An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria

Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3,...

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology Vol. 83; no. 10
Main Authors: Ma, Amy T, Beld, Joris, Brahamsha, Bianca
Format: Journal Article
Language:English
Published: United States 01.05.2017
Subjects:
ISSN:1098-5336, 1098-5336
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of , which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in and the species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs. Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes.
AbstractList Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of , which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in and the species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs. Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes.
Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes.Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes.
Author Beld, Joris
Brahamsha, Bianca
Ma, Amy T
Author_xml – sequence: 1
  givenname: Amy T
  surname: Ma
  fullname: Ma, Amy T
  email: amy.ma@drexelmed.edu
  organization: Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA amy.ma@drexelmed.edu
– sequence: 2
  givenname: Joris
  surname: Beld
  fullname: Beld, Joris
  organization: Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
– sequence: 3
  givenname: Bianca
  surname: Brahamsha
  fullname: Brahamsha, Bianca
  organization: Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28283521$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAUhS1URB-wMSOPLCl-xI47hqgUpCIQAoktsp1rEZTErZ0M5dcTRJGY7tHR953hztGk8x0gdEnJklKmbvL145IQwkVCsxM0o2SlEsG5nPzLUzSP8XOkUiLVGZoyxRQXjM7Qe97hvPVgdIM3QX9BwN7h4qA7b7TtIdQav8B-qANEXIxdo9u6w8_BV4OFCpsDvocR833wu4_a4tujdY5OnW4iXBzvAr3drV-L-2T7tHko8m1iBVd9wivDwBjFrJTOaGG15FYxwZzmK5mmBKQiKc8MKOl05aQbQe4ojLb6kRfo-nd3F_x-gNiXbR0tNI3uwA-xpCqT6SoTIhvRqyM6mBaqchfqVodD-fcN9g2UuWLW
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131149
crossref_primary_10_1111_1462_2920_16017
crossref_primary_10_1128_jb_00284_24
crossref_primary_10_1128_JB_00172_21
crossref_primary_10_1016_j_watres_2024_121465
crossref_primary_10_1016_j_copbio_2019_08_005
crossref_primary_10_1017_S0031182020000013
crossref_primary_10_1111_mmi_14402
crossref_primary_10_1016_j_biochi_2020_06_014
crossref_primary_10_1128_msphere_00606_24
crossref_primary_10_1128_aem_01422_24
crossref_primary_10_1016_j_biotechadv_2018_04_004
crossref_primary_10_1038_s41396_022_01250_7
crossref_primary_10_1126_science_aba0165
crossref_primary_10_1017_S0954422424000210
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/AEM.00035-17
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
ExternalDocumentID 28283521
Genre Journal Article
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CGR
CS3
CUY
CVF
D0L
DIK
E.-
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
NPM
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
7X8
AAGFI
ID FETCH-LOGICAL-c538t-3db2ebb82c66fba5ca63c8252fa396440e680437be86fadf6fc663f1e53883db2
IEDL.DBID 7X8
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401465400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5336
IngestDate Thu Sep 04 17:27:05 EDT 2025
Thu Apr 03 06:57:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords microbial interactions
vitamin B12
amoeba
corrinoids
Language English
License Copyright © 2017 American Society for Microbiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-3db2ebb82c66fba5ca63c8252fa396440e680437be86fadf6fc663f1e53883db2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aem.asm.org/content/aem/83/10/e00035-17.full.pdf
PMID 28283521
PQID 1876497557
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1876497557
pubmed_primary_28283521
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2017
References 12195810 - Nat Prod Rep. 2002 Aug;19(4):390-412
803550 - J Gen Microbiol. 1975 Feb;86(2):333-42
16267554 - Nature. 2005 Nov 3;438(7064):90-3
2070790 - Eur J Biochem. 1991 Jul 15;199(2):299-303
8635748 - Gene. 1996 Feb 22;169(1):47-52
25126756 - ISME J. 2015 Feb;9(2):461-71
25149516 - Appl Environ Microbiol. 2014 Nov;80(21):6704-13
24050603 - Ann Rev Mar Sci. 2014;6:339-67
16432199 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1528-33
27040778 - Curr Biol. 2016 Apr 25;26(8):999-1008
17120 - Proc Natl Acad Sci U S A. 1977 May;74(5):2157-61
25440056 - Cell Metab. 2014 Nov 4;20(5):769-78
25815683 - Elife. 2015 Mar 27;4:null
12097243 - Clin Microbiol Rev. 2002 Jul;15(3):342-54
27092409 - Curr Opin Microbiol. 2016 Jun;31:169-75
28028206 - Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):364-369
18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41
22342867 - Trends Microbiol. 2012 Apr;20(4):184-91
23372162 - J Biol Chem. 2013 Mar 22;288(12):8198-208
23235291 - ISME J. 2013 Mar;7(3):652-9
24293654 - Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14
26416754 - Nature. 2015 Oct 22;526(7574):536-41
21551270 - Mol Biol Evol. 2011 Oct;28(10):2921-33
10940017 - J Bacteriol. 2000 Sep;182(17 ):4773-82
17377583 - Nature. 2007 Mar 22;446(7134):449-53
6138431 - J Protozool. 1983 May;30(2):383-7
19381548 - Methods Mol Biol. 2009;540:1-13
23012457 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16678-83
25071756 - Front Microbiol. 2014 Jul 08;5:350
25074377 - Nucleic Acids Res. 2014;42(17):e136
19005497 - ISME J. 2009 Jan;3(1):4-12
24529378 - Cell. 2014 Feb 13;156(4):759-70
22895338 - Nature. 2012 Aug 16;488(7411):329-35
26221022 - Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43
24439897 - Cell Host Microbe. 2014 Jan 15;15(1):47-57
16896203 - Eukaryot Cell. 2006 Aug;5(8):1175-83
12869542 - J Biol Chem. 2003 Oct 17;278(42):41148-59
22923412 - Appl Environ Microbiol. 2012 Nov;78(21):7745-52
27457716 - J Bacteriol. 2016 Sep 09;198(19):2753-61
26246619 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10792-7
20545742 - Environ Microbiol. 2010 Oct;12(10):2797-813
27457714 - J Bacteriol. 2016 Sep 09;198(19):2743-52
24055005 - Chem Biol. 2013 Oct 24;20(10):1275-85
24803319 - Environ Microbiol. 2015 Dec;17 (12 ):4873-84
10498744 - J Nutr. 1999 Oct;129(10):1761-4
11935176 - Appl Microbiol Biotechnol. 2002 Mar;58(3):275-85
24789819 - Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016147
25945462 - Chem Soc Rev. 2015 Jun 7;44(11):3391-404
24055007 - Chem Biol. 2013 Oct 24;20(10):1265-74
27282316 - Ecol Lett. 2016 Jul;19(7):810-22
26508635 - Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43
17888910 - FEBS Lett. 2007 Oct 16;581(25):4865-70
21248849 - Nature. 2011 Jan 20;469(7330):393-6
17163662 - ACS Chem Biol. 2006 Apr 25;1(3):149-59
16051610 - J Biol Chem. 2005 Sep 23;280(38):32662-8
14704351 - Nucleic Acids Res. 2004 Jan 02;32(1):143-50
References_xml – reference: 6138431 - J Protozool. 1983 May;30(2):383-7
– reference: 10498744 - J Nutr. 1999 Oct;129(10):1761-4
– reference: 19005497 - ISME J. 2009 Jan;3(1):4-12
– reference: 24050603 - Ann Rev Mar Sci. 2014;6:339-67
– reference: 19381548 - Methods Mol Biol. 2009;540:1-13
– reference: 22923412 - Appl Environ Microbiol. 2012 Nov;78(21):7745-52
– reference: 24055007 - Chem Biol. 2013 Oct 24;20(10):1265-74
– reference: 24529378 - Cell. 2014 Feb 13;156(4):759-70
– reference: 21248849 - Nature. 2011 Jan 20;469(7330):393-6
– reference: 22342867 - Trends Microbiol. 2012 Apr;20(4):184-91
– reference: 26508635 - Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43
– reference: 26246619 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10792-7
– reference: 16051610 - J Biol Chem. 2005 Sep 23;280(38):32662-8
– reference: 22895338 - Nature. 2012 Aug 16;488(7411):329-35
– reference: 18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41
– reference: 16432199 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1528-33
– reference: 24439897 - Cell Host Microbe. 2014 Jan 15;15(1):47-57
– reference: 17888910 - FEBS Lett. 2007 Oct 16;581(25):4865-70
– reference: 17120 - Proc Natl Acad Sci U S A. 1977 May;74(5):2157-61
– reference: 27457714 - J Bacteriol. 2016 Sep 09;198(19):2743-52
– reference: 8635748 - Gene. 1996 Feb 22;169(1):47-52
– reference: 24789819 - Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016147
– reference: 25126756 - ISME J. 2015 Feb;9(2):461-71
– reference: 23012457 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16678-83
– reference: 25440056 - Cell Metab. 2014 Nov 4;20(5):769-78
– reference: 16896203 - Eukaryot Cell. 2006 Aug;5(8):1175-83
– reference: 25074377 - Nucleic Acids Res. 2014;42(17):e136
– reference: 2070790 - Eur J Biochem. 1991 Jul 15;199(2):299-303
– reference: 28028206 - Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):364-369
– reference: 24293654 - Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14
– reference: 25945462 - Chem Soc Rev. 2015 Jun 7;44(11):3391-404
– reference: 23372162 - J Biol Chem. 2013 Mar 22;288(12):8198-208
– reference: 10940017 - J Bacteriol. 2000 Sep;182(17 ):4773-82
– reference: 11935176 - Appl Microbiol Biotechnol. 2002 Mar;58(3):275-85
– reference: 14704351 - Nucleic Acids Res. 2004 Jan 02;32(1):143-50
– reference: 26221022 - Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43
– reference: 12869542 - J Biol Chem. 2003 Oct 17;278(42):41148-59
– reference: 17163662 - ACS Chem Biol. 2006 Apr 25;1(3):149-59
– reference: 21551270 - Mol Biol Evol. 2011 Oct;28(10):2921-33
– reference: 26416754 - Nature. 2015 Oct 22;526(7574):536-41
– reference: 24055005 - Chem Biol. 2013 Oct 24;20(10):1275-85
– reference: 27457716 - J Bacteriol. 2016 Sep 09;198(19):2753-61
– reference: 20545742 - Environ Microbiol. 2010 Oct;12(10):2797-813
– reference: 27282316 - Ecol Lett. 2016 Jul;19(7):810-22
– reference: 25149516 - Appl Environ Microbiol. 2014 Nov;80(21):6704-13
– reference: 27092409 - Curr Opin Microbiol. 2016 Jun;31:169-75
– reference: 25815683 - Elife. 2015 Mar 27;4:null
– reference: 24803319 - Environ Microbiol. 2015 Dec;17 (12 ):4873-84
– reference: 12195810 - Nat Prod Rep. 2002 Aug;19(4):390-412
– reference: 803550 - J Gen Microbiol. 1975 Feb;86(2):333-42
– reference: 12097243 - Clin Microbiol Rev. 2002 Jul;15(3):342-54
– reference: 16267554 - Nature. 2005 Nov 3;438(7064):90-3
– reference: 17377583 - Nature. 2007 Mar 22;446(7134):449-53
– reference: 27040778 - Curr Biol. 2016 Apr 25;26(8):999-1008
– reference: 25071756 - Front Microbiol. 2014 Jul 08;5:350
– reference: 23235291 - ISME J. 2013 Mar;7(3):652-9
SSID ssj0004068
Score 2.3537586
Snippet Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Amoeba - growth & development
Amoeba - physiology
Cyanobacteria - genetics
Cyanobacteria - metabolism
Food Chain
Heterotrophic Processes
Pseudomonas - metabolism
Vitamin B 12 - biosynthesis
Title An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/28283521
https://www.proquest.com/docview/1876497557
Volume 83
WOSCitedRecordID wos000401465400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BBQEDj_J-yUishsZOHGdCpSqwUFUIpG6V7diiA0lpClL59ZyTVDAwILFkykmWfXf-7Dt_H8CFTVTCrJC0pWNOwyB0VAaCUR0K59BH0papxCbiXk8OBkm_vnAr6rbKeU4sE3WaG39HfhVg2IZJHEXx9fiNetUoX12tJTQWocERynivjgc_2MJb9VO4RFKENWLe-M7kVbv7cFmW0WgtVfYruCw3mdvN_w5vCzZqeEnalT9sw4LNmrBSCU7OmrA6f4dcNGH9BxXhDgzaGWm_5laj9d1EfdoJyR3pzFSGAV8SOivyaH3bsC1Ix5OIqNdRRvolYaxNiZ6Re99Zk08n-fhlZMhNbbULz7fdp849rVUXqMHkN6U81cxqLZkRwmkVGSW4wXMkc4oniJ5auLKeEElbKZxKnXD4I3eBRWvpjfdgKcszewDEMJdo4RnMbBBGCdc8RYTCVRTEVhrGDuF8PplD9GpfqlCZzd-L4fd0HsJ-tSLDcUW_MfSHRISNwdEfrI9hjfl9uOxQPIGGw5i2p7BsPqajYnJWugt-e_2HL80RyTM
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Amoebal+Grazer+of+Cyanobacteria+Requires+Cobalamin+Produced+by+Heterotrophic+Bacteria&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Ma%2C+Amy+T&rft.au=Beld%2C+Joris&rft.au=Brahamsha%2C+Bianca&rft.date=2017-05-01&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=83&rft.issue=10&rft_id=info:doi/10.1128%2FAEM.00035-17&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5336&client=summon