An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria
Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3,...
Uloženo v:
| Vydáno v: | Applied and environmental microbiology Ročník 83; číslo 10 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.05.2017
|
| Témata: | |
| ISSN: | 1098-5336, 1098-5336 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a
species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of
, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in
and the
species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the
species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.
Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes. |
|---|---|
| AbstractList | Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a
species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of
, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in
and the
species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the
species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.
Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes. Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes.Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes. |
| Author | Beld, Joris Brahamsha, Bianca Ma, Amy T |
| Author_xml | – sequence: 1 givenname: Amy T surname: Ma fullname: Ma, Amy T email: amy.ma@drexelmed.edu organization: Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA amy.ma@drexelmed.edu – sequence: 2 givenname: Joris surname: Beld fullname: Beld, Joris organization: Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA – sequence: 3 givenname: Bianca surname: Brahamsha fullname: Brahamsha, Bianca organization: Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28283521$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAUhS1URB-wMSOPLCl-xI47hqgUpCIQAoktsp1rEZTErZ0M5dcTRJGY7tHR953hztGk8x0gdEnJklKmbvL145IQwkVCsxM0o2SlEsG5nPzLUzSP8XOkUiLVGZoyxRQXjM7Qe97hvPVgdIM3QX9BwN7h4qA7b7TtIdQav8B-qANEXIxdo9u6w8_BV4OFCpsDvocR833wu4_a4tujdY5OnW4iXBzvAr3drV-L-2T7tHko8m1iBVd9wivDwBjFrJTOaGG15FYxwZzmK5mmBKQiKc8MKOl05aQbQe4ojLb6kRfo-nd3F_x-gNiXbR0tNI3uwA-xpCqT6SoTIhvRqyM6mBaqchfqVodD-fcN9g2UuWLW |
| CitedBy_id | crossref_primary_10_1016_j_biortech_2024_131149 crossref_primary_10_1111_1462_2920_16017 crossref_primary_10_1128_jb_00284_24 crossref_primary_10_1128_JB_00172_21 crossref_primary_10_1016_j_watres_2024_121465 crossref_primary_10_1016_j_copbio_2019_08_005 crossref_primary_10_1017_S0031182020000013 crossref_primary_10_1111_mmi_14402 crossref_primary_10_1016_j_biochi_2020_06_014 crossref_primary_10_1128_msphere_00606_24 crossref_primary_10_1128_aem_01422_24 crossref_primary_10_1016_j_biotechadv_2018_04_004 crossref_primary_10_1038_s41396_022_01250_7 crossref_primary_10_1126_science_aba0165 crossref_primary_10_1017_S0954422424000210 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 American Society for Microbiology. |
| Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/AEM.00035-17 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Economics Engineering Biology |
| EISSN | 1098-5336 |
| ExternalDocumentID | 28283521 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CGR CS3 CUY CVF D0L DIK E.- E3Z EBS ECM EIF EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B NPM O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM 7X8 AAGFI |
| ID | FETCH-LOGICAL-c538t-3db2ebb82c66fba5ca63c8252fa396440e680437be86fadf6fc663f1e53883db2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401465400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5336 |
| IngestDate | Thu Sep 04 17:27:05 EDT 2025 Thu Apr 03 06:57:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | microbial interactions vitamin B12 amoeba corrinoids |
| Language | English |
| License | Copyright © 2017 American Society for Microbiology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c538t-3db2ebb82c66fba5ca63c8252fa396440e680437be86fadf6fc663f1e53883db2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://aem.asm.org/content/aem/83/10/e00035-17.full.pdf |
| PMID | 28283521 |
| PQID | 1876497557 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1876497557 pubmed_primary_28283521 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-01 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Applied and environmental microbiology |
| PublicationTitleAlternate | Appl Environ Microbiol |
| PublicationYear | 2017 |
| References | 12195810 - Nat Prod Rep. 2002 Aug;19(4):390-412 803550 - J Gen Microbiol. 1975 Feb;86(2):333-42 16267554 - Nature. 2005 Nov 3;438(7064):90-3 2070790 - Eur J Biochem. 1991 Jul 15;199(2):299-303 8635748 - Gene. 1996 Feb 22;169(1):47-52 25126756 - ISME J. 2015 Feb;9(2):461-71 25149516 - Appl Environ Microbiol. 2014 Nov;80(21):6704-13 24050603 - Ann Rev Mar Sci. 2014;6:339-67 16432199 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1528-33 27040778 - Curr Biol. 2016 Apr 25;26(8):999-1008 17120 - Proc Natl Acad Sci U S A. 1977 May;74(5):2157-61 25440056 - Cell Metab. 2014 Nov 4;20(5):769-78 25815683 - Elife. 2015 Mar 27;4:null 12097243 - Clin Microbiol Rev. 2002 Jul;15(3):342-54 27092409 - Curr Opin Microbiol. 2016 Jun;31:169-75 28028206 - Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):364-369 18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41 22342867 - Trends Microbiol. 2012 Apr;20(4):184-91 23372162 - J Biol Chem. 2013 Mar 22;288(12):8198-208 23235291 - ISME J. 2013 Mar;7(3):652-9 24293654 - Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 26416754 - Nature. 2015 Oct 22;526(7574):536-41 21551270 - Mol Biol Evol. 2011 Oct;28(10):2921-33 10940017 - J Bacteriol. 2000 Sep;182(17 ):4773-82 17377583 - Nature. 2007 Mar 22;446(7134):449-53 6138431 - J Protozool. 1983 May;30(2):383-7 19381548 - Methods Mol Biol. 2009;540:1-13 23012457 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16678-83 25071756 - Front Microbiol. 2014 Jul 08;5:350 25074377 - Nucleic Acids Res. 2014;42(17):e136 19005497 - ISME J. 2009 Jan;3(1):4-12 24529378 - Cell. 2014 Feb 13;156(4):759-70 22895338 - Nature. 2012 Aug 16;488(7411):329-35 26221022 - Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43 24439897 - Cell Host Microbe. 2014 Jan 15;15(1):47-57 16896203 - Eukaryot Cell. 2006 Aug;5(8):1175-83 12869542 - J Biol Chem. 2003 Oct 17;278(42):41148-59 22923412 - Appl Environ Microbiol. 2012 Nov;78(21):7745-52 27457716 - J Bacteriol. 2016 Sep 09;198(19):2753-61 26246619 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10792-7 20545742 - Environ Microbiol. 2010 Oct;12(10):2797-813 27457714 - J Bacteriol. 2016 Sep 09;198(19):2743-52 24055005 - Chem Biol. 2013 Oct 24;20(10):1275-85 24803319 - Environ Microbiol. 2015 Dec;17 (12 ):4873-84 10498744 - J Nutr. 1999 Oct;129(10):1761-4 11935176 - Appl Microbiol Biotechnol. 2002 Mar;58(3):275-85 24789819 - Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016147 25945462 - Chem Soc Rev. 2015 Jun 7;44(11):3391-404 24055007 - Chem Biol. 2013 Oct 24;20(10):1265-74 27282316 - Ecol Lett. 2016 Jul;19(7):810-22 26508635 - Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43 17888910 - FEBS Lett. 2007 Oct 16;581(25):4865-70 21248849 - Nature. 2011 Jan 20;469(7330):393-6 17163662 - ACS Chem Biol. 2006 Apr 25;1(3):149-59 16051610 - J Biol Chem. 2005 Sep 23;280(38):32662-8 14704351 - Nucleic Acids Res. 2004 Jan 02;32(1):143-50 |
| References_xml | – reference: 6138431 - J Protozool. 1983 May;30(2):383-7 – reference: 10498744 - J Nutr. 1999 Oct;129(10):1761-4 – reference: 19005497 - ISME J. 2009 Jan;3(1):4-12 – reference: 24050603 - Ann Rev Mar Sci. 2014;6:339-67 – reference: 19381548 - Methods Mol Biol. 2009;540:1-13 – reference: 22923412 - Appl Environ Microbiol. 2012 Nov;78(21):7745-52 – reference: 24055007 - Chem Biol. 2013 Oct 24;20(10):1265-74 – reference: 24529378 - Cell. 2014 Feb 13;156(4):759-70 – reference: 21248849 - Nature. 2011 Jan 20;469(7330):393-6 – reference: 22342867 - Trends Microbiol. 2012 Apr;20(4):184-91 – reference: 26508635 - Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43 – reference: 26246619 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10792-7 – reference: 16051610 - J Biol Chem. 2005 Sep 23;280(38):32662-8 – reference: 22895338 - Nature. 2012 Aug 16;488(7411):329-35 – reference: 18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41 – reference: 16432199 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1528-33 – reference: 24439897 - Cell Host Microbe. 2014 Jan 15;15(1):47-57 – reference: 17888910 - FEBS Lett. 2007 Oct 16;581(25):4865-70 – reference: 17120 - Proc Natl Acad Sci U S A. 1977 May;74(5):2157-61 – reference: 27457714 - J Bacteriol. 2016 Sep 09;198(19):2743-52 – reference: 8635748 - Gene. 1996 Feb 22;169(1):47-52 – reference: 24789819 - Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016147 – reference: 25126756 - ISME J. 2015 Feb;9(2):461-71 – reference: 23012457 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16678-83 – reference: 25440056 - Cell Metab. 2014 Nov 4;20(5):769-78 – reference: 16896203 - Eukaryot Cell. 2006 Aug;5(8):1175-83 – reference: 25074377 - Nucleic Acids Res. 2014;42(17):e136 – reference: 2070790 - Eur J Biochem. 1991 Jul 15;199(2):299-303 – reference: 28028206 - Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):364-369 – reference: 24293654 - Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 – reference: 25945462 - Chem Soc Rev. 2015 Jun 7;44(11):3391-404 – reference: 23372162 - J Biol Chem. 2013 Mar 22;288(12):8198-208 – reference: 10940017 - J Bacteriol. 2000 Sep;182(17 ):4773-82 – reference: 11935176 - Appl Microbiol Biotechnol. 2002 Mar;58(3):275-85 – reference: 14704351 - Nucleic Acids Res. 2004 Jan 02;32(1):143-50 – reference: 26221022 - Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43 – reference: 12869542 - J Biol Chem. 2003 Oct 17;278(42):41148-59 – reference: 17163662 - ACS Chem Biol. 2006 Apr 25;1(3):149-59 – reference: 21551270 - Mol Biol Evol. 2011 Oct;28(10):2921-33 – reference: 26416754 - Nature. 2015 Oct 22;526(7574):536-41 – reference: 24055005 - Chem Biol. 2013 Oct 24;20(10):1275-85 – reference: 27457716 - J Bacteriol. 2016 Sep 09;198(19):2753-61 – reference: 20545742 - Environ Microbiol. 2010 Oct;12(10):2797-813 – reference: 27282316 - Ecol Lett. 2016 Jul;19(7):810-22 – reference: 25149516 - Appl Environ Microbiol. 2014 Nov;80(21):6704-13 – reference: 27092409 - Curr Opin Microbiol. 2016 Jun;31:169-75 – reference: 25815683 - Elife. 2015 Mar 27;4:null – reference: 24803319 - Environ Microbiol. 2015 Dec;17 (12 ):4873-84 – reference: 12195810 - Nat Prod Rep. 2002 Aug;19(4):390-412 – reference: 803550 - J Gen Microbiol. 1975 Feb;86(2):333-42 – reference: 12097243 - Clin Microbiol Rev. 2002 Jul;15(3):342-54 – reference: 16267554 - Nature. 2005 Nov 3;438(7064):90-3 – reference: 17377583 - Nature. 2007 Mar 22;446(7134):449-53 – reference: 27040778 - Curr Biol. 2016 Apr 25;26(8):999-1008 – reference: 25071756 - Front Microbiol. 2014 Jul 08;5:350 – reference: 23235291 - ISME J. 2013 Mar;7(3):652-9 |
| SSID | ssj0004068 |
| Score | 2.3537586 |
| Snippet | Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Amoeba - growth & development Amoeba - physiology Cyanobacteria - genetics Cyanobacteria - metabolism Food Chain Heterotrophic Processes Pseudomonas - metabolism Vitamin B 12 - biosynthesis |
| Title | An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28283521 https://www.proquest.com/docview/1876497557 |
| Volume | 83 |
| WOSCitedRecordID | wos000401465400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BBQEDj_IqLxmJ1TTNw4knVKqWDrSqEKBule3YokOTkhSk8us5p6lgYEBi8ZSTIvvu_Nn3-TuA65AJ4SnuUBk6ivoBxpzkDqcmCATXbiRloVvw8hD2-9FwyAflhVte0iqXObFI1HGq7B15vYFh6_MwCMLb6Ru1XaNsdbVsobEKFQ-hjPXqcPhDLdwpn8LxiCKsYUviuxvVm-3eTVFGo2Wrsl_BZbHJdHb_-3t7sFPCS9Jc-MM-rOikChuLhpPzKmwu3yHnVdj-IUV4AMNmQpqTVEu0vs_Ep85IakhrLhIM-ELQWZBHbWnDOictKyIiJuOEDArBWB0TOSddy6xJZ1k6fR0rcldaHcJzp_3U6tKy6wJVmPxm1Iulq6WMXMWYkSJQgnkKz5GuER5H9ORoFllBJKkjZkRsmMEPPdPQaB1Z4yNYS9JEnwBxZciNb1FAGPt-7HImEF0YD1GVio3Ha3C1nMwRerUtVYhEp-_56Hs6a3C8WJHRdCG_MbKHRISNjdM_WJ_Blmv34YKheA4VgzGtL2BdfczGeXZZuAuO_UHvCz6XyWU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Amoebal+Grazer+of+Cyanobacteria+Requires+Cobalamin+Produced+by+Heterotrophic+Bacteria&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Ma%2C+Amy+T&rft.au=Beld%2C+Joris&rft.au=Brahamsha%2C+Bianca&rft.date=2017-05-01&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=83&rft.issue=10&rft_id=info:doi/10.1128%2FAEM.00035-17&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5336&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5336&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5336&client=summon |