Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing

Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomaterials Ročník 249; s. 120020
Hlavní autori: Shiekh, Parvaiz A., Singh, Anamika, Kumar, Ashok
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier Ltd 01.08.2020
Predmet:
ISSN:0142-9612, 1878-5905, 1878-5905
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers.
AbstractList Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers.
Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers.Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers.
ArticleNumber 120020
Author Singh, Anamika
Shiekh, Parvaiz A.
Kumar, Ashok
Author_xml – sequence: 1
  givenname: Parvaiz A.
  surname: Shiekh
  fullname: Shiekh, Parvaiz A.
  organization: Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
– sequence: 2
  givenname: Anamika
  surname: Singh
  fullname: Singh, Anamika
  organization: Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
– sequence: 3
  givenname: Ashok
  surname: Kumar
  fullname: Kumar, Ashok
  email: ashokkum@iitk.ac.in
  organization: Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32305816$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9uEzEQxi1URNPCK6AVJy4b_Ge9WXOClhaQKuUCZ8s7ng0OzrrYmzZ5Bl667m5AqBdyGlvzfT-P5zsjJ33okZA3jM4ZZfW79bx1YWMGjM74NOeU5wanuTwjM9YsmlIqKk_IjLKKl6pm_JScpbSm-U4r_oKcCi6obFg9I7-vdiGFDRbeWOyLsNuvcono0STXrwrTDy7snM01n-14bw1MbxcQ92GFvrgP29yzEdNoWu6WF6PYe7xzedDCOtPi4GBkuL5DyNhtOhh_oPHZ95I87_KH8NWhnpPv11ffLr-UN8vPXy8_3pQgRTOUCwlN1wKKuqMguYWGMdU2CoWQUtWgWipb4Nwy6GqoqOxgobgwVduJSsFCnJO3E_c2hl9bTIPeuATovekxD6W55BXnVKrq_1KheFWLepS-Pki37Qatvo1uY-Je_9l1FryfBBBDShG7vxJG9WOweq3_DVY_BqunYLP5wxMzuMHkJfZDNM4fh_g0ITDv9s5h1Akc9oDWxZyHtsEdh7l4goEcngPjf-L-WMgDzCnhpA
CitedBy_id crossref_primary_10_1002_jbm_a_37394
crossref_primary_10_1007_s10856_023_06746_y
crossref_primary_10_3389_fphar_2023_1063458
crossref_primary_10_1002_smll_202305076
crossref_primary_10_1016_j_lfs_2025_123850
crossref_primary_10_1002_advs_202105152
crossref_primary_10_1016_j_jconrel_2025_114058
crossref_primary_10_1002_adhm_202401345
crossref_primary_10_1016_j_mvr_2025_104861
crossref_primary_10_3389_fendo_2021_646233
crossref_primary_10_1016_j_cej_2024_149908
crossref_primary_10_1016_j_compositesb_2023_110900
crossref_primary_10_1039_D2NR04171E
crossref_primary_10_1111_prd_12561
crossref_primary_10_1016_j_bioactmat_2024_05_008
crossref_primary_10_1016_j_cej_2024_153299
crossref_primary_10_4239_wjd_v14_i11_1585
crossref_primary_10_3389_fbioe_2023_1241660
crossref_primary_10_1016_j_ijbiomac_2023_128031
crossref_primary_10_1186_s40779_023_00472_w
crossref_primary_10_3389_fendo_2024_1375632
crossref_primary_10_1002_cbf_3793
crossref_primary_10_1016_j_mtbio_2025_102046
crossref_primary_10_3390_life11101016
crossref_primary_10_1016_j_cej_2021_130219
crossref_primary_10_1080_10717544_2021_2021319
crossref_primary_10_1016_j_mad_2025_112078
crossref_primary_10_1080_07853890_2025_2543517
crossref_primary_10_1186_s12951_021_01208_5
crossref_primary_10_1016_j_jconrel_2022_08_053
crossref_primary_10_1089_wound_2021_0066
crossref_primary_10_1007_s12015_020_10014_9
crossref_primary_10_1016_j_ijbiomac_2024_138215
crossref_primary_10_2147_DMSO_S532885
crossref_primary_10_1093_pcmedi_pbae004
crossref_primary_10_1016_j_ijbiomac_2023_123357
crossref_primary_10_1016_j_ijbiomac_2025_141005
crossref_primary_10_1002_VIW_20230110
crossref_primary_10_1016_j_ijbiomac_2022_01_080
crossref_primary_10_2217_rme_2023_0098
crossref_primary_10_1016_j_ijbiomac_2024_129739
crossref_primary_10_1016_j_cej_2023_143987
crossref_primary_10_1186_s13287_024_03928_5
crossref_primary_10_1016_j_cyto_2023_156481
crossref_primary_10_1093_burnst_tkac037
crossref_primary_10_1007_s00109_023_02357_w
crossref_primary_10_3390_pharmaceutics15010021
crossref_primary_10_1002_adhm_202201900
crossref_primary_10_1186_s12951_021_00894_5
crossref_primary_10_3389_fbioe_2022_1083640
crossref_primary_10_1016_j_actbio_2025_07_065
crossref_primary_10_1016_j_actbio_2022_09_077
crossref_primary_10_1016_j_ijbiomac_2024_139090
crossref_primary_10_1186_s12951_022_01352_6
crossref_primary_10_1016_j_jconrel_2024_05_048
crossref_primary_10_1016_j_biomaterials_2025_123411
crossref_primary_10_1016_j_actbio_2022_05_009
crossref_primary_10_1016_j_biopha_2023_115206
crossref_primary_10_1186_s12951_023_02214_5
crossref_primary_10_1093_burnst_tkac028
crossref_primary_10_1016_j_colsurfa_2024_133482
crossref_primary_10_1016_j_dib_2020_105671
crossref_primary_10_1016_j_cej_2025_161989
crossref_primary_10_2217_nnm_2023_0090
crossref_primary_10_1016_j_nanoen_2023_108628
crossref_primary_10_1016_S1875_5364_24_60637_0
crossref_primary_10_3390_polym15214301
crossref_primary_10_1016_j_bioactmat_2023_11_009
crossref_primary_10_1016_j_mtbio_2025_102276
crossref_primary_10_1002_mabi_202300363
crossref_primary_10_1038_s41401_023_01193_5
crossref_primary_10_1093_burnst_tkae078
crossref_primary_10_1002_smll_202200895
crossref_primary_10_1002_smsc_202300138
crossref_primary_10_1016_j_jid_2023_02_019
crossref_primary_10_1016_j_bbrc_2023_05_081
crossref_primary_10_3390_app142311200
crossref_primary_10_1002_adhm_202405190
crossref_primary_10_1097_PRS_0000000000009212
crossref_primary_10_1016_j_phrs_2021_105490
crossref_primary_10_3390_molecules28031110
crossref_primary_10_2147_IJN_S276001
crossref_primary_10_3389_fimmu_2023_1214757
crossref_primary_10_3390_ijms24044104
crossref_primary_10_1016_j_ijpharm_2021_120698
crossref_primary_10_1039_D4BM00355A
crossref_primary_10_32604_biocell_2022_019448
crossref_primary_10_1093_rb_rbaa059
crossref_primary_10_1016_j_compositesb_2022_110438
crossref_primary_10_1016_j_jconrel_2023_06_010
crossref_primary_10_1016_j_tibtech_2021_01_007
crossref_primary_10_3390_antiox12061146
crossref_primary_10_1002_adhm_202300456
crossref_primary_10_1016_j_cej_2021_132664
crossref_primary_10_1016_j_ijbiomac_2025_139809
crossref_primary_10_1186_s12951_025_03558_w
crossref_primary_10_1016_j_bioadv_2024_213937
crossref_primary_10_1016_j_matdes_2022_111120
crossref_primary_10_1002_smll_202104229
crossref_primary_10_1016_j_bioactmat_2022_01_041
crossref_primary_10_1039_D2BM00161F
crossref_primary_10_3389_fmed_2022_858824
crossref_primary_10_1016_j_bioactmat_2021_02_007
crossref_primary_10_1016_j_bioactmat_2021_02_006
crossref_primary_10_1016_j_ijbiomac_2023_128766
crossref_primary_10_1186_s13287_021_02288_8
crossref_primary_10_1007_s10876_021_02131_3
crossref_primary_10_1016_j_jbiosc_2023_11_001
crossref_primary_10_3390_pharmaceutics15010068
crossref_primary_10_1016_j_actbio_2020_11_001
crossref_primary_10_1016_j_ijbiomac_2022_08_149
crossref_primary_10_2147_IJN_S435106
crossref_primary_10_3390_gels9090761
crossref_primary_10_1002_admt_202500362
crossref_primary_10_1016_j_ijbiomac_2024_135381
crossref_primary_10_3390_biomedicines11082099
crossref_primary_10_1038_s41368_023_00274_9
crossref_primary_10_1016_j_cej_2021_131800
crossref_primary_10_1016_j_compositesb_2022_109804
crossref_primary_10_1016_j_jddst_2024_105665
crossref_primary_10_2147_IJN_S382796
crossref_primary_10_1016_j_actbio_2020_11_004
crossref_primary_10_1016_j_compositesb_2022_109921
crossref_primary_10_1002_adhm_202501044
crossref_primary_10_1002_adhm_202400884
crossref_primary_10_1016_j_cej_2023_143016
crossref_primary_10_1089_ars_2021_0134
crossref_primary_10_3390_cells12071018
crossref_primary_10_1016_j_tice_2025_103068
crossref_primary_10_1016_j_heliyon_2023_e22520
crossref_primary_10_2147_IJN_S506456
crossref_primary_10_1016_j_bioactmat_2023_02_031
crossref_primary_10_1016_j_mtbio_2025_101780
crossref_primary_10_1186_s12951_024_02315_9
crossref_primary_10_1002_sstr_202300151
crossref_primary_10_1186_s40364_025_00801_2
crossref_primary_10_3389_fbioe_2023_1304835
crossref_primary_10_1038_s41467_024_44968_y
crossref_primary_10_3390_ijms21228790
crossref_primary_10_1111_ijd_17903
crossref_primary_10_1093_burnst_tkae030
crossref_primary_10_3389_fendo_2022_882469
crossref_primary_10_1016_j_cej_2021_131017
crossref_primary_10_1002_mabi_202300166
crossref_primary_10_1002_btm2_10598
crossref_primary_10_1093_rb_rbad114
crossref_primary_10_1016_j_ijbiomac_2024_138199
crossref_primary_10_3389_fbioe_2022_1060026
crossref_primary_10_1016_j_biomaterials_2025_123140
crossref_primary_10_1016_j_cej_2022_137880
crossref_primary_10_1002_advs_202304243
crossref_primary_10_1016_j_ijbiomac_2024_136686
crossref_primary_10_1089_ten_teb_2022_0118
crossref_primary_10_3389_fchem_2022_1038839
crossref_primary_10_1016_j_carbpol_2023_120823
crossref_primary_10_1016_j_procbio_2023_10_001
crossref_primary_10_1016_j_biomaterials_2022_121597
crossref_primary_10_1007_s40204_022_00202_w
crossref_primary_10_1186_s13287_022_02824_0
crossref_primary_10_3390_gels8060328
crossref_primary_10_1007_s12015_024_10753_z
crossref_primary_10_1016_j_matdes_2022_110478
crossref_primary_10_1016_j_matdes_2025_113929
crossref_primary_10_2147_IJN_S466034
crossref_primary_10_1038_s41467_024_47696_5
crossref_primary_10_1016_j_biopha_2023_116035
crossref_primary_10_1016_j_ijbiomac_2025_139694
crossref_primary_10_1021_acsbiomaterials_4c02346
crossref_primary_10_1186_s12951_025_03621_6
crossref_primary_10_1093_burnst_tkae025
crossref_primary_10_2147_IJN_S411562
crossref_primary_10_1016_j_ijbiomac_2025_139698
crossref_primary_10_3389_fimmu_2023_1238789
crossref_primary_10_1016_j_ijbiomac_2022_06_196
crossref_primary_10_3390_bioengineering11080804
crossref_primary_10_1016_j_ijpharm_2024_124637
crossref_primary_10_3389_fendo_2021_727272
crossref_primary_10_3389_fendo_2021_780974
crossref_primary_10_1016_j_ijbiomac_2025_141525
crossref_primary_10_1155_2022_7695078
crossref_primary_10_3390_antiox14070785
crossref_primary_10_3389_fbioe_2022_940896
crossref_primary_10_1016_j_biomaterials_2024_122558
crossref_primary_10_1002_adhm_202501456
crossref_primary_10_1016_j_carbpol_2024_123036
crossref_primary_10_1016_j_biopha_2023_115297
crossref_primary_10_1186_s12951_021_01215_6
crossref_primary_10_1016_j_apsb_2022_06_012
crossref_primary_10_1016_j_jmst_2021_12_054
crossref_primary_10_3390_biom11050702
crossref_primary_10_1016_j_bioadv_2022_213096
crossref_primary_10_1016_j_cej_2021_132490
crossref_primary_10_1016_j_cej_2022_138076
crossref_primary_10_1016_j_jep_2024_119175
crossref_primary_10_1016_j_biomaterials_2021_121056
crossref_primary_10_1016_j_bioactmat_2021_01_008
crossref_primary_10_3389_fendo_2023_1146991
crossref_primary_10_1016_j_cej_2023_146174
crossref_primary_10_1007_s12274_022_4792_6
crossref_primary_10_3390_app13042702
crossref_primary_10_3390_ijms22063130
crossref_primary_10_5021_ad_2021_33_4_309
crossref_primary_10_1021_acsabm_5c00278
crossref_primary_10_1093_asj_sjaf104
crossref_primary_10_1002_app_54641
crossref_primary_10_1002_smll_202309485
crossref_primary_10_1016_j_drudis_2023_103673
crossref_primary_10_3389_fimmu_2021_771551
crossref_primary_10_1016_j_ijbiomac_2024_135324
crossref_primary_10_1002_adtp_202300387
crossref_primary_10_1002_advs_202203308
crossref_primary_10_1016_j_bbrc_2023_149343
crossref_primary_10_3389_fbioe_2023_1239183
crossref_primary_10_1016_j_ijbiomac_2024_138712
crossref_primary_10_1016_j_apmt_2022_101586
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_1016_j_bioactmat_2024_11_026
crossref_primary_10_1016_j_jconrel_2020_09_039
crossref_primary_10_1002_pat_70244
crossref_primary_10_1016_j_nantod_2021_101290
crossref_primary_10_1016_j_cclet_2024_110661
crossref_primary_10_1016_j_jddst_2022_103534
crossref_primary_10_3389_fbioe_2022_1043320
crossref_primary_10_1186_s40580_024_00430_9
crossref_primary_10_3389_fimmu_2023_1256687
crossref_primary_10_1039_D1BM00896J
crossref_primary_10_1016_j_ijbiomac_2020_08_056
crossref_primary_10_1016_j_mtbio_2025_102005
crossref_primary_10_1186_s13287_022_02849_5
crossref_primary_10_3390_biomedicines13071687
crossref_primary_10_1007_s10853_024_10240_3
crossref_primary_10_1007_s10924_021_02175_6
crossref_primary_10_1007_s42765_025_00604_y
crossref_primary_10_1016_j_ijbiomac_2023_125081
crossref_primary_10_1080_1061186X_2022_2092624
crossref_primary_10_1016_j_ijbiomac_2023_126174
crossref_primary_10_1002_advs_202304048
crossref_primary_10_1002_adma_202212300
crossref_primary_10_1007_s12015_023_10540_2
crossref_primary_10_1016_j_bioadv_2022_212979
crossref_primary_10_1016_j_ijbiomac_2025_143471
crossref_primary_10_3390_gels9050381
crossref_primary_10_1002_jbm_b_35552
crossref_primary_10_1002_adhm_202400101
crossref_primary_10_1515_polyeng_2023_0148
crossref_primary_10_1016_j_actbio_2024_12_044
crossref_primary_10_1038_s41467_024_48841_w
crossref_primary_10_2147_IJN_S502591
crossref_primary_10_3389_fbioe_2023_1077490
crossref_primary_10_1007_s10989_020_10152_1
crossref_primary_10_1002_adhm_202403734
crossref_primary_10_1039_D2BM00861K
crossref_primary_10_2147_IJN_S372211
crossref_primary_10_1002_adfm_202305992
crossref_primary_10_1155_2023_9517826
crossref_primary_10_3389_fcell_2021_736022
crossref_primary_10_2147_CCID_S446676
crossref_primary_10_1016_j_eurpolymj_2025_113980
crossref_primary_10_1016_j_omtn_2023_05_002
crossref_primary_10_1016_j_ijbiomac_2022_04_210
crossref_primary_10_1093_burnst_tkad040
crossref_primary_10_3390_molecules26206110
crossref_primary_10_1016_j_ijbiomac_2023_128801
crossref_primary_10_1016_j_ijbiomac_2022_04_216
crossref_primary_10_1186_s12951_024_02478_5
crossref_primary_10_1016_j_jddst_2024_106593
crossref_primary_10_1093_burnst_tkae017
crossref_primary_10_2147_IJN_S395438
crossref_primary_10_1016_j_ijbiomac_2024_132384
crossref_primary_10_1007_s00289_025_05753_z
crossref_primary_10_1016_j_ijpharm_2023_123110
crossref_primary_10_1093_rb_rbae035
crossref_primary_10_3389_fmicb_2021_804813
crossref_primary_10_1016_j_ijbiomac_2023_123944
crossref_primary_10_1002_adma_202107406
crossref_primary_10_1016_j_scib_2024_10_024
crossref_primary_10_1002_adfm_202100093
crossref_primary_10_1016_j_jconrel_2023_03_013
crossref_primary_10_1016_j_ijbiomac_2024_132935
crossref_primary_10_1016_j_bioactmat_2025_08_040
crossref_primary_10_3390_pharmaceutics15030857
crossref_primary_10_1016_j_cej_2023_141359
crossref_primary_10_2147_DDDT_S543233
crossref_primary_10_3389_fendo_2022_902130
crossref_primary_10_1186_s12951_023_02277_4
crossref_primary_10_1002_adhm_202301370
crossref_primary_10_1016_j_nantod_2025_102739
crossref_primary_10_1186_s40824_023_00379_6
crossref_primary_10_3389_fphys_2022_1030851
crossref_primary_10_1016_j_bioactmat_2022_07_022
crossref_primary_10_1016_j_eurpolymj_2020_110234
crossref_primary_10_1039_D1NR04687J
crossref_primary_10_3389_fmicb_2025_1550276
crossref_primary_10_1097_PRS_0000000000009840
crossref_primary_10_1016_j_addr_2022_114670
crossref_primary_10_1002_jbt_23407
Cites_doi 10.1016/j.jvs.2018.01.065
10.1021/acsnano.9b00376
10.1002/stem.1076
10.1073/pnas.1612277113
10.1089/wound.2011.0319
10.1002/jcp.24304
10.1046/j.0022-202x.2001.01624.x
10.1046/j.1524-475X.2003.11105.x
10.1021/acsami.8b01736
10.1016/j.jss.2017.04.032
10.1016/j.jconrel.2016.07.043
10.1111/j.1582-4934.2008.00321.x
10.1038/s12276-018-0058-5
10.1111/j.1749-6632.2002.tb02920.x
10.2337/diabetes.50.7.1627
10.1111/j.1524-475X.2008.00436.x
10.2337/db12-1714
10.4239/wjd.v2.i2.24
10.1001/archsurg.135.11.1293
10.2147/CCID.S50046
10.1038/srep32993
10.1016/S0140-6736(05)67700-8
10.1002/adma.201504009
10.1007/s00268-003-7398-5
10.5966/sctm.2012-0041
10.1186/1471-2482-8-5
10.1242/dmm.016782
10.1152/ajpcell.00120.2018
10.2337/diacare.26.6.1856
10.1016/S0142-9612(03)00220-5
10.1111/j.1464-5491.2011.03279.x
10.1046/j.1524-475X.2003.11304.x
10.1161/CIRCRESAHA.110.223545
10.1016/j.phrs.2008.06.004
10.1016/j.dib.2020.105671
10.1046/j.1524-475X.1999.00335.x
10.1001/archsurg.135.10.1148
10.1021/acsami.7b14777
10.5966/sctm.2011-0024
10.1517/14656566.2015.1021780
10.1016/j.mex.2015.08.002
10.1371/journal.pone.0108182
10.1089/wound.2013.0485
10.1097/01.sap.0000198731.12407.0c
10.3892/mmr.2012.746
10.1016/j.diabres.2017.03.024
10.7717/peerj.2389
10.1073/pnas.0805230105
10.1089/ten.tea.2013.0024
10.1046/j.1524-475X.1996.40209.x
10.1016/S0002-9440(10)63754-6
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2020.120020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 32305816
10_1016_j_biomaterials_2020_120020
S0142961220302660
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c538t-75c8fbce36f0c52dc8119b89e335596c9b05bc22d1cf6c405fc7923a4bf349c73
ISICitedReferencesCount 367
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530751600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Thu Oct 02 06:34:59 EDT 2025
Thu Oct 02 10:41:26 EDT 2025
Wed Feb 19 02:29:39 EST 2025
Tue Nov 18 22:25:14 EST 2025
Sat Nov 29 07:24:46 EST 2025
Fri Feb 23 02:47:03 EST 2024
Tue Oct 14 19:30:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Diabetic wounds
Oxygen releasing scaffolds
Antioxidant biomaterials
Exosomes
Cryogels
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-75c8fbce36f0c52dc8119b89e335596c9b05bc22d1cf6c405fc7923a4bf349c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32305816
PQID 2392463694
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524220594
proquest_miscellaneous_2392463694
pubmed_primary_32305816
crossref_primary_10_1016_j_biomaterials_2020_120020
crossref_citationtrail_10_1016_j_biomaterials_2020_120020
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_120020
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_120020
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kaisang, Siyu, Lijun, Daoyan, Xian, Jie (bib11) 2017; 217
Hong, Jung, Kim (bib44) 2006; 56
Smith, Desvigne, Slade, Dooley, Warren (bib33) 1996; 4
Tsang, Wong, Hung, Lai, Tang, Cheung, Kam, Leung, Chan, Chu, Lam (bib43) 2003; 26
Zhu, Hoshi, Chen, Yi, Duan, Galiano, Zhang, Ameer (bib30) 2016; 238
Stojadinovic, Pastar, Vukelic, Mahoney, Brennan, Krzyzanowska, Golinko, Brem, Tomic-Canic (bib18) 2008; 12
Henriques-Antunes, Cardoso, Zonari, Correia, Leal, Jiménez-Balsa, Lino, Barradas, Kostic, Gomes, Karp, Carvalho, Ferreira (bib27) 2019; 13
Philp, Badamchian, Scheremeta, Nguyen, Goldstein, Kleinman (bib40) 2003; 11
Hu, Wang, Zhou, Xiong, Zhao, Yu, Huang, Zhang, Chen (bib12) 2016; 6
Sheikh, Gibson, Rollins, Hopf, Hussain, Hunt (bib48) 2000; 135
Schafer, Werner (bib25) 2008; 58
Xuan, Bin Huang, Tian, Chi, Duan, Wang, Zhu, Cai, Zhu, Wei, Ye, Cong, Jin (bib14) 2014; 9
Xiao, Reis, Feric, Knee, Gu, Cao, Laschinger, Londono, Antolovich, McGuigan, Radisic (bib35) 2016; 113
Rani, Ritter (bib17) 2016; 28
Sen, Khanna, Gordillo, Bagchi, Bagchi, Roy (bib36) 2002; 957
Tian, Zhu, Hu, Wang, Huang, Xiao (bib20) 2013; 228
Botusan, Sunkari, Savu, Catrina, Grünler, Lindberg, Pereira, Ylä-Herttuala, Poellinger, Brismar, Catrina (bib42) 2008; 105
Suwanjang, Prachayasittikul, Prachayasittikul (bib23) 2016; 4
Mizuno, Tobita, Uysal (bib47) 2012; 30
Xue, Jackson (bib41) 2015; 4
Obara, Ishihara, Ishizuka, Fujita, Ozeki, Maehara, Saito, Yura, Matsui, Hattori, Kikuchi, Kurita (bib45) 2003; 24
Rodriguez, Felix, Woodley, Shim (bib37) 2008; 34
Nunan, Harding, Martin (bib4) 2014; 7
James, Hughes, Cherry, Taylor (bib26) 2003; 11
Bonomo, Davidson, Tyrone, Lin, Mustoe (bib34) 2000; 135
Gottrup (bib53) 2004; 28
Smiell, Wieman, Steed, Perry, Sampson, Schwab (bib5) 1999; 7
Richard, Sotto, Lavigne (bib51) 2011; 2
Jackson, Nesti, Tuan (bib46) 2012; 1
Guo, Hu, Gorecka, Bai, He, Assi, Isaji, Wang, Setia, Lopes, Gu, Dardik (bib16) 2018; 315
Galiano, Tepper, Pelo, Bhatt, Callaghan, Bastidas, Bunting, Steinmetz, Gurtner (bib31) 2004; 164
Giacco, Brownlee (bib7) 2010; 107
Shiekh, Singh, Kumar (bib19) 2020
Shin, Peterson (bib32) 2013; 2
Falanga (bib50) 2005; 366
Abbas, Uçkay, Lipsky (bib49) 2015; 16
Spravchikov, Sizyakov, Gartsbein, Accili, Tennenbaum, Wertheimer (bib13) 2001; 50
Irons, Cahill, Rattigan, Marcotte, Fromer, Chang, Zhang, Behling, Behling, Caputo (bib15) 2018; 68
Lan, Wu, Huang, Wu, Chen (bib8) 2013; 62
Roy, Mooney, Raeman, Dalecki, Hocking (bib39) 2013; 19
Gray, Mitchell, Searles (bib21) 2015; 2
Cao, Jiang, Du, Yan (bib22) 2012; 5
Desmouliere, Darby, Laverdet, Bonté (bib29) 2014; 7
Sen (bib6) 2009; 17
Hirsch, Spielmann, Zuhaili, Koehler, Fossum, Steinau, Yao, Steinstraesser, Onderdonk, Eriksson (bib52) 2008; 8
Shiekh, Singh, Kumar (bib9) 2018; 10
Moxey, Gogalniceanu, Hinchliffe, Loftus, Jones, Thompson, Holt (bib1) 2011; 28
Ogurtsova, da Rocha Fernandes, Huang, Linnenkamp, Guariguata, Cho, Cavan, Shaw, Makaroff (bib3) 2017; 128
Castilla, Liu, Velazquez (bib38) 2012; 1
Zhu, Cankova, Iwanaszko, Lichtor, Mrksich, Ameer (bib2) 2018; 115
Li, Xie, Lian, Shi, Han, Zhang, Lu, Li (bib24) 2018; 50
Shiekh, Singh, Kumar (bib10) 2018; 10
Savini, Rossi, Duranti, Avigliano, Catani, Melino (bib28) 2002; 118
Hu (10.1016/j.biomaterials.2020.120020_bib12) 2016; 6
Obara (10.1016/j.biomaterials.2020.120020_bib45) 2003; 24
Cao (10.1016/j.biomaterials.2020.120020_bib22) 2012; 5
Savini (10.1016/j.biomaterials.2020.120020_bib28) 2002; 118
Ogurtsova (10.1016/j.biomaterials.2020.120020_bib3) 2017; 128
Desmouliere (10.1016/j.biomaterials.2020.120020_bib29) 2014; 7
Galiano (10.1016/j.biomaterials.2020.120020_bib31) 2004; 164
Nunan (10.1016/j.biomaterials.2020.120020_bib4) 2014; 7
James (10.1016/j.biomaterials.2020.120020_bib26) 2003; 11
Rani (10.1016/j.biomaterials.2020.120020_bib17) 2016; 28
Stojadinovic (10.1016/j.biomaterials.2020.120020_bib18) 2008; 12
Roy (10.1016/j.biomaterials.2020.120020_bib39) 2013; 19
Guo (10.1016/j.biomaterials.2020.120020_bib16) 2018; 315
Hirsch (10.1016/j.biomaterials.2020.120020_bib52) 2008; 8
Henriques-Antunes (10.1016/j.biomaterials.2020.120020_bib27) 2019; 13
Moxey (10.1016/j.biomaterials.2020.120020_bib1) 2011; 28
Bonomo (10.1016/j.biomaterials.2020.120020_bib34) 2000; 135
Li (10.1016/j.biomaterials.2020.120020_bib24) 2018; 50
Shiekh (10.1016/j.biomaterials.2020.120020_bib9) 2018; 10
Smiell (10.1016/j.biomaterials.2020.120020_bib5) 1999; 7
Abbas (10.1016/j.biomaterials.2020.120020_bib49) 2015; 16
Irons (10.1016/j.biomaterials.2020.120020_bib15) 2018; 68
Sen (10.1016/j.biomaterials.2020.120020_bib36) 2002; 957
Gottrup (10.1016/j.biomaterials.2020.120020_bib53) 2004; 28
Xue (10.1016/j.biomaterials.2020.120020_bib41) 2015; 4
Giacco (10.1016/j.biomaterials.2020.120020_bib7) 2010; 107
Botusan (10.1016/j.biomaterials.2020.120020_bib42) 2008; 105
Zhu (10.1016/j.biomaterials.2020.120020_bib30) 2016; 238
Sheikh (10.1016/j.biomaterials.2020.120020_bib48) 2000; 135
Suwanjang (10.1016/j.biomaterials.2020.120020_bib23) 2016; 4
Zhu (10.1016/j.biomaterials.2020.120020_bib2) 2018; 115
Xiao (10.1016/j.biomaterials.2020.120020_bib35) 2016; 113
Rodriguez (10.1016/j.biomaterials.2020.120020_bib37) 2008; 34
Richard (10.1016/j.biomaterials.2020.120020_bib51) 2011; 2
Shiekh (10.1016/j.biomaterials.2020.120020_bib19) 2020
Schafer (10.1016/j.biomaterials.2020.120020_bib25) 2008; 58
Spravchikov (10.1016/j.biomaterials.2020.120020_bib13) 2001; 50
Tsang (10.1016/j.biomaterials.2020.120020_bib43) 2003; 26
Kaisang (10.1016/j.biomaterials.2020.120020_bib11) 2017; 217
Tian (10.1016/j.biomaterials.2020.120020_bib20) 2013; 228
Lan (10.1016/j.biomaterials.2020.120020_bib8) 2013; 62
Smith (10.1016/j.biomaterials.2020.120020_bib33) 1996; 4
Sen (10.1016/j.biomaterials.2020.120020_bib6) 2009; 17
Philp (10.1016/j.biomaterials.2020.120020_bib40) 2003; 11
Castilla (10.1016/j.biomaterials.2020.120020_bib38) 2012; 1
Hong (10.1016/j.biomaterials.2020.120020_bib44) 2006; 56
Jackson (10.1016/j.biomaterials.2020.120020_bib46) 2012; 1
Xuan (10.1016/j.biomaterials.2020.120020_bib14) 2014; 9
Shiekh (10.1016/j.biomaterials.2020.120020_bib10) 2018; 10
Mizuno (10.1016/j.biomaterials.2020.120020_bib47) 2012; 30
Falanga (10.1016/j.biomaterials.2020.120020_bib50) 2005; 366
Gray (10.1016/j.biomaterials.2020.120020_bib21) 2015; 2
Shin (10.1016/j.biomaterials.2020.120020_bib32) 2013; 2
References_xml – volume: 11
  start-page: 19
  year: 2003
  end-page: 24
  ident: bib40
  article-title: Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice
  publication-title: Wound Repair Regen.
– volume: 107
  start-page: 1058
  year: 2010
  end-page: 1070
  ident: bib7
  article-title: Oxidative stress and diabetic complications.
  publication-title: Circ. Res.
– volume: 17
  start-page: 1
  year: 2009
  end-page: 18
  ident: bib6
  article-title: Wound healing essentials: let there be oxygen
  publication-title: Wound Repair Regen.
– volume: 58
  start-page: 165
  year: 2008
  end-page: 171
  ident: bib25
  article-title: Oxidative stress in normal and impaired wound repair
  publication-title: Pharmacol. Res.
– volume: 128
  start-page: 40
  year: 2017
  end-page: 50
  ident: bib3
  article-title: IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040
  publication-title: Diabetes Res. Clin. Pract.
– volume: 164
  start-page: 1935
  year: 2004
  end-page: 1947
  ident: bib31
  article-title: Topical vascular endothelial growth factor Accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells
  publication-title: Am. J. Pathol.
– volume: 50
  start-page: 1627
  year: 2001
  end-page: 1635
  ident: bib13
  article-title: Glucose effects on skin keratinocytes: implications for diabetes skin complications
  publication-title: Diabetes
– volume: 4
  start-page: 224
  year: 1996
  end-page: 229
  ident: bib33
  article-title: Transcutaneous oxygen measurements predict healing of leg wounds with hyperbaric therapy
  publication-title: Wound Repair Regen.
– volume: 34
  start-page: 1159
  year: 2008
  end-page: 1169
  ident: bib37
  article-title: The role of oxygen in wound healing: a review of the literature,
  publication-title: Dermatol. Surg.
– volume: 4
  start-page: 119
  year: 2015
  end-page: 136
  ident: bib41
  article-title: Extracellular matrix reorganization during wound healing and its impact on abnormal scarring
  publication-title: Adv. Wound Care
– volume: 28
  start-page: 5542
  year: 2016
  end-page: 5552
  ident: bib17
  article-title: The exosome - a naturally secreted nanoparticle and its application to wound healing
  publication-title: Adv. Mater
– volume: 62
  start-page: 2530
  year: 2013
  end-page: 2538
  ident: bib8
  article-title: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing
  publication-title: Diabetes
– volume: 28
  start-page: 1144
  year: 2011
  end-page: 1153
  ident: bib1
  article-title: Lower extremity amputations - a review of global variability in incidence
  publication-title: Diabet. Med.
– volume: 9
  year: 2014
  ident: bib14
  article-title: High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation
  publication-title: PloS One
– volume: 68
  start-page: 115S
  year: 2018
  end-page: 125S
  ident: bib15
  article-title: Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model
  publication-title: J. Vasc. Surg.
– volume: 217
  start-page: 63
  year: 2017
  end-page: 74
  ident: bib11
  article-title: Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing
  publication-title: J. Surg. Res.
– year: 2020
  ident: bib19
  article-title: Data supporting exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing
  publication-title: Data in Brief
– volume: 228
  start-page: 1487
  year: 2013
  end-page: 1495
  ident: bib20
  article-title: Dynamics of exosome internalization and trafficking
  publication-title: J. Cell. Physiol.
– volume: 2
  start-page: 33
  year: 2013
  end-page: 42
  ident: bib32
  article-title: Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells
  publication-title: Stem Cells Transl. Med.
– volume: 2
  start-page: 360
  year: 2015
  end-page: 367
  ident: bib21
  article-title: An accurate, precise method for general labeling of extracellular vesicles
  publication-title: MethodsX
– volume: 50
  start-page: 29
  year: 2018
  ident: bib24
  article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model
  publication-title: Exp. Mol. Med.
– volume: 7
  start-page: 335
  year: 1999
  end-page: 346
  ident: bib5
  article-title: Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies
  publication-title: Wound Repair Regen.
– volume: 315
  start-page: C885
  year: 2018
  end-page: C896
  ident: bib16
  article-title: Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells, Am
  publication-title: J. Physiol. Physiol
– volume: 12
  start-page: 2675
  year: 2008
  end-page: 2690
  ident: bib18
  article-title: Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers
  publication-title: J. Cell Mol. Med.
– volume: 1
  start-page: 225
  year: 2012
  end-page: 230
  ident: bib38
  article-title: Oxygen: implications for wound healing.
  publication-title: Adv. Wound Care
– volume: 957
  start-page: 239
  year: 2002
  end-page: 249
  ident: bib36
  article-title: Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 24
  start-page: 3437
  year: 2003
  end-page: 3444
  ident: bib45
  article-title: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice.
  publication-title: Biomaterials
– volume: 28
  start-page: 312
  year: 2004
  end-page: 315
  ident: bib53
  article-title: Oxygen in wound healing and infection.
  publication-title: World J. Surg.
– volume: 366
  start-page: 1736
  year: 2005
  end-page: 1743
  ident: bib50
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
– volume: 30
  start-page: 804
  year: 2012
  end-page: 810
  ident: bib47
  article-title: Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine
  publication-title: Stem Cell.
– volume: 135
  start-page: 1293
  year: 2000
  end-page: 1297
  ident: bib48
  article-title: Effect of hyperoxia on vascular endothelial growth factor levels in a wound model
  publication-title: Arch. Surg.
– volume: 10
  start-page: 18458
  year: 2018
  end-page: 18469
  ident: bib10
  article-title: Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 301
  year: 2014
  ident: bib29
  article-title: Fibroblasts and myofibroblasts in wound healing
  publication-title: Clin. Cosmet. Invest. Dermatol.
– volume: 7
  start-page: 1205
  year: 2014
  end-page: 1213
  ident: bib4
  article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity
  publication-title: Dis. Model. Mech.
– volume: 13
  start-page: 8694
  year: 2019
  end-page: 8707
  ident: bib27
  article-title: The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration,
  publication-title: ACS Nano
– volume: 8
  start-page: 5
  year: 2008
  ident: bib52
  article-title: Enhanced susceptibility to infections in a diabetic wound healing model
  publication-title: BMC Surg.
– volume: 26
  start-page: 1856
  year: 2003
  end-page: 1861
  ident: bib43
  article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers
  publication-title: Diabetes Care
– volume: 238
  start-page: 114
  year: 2016
  end-page: 122
  ident: bib30
  article-title: Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes
  publication-title: J. Contr. Release
– volume: 105
  start-page: 19426
  year: 2008
  end-page: 19431
  ident: bib42
  article-title: Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice.
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 135
  start-page: 1148
  year: 2000
  ident: bib34
  article-title: Enhancement of wound healing by hyperbaric oxygen and transforming growth factor β3 in a new chronic wound model in aged rabbits
  publication-title: Arch. Surg.
– volume: 6
  start-page: 32993
  year: 2016
  ident: bib12
  article-title: Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts
  publication-title: Sci. Rep.
– volume: 113
  start-page: E5792
  year: 2016
  end-page: E5801
  ident: bib35
  article-title: Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 2
  start-page: 24
  year: 2011
  end-page: 32
  ident: bib51
  article-title: New insights in diabetic foot infection.
  publication-title: World J. Diabetes
– volume: 11
  start-page: 172
  year: 2003
  end-page: 176
  ident: bib26
  article-title: Evidence of oxidative stress in chronic venous ulcers
  publication-title: Wound Repair Regen.
– volume: 118
  start-page: 372
  year: 2002
  end-page: 379
  ident: bib28
  article-title: Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis
  publication-title: J. Invest. Dermatol.
– volume: 5
  start-page: 929
  year: 2012
  end-page: 934
  ident: bib22
  article-title: Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells
  publication-title: Mol. Med. Rep.
– volume: 19
  start-page: 2517
  year: 2013
  end-page: 2526
  ident: bib39
  article-title: Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice
  publication-title: Tissue Eng.
– volume: 115
  start-page: 6816
  year: 2018
  end-page: 6821
  ident: bib2
  article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes., Proc. Natl. Acad. Sci. U
  publication-title: S. A
– volume: 16
  start-page: 821
  year: 2015
  end-page: 832
  ident: bib49
  article-title: In diabetic foot infections antibiotics are to treat infection, not to heal wounds
  publication-title: Expet Opin. Pharmacother.
– volume: 1
  start-page: 44
  year: 2012
  end-page: 50
  ident: bib46
  article-title: Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells
  publication-title: Stem Cells Transl. Med.
– volume: 10
  start-page: 3260
  year: 2018
  end-page: 3273
  ident: bib9
  article-title: Engineering bioinspired antioxidant materials promoting cardiomyocyte functionality and maturation for tissue engineering application
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 394
  year: 2006
  end-page: 398
  ident: bib44
  article-title: Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers
  publication-title: Ann. Plast. Surg.
– volume: 4
  year: 2016
  ident: bib23
  article-title: Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose
  publication-title: PeerJ.
– volume: 68
  start-page: 115S
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120020_bib15
  article-title: Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2018.01.065
– volume: 13
  start-page: 8694
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120020_bib27
  article-title: The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration,
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00376
– volume: 30
  start-page: 804
  year: 2012
  ident: 10.1016/j.biomaterials.2020.120020_bib47
  article-title: Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine
  publication-title: Stem Cell.
  doi: 10.1002/stem.1076
– volume: 113
  start-page: E5792
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120020_bib35
  article-title: Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1612277113
– volume: 1
  start-page: 225
  year: 2012
  ident: 10.1016/j.biomaterials.2020.120020_bib38
  article-title: Oxygen: implications for wound healing.
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2011.0319
– volume: 228
  start-page: 1487
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120020_bib20
  article-title: Dynamics of exosome internalization and trafficking
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.24304
– volume: 118
  start-page: 372
  year: 2002
  ident: 10.1016/j.biomaterials.2020.120020_bib28
  article-title: Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis
  publication-title: J. Invest. Dermatol.
  doi: 10.1046/j.0022-202x.2001.01624.x
– volume: 11
  start-page: 19
  year: 2003
  ident: 10.1016/j.biomaterials.2020.120020_bib40
  article-title: Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.2003.11105.x
– volume: 10
  start-page: 18458
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120020_bib10
  article-title: Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01736
– volume: 217
  start-page: 63
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120020_bib11
  article-title: Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2017.04.032
– volume: 115
  start-page: 6816
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120020_bib2
  article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes., Proc. Natl. Acad. Sci. U
  publication-title: S. A
– volume: 238
  start-page: 114
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120020_bib30
  article-title: Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2016.07.043
– volume: 12
  start-page: 2675
  year: 2008
  ident: 10.1016/j.biomaterials.2020.120020_bib18
  article-title: Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/j.1582-4934.2008.00321.x
– volume: 50
  start-page: 29
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120020_bib24
  article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0058-5
– volume: 957
  start-page: 239
  year: 2002
  ident: 10.1016/j.biomaterials.2020.120020_bib36
  article-title: Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2002.tb02920.x
– volume: 50
  start-page: 1627
  year: 2001
  ident: 10.1016/j.biomaterials.2020.120020_bib13
  article-title: Glucose effects on skin keratinocytes: implications for diabetes skin complications
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.7.1627
– volume: 17
  start-page: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2020.120020_bib6
  article-title: Wound healing essentials: let there be oxygen
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2008.00436.x
– volume: 62
  start-page: 2530
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120020_bib8
  article-title: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing
  publication-title: Diabetes
  doi: 10.2337/db12-1714
– volume: 2
  start-page: 24
  year: 2011
  ident: 10.1016/j.biomaterials.2020.120020_bib51
  article-title: New insights in diabetic foot infection.
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v2.i2.24
– volume: 135
  start-page: 1293
  year: 2000
  ident: 10.1016/j.biomaterials.2020.120020_bib48
  article-title: Effect of hyperoxia on vascular endothelial growth factor levels in a wound model
  publication-title: Arch. Surg.
  doi: 10.1001/archsurg.135.11.1293
– volume: 7
  start-page: 301
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120020_bib29
  article-title: Fibroblasts and myofibroblasts in wound healing
  publication-title: Clin. Cosmet. Invest. Dermatol.
  doi: 10.2147/CCID.S50046
– volume: 6
  start-page: 32993
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120020_bib12
  article-title: Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts
  publication-title: Sci. Rep.
  doi: 10.1038/srep32993
– volume: 366
  start-page: 1736
  year: 2005
  ident: 10.1016/j.biomaterials.2020.120020_bib50
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67700-8
– volume: 28
  start-page: 5542
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120020_bib17
  article-title: The exosome - a naturally secreted nanoparticle and its application to wound healing
  publication-title: Adv. Mater
  doi: 10.1002/adma.201504009
– volume: 28
  start-page: 312
  year: 2004
  ident: 10.1016/j.biomaterials.2020.120020_bib53
  article-title: Oxygen in wound healing and infection.
  publication-title: World J. Surg.
  doi: 10.1007/s00268-003-7398-5
– volume: 2
  start-page: 33
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120020_bib32
  article-title: Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2012-0041
– volume: 34
  start-page: 1159
  year: 2008
  ident: 10.1016/j.biomaterials.2020.120020_bib37
  article-title: The role of oxygen in wound healing: a review of the literature,
  publication-title: Dermatol. Surg.
– volume: 8
  start-page: 5
  year: 2008
  ident: 10.1016/j.biomaterials.2020.120020_bib52
  article-title: Enhanced susceptibility to infections in a diabetic wound healing model
  publication-title: BMC Surg.
  doi: 10.1186/1471-2482-8-5
– volume: 7
  start-page: 1205
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120020_bib4
  article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.016782
– volume: 315
  start-page: C885
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120020_bib16
  article-title: Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells, Am
  publication-title: J. Physiol. Physiol
  doi: 10.1152/ajpcell.00120.2018
– volume: 26
  start-page: 1856
  year: 2003
  ident: 10.1016/j.biomaterials.2020.120020_bib43
  article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.6.1856
– volume: 24
  start-page: 3437
  year: 2003
  ident: 10.1016/j.biomaterials.2020.120020_bib45
  article-title: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice.
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00220-5
– volume: 28
  start-page: 1144
  year: 2011
  ident: 10.1016/j.biomaterials.2020.120020_bib1
  article-title: Lower extremity amputations - a review of global variability in incidence
  publication-title: Diabet. Med.
  doi: 10.1111/j.1464-5491.2011.03279.x
– volume: 11
  start-page: 172
  year: 2003
  ident: 10.1016/j.biomaterials.2020.120020_bib26
  article-title: Evidence of oxidative stress in chronic venous ulcers
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.2003.11304.x
– volume: 107
  start-page: 1058
  year: 2010
  ident: 10.1016/j.biomaterials.2020.120020_bib7
  article-title: Oxidative stress and diabetic complications.
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.223545
– volume: 58
  start-page: 165
  year: 2008
  ident: 10.1016/j.biomaterials.2020.120020_bib25
  article-title: Oxidative stress in normal and impaired wound repair
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2008.06.004
– year: 2020
  ident: 10.1016/j.biomaterials.2020.120020_bib19
  article-title: Data supporting exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2020.105671
– volume: 7
  start-page: 335
  year: 1999
  ident: 10.1016/j.biomaterials.2020.120020_bib5
  article-title: Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.1999.00335.x
– volume: 135
  start-page: 1148
  year: 2000
  ident: 10.1016/j.biomaterials.2020.120020_bib34
  article-title: Enhancement of wound healing by hyperbaric oxygen and transforming growth factor β3 in a new chronic wound model in aged rabbits
  publication-title: Arch. Surg.
  doi: 10.1001/archsurg.135.10.1148
– volume: 10
  start-page: 3260
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120020_bib9
  article-title: Engineering bioinspired antioxidant materials promoting cardiomyocyte functionality and maturation for tissue engineering application
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14777
– volume: 1
  start-page: 44
  year: 2012
  ident: 10.1016/j.biomaterials.2020.120020_bib46
  article-title: Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2011-0024
– volume: 16
  start-page: 821
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120020_bib49
  article-title: In diabetic foot infections antibiotics are to treat infection, not to heal wounds
  publication-title: Expet Opin. Pharmacother.
  doi: 10.1517/14656566.2015.1021780
– volume: 2
  start-page: 360
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120020_bib21
  article-title: An accurate, precise method for general labeling of extracellular vesicles
  publication-title: MethodsX
  doi: 10.1016/j.mex.2015.08.002
– volume: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2020.120020_bib14
  article-title: High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation
  publication-title: PloS One
  doi: 10.1371/journal.pone.0108182
– volume: 4
  start-page: 119
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120020_bib41
  article-title: Extracellular matrix reorganization during wound healing and its impact on abnormal scarring
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2013.0485
– volume: 56
  start-page: 394
  year: 2006
  ident: 10.1016/j.biomaterials.2020.120020_bib44
  article-title: Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers
  publication-title: Ann. Plast. Surg.
  doi: 10.1097/01.sap.0000198731.12407.0c
– volume: 5
  start-page: 929
  year: 2012
  ident: 10.1016/j.biomaterials.2020.120020_bib22
  article-title: Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2012.746
– volume: 128
  start-page: 40
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120020_bib3
  article-title: IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2017.03.024
– volume: 4
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120020_bib23
  article-title: Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose
  publication-title: PeerJ.
  doi: 10.7717/peerj.2389
– volume: 105
  start-page: 19426
  year: 2008
  ident: 10.1016/j.biomaterials.2020.120020_bib42
  article-title: Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice.
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0805230105
– volume: 19
  start-page: 2517
  year: 2013
  ident: 10.1016/j.biomaterials.2020.120020_bib39
  article-title: Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice
  publication-title: Tissue Eng.
  doi: 10.1089/ten.tea.2013.0024
– volume: 4
  start-page: 224
  year: 1996
  ident: 10.1016/j.biomaterials.2020.120020_bib33
  article-title: Transcutaneous oxygen measurements predict healing of leg wounds with hyperbaric therapy
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.1996.40209.x
– volume: 164
  start-page: 1935
  year: 2004
  ident: 10.1016/j.biomaterials.2020.120020_bib31
  article-title: Topical vascular endothelial growth factor Accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63754-6
SSID ssj0014042
Score 2.7037516
Snippet Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120020
SubjectTerms angiogenesis
Anti-Bacterial Agents
Antioxidant biomaterials
Antioxidants
Bandages
biocompatible materials
collagen
Cryogels
Diabetes Mellitus
Diabetic wounds
epithelium
Exosomes
fibroblasts
Humans
keratinocytes
oxidative stress
Oxygen
Oxygen releasing scaffolds
polyurethanes
therapeutics
Wound Healing
Title Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220302660
https://dx.doi.org/10.1016/j.biomaterials.2020.120020
https://www.ncbi.nlm.nih.gov/pubmed/32305816
https://www.proquest.com/docview/2392463694
https://www.proquest.com/docview/2524220594
Volume 249
WOSCitedRecordID wos000530751600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDBu5TIZibcqVeLcbCEeCioCJDYehtS3KLGdNVuXTG1XMv4B4k9zHF9ahIaKEC9RmuTESc7Xc7E_HyP0klAhitLnkJtEvheJPPFYHjBP0EQKwFOZFKJbbCI9PKSTCfvc6323c2FWs7Suaduyi_-qajgGylZTZ_9C3e6mcAD2QemwBbXDdivFj9tm0ZzLwSwHkzJo2iu4slsaJV_oCYnQdFuJ3HDL1e9Cl2xWpULmV82JnA2-qtWWBqIjyYLQUXv0prt4pmajQ3hq-mxNsVfL6LpcGEEVflqfaEeMqwaCY_0BXLfOtJJnhqA4X-XVt8Fo6M6B_FRTLvPz6sx5D8cJHy2mJj8wnRZkTZkzPWl2Ns2auqQ7N4nHEkOrltogU8hyY-bHmxab6Cqnv1l_3RFxOiw23miomh8Giovir32eYyIqchtRbRKwdhCs-Dtoj6QxAwO5N_ownnx0Q1IAZqL5sPohbQXbjix4XYvXRTvXZTNdVHN8F90x6QgeaRjdQz1Z76PbG0Uq99HNT4Z-cR_9MNjCHbawxhZ22MIb2IJ9gX_BFjbYwh1EsMUWNtjCDlvYYqu7xxpbRtBg6wH68m58_Pa9Z1bz8Dg41aWXxpyWBZdhAqYhJoLTIGAFZTKEkJclnBV-XHBCRMDLhEMeUXJV2zKPijKMGE_Dh2i3bmr5GGEmiSqUSXywLVFIBaOiyGUuoxLcJQ-LPmL2q2fclLpXK67MMstpPM02NZYpjWVaY30UOtkLXfBlK6lXVrmZndIMTjgDZG4l_dpJm8BXB7Rby7-weMrAO6ghv7yWoJiMQPqjSgKy6A_XxBCmE1W3qY8eaTC6Nw8JxAM0SJ784xM-RbfWZuAZ2l3OL-VzdIOvltVifoB20gk9MH-4nxY3Ar0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosome+laden+oxygen+releasing+antioxidant+and+antibacterial+cryogel+wound+dressing+OxOBand+alleviate+diabetic+and+infectious+wound+healing&rft.jtitle=Biomaterials&rft.au=Shiekh%2C+Parvaiz+A.&rft.au=Singh%2C+Anamika&rft.au=Kumar%2C+Ashok&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=249&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.120020&rft.externalDocID=S0142961220302660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon