Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing
Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic a...
Uložené v:
| Vydané v: | Biomaterials Ročník 249; s. 120020 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier Ltd
01.08.2020
|
| Predmet: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers. |
|---|---|
| AbstractList | Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers. Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers.Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds. Therefore, delivering oxygen, inducing angiogenesis, and management of oxidative stress and infection may provide newer and improved therapeutic avenues for better clinical outcomes in diabetic wound healing. Here, we report the development and evaluation of an exosome laden oxygen releasing antioxidant wound dressing OxOBand to promote wound closure and skin regeneration in diabetic wounds. OxOBand is composed of antioxidant polyurethane (PUAO), as highly porous cryogels with sustained oxygen releasing properties and supplemented with adipose-derived stem cells (ADSCs) exosomes. Exosomes engulfed by the cells enhanced the migration of human keratinocytes and fibroblasts and increased the survival of human neuroblastoma cells under hyperglycemic conditions. OxOBand facilitated faster wound closure, enhanced collagen deposition, faster re-epithelialization, increased neo-vascularization, and decreased oxidative stress within two weeks as compared to untreated diabetic control wounds. The dressing promoted the development of mature epithelial structures with hair follicles and epidermal morphology similar to that of healthy skin. In clinically challenging infected diabetic wounds, these dressings prevented infection and ulceration, improved wound healing with increased collagen deposition, and re-epithelialization. Altogether, OxOBand is a remarkably newer treatment strategy for enhanced diabetic wound healing and may lead to novel therapeutic interventions for the treatment of diabetic ulcers. |
| ArticleNumber | 120020 |
| Author | Singh, Anamika Shiekh, Parvaiz A. Kumar, Ashok |
| Author_xml | – sequence: 1 givenname: Parvaiz A. surname: Shiekh fullname: Shiekh, Parvaiz A. organization: Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India – sequence: 2 givenname: Anamika surname: Singh fullname: Singh, Anamika organization: Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India – sequence: 3 givenname: Ashok surname: Kumar fullname: Kumar, Ashok email: ashokkum@iitk.ac.in organization: Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32305816$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc9uEzEQxi1URNPCK6AVJy4b_Ge9WXOClhaQKuUCZ8s7ng0OzrrYmzZ5Bl667m5AqBdyGlvzfT-P5zsjJ33okZA3jM4ZZfW79bx1YWMGjM74NOeU5wanuTwjM9YsmlIqKk_IjLKKl6pm_JScpbSm-U4r_oKcCi6obFg9I7-vdiGFDRbeWOyLsNuvcono0STXrwrTDy7snM01n-14bw1MbxcQ92GFvrgP29yzEdNoWu6WF6PYe7xzedDCOtPi4GBkuL5DyNhtOhh_oPHZ95I87_KH8NWhnpPv11ffLr-UN8vPXy8_3pQgRTOUCwlN1wKKuqMguYWGMdU2CoWQUtWgWipb4Nwy6GqoqOxgobgwVduJSsFCnJO3E_c2hl9bTIPeuATovekxD6W55BXnVKrq_1KheFWLepS-Pki37Qatvo1uY-Je_9l1FryfBBBDShG7vxJG9WOweq3_DVY_BqunYLP5wxMzuMHkJfZDNM4fh_g0ITDv9s5h1Akc9oDWxZyHtsEdh7l4goEcngPjf-L-WMgDzCnhpA |
| CitedBy_id | crossref_primary_10_1002_jbm_a_37394 crossref_primary_10_1007_s10856_023_06746_y crossref_primary_10_3389_fphar_2023_1063458 crossref_primary_10_1002_smll_202305076 crossref_primary_10_1016_j_lfs_2025_123850 crossref_primary_10_1002_advs_202105152 crossref_primary_10_1016_j_jconrel_2025_114058 crossref_primary_10_1002_adhm_202401345 crossref_primary_10_1016_j_mvr_2025_104861 crossref_primary_10_3389_fendo_2021_646233 crossref_primary_10_1016_j_cej_2024_149908 crossref_primary_10_1016_j_compositesb_2023_110900 crossref_primary_10_1039_D2NR04171E crossref_primary_10_1111_prd_12561 crossref_primary_10_1016_j_bioactmat_2024_05_008 crossref_primary_10_1016_j_cej_2024_153299 crossref_primary_10_4239_wjd_v14_i11_1585 crossref_primary_10_3389_fbioe_2023_1241660 crossref_primary_10_1016_j_ijbiomac_2023_128031 crossref_primary_10_1186_s40779_023_00472_w crossref_primary_10_3389_fendo_2024_1375632 crossref_primary_10_1002_cbf_3793 crossref_primary_10_1016_j_mtbio_2025_102046 crossref_primary_10_3390_life11101016 crossref_primary_10_1016_j_cej_2021_130219 crossref_primary_10_1080_10717544_2021_2021319 crossref_primary_10_1016_j_mad_2025_112078 crossref_primary_10_1080_07853890_2025_2543517 crossref_primary_10_1186_s12951_021_01208_5 crossref_primary_10_1016_j_jconrel_2022_08_053 crossref_primary_10_1089_wound_2021_0066 crossref_primary_10_1007_s12015_020_10014_9 crossref_primary_10_1016_j_ijbiomac_2024_138215 crossref_primary_10_2147_DMSO_S532885 crossref_primary_10_1093_pcmedi_pbae004 crossref_primary_10_1016_j_ijbiomac_2023_123357 crossref_primary_10_1016_j_ijbiomac_2025_141005 crossref_primary_10_1002_VIW_20230110 crossref_primary_10_1016_j_ijbiomac_2022_01_080 crossref_primary_10_2217_rme_2023_0098 crossref_primary_10_1016_j_ijbiomac_2024_129739 crossref_primary_10_1016_j_cej_2023_143987 crossref_primary_10_1186_s13287_024_03928_5 crossref_primary_10_1016_j_cyto_2023_156481 crossref_primary_10_1093_burnst_tkac037 crossref_primary_10_1007_s00109_023_02357_w crossref_primary_10_3390_pharmaceutics15010021 crossref_primary_10_1002_adhm_202201900 crossref_primary_10_1186_s12951_021_00894_5 crossref_primary_10_3389_fbioe_2022_1083640 crossref_primary_10_1016_j_actbio_2025_07_065 crossref_primary_10_1016_j_actbio_2022_09_077 crossref_primary_10_1016_j_ijbiomac_2024_139090 crossref_primary_10_1186_s12951_022_01352_6 crossref_primary_10_1016_j_jconrel_2024_05_048 crossref_primary_10_1016_j_biomaterials_2025_123411 crossref_primary_10_1016_j_actbio_2022_05_009 crossref_primary_10_1016_j_biopha_2023_115206 crossref_primary_10_1186_s12951_023_02214_5 crossref_primary_10_1093_burnst_tkac028 crossref_primary_10_1016_j_colsurfa_2024_133482 crossref_primary_10_1016_j_dib_2020_105671 crossref_primary_10_1016_j_cej_2025_161989 crossref_primary_10_2217_nnm_2023_0090 crossref_primary_10_1016_j_nanoen_2023_108628 crossref_primary_10_1016_S1875_5364_24_60637_0 crossref_primary_10_3390_polym15214301 crossref_primary_10_1016_j_bioactmat_2023_11_009 crossref_primary_10_1016_j_mtbio_2025_102276 crossref_primary_10_1002_mabi_202300363 crossref_primary_10_1038_s41401_023_01193_5 crossref_primary_10_1093_burnst_tkae078 crossref_primary_10_1002_smll_202200895 crossref_primary_10_1002_smsc_202300138 crossref_primary_10_1016_j_jid_2023_02_019 crossref_primary_10_1016_j_bbrc_2023_05_081 crossref_primary_10_3390_app142311200 crossref_primary_10_1002_adhm_202405190 crossref_primary_10_1097_PRS_0000000000009212 crossref_primary_10_1016_j_phrs_2021_105490 crossref_primary_10_3390_molecules28031110 crossref_primary_10_2147_IJN_S276001 crossref_primary_10_3389_fimmu_2023_1214757 crossref_primary_10_3390_ijms24044104 crossref_primary_10_1016_j_ijpharm_2021_120698 crossref_primary_10_1039_D4BM00355A crossref_primary_10_32604_biocell_2022_019448 crossref_primary_10_1093_rb_rbaa059 crossref_primary_10_1016_j_compositesb_2022_110438 crossref_primary_10_1016_j_jconrel_2023_06_010 crossref_primary_10_1016_j_tibtech_2021_01_007 crossref_primary_10_3390_antiox12061146 crossref_primary_10_1002_adhm_202300456 crossref_primary_10_1016_j_cej_2021_132664 crossref_primary_10_1016_j_ijbiomac_2025_139809 crossref_primary_10_1186_s12951_025_03558_w crossref_primary_10_1016_j_bioadv_2024_213937 crossref_primary_10_1016_j_matdes_2022_111120 crossref_primary_10_1002_smll_202104229 crossref_primary_10_1016_j_bioactmat_2022_01_041 crossref_primary_10_1039_D2BM00161F crossref_primary_10_3389_fmed_2022_858824 crossref_primary_10_1016_j_bioactmat_2021_02_007 crossref_primary_10_1016_j_bioactmat_2021_02_006 crossref_primary_10_1016_j_ijbiomac_2023_128766 crossref_primary_10_1186_s13287_021_02288_8 crossref_primary_10_1007_s10876_021_02131_3 crossref_primary_10_1016_j_jbiosc_2023_11_001 crossref_primary_10_3390_pharmaceutics15010068 crossref_primary_10_1016_j_actbio_2020_11_001 crossref_primary_10_1016_j_ijbiomac_2022_08_149 crossref_primary_10_2147_IJN_S435106 crossref_primary_10_3390_gels9090761 crossref_primary_10_1002_admt_202500362 crossref_primary_10_1016_j_ijbiomac_2024_135381 crossref_primary_10_3390_biomedicines11082099 crossref_primary_10_1038_s41368_023_00274_9 crossref_primary_10_1016_j_cej_2021_131800 crossref_primary_10_1016_j_compositesb_2022_109804 crossref_primary_10_1016_j_jddst_2024_105665 crossref_primary_10_2147_IJN_S382796 crossref_primary_10_1016_j_actbio_2020_11_004 crossref_primary_10_1016_j_compositesb_2022_109921 crossref_primary_10_1002_adhm_202501044 crossref_primary_10_1002_adhm_202400884 crossref_primary_10_1016_j_cej_2023_143016 crossref_primary_10_1089_ars_2021_0134 crossref_primary_10_3390_cells12071018 crossref_primary_10_1016_j_tice_2025_103068 crossref_primary_10_1016_j_heliyon_2023_e22520 crossref_primary_10_2147_IJN_S506456 crossref_primary_10_1016_j_bioactmat_2023_02_031 crossref_primary_10_1016_j_mtbio_2025_101780 crossref_primary_10_1186_s12951_024_02315_9 crossref_primary_10_1002_sstr_202300151 crossref_primary_10_1186_s40364_025_00801_2 crossref_primary_10_3389_fbioe_2023_1304835 crossref_primary_10_1038_s41467_024_44968_y crossref_primary_10_3390_ijms21228790 crossref_primary_10_1111_ijd_17903 crossref_primary_10_1093_burnst_tkae030 crossref_primary_10_3389_fendo_2022_882469 crossref_primary_10_1016_j_cej_2021_131017 crossref_primary_10_1002_mabi_202300166 crossref_primary_10_1002_btm2_10598 crossref_primary_10_1093_rb_rbad114 crossref_primary_10_1016_j_ijbiomac_2024_138199 crossref_primary_10_3389_fbioe_2022_1060026 crossref_primary_10_1016_j_biomaterials_2025_123140 crossref_primary_10_1016_j_cej_2022_137880 crossref_primary_10_1002_advs_202304243 crossref_primary_10_1016_j_ijbiomac_2024_136686 crossref_primary_10_1089_ten_teb_2022_0118 crossref_primary_10_3389_fchem_2022_1038839 crossref_primary_10_1016_j_carbpol_2023_120823 crossref_primary_10_1016_j_procbio_2023_10_001 crossref_primary_10_1016_j_biomaterials_2022_121597 crossref_primary_10_1007_s40204_022_00202_w crossref_primary_10_1186_s13287_022_02824_0 crossref_primary_10_3390_gels8060328 crossref_primary_10_1007_s12015_024_10753_z crossref_primary_10_1016_j_matdes_2022_110478 crossref_primary_10_1016_j_matdes_2025_113929 crossref_primary_10_2147_IJN_S466034 crossref_primary_10_1038_s41467_024_47696_5 crossref_primary_10_1016_j_biopha_2023_116035 crossref_primary_10_1016_j_ijbiomac_2025_139694 crossref_primary_10_1021_acsbiomaterials_4c02346 crossref_primary_10_1186_s12951_025_03621_6 crossref_primary_10_1093_burnst_tkae025 crossref_primary_10_2147_IJN_S411562 crossref_primary_10_1016_j_ijbiomac_2025_139698 crossref_primary_10_3389_fimmu_2023_1238789 crossref_primary_10_1016_j_ijbiomac_2022_06_196 crossref_primary_10_3390_bioengineering11080804 crossref_primary_10_1016_j_ijpharm_2024_124637 crossref_primary_10_3389_fendo_2021_727272 crossref_primary_10_3389_fendo_2021_780974 crossref_primary_10_1016_j_ijbiomac_2025_141525 crossref_primary_10_1155_2022_7695078 crossref_primary_10_3390_antiox14070785 crossref_primary_10_3389_fbioe_2022_940896 crossref_primary_10_1016_j_biomaterials_2024_122558 crossref_primary_10_1002_adhm_202501456 crossref_primary_10_1016_j_carbpol_2024_123036 crossref_primary_10_1016_j_biopha_2023_115297 crossref_primary_10_1186_s12951_021_01215_6 crossref_primary_10_1016_j_apsb_2022_06_012 crossref_primary_10_1016_j_jmst_2021_12_054 crossref_primary_10_3390_biom11050702 crossref_primary_10_1016_j_bioadv_2022_213096 crossref_primary_10_1016_j_cej_2021_132490 crossref_primary_10_1016_j_cej_2022_138076 crossref_primary_10_1016_j_jep_2024_119175 crossref_primary_10_1016_j_biomaterials_2021_121056 crossref_primary_10_1016_j_bioactmat_2021_01_008 crossref_primary_10_3389_fendo_2023_1146991 crossref_primary_10_1016_j_cej_2023_146174 crossref_primary_10_1007_s12274_022_4792_6 crossref_primary_10_3390_app13042702 crossref_primary_10_3390_ijms22063130 crossref_primary_10_5021_ad_2021_33_4_309 crossref_primary_10_1021_acsabm_5c00278 crossref_primary_10_1093_asj_sjaf104 crossref_primary_10_1002_app_54641 crossref_primary_10_1002_smll_202309485 crossref_primary_10_1016_j_drudis_2023_103673 crossref_primary_10_3389_fimmu_2021_771551 crossref_primary_10_1016_j_ijbiomac_2024_135324 crossref_primary_10_1002_adtp_202300387 crossref_primary_10_1002_advs_202203308 crossref_primary_10_1016_j_bbrc_2023_149343 crossref_primary_10_3389_fbioe_2023_1239183 crossref_primary_10_1016_j_ijbiomac_2024_138712 crossref_primary_10_1016_j_apmt_2022_101586 crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_1016_j_bioactmat_2024_11_026 crossref_primary_10_1016_j_jconrel_2020_09_039 crossref_primary_10_1002_pat_70244 crossref_primary_10_1016_j_nantod_2021_101290 crossref_primary_10_1016_j_cclet_2024_110661 crossref_primary_10_1016_j_jddst_2022_103534 crossref_primary_10_3389_fbioe_2022_1043320 crossref_primary_10_1186_s40580_024_00430_9 crossref_primary_10_3389_fimmu_2023_1256687 crossref_primary_10_1039_D1BM00896J crossref_primary_10_1016_j_ijbiomac_2020_08_056 crossref_primary_10_1016_j_mtbio_2025_102005 crossref_primary_10_1186_s13287_022_02849_5 crossref_primary_10_3390_biomedicines13071687 crossref_primary_10_1007_s10853_024_10240_3 crossref_primary_10_1007_s10924_021_02175_6 crossref_primary_10_1007_s42765_025_00604_y crossref_primary_10_1016_j_ijbiomac_2023_125081 crossref_primary_10_1080_1061186X_2022_2092624 crossref_primary_10_1016_j_ijbiomac_2023_126174 crossref_primary_10_1002_advs_202304048 crossref_primary_10_1002_adma_202212300 crossref_primary_10_1007_s12015_023_10540_2 crossref_primary_10_1016_j_bioadv_2022_212979 crossref_primary_10_1016_j_ijbiomac_2025_143471 crossref_primary_10_3390_gels9050381 crossref_primary_10_1002_jbm_b_35552 crossref_primary_10_1002_adhm_202400101 crossref_primary_10_1515_polyeng_2023_0148 crossref_primary_10_1016_j_actbio_2024_12_044 crossref_primary_10_1038_s41467_024_48841_w crossref_primary_10_2147_IJN_S502591 crossref_primary_10_3389_fbioe_2023_1077490 crossref_primary_10_1007_s10989_020_10152_1 crossref_primary_10_1002_adhm_202403734 crossref_primary_10_1039_D2BM00861K crossref_primary_10_2147_IJN_S372211 crossref_primary_10_1002_adfm_202305992 crossref_primary_10_1155_2023_9517826 crossref_primary_10_3389_fcell_2021_736022 crossref_primary_10_2147_CCID_S446676 crossref_primary_10_1016_j_eurpolymj_2025_113980 crossref_primary_10_1016_j_omtn_2023_05_002 crossref_primary_10_1016_j_ijbiomac_2022_04_210 crossref_primary_10_1093_burnst_tkad040 crossref_primary_10_3390_molecules26206110 crossref_primary_10_1016_j_ijbiomac_2023_128801 crossref_primary_10_1016_j_ijbiomac_2022_04_216 crossref_primary_10_1186_s12951_024_02478_5 crossref_primary_10_1016_j_jddst_2024_106593 crossref_primary_10_1093_burnst_tkae017 crossref_primary_10_2147_IJN_S395438 crossref_primary_10_1016_j_ijbiomac_2024_132384 crossref_primary_10_1007_s00289_025_05753_z crossref_primary_10_1016_j_ijpharm_2023_123110 crossref_primary_10_1093_rb_rbae035 crossref_primary_10_3389_fmicb_2021_804813 crossref_primary_10_1016_j_ijbiomac_2023_123944 crossref_primary_10_1002_adma_202107406 crossref_primary_10_1016_j_scib_2024_10_024 crossref_primary_10_1002_adfm_202100093 crossref_primary_10_1016_j_jconrel_2023_03_013 crossref_primary_10_1016_j_ijbiomac_2024_132935 crossref_primary_10_1016_j_bioactmat_2025_08_040 crossref_primary_10_3390_pharmaceutics15030857 crossref_primary_10_1016_j_cej_2023_141359 crossref_primary_10_2147_DDDT_S543233 crossref_primary_10_3389_fendo_2022_902130 crossref_primary_10_1186_s12951_023_02277_4 crossref_primary_10_1002_adhm_202301370 crossref_primary_10_1016_j_nantod_2025_102739 crossref_primary_10_1186_s40824_023_00379_6 crossref_primary_10_3389_fphys_2022_1030851 crossref_primary_10_1016_j_bioactmat_2022_07_022 crossref_primary_10_1016_j_eurpolymj_2020_110234 crossref_primary_10_1039_D1NR04687J crossref_primary_10_3389_fmicb_2025_1550276 crossref_primary_10_1097_PRS_0000000000009840 crossref_primary_10_1016_j_addr_2022_114670 crossref_primary_10_1002_jbt_23407 |
| Cites_doi | 10.1016/j.jvs.2018.01.065 10.1021/acsnano.9b00376 10.1002/stem.1076 10.1073/pnas.1612277113 10.1089/wound.2011.0319 10.1002/jcp.24304 10.1046/j.0022-202x.2001.01624.x 10.1046/j.1524-475X.2003.11105.x 10.1021/acsami.8b01736 10.1016/j.jss.2017.04.032 10.1016/j.jconrel.2016.07.043 10.1111/j.1582-4934.2008.00321.x 10.1038/s12276-018-0058-5 10.1111/j.1749-6632.2002.tb02920.x 10.2337/diabetes.50.7.1627 10.1111/j.1524-475X.2008.00436.x 10.2337/db12-1714 10.4239/wjd.v2.i2.24 10.1001/archsurg.135.11.1293 10.2147/CCID.S50046 10.1038/srep32993 10.1016/S0140-6736(05)67700-8 10.1002/adma.201504009 10.1007/s00268-003-7398-5 10.5966/sctm.2012-0041 10.1186/1471-2482-8-5 10.1242/dmm.016782 10.1152/ajpcell.00120.2018 10.2337/diacare.26.6.1856 10.1016/S0142-9612(03)00220-5 10.1111/j.1464-5491.2011.03279.x 10.1046/j.1524-475X.2003.11304.x 10.1161/CIRCRESAHA.110.223545 10.1016/j.phrs.2008.06.004 10.1016/j.dib.2020.105671 10.1046/j.1524-475X.1999.00335.x 10.1001/archsurg.135.10.1148 10.1021/acsami.7b14777 10.5966/sctm.2011-0024 10.1517/14656566.2015.1021780 10.1016/j.mex.2015.08.002 10.1371/journal.pone.0108182 10.1089/wound.2013.0485 10.1097/01.sap.0000198731.12407.0c 10.3892/mmr.2012.746 10.1016/j.diabres.2017.03.024 10.7717/peerj.2389 10.1073/pnas.0805230105 10.1089/ten.tea.2013.0024 10.1046/j.1524-475X.1996.40209.x 10.1016/S0002-9440(10)63754-6 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2020.120020 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 32305816 10_1016_j_biomaterials_2020_120020 S0142961220302660 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c538t-75c8fbce36f0c52dc8119b89e335596c9b05bc22d1cf6c405fc7923a4bf349c73 |
| ISICitedReferencesCount | 367 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530751600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Thu Oct 02 06:34:59 EDT 2025 Thu Oct 02 10:41:26 EDT 2025 Wed Feb 19 02:29:39 EST 2025 Tue Nov 18 22:25:14 EST 2025 Sat Nov 29 07:24:46 EST 2025 Fri Feb 23 02:47:03 EST 2024 Tue Oct 14 19:30:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Diabetic wounds Oxygen releasing scaffolds Antioxidant biomaterials Exosomes Cryogels |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c538t-75c8fbce36f0c52dc8119b89e335596c9b05bc22d1cf6c405fc7923a4bf349c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 32305816 |
| PQID | 2392463694 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2524220594 proquest_miscellaneous_2392463694 pubmed_primary_32305816 crossref_primary_10_1016_j_biomaterials_2020_120020 crossref_citationtrail_10_1016_j_biomaterials_2020_120020 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_120020 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_120020 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 20200801 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kaisang, Siyu, Lijun, Daoyan, Xian, Jie (bib11) 2017; 217 Hong, Jung, Kim (bib44) 2006; 56 Smith, Desvigne, Slade, Dooley, Warren (bib33) 1996; 4 Tsang, Wong, Hung, Lai, Tang, Cheung, Kam, Leung, Chan, Chu, Lam (bib43) 2003; 26 Zhu, Hoshi, Chen, Yi, Duan, Galiano, Zhang, Ameer (bib30) 2016; 238 Stojadinovic, Pastar, Vukelic, Mahoney, Brennan, Krzyzanowska, Golinko, Brem, Tomic-Canic (bib18) 2008; 12 Henriques-Antunes, Cardoso, Zonari, Correia, Leal, Jiménez-Balsa, Lino, Barradas, Kostic, Gomes, Karp, Carvalho, Ferreira (bib27) 2019; 13 Philp, Badamchian, Scheremeta, Nguyen, Goldstein, Kleinman (bib40) 2003; 11 Hu, Wang, Zhou, Xiong, Zhao, Yu, Huang, Zhang, Chen (bib12) 2016; 6 Sheikh, Gibson, Rollins, Hopf, Hussain, Hunt (bib48) 2000; 135 Schafer, Werner (bib25) 2008; 58 Xuan, Bin Huang, Tian, Chi, Duan, Wang, Zhu, Cai, Zhu, Wei, Ye, Cong, Jin (bib14) 2014; 9 Xiao, Reis, Feric, Knee, Gu, Cao, Laschinger, Londono, Antolovich, McGuigan, Radisic (bib35) 2016; 113 Rani, Ritter (bib17) 2016; 28 Sen, Khanna, Gordillo, Bagchi, Bagchi, Roy (bib36) 2002; 957 Tian, Zhu, Hu, Wang, Huang, Xiao (bib20) 2013; 228 Botusan, Sunkari, Savu, Catrina, Grünler, Lindberg, Pereira, Ylä-Herttuala, Poellinger, Brismar, Catrina (bib42) 2008; 105 Suwanjang, Prachayasittikul, Prachayasittikul (bib23) 2016; 4 Mizuno, Tobita, Uysal (bib47) 2012; 30 Xue, Jackson (bib41) 2015; 4 Obara, Ishihara, Ishizuka, Fujita, Ozeki, Maehara, Saito, Yura, Matsui, Hattori, Kikuchi, Kurita (bib45) 2003; 24 Rodriguez, Felix, Woodley, Shim (bib37) 2008; 34 Nunan, Harding, Martin (bib4) 2014; 7 James, Hughes, Cherry, Taylor (bib26) 2003; 11 Bonomo, Davidson, Tyrone, Lin, Mustoe (bib34) 2000; 135 Gottrup (bib53) 2004; 28 Smiell, Wieman, Steed, Perry, Sampson, Schwab (bib5) 1999; 7 Richard, Sotto, Lavigne (bib51) 2011; 2 Jackson, Nesti, Tuan (bib46) 2012; 1 Guo, Hu, Gorecka, Bai, He, Assi, Isaji, Wang, Setia, Lopes, Gu, Dardik (bib16) 2018; 315 Galiano, Tepper, Pelo, Bhatt, Callaghan, Bastidas, Bunting, Steinmetz, Gurtner (bib31) 2004; 164 Giacco, Brownlee (bib7) 2010; 107 Shiekh, Singh, Kumar (bib19) 2020 Shin, Peterson (bib32) 2013; 2 Falanga (bib50) 2005; 366 Abbas, Uçkay, Lipsky (bib49) 2015; 16 Spravchikov, Sizyakov, Gartsbein, Accili, Tennenbaum, Wertheimer (bib13) 2001; 50 Irons, Cahill, Rattigan, Marcotte, Fromer, Chang, Zhang, Behling, Behling, Caputo (bib15) 2018; 68 Lan, Wu, Huang, Wu, Chen (bib8) 2013; 62 Roy, Mooney, Raeman, Dalecki, Hocking (bib39) 2013; 19 Gray, Mitchell, Searles (bib21) 2015; 2 Cao, Jiang, Du, Yan (bib22) 2012; 5 Desmouliere, Darby, Laverdet, Bonté (bib29) 2014; 7 Sen (bib6) 2009; 17 Hirsch, Spielmann, Zuhaili, Koehler, Fossum, Steinau, Yao, Steinstraesser, Onderdonk, Eriksson (bib52) 2008; 8 Shiekh, Singh, Kumar (bib9) 2018; 10 Moxey, Gogalniceanu, Hinchliffe, Loftus, Jones, Thompson, Holt (bib1) 2011; 28 Ogurtsova, da Rocha Fernandes, Huang, Linnenkamp, Guariguata, Cho, Cavan, Shaw, Makaroff (bib3) 2017; 128 Castilla, Liu, Velazquez (bib38) 2012; 1 Zhu, Cankova, Iwanaszko, Lichtor, Mrksich, Ameer (bib2) 2018; 115 Li, Xie, Lian, Shi, Han, Zhang, Lu, Li (bib24) 2018; 50 Shiekh, Singh, Kumar (bib10) 2018; 10 Savini, Rossi, Duranti, Avigliano, Catani, Melino (bib28) 2002; 118 Hu (10.1016/j.biomaterials.2020.120020_bib12) 2016; 6 Obara (10.1016/j.biomaterials.2020.120020_bib45) 2003; 24 Cao (10.1016/j.biomaterials.2020.120020_bib22) 2012; 5 Savini (10.1016/j.biomaterials.2020.120020_bib28) 2002; 118 Ogurtsova (10.1016/j.biomaterials.2020.120020_bib3) 2017; 128 Desmouliere (10.1016/j.biomaterials.2020.120020_bib29) 2014; 7 Galiano (10.1016/j.biomaterials.2020.120020_bib31) 2004; 164 Nunan (10.1016/j.biomaterials.2020.120020_bib4) 2014; 7 James (10.1016/j.biomaterials.2020.120020_bib26) 2003; 11 Rani (10.1016/j.biomaterials.2020.120020_bib17) 2016; 28 Stojadinovic (10.1016/j.biomaterials.2020.120020_bib18) 2008; 12 Roy (10.1016/j.biomaterials.2020.120020_bib39) 2013; 19 Guo (10.1016/j.biomaterials.2020.120020_bib16) 2018; 315 Hirsch (10.1016/j.biomaterials.2020.120020_bib52) 2008; 8 Henriques-Antunes (10.1016/j.biomaterials.2020.120020_bib27) 2019; 13 Moxey (10.1016/j.biomaterials.2020.120020_bib1) 2011; 28 Bonomo (10.1016/j.biomaterials.2020.120020_bib34) 2000; 135 Li (10.1016/j.biomaterials.2020.120020_bib24) 2018; 50 Shiekh (10.1016/j.biomaterials.2020.120020_bib9) 2018; 10 Smiell (10.1016/j.biomaterials.2020.120020_bib5) 1999; 7 Abbas (10.1016/j.biomaterials.2020.120020_bib49) 2015; 16 Irons (10.1016/j.biomaterials.2020.120020_bib15) 2018; 68 Sen (10.1016/j.biomaterials.2020.120020_bib36) 2002; 957 Gottrup (10.1016/j.biomaterials.2020.120020_bib53) 2004; 28 Xue (10.1016/j.biomaterials.2020.120020_bib41) 2015; 4 Giacco (10.1016/j.biomaterials.2020.120020_bib7) 2010; 107 Botusan (10.1016/j.biomaterials.2020.120020_bib42) 2008; 105 Zhu (10.1016/j.biomaterials.2020.120020_bib30) 2016; 238 Sheikh (10.1016/j.biomaterials.2020.120020_bib48) 2000; 135 Suwanjang (10.1016/j.biomaterials.2020.120020_bib23) 2016; 4 Zhu (10.1016/j.biomaterials.2020.120020_bib2) 2018; 115 Xiao (10.1016/j.biomaterials.2020.120020_bib35) 2016; 113 Rodriguez (10.1016/j.biomaterials.2020.120020_bib37) 2008; 34 Richard (10.1016/j.biomaterials.2020.120020_bib51) 2011; 2 Shiekh (10.1016/j.biomaterials.2020.120020_bib19) 2020 Schafer (10.1016/j.biomaterials.2020.120020_bib25) 2008; 58 Spravchikov (10.1016/j.biomaterials.2020.120020_bib13) 2001; 50 Tsang (10.1016/j.biomaterials.2020.120020_bib43) 2003; 26 Kaisang (10.1016/j.biomaterials.2020.120020_bib11) 2017; 217 Tian (10.1016/j.biomaterials.2020.120020_bib20) 2013; 228 Lan (10.1016/j.biomaterials.2020.120020_bib8) 2013; 62 Smith (10.1016/j.biomaterials.2020.120020_bib33) 1996; 4 Sen (10.1016/j.biomaterials.2020.120020_bib6) 2009; 17 Philp (10.1016/j.biomaterials.2020.120020_bib40) 2003; 11 Castilla (10.1016/j.biomaterials.2020.120020_bib38) 2012; 1 Hong (10.1016/j.biomaterials.2020.120020_bib44) 2006; 56 Jackson (10.1016/j.biomaterials.2020.120020_bib46) 2012; 1 Xuan (10.1016/j.biomaterials.2020.120020_bib14) 2014; 9 Shiekh (10.1016/j.biomaterials.2020.120020_bib10) 2018; 10 Mizuno (10.1016/j.biomaterials.2020.120020_bib47) 2012; 30 Falanga (10.1016/j.biomaterials.2020.120020_bib50) 2005; 366 Gray (10.1016/j.biomaterials.2020.120020_bib21) 2015; 2 Shin (10.1016/j.biomaterials.2020.120020_bib32) 2013; 2 |
| References_xml | – volume: 11 start-page: 19 year: 2003 end-page: 24 ident: bib40 article-title: Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice publication-title: Wound Repair Regen. – volume: 107 start-page: 1058 year: 2010 end-page: 1070 ident: bib7 article-title: Oxidative stress and diabetic complications. publication-title: Circ. Res. – volume: 17 start-page: 1 year: 2009 end-page: 18 ident: bib6 article-title: Wound healing essentials: let there be oxygen publication-title: Wound Repair Regen. – volume: 58 start-page: 165 year: 2008 end-page: 171 ident: bib25 article-title: Oxidative stress in normal and impaired wound repair publication-title: Pharmacol. Res. – volume: 128 start-page: 40 year: 2017 end-page: 50 ident: bib3 article-title: IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040 publication-title: Diabetes Res. Clin. Pract. – volume: 164 start-page: 1935 year: 2004 end-page: 1947 ident: bib31 article-title: Topical vascular endothelial growth factor Accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells publication-title: Am. J. Pathol. – volume: 50 start-page: 1627 year: 2001 end-page: 1635 ident: bib13 article-title: Glucose effects on skin keratinocytes: implications for diabetes skin complications publication-title: Diabetes – volume: 4 start-page: 224 year: 1996 end-page: 229 ident: bib33 article-title: Transcutaneous oxygen measurements predict healing of leg wounds with hyperbaric therapy publication-title: Wound Repair Regen. – volume: 34 start-page: 1159 year: 2008 end-page: 1169 ident: bib37 article-title: The role of oxygen in wound healing: a review of the literature, publication-title: Dermatol. Surg. – volume: 4 start-page: 119 year: 2015 end-page: 136 ident: bib41 article-title: Extracellular matrix reorganization during wound healing and its impact on abnormal scarring publication-title: Adv. Wound Care – volume: 28 start-page: 5542 year: 2016 end-page: 5552 ident: bib17 article-title: The exosome - a naturally secreted nanoparticle and its application to wound healing publication-title: Adv. Mater – volume: 62 start-page: 2530 year: 2013 end-page: 2538 ident: bib8 article-title: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing publication-title: Diabetes – volume: 28 start-page: 1144 year: 2011 end-page: 1153 ident: bib1 article-title: Lower extremity amputations - a review of global variability in incidence publication-title: Diabet. Med. – volume: 9 year: 2014 ident: bib14 article-title: High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation publication-title: PloS One – volume: 68 start-page: 115S year: 2018 end-page: 125S ident: bib15 article-title: Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model publication-title: J. Vasc. Surg. – volume: 217 start-page: 63 year: 2017 end-page: 74 ident: bib11 article-title: Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing publication-title: J. Surg. Res. – year: 2020 ident: bib19 article-title: Data supporting exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing publication-title: Data in Brief – volume: 228 start-page: 1487 year: 2013 end-page: 1495 ident: bib20 article-title: Dynamics of exosome internalization and trafficking publication-title: J. Cell. Physiol. – volume: 2 start-page: 33 year: 2013 end-page: 42 ident: bib32 article-title: Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells publication-title: Stem Cells Transl. Med. – volume: 2 start-page: 360 year: 2015 end-page: 367 ident: bib21 article-title: An accurate, precise method for general labeling of extracellular vesicles publication-title: MethodsX – volume: 50 start-page: 29 year: 2018 ident: bib24 article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model publication-title: Exp. Mol. Med. – volume: 7 start-page: 335 year: 1999 end-page: 346 ident: bib5 article-title: Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies publication-title: Wound Repair Regen. – volume: 315 start-page: C885 year: 2018 end-page: C896 ident: bib16 article-title: Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells, Am publication-title: J. Physiol. Physiol – volume: 12 start-page: 2675 year: 2008 end-page: 2690 ident: bib18 article-title: Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers publication-title: J. Cell Mol. Med. – volume: 1 start-page: 225 year: 2012 end-page: 230 ident: bib38 article-title: Oxygen: implications for wound healing. publication-title: Adv. Wound Care – volume: 957 start-page: 239 year: 2002 end-page: 249 ident: bib36 article-title: Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm publication-title: Ann. N. Y. Acad. Sci. – volume: 24 start-page: 3437 year: 2003 end-page: 3444 ident: bib45 article-title: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. publication-title: Biomaterials – volume: 28 start-page: 312 year: 2004 end-page: 315 ident: bib53 article-title: Oxygen in wound healing and infection. publication-title: World J. Surg. – volume: 366 start-page: 1736 year: 2005 end-page: 1743 ident: bib50 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet – volume: 30 start-page: 804 year: 2012 end-page: 810 ident: bib47 article-title: Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine publication-title: Stem Cell. – volume: 135 start-page: 1293 year: 2000 end-page: 1297 ident: bib48 article-title: Effect of hyperoxia on vascular endothelial growth factor levels in a wound model publication-title: Arch. Surg. – volume: 10 start-page: 18458 year: 2018 end-page: 18469 ident: bib10 article-title: Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 301 year: 2014 ident: bib29 article-title: Fibroblasts and myofibroblasts in wound healing publication-title: Clin. Cosmet. Invest. Dermatol. – volume: 7 start-page: 1205 year: 2014 end-page: 1213 ident: bib4 article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity publication-title: Dis. Model. Mech. – volume: 13 start-page: 8694 year: 2019 end-page: 8707 ident: bib27 article-title: The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration, publication-title: ACS Nano – volume: 8 start-page: 5 year: 2008 ident: bib52 article-title: Enhanced susceptibility to infections in a diabetic wound healing model publication-title: BMC Surg. – volume: 26 start-page: 1856 year: 2003 end-page: 1861 ident: bib43 article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers publication-title: Diabetes Care – volume: 238 start-page: 114 year: 2016 end-page: 122 ident: bib30 article-title: Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes publication-title: J. Contr. Release – volume: 105 start-page: 19426 year: 2008 end-page: 19431 ident: bib42 article-title: Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 135 start-page: 1148 year: 2000 ident: bib34 article-title: Enhancement of wound healing by hyperbaric oxygen and transforming growth factor β3 in a new chronic wound model in aged rabbits publication-title: Arch. Surg. – volume: 6 start-page: 32993 year: 2016 ident: bib12 article-title: Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts publication-title: Sci. Rep. – volume: 113 start-page: E5792 year: 2016 end-page: E5801 ident: bib35 article-title: Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 2 start-page: 24 year: 2011 end-page: 32 ident: bib51 article-title: New insights in diabetic foot infection. publication-title: World J. Diabetes – volume: 11 start-page: 172 year: 2003 end-page: 176 ident: bib26 article-title: Evidence of oxidative stress in chronic venous ulcers publication-title: Wound Repair Regen. – volume: 118 start-page: 372 year: 2002 end-page: 379 ident: bib28 article-title: Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis publication-title: J. Invest. Dermatol. – volume: 5 start-page: 929 year: 2012 end-page: 934 ident: bib22 article-title: Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells publication-title: Mol. Med. Rep. – volume: 19 start-page: 2517 year: 2013 end-page: 2526 ident: bib39 article-title: Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice publication-title: Tissue Eng. – volume: 115 start-page: 6816 year: 2018 end-page: 6821 ident: bib2 article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes., Proc. Natl. Acad. Sci. U publication-title: S. A – volume: 16 start-page: 821 year: 2015 end-page: 832 ident: bib49 article-title: In diabetic foot infections antibiotics are to treat infection, not to heal wounds publication-title: Expet Opin. Pharmacother. – volume: 1 start-page: 44 year: 2012 end-page: 50 ident: bib46 article-title: Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells publication-title: Stem Cells Transl. Med. – volume: 10 start-page: 3260 year: 2018 end-page: 3273 ident: bib9 article-title: Engineering bioinspired antioxidant materials promoting cardiomyocyte functionality and maturation for tissue engineering application publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 394 year: 2006 end-page: 398 ident: bib44 article-title: Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers publication-title: Ann. Plast. Surg. – volume: 4 year: 2016 ident: bib23 article-title: Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose publication-title: PeerJ. – volume: 68 start-page: 115S year: 2018 ident: 10.1016/j.biomaterials.2020.120020_bib15 article-title: Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2018.01.065 – volume: 13 start-page: 8694 year: 2019 ident: 10.1016/j.biomaterials.2020.120020_bib27 article-title: The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration, publication-title: ACS Nano doi: 10.1021/acsnano.9b00376 – volume: 30 start-page: 804 year: 2012 ident: 10.1016/j.biomaterials.2020.120020_bib47 article-title: Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine publication-title: Stem Cell. doi: 10.1002/stem.1076 – volume: 113 start-page: E5792 year: 2016 ident: 10.1016/j.biomaterials.2020.120020_bib35 article-title: Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1612277113 – volume: 1 start-page: 225 year: 2012 ident: 10.1016/j.biomaterials.2020.120020_bib38 article-title: Oxygen: implications for wound healing. publication-title: Adv. Wound Care doi: 10.1089/wound.2011.0319 – volume: 228 start-page: 1487 year: 2013 ident: 10.1016/j.biomaterials.2020.120020_bib20 article-title: Dynamics of exosome internalization and trafficking publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24304 – volume: 118 start-page: 372 year: 2002 ident: 10.1016/j.biomaterials.2020.120020_bib28 article-title: Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis publication-title: J. Invest. Dermatol. doi: 10.1046/j.0022-202x.2001.01624.x – volume: 11 start-page: 19 year: 2003 ident: 10.1016/j.biomaterials.2020.120020_bib40 article-title: Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.2003.11105.x – volume: 10 start-page: 18458 year: 2018 ident: 10.1016/j.biomaterials.2020.120020_bib10 article-title: Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01736 – volume: 217 start-page: 63 year: 2017 ident: 10.1016/j.biomaterials.2020.120020_bib11 article-title: Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing publication-title: J. Surg. Res. doi: 10.1016/j.jss.2017.04.032 – volume: 115 start-page: 6816 year: 2018 ident: 10.1016/j.biomaterials.2020.120020_bib2 article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes., Proc. Natl. Acad. Sci. U publication-title: S. A – volume: 238 start-page: 114 year: 2016 ident: 10.1016/j.biomaterials.2020.120020_bib30 article-title: Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2016.07.043 – volume: 12 start-page: 2675 year: 2008 ident: 10.1016/j.biomaterials.2020.120020_bib18 article-title: Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers publication-title: J. Cell Mol. Med. doi: 10.1111/j.1582-4934.2008.00321.x – volume: 50 start-page: 29 year: 2018 ident: 10.1016/j.biomaterials.2020.120020_bib24 article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0058-5 – volume: 957 start-page: 239 year: 2002 ident: 10.1016/j.biomaterials.2020.120020_bib36 article-title: Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2002.tb02920.x – volume: 50 start-page: 1627 year: 2001 ident: 10.1016/j.biomaterials.2020.120020_bib13 article-title: Glucose effects on skin keratinocytes: implications for diabetes skin complications publication-title: Diabetes doi: 10.2337/diabetes.50.7.1627 – volume: 17 start-page: 1 year: 2009 ident: 10.1016/j.biomaterials.2020.120020_bib6 article-title: Wound healing essentials: let there be oxygen publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2008.00436.x – volume: 62 start-page: 2530 year: 2013 ident: 10.1016/j.biomaterials.2020.120020_bib8 article-title: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing publication-title: Diabetes doi: 10.2337/db12-1714 – volume: 2 start-page: 24 year: 2011 ident: 10.1016/j.biomaterials.2020.120020_bib51 article-title: New insights in diabetic foot infection. publication-title: World J. Diabetes doi: 10.4239/wjd.v2.i2.24 – volume: 135 start-page: 1293 year: 2000 ident: 10.1016/j.biomaterials.2020.120020_bib48 article-title: Effect of hyperoxia on vascular endothelial growth factor levels in a wound model publication-title: Arch. Surg. doi: 10.1001/archsurg.135.11.1293 – volume: 7 start-page: 301 year: 2014 ident: 10.1016/j.biomaterials.2020.120020_bib29 article-title: Fibroblasts and myofibroblasts in wound healing publication-title: Clin. Cosmet. Invest. Dermatol. doi: 10.2147/CCID.S50046 – volume: 6 start-page: 32993 year: 2016 ident: 10.1016/j.biomaterials.2020.120020_bib12 article-title: Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts publication-title: Sci. Rep. doi: 10.1038/srep32993 – volume: 366 start-page: 1736 year: 2005 ident: 10.1016/j.biomaterials.2020.120020_bib50 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet doi: 10.1016/S0140-6736(05)67700-8 – volume: 28 start-page: 5542 year: 2016 ident: 10.1016/j.biomaterials.2020.120020_bib17 article-title: The exosome - a naturally secreted nanoparticle and its application to wound healing publication-title: Adv. Mater doi: 10.1002/adma.201504009 – volume: 28 start-page: 312 year: 2004 ident: 10.1016/j.biomaterials.2020.120020_bib53 article-title: Oxygen in wound healing and infection. publication-title: World J. Surg. doi: 10.1007/s00268-003-7398-5 – volume: 2 start-page: 33 year: 2013 ident: 10.1016/j.biomaterials.2020.120020_bib32 article-title: Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2012-0041 – volume: 34 start-page: 1159 year: 2008 ident: 10.1016/j.biomaterials.2020.120020_bib37 article-title: The role of oxygen in wound healing: a review of the literature, publication-title: Dermatol. Surg. – volume: 8 start-page: 5 year: 2008 ident: 10.1016/j.biomaterials.2020.120020_bib52 article-title: Enhanced susceptibility to infections in a diabetic wound healing model publication-title: BMC Surg. doi: 10.1186/1471-2482-8-5 – volume: 7 start-page: 1205 year: 2014 ident: 10.1016/j.biomaterials.2020.120020_bib4 article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity publication-title: Dis. Model. Mech. doi: 10.1242/dmm.016782 – volume: 315 start-page: C885 year: 2018 ident: 10.1016/j.biomaterials.2020.120020_bib16 article-title: Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells, Am publication-title: J. Physiol. Physiol doi: 10.1152/ajpcell.00120.2018 – volume: 26 start-page: 1856 year: 2003 ident: 10.1016/j.biomaterials.2020.120020_bib43 article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers publication-title: Diabetes Care doi: 10.2337/diacare.26.6.1856 – volume: 24 start-page: 3437 year: 2003 ident: 10.1016/j.biomaterials.2020.120020_bib45 article-title: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00220-5 – volume: 28 start-page: 1144 year: 2011 ident: 10.1016/j.biomaterials.2020.120020_bib1 article-title: Lower extremity amputations - a review of global variability in incidence publication-title: Diabet. Med. doi: 10.1111/j.1464-5491.2011.03279.x – volume: 11 start-page: 172 year: 2003 ident: 10.1016/j.biomaterials.2020.120020_bib26 article-title: Evidence of oxidative stress in chronic venous ulcers publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.2003.11304.x – volume: 107 start-page: 1058 year: 2010 ident: 10.1016/j.biomaterials.2020.120020_bib7 article-title: Oxidative stress and diabetic complications. publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.223545 – volume: 58 start-page: 165 year: 2008 ident: 10.1016/j.biomaterials.2020.120020_bib25 article-title: Oxidative stress in normal and impaired wound repair publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2008.06.004 – year: 2020 ident: 10.1016/j.biomaterials.2020.120020_bib19 article-title: Data supporting exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing publication-title: Data in Brief doi: 10.1016/j.dib.2020.105671 – volume: 7 start-page: 335 year: 1999 ident: 10.1016/j.biomaterials.2020.120020_bib5 article-title: Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.1999.00335.x – volume: 135 start-page: 1148 year: 2000 ident: 10.1016/j.biomaterials.2020.120020_bib34 article-title: Enhancement of wound healing by hyperbaric oxygen and transforming growth factor β3 in a new chronic wound model in aged rabbits publication-title: Arch. Surg. doi: 10.1001/archsurg.135.10.1148 – volume: 10 start-page: 3260 year: 2018 ident: 10.1016/j.biomaterials.2020.120020_bib9 article-title: Engineering bioinspired antioxidant materials promoting cardiomyocyte functionality and maturation for tissue engineering application publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14777 – volume: 1 start-page: 44 year: 2012 ident: 10.1016/j.biomaterials.2020.120020_bib46 article-title: Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2011-0024 – volume: 16 start-page: 821 year: 2015 ident: 10.1016/j.biomaterials.2020.120020_bib49 article-title: In diabetic foot infections antibiotics are to treat infection, not to heal wounds publication-title: Expet Opin. Pharmacother. doi: 10.1517/14656566.2015.1021780 – volume: 2 start-page: 360 year: 2015 ident: 10.1016/j.biomaterials.2020.120020_bib21 article-title: An accurate, precise method for general labeling of extracellular vesicles publication-title: MethodsX doi: 10.1016/j.mex.2015.08.002 – volume: 9 year: 2014 ident: 10.1016/j.biomaterials.2020.120020_bib14 article-title: High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation publication-title: PloS One doi: 10.1371/journal.pone.0108182 – volume: 4 start-page: 119 year: 2015 ident: 10.1016/j.biomaterials.2020.120020_bib41 article-title: Extracellular matrix reorganization during wound healing and its impact on abnormal scarring publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0485 – volume: 56 start-page: 394 year: 2006 ident: 10.1016/j.biomaterials.2020.120020_bib44 article-title: Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers publication-title: Ann. Plast. Surg. doi: 10.1097/01.sap.0000198731.12407.0c – volume: 5 start-page: 929 year: 2012 ident: 10.1016/j.biomaterials.2020.120020_bib22 article-title: Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2012.746 – volume: 128 start-page: 40 year: 2017 ident: 10.1016/j.biomaterials.2020.120020_bib3 article-title: IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2017.03.024 – volume: 4 year: 2016 ident: 10.1016/j.biomaterials.2020.120020_bib23 article-title: Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose publication-title: PeerJ. doi: 10.7717/peerj.2389 – volume: 105 start-page: 19426 year: 2008 ident: 10.1016/j.biomaterials.2020.120020_bib42 article-title: Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0805230105 – volume: 19 start-page: 2517 year: 2013 ident: 10.1016/j.biomaterials.2020.120020_bib39 article-title: Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice publication-title: Tissue Eng. doi: 10.1089/ten.tea.2013.0024 – volume: 4 start-page: 224 year: 1996 ident: 10.1016/j.biomaterials.2020.120020_bib33 article-title: Transcutaneous oxygen measurements predict healing of leg wounds with hyperbaric therapy publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.1996.40209.x – volume: 164 start-page: 1935 year: 2004 ident: 10.1016/j.biomaterials.2020.120020_bib31 article-title: Topical vascular endothelial growth factor Accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63754-6 |
| SSID | ssj0014042 |
| Score | 2.7037516 |
| Snippet | Lack of oxygen, reduced vascularization, elevated oxidative stress, and infection are critical clinical hallmarks of non-healing chronic diabetic wounds.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 120020 |
| SubjectTerms | angiogenesis Anti-Bacterial Agents Antioxidant biomaterials Antioxidants Bandages biocompatible materials collagen Cryogels Diabetes Mellitus Diabetic wounds epithelium Exosomes fibroblasts Humans keratinocytes oxidative stress Oxygen Oxygen releasing scaffolds polyurethanes therapeutics Wound Healing |
| Title | Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220302660 https://dx.doi.org/10.1016/j.biomaterials.2020.120020 https://www.ncbi.nlm.nih.gov/pubmed/32305816 https://www.proquest.com/docview/2392463694 https://www.proquest.com/docview/2524220594 |
| Volume | 249 |
| WOSCitedRecordID | wos000530751600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDBu5TIZibcqVeLcbCEeCioCJDYehtS3KLGdNVuXTG1XMv4B4k9zHF9ahIaKEC9RmuTESc7Xc7E_HyP0klAhitLnkJtEvheJPPFYHjBP0EQKwFOZFKJbbCI9PKSTCfvc6323c2FWs7Suaduyi_-qajgGylZTZ_9C3e6mcAD2QemwBbXDdivFj9tm0ZzLwSwHkzJo2iu4slsaJV_oCYnQdFuJ3HDL1e9Cl2xWpULmV82JnA2-qtWWBqIjyYLQUXv0prt4pmajQ3hq-mxNsVfL6LpcGEEVflqfaEeMqwaCY_0BXLfOtJJnhqA4X-XVt8Fo6M6B_FRTLvPz6sx5D8cJHy2mJj8wnRZkTZkzPWl2Ns2auqQ7N4nHEkOrltogU8hyY-bHmxab6Cqnv1l_3RFxOiw23miomh8Giovir32eYyIqchtRbRKwdhCs-Dtoj6QxAwO5N_ownnx0Q1IAZqL5sPohbQXbjix4XYvXRTvXZTNdVHN8F90x6QgeaRjdQz1Z76PbG0Uq99HNT4Z-cR_9MNjCHbawxhZ22MIb2IJ9gX_BFjbYwh1EsMUWNtjCDlvYYqu7xxpbRtBg6wH68m58_Pa9Z1bz8Dg41aWXxpyWBZdhAqYhJoLTIGAFZTKEkJclnBV-XHBCRMDLhEMeUXJV2zKPijKMGE_Dh2i3bmr5GGEmiSqUSXywLVFIBaOiyGUuoxLcJQ-LPmL2q2fclLpXK67MMstpPM02NZYpjWVaY30UOtkLXfBlK6lXVrmZndIMTjgDZG4l_dpJm8BXB7Rby7-weMrAO6ghv7yWoJiMQPqjSgKy6A_XxBCmE1W3qY8eaTC6Nw8JxAM0SJ784xM-RbfWZuAZ2l3OL-VzdIOvltVifoB20gk9MH-4nxY3Ar0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosome+laden+oxygen+releasing+antioxidant+and+antibacterial+cryogel+wound+dressing+OxOBand+alleviate+diabetic+and+infectious+wound+healing&rft.jtitle=Biomaterials&rft.au=Shiekh%2C+Parvaiz+A.&rft.au=Singh%2C+Anamika&rft.au=Kumar%2C+Ashok&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=249&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.120020&rft.externalDocID=S0142961220302660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |