  ident: bib157
  article-title: Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture
  publication-title: J. Control. Release
– volume: 99
  start-page: 582
  year: 2019
  end-page: 590
  ident: bib240
  article-title: Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering
  publication-title: Mater. Sci. Eng. C
– volume: 8
  year: 2013
  ident: bib121
  article-title: Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
  publication-title: PLoS One
– year: 2018
  ident: bib224
  article-title: 3D Printing of a Lithium-Calcium-Silicate Crystal Bioscaffold with Dual Bioactivities for Osteochondral Interface Reconstruction
– volume: 8
  year: 2013
  ident: bib159
  article-title: Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats
  publication-title: PLoS One
– volume: 33
  start-page: 395
  year: 2015
  end-page: 400
  ident: bib9
  article-title: Bioprinting scale-up tissue and organ constructs for transplantation
  publication-title: Trends Biotechnol.
– start-page: 1
  year: 2019
  end-page: 13
  ident: bib172
  article-title: A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs
  publication-title: Acta Biomater.
– volume: 9
  year: 2017
  ident: bib165
  article-title: Quantitative criteria to benchmark new and existing bio-inks for cell compatibility
  publication-title: Biofabrication
– volume: 60
  start-page: 691
  year: 2013
  end-page: 699
  ident: bib16
  article-title: Bioprinting toward organ fabrication: challenges and future trends
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 11
  year: 2018
  ident: bib97
  article-title: A definition of bioinks and their distinction from biomaterial inks
  publication-title: Biofabrication
– volume: 7
  year: 2015
  ident: bib244
  article-title: Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering
  publication-title: Biofabrication
– volume: 9
  year: 2017
  ident: bib111
  article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs
  publication-title: Biofabrication
– year: 2019
  ident: bib85
  article-title: Automating a magnetic 3D spheroid model technology for high-throughput screening
  publication-title: SLAS Technol.
– volume: 13
  start-page: 1473
  year: 2018
  end-page: 1478
  ident: bib272
  article-title: From ideas to long-term studies: 3D printing clinical trials review
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 8
  year: 2016
  ident: bib266
  article-title: A liver-on-a-chip platform with bioprinted hepatic spheroids
  publication-title: Biofabrication
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: bib2
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 337
  year: 2013
  end-page: 350
  ident: bib26
  article-title: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering
  publication-title: Int. J. Nanomed.
– volume: 14
  start-page: 268
  year: 2014
  end-page: 275
  ident: bib71
  article-title: Light-assisted direct-write of 3D functional biomaterials
  publication-title: Lab Chip
– volume: 30
  start-page: 4695
  year: 2009
  end-page: 4699
  ident: bib118
  article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells
  publication-title: Biomaterials
– volume: 223
  start-page: 645
  year: 2010
  end-page: 652
  ident: bib237
  article-title: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
  publication-title: Exp. Neurol.
– volume: 11
  start-page: 162
  year: 2015
  end-page: 172
  ident: bib151
  article-title: A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation
  publication-title: Acta Biomater.
– start-page: 1
  year: 2017
  end-page: 22
  ident: bib277
  article-title: Emerging business models toward commercialization of bioprinting technology
  publication-title: 3D Print. Biofabrication
– volume: 10
  start-page: 173
  year: 2014
  end-page: 182
  ident: bib78
  article-title: A three-dimensional co-culture model of the aortic valve using magnetic levitation
  publication-title: Acta Biomater.
– volume: 4
  start-page: 1359
  year: 2015
  end-page: 1368
  ident: bib140
  article-title: A new approach for fabricating collagen/ecm-based bioinks using preosteoblasts and human adipose stem cells
  publication-title: Adv. Healthc. Mater.
– volume: 45
  start-page: 164
  year: 2017
  end-page: 179
  ident: bib260
  article-title: 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening
  publication-title: Ann. Biomed. Eng.
– volume: 35
  start-page: 5436
  year: 2014
  end-page: 5445
  ident: bib214
  article-title: Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site
  publication-title: Biomaterials
– year: 2018
  ident: bib262
  article-title: Abstract 5018: bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel
  publication-title: Tumor Biol.
– volume: 60
  start-page: 1538
  year: 1986
  end-page: 1539
  ident: bib47
  article-title: Metal deposition from a supported metal film using an excimer laser
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 2816
  year: 2015
  end-page: 2820
  ident: bib101
  article-title: Biofabrication of cell-loaded 3D spider silk constructs
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 630
  year: 2014
  end-page: 640
  ident: bib161
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
– volume: 102
  start-page: 2993
  year: 2014
  end-page: 3003
  ident: bib211
  article-title: Surface-modified functionalized polycaprolactone scaffolds for bone repair:
  publication-title: J. Biomed. Mater. Res. A
– volume: 20
  start-page: 577
  year: 2017
  end-page: 591
  ident: bib278
  article-title: 4D printing of polymeric materials for tissue and organ regeneration
  publication-title: Mater. Today
– volume: 31
  start-page: 7250
  year: 2010
  end-page: 7256
  ident: bib91
  article-title: Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
  publication-title: Biomaterials
– volume: 32
  start-page: 23
  year: 2007
  end-page: 32
  ident: bib46
  article-title: Laser direct-write techniques for printing of complex materials
  publication-title: MRS Bull.
– volume: 15
  start-page: 3923
  year: 2009
  end-page: 3930
  ident: bib219
  article-title: Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo
  publication-title: Tissue Eng. A
– volume: 10
  start-page: 1836
  year: 2014
  end-page: 1846
  ident: bib154
  article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
  publication-title: Acta Biomater.
– volume: 102
  start-page: 20
  year: 2016
  end-page: 42
  ident: bib90
  article-title: A comprehensive review on droplet-based bioprinting: past, present and future
  publication-title: Biomaterials
– volume: 23
  start-page: 491
  year: 2016
  end-page: 502
  ident: bib75
  article-title: Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning
  publication-title: Tissue Eng. A
– volume: 9
  start-page: 1304
  year: 2014
  end-page: 1311
  ident: bib160
  article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
  publication-title: Biotechnol. J.
– year: 1994
  ident: bib34
  publication-title: Print Quality Optimization for a Color Ink-Jet Printer by Using a Larger Nozzle for the Black Ink Only
– volume: 1
  start-page: 930
  year: 2006
  end-page: 948
  ident: bib54
  article-title: Jet-based methods to print living cells
  publication-title: Biotechnol. J.
– volume: 19
  start-page: 1304
  year: 2013
  end-page: 1310
  ident: bib274
  article-title: Three-dimensional print of a liver for preoperative planning in living donor liver transplantation, Liver Transplant
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib52
  article-title: In Situ Printing of Mesenchymal Stromal Cells , by Laser-Assisted Bioprinting , for in Vivo Bone Regeneration Applications
– volume: 27
  start-page: 4034
  year: 2015
  ident: bib167
  article-title: 3D printing: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures
  publication-title: Adv. Mater.
– volume: 1900344
  start-page: 1900344
  year: 2019
  ident: bib204
  article-title: 3D printing of personalized thick and perfusable cardiac patches and hearts
  publication-title: Adv. Sci.
– volume: 16
  start-page: 847
  year: 2009
  end-page: 854
  ident: bib192
  article-title: Laser printing of skin cells and human stem cells
  publication-title: Tissue Eng. C Methods
– volume: 2
  year: 2010
  ident: bib10
  article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux
  publication-title: Biofabrication
– volume: 112
  start-page: 264
  year: 2016
  end-page: 274
  ident: bib198
  article-title: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair
  publication-title: Biomaterials
– volume: 132
  year: 2015
  ident: bib58
  article-title: 3D bioprinting of photocrosslinkable hydrogel constructs
  publication-title: J. Appl. Polym. Sci.
– year: 2017
  ident: bib228
  article-title: Regenerative medicine in liver cirrhosis: promises and pitfalls
  publication-title: Liver Cirrhosis - Updat. Curr. Challenges
– volume: 7
  start-page: 1139
  year: 2007
  end-page: 1145
  ident: bib68
  article-title: Single cell epitaxy by acoustic picolitre droplets
  publication-title: Lab Chip
– volume: 5
  year: 2013
  ident: bib120
  article-title: Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid
  publication-title: Biofabrication
– volume: 61
  start-page: 41
  year: 2017
  end-page: 53
  ident: bib142
  article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
  publication-title: Acta Biomater.
– volume: 36
  start-page: 1015
  year: 2011
  end-page: 1019
  ident: bib11
  article-title: Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine
  publication-title: MRS Bull.
– volume: 32
  start-page: 9218
  year: 2011
  end-page: 9230
  ident: bib201
  article-title: Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
  publication-title: Biomaterials
– volume: 19
  start-page: 665
  year: 2013
  end-page: 675
  ident: bib77
  article-title: Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation
  publication-title: Tissue Eng. C Methods
– volume: 347
  start-page: 701
  year: 2012
  end-page: 711
  ident: bib252
  article-title: Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential
  publication-title: Cell Tissue Res.
– volume: 7
  year: 2015
  ident: bib230
  article-title: Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D
  publication-title: Biofabrication
– volume: 7
  year: 2017
  ident: bib275
  article-title: Clinical efficacy and effectiveness of 3D printing: a systematic review
  publication-title: BMJ Open
– volume: 8
  start-page: 30017
  year: 2016
  end-page: 30026
  ident: bib254
  article-title: 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2010
  ident: bib99
  article-title: Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
  publication-title: Biofabrication
– volume: 25
  start-page: 5011
  year: 2013
  end-page: 5028
  ident: bib5
  article-title: 25th Anniversary article: engineering hydrogels for biofabrication
  publication-title: Adv. Mater.
– volume: 33
  start-page: 6020
  year: 2012
  end-page: 6041
  ident: bib22
  article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
  publication-title: Biomaterials
– volume: 17
  start-page: 2473
  year: 2011
  end-page: 2486
  ident: bib116
  article-title: Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors
  publication-title: Tissue Eng. A
– volume: 7
  start-page: 1123
  year: 2007
  end-page: 1127
  ident: bib276
  article-title: Tissue engineering with the aid of inkjet printers
  publication-title: Expert Opin. Biol. Ther.
– volume: 40
  start-page: 395
  year: 2010
  end-page: 414
  ident: bib31
  article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution
  publication-title: Annu. Rev. Mater. Res.
– volume: 4
  start-page: P3044
  year: 2015
  end-page: P3051
  ident: bib32
  article-title: Printed oxide thin film transistors: a mini review
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 37
  start-page: 1079
  year: 2012
  end-page: 1104
  ident: bib20
  article-title: Additive manufacturing of tissues and organs
  publication-title: Prog. Polym. Sci.
– year: 2019
  ident: bib233
  publication-title: 3D Printed Lungs – the Future of Treating Asbestos Illnesses?
– volume: 58
  start-page: 411
  year: 2015
  end-page: 419
  ident: bib66
  article-title: Three-dimensional bio-printing
  publication-title: Sci. China Life Sci.
– volume: 329
  start-page: 538
  year: 2010
  end-page: 541
  ident: bib236
  article-title: Tissue-engineered lungs for in vivo implantation
  publication-title: Science
– volume: 7
  year: 2015
  ident: bib74
  article-title: A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks
  publication-title: Biofabrication
– volume: 16
  start-page: 1749
  year: 2009
  end-page: 1759
  ident: bib163
  article-title: Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation
  publication-title: Tissue Eng. A
– volume: 131
  start-page: 111002
  year: 2010
  ident: bib12
  article-title: Bioprinting endothelial cells with alginate for 3D tissue constructs
  publication-title: J. Biomech. Eng.
– volume: 10
  start-page: 1568
  year: 2015
  end-page: 1577
  ident: bib41
  article-title: Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging
  publication-title: Biotechnol. J.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib143
  article-title: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage
  publication-title: Biofabrication
– volume: 9
  year: 2018
  ident: bib62
  article-title: Recent advances in biomaterials for 3D printing and tissue engineering
  publication-title: J. Funct. Biomater.
– volume: 289
  start-page: 879
  year: 2000
  end-page: 881
  ident: bib48
  article-title: Materials processing: the power of direct writing
  publication-title: Science
– volume: 30
  start-page: 9130
  year: 2014
  end-page: 9138
  ident: bib135
  article-title: Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink
  publication-title: Langmuir
– volume: 1900353
  start-page: 1900353
  year: 2019
  ident: bib182
  article-title: Development of a self‐assembled peptide/methylcellulose‐based bioink for 3D bioprinting
  publication-title: Macromol. Mater. Eng.
– volume: 8
  year: 2016
  ident: bib92
  article-title: Bioink properties before, during and after 3D bioprinting
  publication-title: Biofabrication
– volume: 16
  start-page: 157
  year: 2010
  end-page: 166
  ident: bib139
  article-title: Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets
  publication-title: Tissue Eng. C Methods
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib222
  article-title: Handheld co-axial bioprinting: application to in situ surgical cartilage repair
  publication-title: Sci. Rep.
– volume: 26
  start-page: 93
  year: 2005
  end-page: 99
  ident: bib38
  article-title: Inkjet printing of viable mammalian cells
  publication-title: Biomaterials
– volume: 11
  year: 2019
  ident: bib241
  article-title: Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues
  publication-title: Biofabrication
– volume: 9
  start-page: 1286
  year: 2015
  end-page: 1297
  ident: bib170
  article-title: An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering
  publication-title: J. Tissue Eng. Regenerat. Med.
– volume: 77
  start-page: 389
  year: 2018
  end-page: 399
  ident: bib176
  article-title: Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 2015
  ident: bib88
  article-title: Extrusion bioprinting
– volume: 1
  start-page: 1250
  year: 2013
  end-page: 1259
  ident: bib209
  article-title: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model
  publication-title: Biomater. Sci.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib187
  article-title: Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells
  publication-title: Int. J. Bioprint.
– volume: 5
  year: 2013
  ident: bib123
  article-title: Biofabrication of multi-material anatomically shaped tissue constructs
  publication-title: Biofabrication
– volume: 8
  start-page: 1
  year: 2018
  ident: bib203
  article-title: A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes
  publication-title: Sci. Rep.
– volume: 3
  start-page: 701
  year: 2003
  end-page: 704
  ident: bib57
  article-title: Printing technology to produce living tissue
  publication-title: Expert Opin. Biol. Ther.
– volume: 8
  year: 2016
  ident: bib190
  article-title: 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes
  publication-title: Biofabrication
– volume: 238
  start-page: 231
  year: 2016
  end-page: 241
  ident: bib245
  article-title: A 3D-printed local drug delivery patch for pancreatic cancer growth suppression
  publication-title: J. Control. Release
– volume: 368
  start-page: 2043
  year: 2013
  end-page: 2045
  ident: bib273
  article-title: Bioresorbable airway splint created with a three-dimensional printer
  publication-title: N. Engl. J. Med.
– volume: 338
  start-page: 921
  year: 2012
  end-page: 926
  ident: bib7
  article-title: Printing and prototyping of tissues and scaffolds
  publication-title: Science
– volume: 4
  year: 2012
  ident: bib14
  article-title: Engineering complex tissues
  publication-title: Sci. Transl. Med.
– volume: 5
  start-page: 507
  year: 2010
  end-page: 515
  ident: bib53
  article-title: Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering
  publication-title: Nanomedicine
– volume: 15
  start-page: 1704
  year: 2019
  end-page: 1715
  ident: bib181
  article-title: Recent advances of self-assembling peptide-based hydrogels for biomedical applications
  publication-title: Soft Matter
– volume: 784
  year: 2004
  ident: bib45
  article-title: Selective cell delivery for 3D tissue culture and engineering
  publication-title: Eur. Cells Mater.
– volume: 57
  start-page: 26
  year: 2017
  end-page: 46
  ident: bib24
  article-title: 3D bioprinting for drug discovery and development in pharmaceutics
  publication-title: Acta Biomater.
– volume: 5
  year: 2013
  ident: bib130
  article-title: Characterization of printable cellular micro-fluidic channels for tissue engineering
  publication-title: Biofabrication
– volume: 6
  start-page: 34845
  year: 2016
  ident: bib267
  article-title: Bioprinting of 3D convoluted renal proximal tubules on perfusable chips
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2
  year: 2009
  ident: bib23
  article-title: Are animal models predictive for humans?
  publication-title: Philos. Ethics Humanit. Med.
– volume: 6
  start-page: 204
  year: 2011
  end-page: 212
  ident: bib250
  article-title: A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
  publication-title: Biotechnol. J.
– volume: 62
  start-page: 164
  year: 2015
  end-page: 175
  ident: bib108
  article-title: Biomimetic 3D tissue printing for soft tissue regeneration
  publication-title: Biomaterials
– volume: 2
  year: 2010
  ident: bib248
  article-title: Tissue engineering by self-assembly and bio-printing of living cells
  publication-title: Biofabrication
– volume: 136
  year: 2014
  ident: bib13
  article-title: A current state-of-the-art review
  publication-title: J. Manuf. Sci. Eng.
– volume: 5
  year: 2013
  ident: bib132
  article-title: Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads
  publication-title: Biofabrication
– volume: 1
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib61
  article-title: Three-dimensional printing of biological matters
  publication-title: J. Sci. Adv. Mater. Devices.
– volume: 9
  year: 2017
  ident: bib110
  article-title: Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability
  publication-title: Biofabrication
– volume: 59
  start-page: 430
  year: 2014
  end-page: 448
  ident: bib29
  article-title: Inkjet printing biomaterials for tissue engineering: bioprinting
  publication-title: Int. Mater. Rev.
– volume: 4
  start-page: 0
  year: 2018
  end-page: 10
  ident: bib79
  article-title: 3D bioprinting processes: a perspective on classification and terminology
  publication-title: Int. J. Bioprint.
– volume: 21
  start-page: 123
  year: 2015
  end-page: 132
  ident: bib128
  article-title: An electrohydrodynamic bioprinter for alginate hydrogels containing living cells
  publication-title: Tissue Eng. C Methods
– volume: 6
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib215
  article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue
  publication-title: Adv. Healthc. Mater.
– volume: 18
  year: 2017
  ident: bib83
  article-title: Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility
  publication-title: Int. J. Mol. Sci.
– volume: 106
  start-page: 963
  year: 2010
  end-page: 969
  ident: bib39
  article-title: Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
  publication-title: Biotechnol. Bioeng.
– volume: 11
  start-page: 233
  year: 2015
  end-page: 246
  ident: bib141
  article-title: Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs
  publication-title: Acta Biomater.
– volume: 376
  start-page: 440
  year: 2010
  end-page: 448
  ident: bib220
  article-title: Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study
  publication-title: Lancet
– volume: 6
  year: 2014
  ident: bib145
  article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
  publication-title: Biofabrication
– volume: 257
  start-page: 5142
  year: 2011
  end-page: 5147
  ident: bib55
  article-title: Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting
  publication-title: Appl. Surf. Sci.
– start-page: 1
  year: 2017
  end-page: 17
  ident: bib227
  article-title: Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases
  publication-title: BioMed Res. Int.
– volume: 6
  start-page: 5671
  year: 2018
  end-page: 5688
  ident: bib205
  article-title: Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering
  publication-title: J. Mater. Chem. B.
– volume: 45
  start-page: 286
  year: 2017
  end-page: 296
  ident: bib72
  article-title: Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography
  publication-title: Ann. Biomed. Eng.
– year: 2017
  ident: bib256
  article-title: Abstract 4828: recapitulating mammary ductal carcinoma microenvironment
  publication-title: Tumor Biol.
– volume: 2
  start-page: 119
  year: 2011
  end-page: 154
  ident: bib21
  article-title: Controlled Positioning of cells in biomaterials—approaches towards 3D tissue printing
  publication-title: J. Funct. Biomater.
– volume: 11
  year: 2019
  ident: bib175
  article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting
  publication-title: Biofabrication
– year: 2019
  ident: bib217
  article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
  publication-title: Biofabrication
– volume: 15
  start-page: 957
  year: 2006
  end-page: 966
  ident: bib67
  article-title: Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology
  publication-title: J. Microelectromechanical Syst.
– volume: 9
  start-page: 19
  year: 2018
  end-page: 36
  ident: bib98
  article-title: A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting
  publication-title: Bioprinting
– start-page: 209
  year: 2016
  end-page: 233
  ident: bib259
  publication-title: Organ-on-a-chip Platforms for Drug Screening and Tissue Engineering
– volume: 18
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib173
  article-title: Composite PLA/PEG/nHA/Dexamethasone scaffold prepared by 3D printing for bone regeneration
  publication-title: Macromol. Biosci.
– volume: 7
  start-page: 35006
  year: 2015
  ident: bib113
  article-title: Nanostructured pluronic hydrogels as bioinks for 3D bioprinting
  publication-title: Biofabrication
– volume: 7
  start-page: 4538
  year: 2019
  end-page: 4551
  ident: bib242
  article-title: Bioprinting schwann cell-laden scaffolds from low-viscosity hydrogel compositions
  publication-title: J. Mater. Chem. B.
– volume: 21
  start-page: 539
  year: 2016
  ident: bib232
  article-title: Biodegradable polymers and stem cells for bioprinting
  publication-title: Molecules
– year: 2019
  ident: bib249
  article-title: 3D Printing for in Vitro and in Vivo Disease Models
– volume: 61
  start-page: 203
  year: 2015
  end-page: 215
  ident: bib37
  article-title: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery
  publication-title: Biomaterials
– volume: 20
  start-page: 1638
  year: 2005
  end-page: 1642
  ident: bib49
  article-title: DNA deposition through laser induced forward transfer
  publication-title: Biosens. Bioelectron.
– volume: 71
  start-page: 48
  year: 2015
  end-page: 57
  ident: bib238
  article-title: 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair
  publication-title: Biomaterials
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib195
  article-title: A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization
  publication-title: Sci. Rep.
– year: 2014
  ident: bib243
  article-title: Resource Generation of Functional Human Pancreatic β Cells in Vitro
– volume: 6
  year: 2014
  ident: bib106
  article-title: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers
  publication-title: Biofabrication
– volume: 15
  start-page: 6919
  year: 2015
  end-page: 6925
  ident: bib186
  article-title: Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures
  publication-title: Nano Lett.
– year: 2019
  ident: bib246
  article-title: 3D Cell Printing of Islet-Laden Pancreatic Tissue-Derived Extracellular Matrix Bioink Constructs for Enhancing Pancreatic Functions
– volume: 23
  start-page: 574
  year: 2018
  end-page: 584
  ident: bib84
  article-title: Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening
  publication-title: SLAS Discov.
– volume: 8
  start-page: 0
  year: 2016
  ident: bib221
  article-title: Development of the biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site
  publication-title: Biofabrication
– volume: 190
  start-page: 103
  year: 2017
  end-page: 106
  ident: bib180
  article-title: 3D cell bioprinting of self-assembling peptide-based hydrogels
  publication-title: Mater. Lett.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib82
  article-title: A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging
  publication-title: Sci. Rep.
– volume: 14
  start-page: 41
  year: 2008
  end-page: 48
  ident: bib60
  article-title: Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing
  publication-title: Tissue Eng. A
– volume: 4
  year: 2012
  ident: bib8
  article-title: Toward engineering functional organ modules by additive manufacturing
  publication-title: Biofabrication
– volume: 181
  start-page: 1026
  year: 2019
  end-page: 1034
  ident: bib171
  article-title: 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 6
  start-page: 139
  year: 2004
  end-page: 147
  ident: bib51
  article-title: Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns
  publication-title: Biomed. Microdevices
– volume: 1
  year: 2018
  ident: bib183
  article-title: Printable self-assembled peptide bio-inks: promising future applications in nanomedicine
  publication-title: Arch. Nanomedicine Open Access J.
– volume: 1801501
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib225
  article-title: Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering
  publication-title: Adv. Healthc. Mater.
– volume: 27
  start-page: 7847
  year: 2015
  end-page: 7853
  ident: bib264
  article-title: Printing tablets with fully customizable release profiles for personalized medicine
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib64
  article-title: Recent advances in 3D printing of biomaterials
  publication-title: J. Biol. Eng.
– volume: 21
  start-page: 1257
  year: 2016
  end-page: 1271
  ident: bib93
  article-title: Application areas of 3D bioprinting
  publication-title: Drug Discov. Today
– volume: 3
  year: 2011
  ident: bib247
  article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip
  publication-title: Biofabrication
– volume: 1
  year: 2009
  ident: bib200
  article-title: Fabrication and characterization of bio-engineered cardiac pseudo tissues
  publication-title: Biofabrication
– volume: 7
  start-page: 631
  year: 2013
  end-page: 641
  ident: bib208
  article-title: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
  publication-title: J. Tissue Eng. Regenerat. Med.
– volume: 6
  year: 2011
  ident: bib148
  article-title: Living bacterial sacrificial porogens to engineer decellularized porous scaffolds
  publication-title: PLoS One
– volume: 17
  start-page: 973
  year: 2011
  end-page: 982
  ident: bib147
  article-title: Laser printing of three-dimensional multicellular arrays for studies of cell–cell and cell–environment interactions
  publication-title: Tissue Eng. C Methods
– start-page: 229
  year: 2015
  end-page: 248
  ident: bib96
  article-title: Chapter 13 – polymers for bioprinting
  publication-title: Essentials 3D Biofabrication Transl
– volume: 52
  start-page: 71
  year: 2018
  end-page: 77
  ident: bib257
  article-title: 3D printed tissue engineered model for bone invasion of oral cancer
  publication-title: Tissue Cell
– volume: 266
  start-page: 48
  year: 2017
  end-page: 58
  ident: bib270
  article-title: Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives
  publication-title: Ann. Surg.
– volume: 2
  start-page: 90
  year: 2011
  end-page: 99
  ident: bib218
  article-title: Cartilage tissue engineering: current scenario and challenges
  publication-title: Adv. Mater. Lett.
– volume: 30
  start-page: 1587
  year: 2008
  end-page: 1595
  ident: bib191
  article-title: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
  publication-title: Biomaterials
– volume: 29
  start-page: 193
  year: 2008
  end-page: 203
  ident: bib43
  article-title: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
  publication-title: Biomaterials
– volume: 9
  start-page: 0
  year: 2017
  end-page: 23
  ident: bib114
  article-title: Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis
  publication-title: Biofabrication
– volume: 101 A
  start-page: 1255
  year: 2013
  end-page: 1264
  ident: bib119
  article-title: 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
  publication-title: J. Biomed. Mater. Res. A
– volume: 5
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib155
  article-title: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
  publication-title: Nat. Commun.
– volume: 7
  start-page: 211
  year: 2006
  end-page: 224
  ident: bib17
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 9
  year: 2017
  ident: bib255
  article-title: Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue
  publication-title: Biofabrication
– year: 1994
  ident: bib35
  publication-title: Method and Apparatus for Reducing the Size of Drops Ejected from a Thermal Ink Jet Printhead
– volume: 18
  start-page: 519
  year: 2001
  end-page: 523
  ident: bib268
  article-title: Microcontact printing of proteins on mixed self-assembled monolayers
– volume: 9
  start-page: 844
  year: 2019
  end-page: 852
  ident: bib185
  article-title: Applications of self-assembling ultrashort peptides in bionanotechnology
  publication-title: RSC Adv.
– volume: 5
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib87
  article-title: Recent advances in bioink design for 3D bioprinting of tissues and organs
  publication-title: Front. Bioeng. Biotechnol.
– volume: 179
  start-page: 121
  year: 2019
  end-page: 127
  ident: bib178
  article-title: Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 8
  start-page: 15007
  year: 2016
  ident: bib231
  article-title: Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering
  publication-title: Biofabrication
– volume: 9
  year: 2016
  ident: bib189
  article-title: 3D bioprinting of functional human skin: production and
  publication-title: Biofabrication
– volume: 21
  start-page: 740
  year: 2014
  end-page: 756
  ident: bib100
  article-title: The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages
  publication-title: Tissue Eng. A
– volume: 5
  start-page: 507
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib53
  article-title: Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering
  publication-title: Nanomedicine
  doi: 10.2217/nnm.10.14
– volume: 20
  start-page: 577
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib278
  article-title: 4D printing of polymeric materials for tissue and organ regeneration
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.06.005
– volume: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib241
  article-title: Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab02c9
– volume: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib99
  article-title: Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/4/045004
– volume: 289
  start-page: 879
  year: 2000
  ident: 10.1016/j.biomaterials.2019.119536_bib48
  article-title: Materials processing: the power of direct writing
  publication-title: Science
  doi: 10.1126/science.289.5481.879
– volume: 9
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib189
  article-title: 3D bioprinting of functional human skin: production and in vivo analysis
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/9/1/015006
– volume: 8
  start-page: 30017
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib254
  article-title: 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10673
– volume: 12
  start-page: 1831
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib102
  article-title: Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting
  publication-title: Biomacromolecules
  doi: 10.1021/bm200178w
– volume: 131
  start-page: 111002
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib12
  article-title: Bioprinting endothelial cells with alginate for 3D tissue constructs
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3128729
– volume: 132
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib58
  article-title: 3D bioprinting of photocrosslinkable hydrogel constructs
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.42458
– volume: 338
  start-page: 921
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib7
  article-title: Printing and prototyping of tissues and scaffolds
  publication-title: Science
  doi: 10.1126/science.1226340
– volume: 10
  start-page: 173
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib78
  article-title: A three-dimensional co-culture model of the aortic valve using magnetic levitation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.09.003
– volume: 23
  start-page: 574
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib84
  article-title: Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening
  publication-title: SLAS Discov.
  doi: 10.1177/2472555218766842
– year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib88
– volume: 9
  start-page: 844
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib185
  article-title: Applications of self-assembling ultrashort peptides in bionanotechnology
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07533F
– volume: 1
  start-page: 269
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib253
  article-title: Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids
  publication-title: Engineering
  doi: 10.15302/J-ENG-2015062
– volume: 26
  start-page: 3124
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib103
  article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305506
– volume: 289
  start-page: 38
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib115
  article-title: A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.079
– volume: 102
  start-page: 2993
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib211
  article-title: Surface-modified functionalized polycaprolactone scaffolds for bone repair: In vitro and in vivo experiments
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34970
– volume: 22
  start-page: 4736
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib107
  article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001436
– start-page: 229
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib96
  article-title: Chapter 13 – polymers for bioprinting
  publication-title: Essentials 3D Biofabrication Transl
  doi: 10.1016/B978-0-12-800972-7.00013-X
– volume: 2
  start-page: 90
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib218
  article-title: Cartilage tissue engineering: current scenario and challenges
  publication-title: Adv. Mater. Lett.
  doi: 10.5185/amlett.2011.1211
– volume: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib159
  article-title: Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats
  publication-title: PLoS One
– year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib224
– volume: 181
  start-page: 1026
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib171
  article-title: 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.06.069
– volume: 23
  start-page: 491
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib75
  article-title: Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2016.0353
– volume: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib266
  article-title: A liver-on-a-chip platform with bioprinted hepatic spheroids
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/1/014101
– volume: 45
  start-page: 164
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib260
  article-title: 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1640-4
– volume: 2
  start-page: 119
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib21
  article-title: Controlled Positioning of cells in biomaterials—approaches towards 3D tissue printing
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb2030119
– volume: 5
  start-page: 1429
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib239
  article-title: Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600095
– volume: 6
  start-page: 34845
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib267
  article-title: Bioprinting of 3D convoluted renal proximal tubules on perfusable chips
  publication-title: Sci. Rep.
  doi: 10.1038/srep34845
– volume: 20
  start-page: 1638
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119536_bib49
  article-title: DNA deposition through laser induced forward transfer
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.08.047
– volume: 32
  start-page: 9218
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib201
  article-title: Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.071
– year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib249
– volume: 257
  start-page: 5142
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib55
  article-title: Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.11.049
– year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib271
  article-title: Clinical perspectives on 3D bioprinting paradigms for regenerative medicine
  publication-title: Regen. Med. Front.
– volume: 1
  start-page: 930
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119536_bib54
  article-title: Jet-based methods to print living cells
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200600058
– volume: 18
  start-page: 519
  year: 2001
  ident: 10.1016/j.biomaterials.2019.119536_bib268
  article-title: Microcontact printing of proteins on mixed self-assembled monolayers
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib94
  article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035020
– volume: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib127
  article-title: Simple signaling molecules for inductive bone regenerative engineering
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101627
– volume: 54
  start-page: 2816
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib101
  article-title: Biofabrication of cell-loaded 3D spider silk constructs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409846
– volume: 112
  start-page: 264
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib198
  article-title: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair
  publication-title: Biomaterials
– volume: 32
  start-page: 773
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib2
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
– volume: 494
  start-page: 585
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib42
  article-title: Printing technologies for biomolecule and cell-based applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.02.033
– volume: 25
  start-page: 24
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib265
  article-title: A new model of a 3D-printed shell with convex drug release profile
  publication-title: Dissolution Technol.
  doi: 10.14227/DT250118P24
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib130
  article-title: Characterization of printable cellular micro-fluidic channels for tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/2/025004
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib82
  article-title: A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep13987
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib64
  article-title: Recent advances in 3D printing of biomaterials
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-015-0001-4
– volume: 61
  start-page: 203
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib37
  article-title: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.05.031
– volume: 31
  start-page: 7250
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib91
  article-title: Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.055
– year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib256
  article-title: Abstract 4828: recapitulating mammary ductal carcinoma microenvironment in vitro using sacrificial bioprinting
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib106
  article-title: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/3/035020
– volume: 20
  start-page: 473
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib137
  article-title: Design and fabrication of human skin by three-dimensional bioprinting
  publication-title: Tissue Eng. Part C Methods
– volume: 10
  start-page: 1568
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib41
  article-title: Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400635
– volume: 13
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib196
  article-title: Tyrosinase-doped bioink for 3D bioprinting of living skin constructs
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aaa5b6
– volume: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib179
  article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab19fd
– volume: 1
  start-page: 1250
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib209
  article-title: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model
  publication-title: Biomater. Sci.
  doi: 10.1039/c3bm60132c
– volume: 15
  start-page: 3923
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib219
  article-title: Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2008.0653
– volume: 3
  start-page: 134
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib131
  article-title: In vitro study of directly bioprinted perfusable vasculature conduits
  publication-title: Biomater. Sci.
  doi: 10.1039/C4BM00234B
– volume: 11
  start-page: 162
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib151
  article-title: A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.09.033
– volume: 14
  start-page: 268
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib71
  article-title: Light-assisted direct-write of 3D functional biomaterials
  publication-title: Lab Chip
  doi: 10.1039/C3LC50634G
– volume: 4
  start-page: 1168
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib133
  article-title: Characterization of cell viability during bioprinting processes
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200900004
– volume: 109
  start-page: 1855
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib138
  article-title: Skin tissue generation by laser cell printing
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24455
– start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib277
  article-title: Emerging business models toward commercialization of bioprinting technology
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib124
  article-title: Biofabrication and testing of a fully cellular nerve graft
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/4/045007
– volume: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib110
  article-title: Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa8dd8
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib87
  article-title: Recent advances in bioink design for 3D bioprinting of tissues and organs
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2017.00023
– volume: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib183
  article-title: Printable self-assembled peptide bio-inks: promising future applications in nanomedicine
  publication-title: Arch. Nanomedicine Open Access J.
  doi: 10.32474/ANOAJ.2018.01.000113
– volume: 223
  start-page: 645
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib237
  article-title: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2010.02.014
– volume: 6
  start-page: 1940
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib27
  article-title: Concise review: bioprinting of stem cells for transplantable tissue fabrication
  publication-title: Stem cells transl. Med.
  doi: 10.1002/sctm.17-0148
– volume: 113
  start-page: 1522
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib65
  article-title: Three-dimensional manipulation of single cells using surface acoustic waves
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1524813113
– volume: 15
  start-page: 1704
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib181
  article-title: Recent advances of self-assembling peptide-based hydrogels for biomedical applications
  publication-title: Soft Matter
  doi: 10.1039/C8SM02573H
– volume: 8
  start-page: 1940
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib76
  article-title: Three-dimensional cell culturing by magnetic levitation
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.125
– volume: 7
  start-page: 211
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119536_bib17
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1858
– volume: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib63
  article-title: Bioprinting of hybrid tissue constructs with tailorable mechanical properties
  publication-title: Biofabrication
– volume: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib255
  article-title: Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa6bad
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib215
  article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700015
– volume: 9
  start-page: 0
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib114
  article-title: Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa8cb7
– volume: 27
  start-page: 4034
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib167
  article-title: 3D printing: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201570182
– volume: 21
  start-page: 539
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib232
  article-title: Biodegradable polymers and stem cells for bioprinting
  publication-title: Molecules
  doi: 10.3390/molecules21050539
– volume: 99
  start-page: 582
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib240
  article-title: Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.02.008
– volume: 329
  start-page: 538
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib236
  article-title: Tissue-engineered lungs for in vivo implantation
  publication-title: Science
  doi: 10.1126/science.1189345
– volume: 9
  start-page: 1286
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib170
  article-title: An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering
  publication-title: J. Tissue Eng. Regenerat. Med.
  doi: 10.1002/term.1682
– volume: 92
  start-page: 67
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib229
  article-title: Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure
  publication-title: Ann. Surg. Treat. Res.
  doi: 10.4174/astr.2017.92.2.67
– volume: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib190
  article-title: 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/032001
– year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib217
  article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab0692
– volume: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib175
  article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab0631
– volume: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib4
  article-title: Towards artificial tissue models: past, present, and future of 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/1/014103
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib61
  article-title: Three-dimensional printing of biological matters
  publication-title: J. Sci. Adv. Mater. Devices.
  doi: 10.1016/j.jsamd.2016.04.001
– volume: 32
  start-page: 23
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119536_bib46
  article-title: Laser direct-write techniques for printing of complex materials
  publication-title: MRS Bull.
  doi: 10.1557/mrs2007.11
– start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib227
  article-title: Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases
  publication-title: BioMed Res. Int.
  doi: 10.1155/2017/8910821
– volume: 59
  start-page: 430
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib29
  article-title: Inkjet printing biomaterials for tissue engineering: bioprinting
  publication-title: Int. Mater. Rev.
  doi: 10.1179/1743280414Y.0000000040
– volume: 102
  start-page: 1537
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib81
  article-title: Magnetic-directed patterning of cell spheroids
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34797
– volume: 16
  start-page: 157
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib139
  article-title: Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2009.0179
– volume: 101 A
  start-page: 1255
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib119
  article-title: 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34420
– volume: 31
  start-page: 10
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib6
  article-title: Bioprinting for stem cell research
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2012.10.005
– volume: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib8
  article-title: Toward engineering functional organ modules by additive manufacturing
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/4/2/022001
– volume: 1900353
  start-page: 1900353
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib182
  article-title: Development of a self‐assembled peptide/methylcellulose‐based bioink for 3D bioprinting
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201900353
– volume: 6
  start-page: 204
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib250
  article-title: A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201000340
– volume: 347
  start-page: 701
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib252
  article-title: Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-011-1215-5
– volume: 4
  start-page: 0
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib79
  article-title: 3D bioprinting processes: a perspective on classification and terminology
  publication-title: Int. J. Bioprint.
– volume: 10
  start-page: 2062
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib69
  article-title: Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation
  publication-title: Lab Chip
  doi: 10.1039/c004285d
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib145
  article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
  publication-title: Biofabrication
– volume: 15
  start-page: 6919
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib186
  article-title: Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02859
– volume: 27
  start-page: 1607
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib166
  article-title: A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405076
– volume: 45
  start-page: 286
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib72
  article-title: Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1643-1
– volume: 78
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib261
  article-title: Abstract 5022: precision medicine: high-throughput 3D bioprinting of embedded multicellular cancer spheroids
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2018-5022
– volume: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib111
  article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa6265
– year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib188
– volume: 14
  start-page: 41
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119536_bib60
  article-title: Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.a.2007.0004
– volume: 52
  start-page: 71
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib257
  article-title: 3D printed tissue engineered model for bone invasion of oral cancer
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2018.03.009
– volume: 33
  start-page: 6020
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib22
  article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.050
– volume: 19
  start-page: 1304
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib274
  article-title: Three-dimensional print of a liver for preoperative planning in living donor liver transplantation, Liver Transplant
– volume: 4
  start-page: 120
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib184
  article-title: Self-assemble peptide biomaterials and their biomedical applications
  publication-title: Bioact. Mater
– year: 2001
  ident: 10.1016/j.biomaterials.2019.119536_bib56
– volume: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib104
  article-title: Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
  publication-title: Biofabrication
– volume: 4
  start-page: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib23
  article-title: Are animal models predictive for humans?
  publication-title: Philos. Ethics Humanit. Med.
  doi: 10.1186/1747-5341-4-2
– start-page: 910
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119536_bib30
– volume: 16
  start-page: 1749
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib163
  article-title: Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation
  publication-title: Tissue Eng. A
– year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib216
  article-title: A novel technique for tissue engineering periosteum using three- dimensional bioprinting presenter : Brandon Alba , BA Co-Authors : Pooja Swami , MS ; Neil Affiliation : Donald and barbara Zucker School of medicine at Hofstra/Northwell
  publication-title: Harnessing Mech
– volume: 18
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib83
  article-title: Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18040683
– volume: 21
  start-page: 740
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib100
  article-title: The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages
  publication-title: Tissue Eng. A
– volume: 29
  start-page: 193
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119536_bib43
  article-title: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.09.032
– volume: 9
  start-page: 19
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib98
  article-title: A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2018.02.003
– volume: 35
  start-page: 8810
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib144
  article-title: Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.002
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib222
  article-title: Handheld co-axial bioprinting: application to in situ surgical cartilage repair
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05699-x
– volume: 34
  start-page: 422
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib3
  article-title: 3D bioprinting for engineering complex tissues
– volume: 12
  start-page: 604
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib164
  article-title: Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/138620709788681907
– start-page: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib172
  article-title: A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs
  publication-title: Acta Biomater.
– volume: 7
  start-page: 631
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib208
  article-title: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
  publication-title: J. Tissue Eng. Regenerat. Med.
  doi: 10.1002/term.555
– volume: 62
  start-page: 164
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib108
  article-title: Biomimetic 3D tissue printing for soft tissue regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.05.043
– volume: 10
  start-page: 31
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib258
  article-title: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0015-8
– volume: 30
  start-page: 6221
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib40
  article-title: Human microvasculature fabrication using thermal inkjet printing technology
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.056
– volume: 368
  start-page: 2043
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib273
  article-title: Bioresorbable airway splint created with a three-dimensional printer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1206319
– volume: 4
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib187
  article-title: Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells
  publication-title: Int. J. Bioprint.
– volume: 33
  start-page: 1782
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib202
  article-title: Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.003
– volume: 30
  start-page: 9130
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib135
  article-title: Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink
  publication-title: Langmuir
  doi: 10.1021/la501430x
– volume: 35
  start-page: 5436
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib214
  article-title: Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.050
– volume: 68
  start-page: S55
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib263
  article-title: A novel differentiation system to produce hepatocytes for disease modelling and drug screening
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(18)30330-1
– volume: 7
  start-page: 35006
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib113
  article-title: Nanostructured pluronic hydrogels as bioinks for 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/3/035006
– volume: 67
  start-page: 264
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib149
  article-title: 3D printing of layered brain-like structures using peptide modified gellan gum substrates
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.07.022
– volume: 57
  start-page: 26
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib24
  article-title: 3D bioprinting for drug discovery and development in pharmaceutics
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.05.025
– volume: 9
  start-page: 1304
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib160
  article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400305
– volume: 10
  start-page: 630
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib161
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.016
– volume: 13
  start-page: 1473
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib272
  article-title: From ideas to long-term studies: 3D printing clinical trials review
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1793-8
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib132
  article-title: Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/4/045006
– volume: 190
  start-page: 103
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib180
  article-title: 3D cell bioprinting of self-assembling peptide-based hydrogels
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.12.127
– volume: 8
  start-page: 538
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119536_bib50
  article-title: Directed three-dimensional patterning of self-assembled peptide fibrils
  publication-title: Nano Lett.
  doi: 10.1021/nl072798r
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib126
  article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/3/035001
– volume: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib146
  article-title: Biomatrices and biomaterials for future developments of bioprinting and biofabrication
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/1/014110
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib150
  article-title: A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/3/035004
– year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib228
  article-title: Regenerative medicine in liver cirrhosis: promises and pitfalls
– volume: 10
  start-page: 630
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib59
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.016
– volume: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib194
  article-title: Direct 3D cell-printing of human skin with functional transwell system
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa71c8
– volume: 8
  start-page: 337
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib26
  article-title: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S38635
– volume: 7
  start-page: 4538
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib242
  article-title: Bioprinting schwann cell-laden scaffolds from low-viscosity hydrogel compositions
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C9TB00669A
– volume: 11
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib97
  article-title: A definition of bioinks and their distinction from biomaterial inks
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aaec52
– volume: 71
  start-page: 48
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib238
  article-title: 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.028
– year: 1994
  ident: 10.1016/j.biomaterials.2019.119536_bib35
– volume: 7
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib125
  article-title: The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/4/045002
– volume: 21
  start-page: 123
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib128
  article-title: An electrohydrodynamic bioprinter for alginate hydrogels containing living cells
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2014.0149
– start-page: 209
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib259
– volume: 102
  start-page: 20
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib90
  article-title: A comprehensive review on droplet-based bioprinting: past, present and future
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.012
– volume: 19
  start-page: 665
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib77
  article-title: Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2012.0157
– volume: 2
  start-page: 2282
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib15
  article-title: Development and characterisation of a new bioink for additive tissue manufacturing
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/c3tb21280g
– volume: 16
  start-page: 927
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib235
  article-title: Regeneration and orthotopic transplantation of a bioartificial lung
  publication-title: Nat. Med.
  doi: 10.1038/nm.2193
– volume: 1
  start-page: 165
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib89
  article-title: Bioprinting: uncovering the utility layer-by-layer
  publication-title: J. 3D Print. Med.
  doi: 10.2217/3dp-2017-0006
– volume: 1900344
  start-page: 1900344
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib204
  article-title: 3D printing of personalized thick and perfusable cardiac patches and hearts
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900344
– volume: 102
  start-page: 4317
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib212
  article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
  publication-title: J. Biomed. Mater. Res. A
– volume: 10
  start-page: 4323
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib136
  article-title: Engineering alginate as bioink for bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.06.034
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib197
  article-title: In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38366-w
– volume: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib165
  article-title: Quantitative criteria to benchmark new and existing bio-inks for cell compatibility
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa869f
– volume: 22
  start-page: 7
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib226
  article-title: A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016
  publication-title: Clin. Mol. Hepatol.
  doi: 10.3350/cmh.2016.22.1.7
– volume: 2
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib193
  article-title: Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering
  publication-title: Int. J. Bioprint.
– volume: 8
  start-page: 0
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib221
  article-title: Development of the biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site
  publication-title: Biofabrication
– volume: 31
  start-page: 6173
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib168
  article-title: Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.045
– volume: 77
  start-page: 389
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib176
  article-title: Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.09.031
– volume: 2
  issue: 3B’09
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib10
  article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux
  publication-title: Biofabrication
– volume: 26
  start-page: 93
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119536_bib38
  article-title: Inkjet printing of viable mammalian cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.04.011
– volume: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib14
  article-title: Engineering complex tissues
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004890
– volume: 136
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib13
  article-title: A current state-of-the-art review
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028512
– year: 1994
  ident: 10.1016/j.biomaterials.2019.119536_bib34
– volume: 32
  start-page: 744
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib207
  article-title: Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.09.035
– volume: 7
  start-page: 1139
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119536_bib68
  article-title: Single cell epitaxy by acoustic picolitre droplets
  publication-title: Lab Chip
  doi: 10.1039/b704965j
– volume: 75
  start-page: 414
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119536_bib70
  article-title: Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.30325
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib143
  article-title: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/4/045002
– volume: 7
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib244
  article-title: Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/3/031002
– volume: 328
  start-page: 1662
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib234
  article-title: Reconstituting organ-level lung functions on a chip
  publication-title: Science
  doi: 10.1126/science.1188302
– volume: 58
  start-page: 411
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib66
  article-title: Three-dimensional bio-printing
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-015-4850-3
– volume: 376
  start-page: 440
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib220
  article-title: Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60668-X
– volume: 106
  start-page: 963
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib39
  article-title: Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22762
– year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib233
– volume: 4
  start-page: P3044
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib32
  article-title: Printed oxide thin film transistors: a mini review
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0071504jss
– volume: 110
  start-page: 45
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib199
  article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.003
– volume: 41
  start-page: 31
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib19
  article-title: Bioprinting for neural tissue engineering
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.11.001
– volume: 10
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib112
  article-title: Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing
  publication-title: Materials
  doi: 10.3390/ma10020190
– volume: 266
  start-page: 48
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib270
  article-title: Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000002141
– volume: 15
  start-page: 957
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119536_bib67
  article-title: Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2006.878879
– volume: 25
  start-page: 5011
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib5
  article-title: 25th Anniversary article: engineering hydrogels for biofabrication
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302042
– volume: 14
  start-page: 271
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib18
  article-title: Recent advances in bioprinting techniques: approaches, applications and future prospects
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-1028-0
– volume: 30
  start-page: 1587
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119536_bib191
  article-title: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.009
– volume: 33
  start-page: 395
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib9
  article-title: Bioprinting scale-up tissue and organ constructs for transplantation
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2015.04.005
– volume: 6
  start-page: 2494
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib109
  article-title: High-throughput laser printing of cells and biomaterials for tissue engineering
  publication-title: Acta Biomater.
– volume: 33
  start-page: 3824
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib73
  article-title: Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.048
– start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib52
– volume: 61
  start-page: 41
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib142
  article-title: The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.08.005
– volume: 2
  start-page: 2133
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib80
  article-title: In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00614
– volume: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib247
  article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/3/034112
– volume: 34
  start-page: 312
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib269
  article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3413
– volume: 238
  start-page: 231
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib245
  article-title: A 3D-printed local drug delivery patch for pancreatic cancer growth suppression
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.06.015
– volume: 30
  start-page: 4695
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib118
  article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.050
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib173
  article-title: Composite PLA/PEG/nHA/Dexamethasone scaffold prepared by 3D printing for bone regeneration
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201800068
– volume: 35
  start-page: 4026
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib213
  article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.064
– volume: 16
  start-page: 847
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib192
  article-title: Laser printing of skin cells and human stem cells
  publication-title: Tissue Eng. C Methods
– year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib246
– volume: 36
  start-page: 1015
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib11
  article-title: Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.272
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib123
  article-title: Biofabrication of multi-material anatomically shaped tissue constructs
  publication-title: Biofabrication
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib174
  article-title: 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2017.12.001
– volume: 6
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib148
  article-title: Living bacterial sacrificial porogens to engineer decellularized porous scaffolds
  publication-title: PLoS One
– volume: 5
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib158
  article-title: Engineering an in vitro air-blood barrier by 3D bioprinting
  publication-title: Sci. Rep.
  doi: 10.1038/srep07974
– year: 1997
  ident: 10.1016/j.biomaterials.2019.119536_bib36
– volume: 10
  start-page: 1836
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib154
  article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.12.005
– volume: 17
  start-page: 973
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib147
  article-title: Laser printing of three-dimensional multicellular arrays for studies of cell–cell and cell–environment interactions
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2011.0185
– volume: 21
  start-page: 1257
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib93
  article-title: Application areas of 3D bioprinting
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.04.006
– volume: 72
  start-page: 232
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib177
  article-title: Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.12.023
– volume: 35
  start-page: 49
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib86
  article-title: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
  publication-title: Biomaterials
– volume: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib248
  article-title: Tissue engineering by self-assembly and bio-printing of living cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/2/022001
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib251
  article-title: Three-dimensional printing of hela cells for cervical tumor model in vitro
  publication-title: Biofabrication
– volume: 5
  start-page: 233
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib1
  article-title: Skeletal muscle regenerative engineering
  publication-title: Regen. Eng. Transl. Med.
  doi: 10.1007/s40883-019-00102-9
– volume: 1801501
  start-page: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib225
  article-title: Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering
  publication-title: Adv. Healthc. Mater.
– volume: 27
  start-page: 7847
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib264
  article-title: Printing tablets with fully customizable release profiles for personalized medicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504122
– volume: 3
  start-page: 3433
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib117
  article-title: Hydrogel modulus affects proliferation rate and pluripotency of human mesenchymal stem cells grown in three-dimensional culture
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00266
– volume: 9
  start-page: 9137
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib210
  article-title: SiO2and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.07.009
– volume: 784
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119536_bib45
  article-title: Selective cell delivery for 3D tissue culture and engineering
  publication-title: Eur. Cells Mater.
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib155
  article-title: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4935
– volume: 2
  start-page: 374
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib105
  article-title: Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs
  publication-title: Bioresour. Open Access
  doi: 10.1089/biores.2013.0031
– volume: 7
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib275
  article-title: Clinical efficacy and effectiveness of 3D printing: a systematic review
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-016891
– year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib243
– volume: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib92
  article-title: Bioink properties before, during and after 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1007/978-3-319-40498-1
– volume: 845
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119536_bib44
  article-title: Ink Jet printing of mammalian primary cells for tissue engineering applications
  publication-title: MRS Proc
  doi: 10.1557/PROC-845-AA2.8
– year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib85
  article-title: Automating a magnetic 3D spheroid model technology for high-throughput screening
  publication-title: SLAS Technol.
  doi: 10.1177/2472630319854337
– volume: 184
  start-page: 58
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib157
  article-title: Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.04.007
– volume: 6
  start-page: 5671
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib205
  article-title: Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C8TB01344F
– volume: 13
  start-page: 551
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib153
  article-title: Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201200471
– volume: 16
  start-page: 2675
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib152
  article-title: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2009.0798
– volume: 7
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib230
  article-title: Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D
  publication-title: Biofabrication
– volume: 6
  start-page: 139
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119536_bib51
  article-title: Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns
  publication-title: Biomed. Microdevices
  doi: 10.1023/B:BMMD.0000031751.67267.9f
– year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib262
  article-title: Abstract 5018: bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel
– volume: 12
  start-page: 611
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib223
  article-title: In situ handheld three-dimensional bioprinting for cartilage regeneration
  publication-title: J. Tissue Eng. Regenerat. Med.
  doi: 10.1002/term.2476
– volume: 17
  start-page: 2473
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib116
  article-title: Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2011.0001
– volume: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119536_bib129
  article-title: Alginate gelation-induced cell death during laser-assisted cell printing
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/3/035022
– volume: 25
  start-page: 24
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib156
  article-title: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.07.030
– volume: 9
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib62
  article-title: Recent advances in biomaterials for 3D printing and tissue engineering
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb9010022
– volume: 6
  start-page: 915
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib95
  article-title: Bioinks for 3D bioprinting: an overview
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00765E
– volume: 7
  start-page: 1179
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib169
  article-title: Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01286E
– volume: 109
  start-page: 3152
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib25
  article-title: Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24591
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib122
  article-title: Mechanical characterization of bioprinted in vitro soft tissue models
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/4/045010
– volume: 60
  start-page: 691
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib16
  article-title: Bioprinting toward organ fabrication: challenges and future trends
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2243912
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119536_bib203
  article-title: A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31848-x
– volume: 37
  start-page: 1079
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119536_bib20
  article-title: Additive manufacturing of tissues and organs
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.11.007
– volume: 42
  start-page: 49
  year: 1998
  ident: 10.1016/j.biomaterials.2019.119536_bib33
  article-title: Progress and trends in ink-jet printing technology
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.1998.42.1.art00007
– volume: 7
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib74
  article-title: A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks
  publication-title: Biofabrication
– volume: 40
  start-page: 145
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib206
  article-title: 3D printing for regenerative medicine: from bench to bedside
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2015.5
– volume: 3
  start-page: 701
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119536_bib57
  article-title: Printing technology to produce living tissue
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.3.5.701
– volume: 7
  start-page: 1123
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119536_bib276
  article-title: Tissue engineering with the aid of inkjet printers
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.7.8.1123
– volume: 10
  start-page: 205
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib279
  article-title: Developments in 4D-printing: a review on current smart materials, technologies, and applications
  publication-title: Int. J. Smart Nano Mater.
  doi: 10.1080/19475411.2019.1591541
– volume: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119536_bib162
  article-title: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/2/025001
– volume: 60
  start-page: 1538
  year: 1986
  ident: 10.1016/j.biomaterials.2019.119536_bib47
  article-title: Metal deposition from a supported metal film using an excimer laser
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.337287
– volume: 4
  start-page: 1359
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib140
  article-title: A new approach for fabricating collagen/ecm-based bioinks using preosteoblasts and human adipose stem cells
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500193
– volume: 40
  start-page: 395
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119536_bib31
  article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104502
– volume: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib121
  article-title: Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057741
– volume: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib120
  article-title: Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid
  publication-title: Biofabrication
– volume: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119536_bib200
  article-title: Fabrication and characterization of bio-engineered cardiac pseudo tissues
  publication-title: Biofabrication
– volume: 2
  start-page: 448
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119536_bib134
  article-title: Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system
  publication-title: Bioresour. Open Access
  doi: 10.1089/biores.2013.0046
– volume: 11
  start-page: 233
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119536_bib141
  article-title: Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.09.023
– volume: 179
  start-page: 121
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119536_bib178
  article-title: Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.03.063
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119536_bib195
  article-title: A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization
  publication-title: Sci. Rep.
– volume: 8
  start-page: 15007
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119536_bib231
  article-title: Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/1/015007
SSID ssj0014042
Score 2.7232094
SecondaryResourceType review_article
Snippet Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119536
SubjectTerms allografting
artificial skin
Artificial tissues
biofabrication
Bioinks
Bioprinting
cartilage
drug evaluation
extracellular matrix
high-throughput screening methods
liver
lungs
medicine
neoplasms
organ-on-a-chip
physics
Printing, Three-Dimensional
Regenerative engineering
Regenerative Medicine
screening
stem cells
Technology
Three-dimensional
Tissue Engineering
Tissue Scaffolds
Title Progress in 3D bioprinting technology for tissue/organ regenerative engineering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219306350
https://dx.doi.org/10.1016/j.biomaterials.2019.119536
https://www.ncbi.nlm.nih.gov/pubmed/31648135
https://www.proquest.com/docview/2309493787
https://www.proquest.com/docview/2388787141
Volume 226
WOSCitedRecordID wos000498330900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBggeEJSv8jEFCfFSZUsax46FeKhYB4Ou20Mn5S2KHQcyQVqaFo3_nrOduEFQFB54iaokVye-X3zn8_l-CL0kUtVgyRVpRp65OPSFy3KSw5wHjGnoZTw3RVwndDqN4pid13z3laYToGUZXV2xxX9VNZwDZauts_-gbvuncAJ-g9LhCGqHYyfFn6uMKzV-FeUgOBrwYq5id4YPwsbRTXah7nRoSVM7DZbyk65BrZOJ5KZO4S_rvsUcXFzzGptg9spwWp9Un4uVHeY_pmuNhndrGI3UFhobzJE_ZFaBYdJ8woPR18JeOhVqRbnhuYb2qzpcXcclhl4rLtGEKocuIyZJ-reB2sQMLg9467FVoh07UDXogj9Ux56eJccXk0kyG8ezV4tvriIOUwvsNYvKDtob0pDBwLY3OhnHH-xSEvY0g5J9nKbyrE7y29b8Ni9l2yxEeyOzu-hOPY1wRkb999A1WfbQ7VZxyR66eVqnTfTQDZ3nK6r76KxBh1OUTnDktNDhbNDhADocg45DjQ2njQ2nhY0H6OJ4PHv73q05NVwBpm0Fxi9lUlAceZLREL5fX9KUYpJzHgaC4JTwIcvB7YNpLvV5wHMpwIcmjKRhKHkePES75byUj5FDBQ-5qiqbUYzTzI8iQlX0QPpEbV_O-og1fZiIuuC84j35kjSZhZdJu_8T1f-J6f8-CqzswpRd6ST1ulFV0mwsBlOYAOg6Sb-x0rX7adzKzvIvGnQkMEarhbe0lPM13BR4DMM8IKJ_uwfMfUR97PfRIwMt--aBT3DkB-GTDtJP0a3N1_gM7a6Wa_kcXRffATXLfbRD42i__kR-AllKzPM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+3D+bioprinting+technology+for+tissue%2Forgan+regenerative+engineering&rft.jtitle=Biomaterials&rft.au=Matai%2C+Ishita&rft.au=Kaur%2C+Gurvinder&rft.au=Seyedsalehi%2C+Amir&rft.au=McClinton%2C+Aneesah&rft.date=2020-01-01&rft.issn=0142-9612&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon