NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities

Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at leas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology open Jg. 8; H. 12
Hauptverfasser: Wang, Ling, Su, Yue, Huang, Chang, Yin, Yexuan, Chu, Alexander, Knupp, Alec, Tang, Young
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England The Company of Biologists Ltd 05.12.2019
The Company of Biologists
Schlagworte:
ISSN:2046-6390, 2046-6390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells. This article has an associated First Person interview with the first author of the paper.
AbstractList Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells. This article has an associated First Person interview with the first author of the paper.
Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target , and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells.This article has an associated First Person interview with the first author of the paper.
Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells.This article has an associated First Person interview with the first author of the paper.Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells.This article has an associated First Person interview with the first author of the paper.
Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells. This article has an associated First Person interview with the first author of the paper.
Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells. This article has an associated First Person interview with the first author of the paper. Summary: Robust human iPSC reprogramming through the synergy of NANOG, LIN28, and inhibition of DOT1L in modulation of LIN41 expression and the canonical WNT pathway.
Author Yin, Yexuan
Knupp, Alec
Tang, Young
Huang, Chang
Chu, Alexander
Su, Yue
Wang, Ling
AuthorAffiliation Department of Animal Science , Institute for Systems Genomics, University of Connecticut , 1390 Storrs Rd, Storrs, CT 06269 , USA
AuthorAffiliation_xml – name: Department of Animal Science , Institute for Systems Genomics, University of Connecticut , 1390 Storrs Rd, Storrs, CT 06269 , USA
Author_xml – sequence: 1
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
– sequence: 2
  givenname: Yue
  surname: Su
  fullname: Su, Yue
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
– sequence: 3
  givenname: Chang
  surname: Huang
  fullname: Huang, Chang
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
– sequence: 4
  givenname: Yexuan
  surname: Yin
  fullname: Yin, Yexuan
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
– sequence: 5
  givenname: Alexander
  surname: Chu
  fullname: Chu, Alexander
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
– sequence: 6
  givenname: Alec
  surname: Knupp
  fullname: Knupp, Alec
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
– sequence: 7
  givenname: Young
  orcidid: 0000-0001-6188-7758
  surname: Tang
  fullname: Tang, Young
  organization: Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31806618$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rGzEQhkVJaT6aS39AEfRSAk5Hn6u9FEJoU4NxLoYehaTVOjK7kqvdNfjfV46TkoTqImn0zsOrmTlHJzFFj9AnAteEcvrNhnQNvKJUvENnFLicSVbDyYvzKbochg2UJUHImn1Ap4wokJKoMxSXN8v7O2xigxfzJVW4yaY3Y3Cm6_Y49Nucdh4_TL2J2Pmuw9mX0LqI-hDX2O5xn5qpKxnlVgicPLKcKTYPEPx7ucLGjWEXxuCHj-h9a7rBXz7tF2j188fq9tdscX83v71ZzJxgapwRwY3jzNJK2Fa00ghoCWO1lQAKiPKKGUFto4A6BYI5QlQlfQWWCcIJu0DzI7ZJZqO3OfQm73UyQT8GUl5rk8snO6-9Y1Rw7lsngRPbWtsQ1TSSt8IRBnVhfT-ytpPtfeN8HLPpXkFfv8TwoNdpp2VdTFVQAF-fADn9mfww6j4Mh1qa6NM0aMoorbiSQIv0yxvpJk05lkppWklKCKsIL6rPLx39s_Lc1SKAo8DlNAzZt9qFsbQoHQyGThPQh9nRZXb0cXZKytWblGfqf8R_ARK2wk4
CitedBy_id crossref_primary_10_3390_polym13101546
crossref_primary_10_1016_j_jcyt_2022_02_005
crossref_primary_10_3390_cells11111833
crossref_primary_10_3389_fgene_2024_1389558
crossref_primary_10_1038_s41598_019_52861_8
crossref_primary_10_3390_pharmaceutics12080735
crossref_primary_10_3390_cells13020125
crossref_primary_10_3390_ijms221910489
crossref_primary_10_1016_j_arr_2025_102737
crossref_primary_10_1111_cpr_70008
crossref_primary_10_3390_cells11152439
crossref_primary_10_1155_2022_1092184
crossref_primary_10_1038_s43587_023_00539_2
crossref_primary_10_1016_j_semcancer_2022_11_001
crossref_primary_10_3390_cells10113250
crossref_primary_10_1002_ctm2_95
crossref_primary_10_1016_j_ijbiomac_2025_147270
crossref_primary_10_1242_bio_049643
crossref_primary_10_3390_genes14112040
crossref_primary_10_1016_j_jbior_2023_100993
crossref_primary_10_3390_cells9122710
crossref_primary_10_1089_dtom_2024_0007
crossref_primary_10_3389_fbioe_2023_1136077
crossref_primary_10_1002_ijc_33398
crossref_primary_10_1016_j_molcel_2023_06_001
crossref_primary_10_2478_aoas_2025_0073
crossref_primary_10_1097_MD_0000000000036433
crossref_primary_10_3390_ph13110344
Cites_doi 10.1073/pnas.1310291110
10.1038/nbt1177
10.1038/nri2360
10.1038/nature14046
10.1101/cshperspect.a015081
10.1074/jbc.M113.542845
10.1016/j.celrep.2013.05.015
10.1038/s41467-017-01203-1
10.1093/nar/gkw419
10.1002/stem.1526
10.1016/j.cell.2012.11.039
10.1016/j.cell.2007.10.054
10.1099/0022-1317-72-11-2727
10.3892/ijo.2015.3270
10.1016/j.celrep.2014.08.011
10.1002/j.1460-2075.1994.tb06337.x
10.1038/nmeth902
10.1038/nature10106
10.1038/ncb1759
10.1016/j.devcel.2014.12.018
10.1158/1078-0432.CCR-0578-03
10.1038/cdd.2017.54
10.1242/dev.161075
10.1073/pnas.1323697111
10.1016/j.cell.2012.09.045
10.1073/pnas.1017402108
10.1002/stem.2252
10.1038/ncomms3403
10.1242/dev.087387
10.1002/wdev.206
10.1074/jbc.M112.381970
10.1016/j.stem.2010.04.014
10.1016/j.stem.2010.04.015
10.1016/j.stem.2012.11.008
10.1634/stemcells.2005-0034
10.1038/ng.392
10.1371/journal.pgen.1006682
10.1073/pnas.1006437108
10.1016/j.scr.2017.10.014
10.1089/hyb.1984.3.347
10.1073/pnas.1118777109
10.1126/science.1154040
10.1073/pnas.261574498
10.1038/sj.cr.7310125
10.1016/j.cell.2012.08.023
10.1002/stem.2788
10.1126/science.1151526
10.1016/j.cell.2007.11.019
10.1007/978-1-62703-348-0_3
10.1038/ncomms4678
10.1007/s12015-015-9622-8
10.1016/j.cell.2006.07.024
10.1073/pnas.0811426106
10.1038/nchembio.137
10.1242/jcs.123810
10.1016/j.celrep.2014.10.049
10.1016/j.tcb.2015.12.003
10.1101/gad.256693.114
10.1038/nature08592
10.1016/j.molcel.2008.09.014
10.1038/nature10953
10.1016/j.stemcr.2013.03.003
10.1016/S1097-2765(00)80245-2
10.1016/j.ydbio.2011.04.029
10.1016/j.cell.2015.06.016
10.1038/nbt.1580
10.1016/j.cell.2009.07.039
10.1016/j.stem.2012.06.008
10.1016/j.stem.2016.05.009
10.1101/gad.1642408
10.1038/nature08725
10.1002/jcb.24183
10.1261/rna.1155108
10.1016/j.stem.2013.11.001
10.18632/oncotarget.20334
ContentType Journal Article
Copyright 2019. Published by The Company of Biologists Ltd.
2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019. Published by The Company of Biologists Ltd 2019
Copyright_xml – notice: 2019. Published by The Company of Biologists Ltd.
– notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019. Published by The Company of Biologists Ltd 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.1242/bio.047225
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2046-6390
ExternalDocumentID oai_doaj_org_article_ec32544efc6041bfbbd18dd64f5c1309
PMC6918770
31806618
10_1242_bio_047225
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2019-67015-29413; 2016-67016-24894; W3171/W4171
GroupedDBID 0R~
53G
5VS
6~0
6~1
7X7
88E
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BTFSW
CCPQU
CITATION
DIK
EBS
EE-
EJD
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
HZ~
INIJC
KQ8
M1P
M48
M7P
M~E
O9-
OK1
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PSQYO
PYCSY
RCB
RHI
RPM
UKHRP
AIPOO
ALIPV
NPM
RHF
3V.
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
K9.
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c538t-154ac43b275bf5f6a50f1339b6008018e83a52bd802c8053c11876e70b351413
IEDL.DBID M7P
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506171400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-6390
IngestDate Tue Oct 14 19:06:31 EDT 2025
Tue Nov 04 01:57:03 EST 2025
Thu Sep 04 15:06:52 EDT 2025
Tue Oct 07 07:03:42 EDT 2025
Thu Jan 02 22:59:32 EST 2025
Sat Nov 29 03:32:48 EST 2025
Tue Nov 18 21:51:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Induced pluripotent stem cell (iPSC)
Epithelialization
WNT
LIN28
Reprogramming efficiency
LIN41
Language English
License http://creativecommons.org/licenses/by/4.0
2019. Published by The Company of Biologists Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-154ac43b275bf5f6a50f1339b6008018e83a52bd802c8053c11876e70b351413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6188-7758
OpenAccessLink https://www.proquest.com/docview/2762113714?pq-origsite=%requestingapplication%
PMID 31806618
PQID 2762113714
PQPubID 6350256
ParticipantIDs doaj_primary_oai_doaj_org_article_ec32544efc6041bfbbd18dd64f5c1309
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6918770
proquest_miscellaneous_2322748602
proquest_journals_2762113714
pubmed_primary_31806618
crossref_citationtrail_10_1242_bio_047225
crossref_primary_10_1242_bio_047225
PublicationCentury 2000
PublicationDate 20191205
PublicationDateYYYYMMDD 2019-12-05
PublicationDate_xml – month: 12
  year: 2019
  text: 20191205
  day: 5
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Biology open
PublicationTitleAlternate Biol Open
PublicationYear 2019
Publisher The Company of Biologists Ltd
The Company of Biologists
Publisher_xml – name: The Company of Biologists Ltd
– name: The Company of Biologists
References Andrews (2021042622492411600_BIO047225C1) 1984; 3
Kim (2021042622492411600_BIO047225C29) 2013; 4
Newman (2021042622492411600_BIO047225C41) 2008; 14
Heo (2021042622492411600_BIO047225C23) 2008; 32
Yu (2021042622492411600_BIO047225C72) 2007; 131
Hussein (2021042622492411600_BIO047225C27) 2014; 516
Polo (2021042622492411600_BIO047225C45) 2012; 151
Chen (2021042622492411600_BIO047225C12) 2009; 5
Ryan (2021042622492411600_BIO047225C50) 1994; 13
Takahashi (2021042622492411600_BIO047225C59) 2006; 126
Zhang (2021042622492411600_BIO047225C75) 2016; 19
Marucci (2021042622492411600_BIO047225C38) 2014; 8
Viswanathan (2021042622492411600_BIO047225C66) 2009; 41
Wang (2021042622492411600_BIO047225C67) 2016; 48
Yu (2021042622492411600_BIO047225C73) 2007; 318
Barrott (2021042622492411600_BIO047225C3) 2011; 108
Nakajima (2021042622492411600_BIO047225C40) 2004; 10
González (2021042622492411600_BIO047225C21) 2016; 5
Dravid (2021042622492411600_BIO047225C17) 2005; 23
Ludwig (2021042622492411600_BIO047225C34) 2006; 24
Yan (2021042622492411600_BIO047225C71) 2001; 98
Tanabe (2021042622492411600_BIO047225C62) 2013; 110
Wang (2021042622492411600_BIO047225C68) 2017; 25
Carey (2021042622492411600_BIO047225C9) 2009; 106
Maekawa (2021042622492411600_BIO047225C35) 2011; 474
Onder (2021042622492411600_BIO047225C43) 2012; 483
Golipour (2021042622492411600_BIO047225C20) 2012; 11
Rao (2021042622492411600_BIO047225C48) 2012; 113
Biechele (2021042622492411600_BIO047225C4) 2011; 355
Nguyen (2021042622492411600_BIO047225C42) 2017; 24
Samavarchi-Tehrani (2021042622492411600_BIO047225C53) 2010; 7
Cacchiarelli (2021042622492411600_BIO047225C7) 2015; 162
Qian (2021042622492411600_BIO047225C47) 2016; 34
Melton (2021042622492411600_BIO047225C39) 2010; 463
Cevallos (2021042622492411600_BIO047225C10) 2018; 36
Silva (2021042622492411600_BIO047225C55) 2009; 138
Ryan (2021042622492411600_BIO047225C51) 1991; 72
Tung (2021042622492411600_BIO047225C64) 2013; 31
Ross (2021042622492411600_BIO047225C49) 2014; 9
Buganim (2021042622492411600_BIO047225C6) 2012; 150
Slack (2021042622492411600_BIO047225C56) 2000; 5
Soufi (2021042622492411600_BIO047225C57) 2012; 151
Ecsedi (2021042622492411600_BIO047225C18) 2015; 32
Brouwer (2021042622492411600_BIO047225C5) 2016; 12
Ho (2021042622492411600_BIO047225C24) 2013; 3
Cai (2021042622492411600_BIO047225C8) 2013; 126
Hanna (2021042622492411600_BIO047225C22) 2009; 462
Pan (2021042622492411600_BIO047225C44) 2007; 17
Staal (2021042622492411600_BIO047225C58) 2008; 8
Hoffman (2021042622492411600_BIO047225C25) 2013; 140
Malik (2021042622492411600_BIO047225C36) 2013; 997
Viswanathan (2021042622492411600_BIO047225C65) 2008; 320
Fernandez (2021042622492411600_BIO047225C19) 2014; 111
Sierra (2021042622492411600_BIO047225C54) 2018; 145
Babicki (2021042622492411600_BIO047225C2) 2016; 44
De Jaime-Soguero (2021042622492411600_BIO047225C16) 2017; 13
Rybak (2021042622492411600_BIO047225C52) 2008; 10
Lluis (2021042622492411600_BIO047225C32) 2011; 108
Cole (2021042622492411600_BIO047225C13) 2008; 22
Davidson (2021042622492411600_BIO047225C15) 2012; 109
Takahashi (2021042622492411600_BIO047225C60) 2007; 131
Cruciat (2021042622492411600_BIO047225C14) 2013; 5
Jiang (2021042622492411600_BIO047225C28) 2013; 1
Takahashi (2021042622492411600_BIO047225C61) 2014; 5
Chan (2021042622492411600_BIO047225C11) 2009; 27
Xu (2021042622492411600_BIO047225C70) 2016; 26
Huggins (2021042622492411600_BIO047225C26) 2017; 8
Tu (2021042622492411600_BIO047225C63) 2015; 29
Zhang (2021042622492411600_BIO047225C74) 2014; 289
Lee (2021042622492411600_BIO047225C30) 2017; 8
Proffitt (2021042622492411600_BIO047225C46) 2012; 287
Li (2021042622492411600_BIO047225C31) 2010; 7
Martello (2021042622492411600_BIO047225C37) 2012; 11
Ludwig (2021042622492411600_BIO047225C33) 2006; 3
Worringer (2021042622492411600_BIO047225C69) 2014; 14
References_xml – volume: 110
  start-page: 12172
  year: 2013
  ident: 2021042622492411600_BIO047225C62
  article-title: Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1310291110
– volume: 24
  start-page: 185
  year: 2006
  ident: 2021042622492411600_BIO047225C34
  article-title: Derivation of human embryonic stem cells in defined conditions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1177
– volume: 8
  start-page: 581
  year: 2008
  ident: 2021042622492411600_BIO047225C58
  article-title: WNT signalling in the immune system: WNT is spreading its wings
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2360
– volume: 516
  start-page: 198
  year: 2014
  ident: 2021042622492411600_BIO047225C27
  article-title: Genome-wide characterization of the routes to pluripotency
  publication-title: Nature
  doi: 10.1038/nature14046
– volume: 5
  start-page: a015081
  year: 2013
  ident: 2021042622492411600_BIO047225C14
  article-title: Secreted and transmembrane wnt inhibitors and activators
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a015081
– volume: 289
  start-page: 9221
  year: 2014
  ident: 2021042622492411600_BIO047225C74
  article-title: Regulation of induced pluripotent stem (iPS) cell induction by Wnt/beta-catenin signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.542845
– volume: 3
  start-page: 2113
  year: 2013
  ident: 2021042622492411600_BIO047225C24
  article-title: Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.015
– volume: 8
  start-page: 1034
  year: 2017
  ident: 2021042622492411600_BIO047225C26
  article-title: The WNT target SP5 negatively regulates WNT transcriptional programs in human pluripotent stem cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01203-1
– volume: 44
  start-page: W147
  year: 2016
  ident: 2021042622492411600_BIO047225C2
  article-title: Heatmapper: web-enabled heat mapping for all
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw419
– volume: 31
  start-page: 2330
  year: 2013
  ident: 2021042622492411600_BIO047225C64
  article-title: Identification of DPPA4 and DPPA2 as a novel family of pluripotency-related oncogenes
  publication-title: Stem Cells
  doi: 10.1002/stem.1526
– volume: 151
  start-page: 1617
  year: 2012
  ident: 2021042622492411600_BIO047225C45
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 131
  start-page: 1109
  year: 2007
  ident: 2021042622492411600_BIO047225C72
  article-title: let-7 regulates self renewal and tumorigenicity of breast cancer cells
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.054
– volume: 72
  start-page: 2727
  year: 1991
  ident: 2021042622492411600_BIO047225C51
  article-title: Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-72-11-2727
– volume: 48
  start-page: 595
  year: 2016
  ident: 2021042622492411600_BIO047225C67
  article-title: N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2015.3270
– volume: 8
  start-page: 1686
  year: 2014
  ident: 2021042622492411600_BIO047225C38
  article-title: beta-catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.08.011
– volume: 13
  start-page: 928
  year: 1994
  ident: 2021042622492411600_BIO047225C50
  article-title: Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06337.x
– volume: 3
  start-page: 637
  year: 2006
  ident: 2021042622492411600_BIO047225C33
  article-title: Feeder-independent culture of human embryonic stem cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth902
– volume: 474
  start-page: 225
  year: 2011
  ident: 2021042622492411600_BIO047225C35
  article-title: Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1
  publication-title: Nature
  doi: 10.1038/nature10106
– volume: 10
  start-page: 987
  year: 2008
  ident: 2021042622492411600_BIO047225C52
  article-title: A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1759
– volume: 32
  start-page: 335
  year: 2015
  ident: 2021042622492411600_BIO047225C18
  article-title: The let-7 microRNA directs vulval development through a single target
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.12.018
– volume: 10
  start-page: 4125
  year: 2004
  ident: 2021042622492411600_BIO047225C40
  article-title: N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-0578-03
– volume: 24
  start-page: 1063
  year: 2017
  ident: 2021042622492411600_BIO047225C42
  article-title: The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2017.54
– volume: 145
  start-page: dev161075
  year: 2018
  ident: 2021042622492411600_BIO047225C54
  article-title: TCF7L1 suppresses primitive streak gene expression to support human embryonic stem cell pluripotency
  publication-title: Development
  doi: 10.1242/dev.161075
– volume: 111
  start-page: 1409
  year: 2014
  ident: 2021042622492411600_BIO047225C19
  article-title: The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1323697111
– volume: 151
  start-page: 994
  year: 2012
  ident: 2021042622492411600_BIO047225C57
  article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 108
  start-page: 11912
  year: 2011
  ident: 2021042622492411600_BIO047225C32
  article-title: T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1017402108
– volume: 34
  start-page: 588
  year: 2016
  ident: 2021042622492411600_BIO047225C47
  article-title: DPPA5 supports pluripotency and reprogramming by regulating NANOG turnover
  publication-title: Stem Cells
  doi: 10.1002/stem.2252
– volume: 4
  start-page: 2403
  year: 2013
  ident: 2021042622492411600_BIO047225C29
  article-title: Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3403
– volume: 140
  start-page: 1665
  year: 2013
  ident: 2021042622492411600_BIO047225C25
  article-title: Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification
  publication-title: Development
  doi: 10.1242/dev.087387
– volume: 5
  start-page: 39
  year: 2016
  ident: 2021042622492411600_BIO047225C21
  article-title: Mechanisms underlying the formation of induced pluripotent stem cells
  publication-title: Wiley Interdiscip. Rev. Dev. Biol.
  doi: 10.1002/wdev.206
– volume: 287
  start-page: 34167
  year: 2012
  ident: 2021042622492411600_BIO047225C46
  article-title: Precise regulation of porcupine activity is required for physiological Wnt signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.381970
– volume: 7
  start-page: 51
  year: 2010
  ident: 2021042622492411600_BIO047225C31
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.014
– volume: 7
  start-page: 64
  year: 2010
  ident: 2021042622492411600_BIO047225C53
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.015
– volume: 11
  start-page: 769
  year: 2012
  ident: 2021042622492411600_BIO047225C20
  article-title: A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.11.008
– volume: 23
  start-page: 1489
  year: 2005
  ident: 2021042622492411600_BIO047225C17
  article-title: Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0034
– volume: 41
  start-page: 843
  year: 2009
  ident: 2021042622492411600_BIO047225C66
  article-title: Lin28 promotes transformation and is associated with advanced human malignancies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.392
– volume: 13
  start-page: e1006682
  year: 2017
  ident: 2021042622492411600_BIO047225C16
  article-title: Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006682
– volume: 108
  start-page: 12752
  year: 2011
  ident: 2021042622492411600_BIO047225C3
  article-title: Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1006437108
– volume: 25
  start-page: 88
  year: 2017
  ident: 2021042622492411600_BIO047225C68
  article-title: Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2017.10.014
– volume: 3
  start-page: 347
  year: 1984
  ident: 2021042622492411600_BIO047225C1
  article-title: Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells
  publication-title: Hybridoma
  doi: 10.1089/hyb.1984.3.347
– volume: 109
  start-page: 4485
  year: 2012
  ident: 2021042622492411600_BIO047225C15
  article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1118777109
– volume: 320
  start-page: 97
  year: 2008
  ident: 2021042622492411600_BIO047225C65
  article-title: Selective blockade of microRNA processing by Lin28
  publication-title: Science
  doi: 10.1126/science.1154040
– volume: 98
  start-page: 14973
  year: 2001
  ident: 2021042622492411600_BIO047225C71
  article-title: Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is activated in human colon tumors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.261574498
– volume: 17
  start-page: 42
  year: 2007
  ident: 2021042622492411600_BIO047225C44
  article-title: Nanog and transcriptional networks in embryonic stem cell pluripotency
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7310125
– volume: 150
  start-page: 1209
  year: 2012
  ident: 2021042622492411600_BIO047225C6
  article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.023
– volume: 36
  start-page: 683
  year: 2018
  ident: 2021042622492411600_BIO047225C10
  article-title: Wnt/beta-catenin/TCF pathway is a phase-dependent promoter of colony formation and mesendodermal differentiation during human somatic cell reprogramming
  publication-title: Stem Cells
  doi: 10.1002/stem.2788
– volume: 318
  start-page: 1917
  year: 2007
  ident: 2021042622492411600_BIO047225C73
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 131
  start-page: 861
  year: 2007
  ident: 2021042622492411600_BIO047225C60
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 997
  start-page: 23
  year: 2013
  ident: 2021042622492411600_BIO047225C36
  article-title: A review of the methods for human iPSC derivation
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-348-0_3
– volume: 5
  start-page: 3678
  year: 2014
  ident: 2021042622492411600_BIO047225C61
  article-title: Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4678
– volume: 12
  start-page: 54
  year: 2016
  ident: 2021042622492411600_BIO047225C5
  article-title: Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies
  publication-title: Stem Cell Rev.
  doi: 10.1007/s12015-015-9622-8
– volume: 126
  start-page: 663
  year: 2006
  ident: 2021042622492411600_BIO047225C59
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 106
  start-page: 157
  year: 2009
  ident: 2021042622492411600_BIO047225C9
  article-title: Reprogramming of murine and human somatic cells using a single polycistronic vector
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0811426106
– volume: 5
  start-page: 100
  year: 2009
  ident: 2021042622492411600_BIO047225C12
  article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.137
– volume: 126
  start-page: 2877
  year: 2013
  ident: 2021042622492411600_BIO047225C8
  article-title: The Wnt-beta-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.123810
– volume: 9
  start-page: 1770
  year: 2014
  ident: 2021042622492411600_BIO047225C49
  article-title: A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.049
– volume: 26
  start-page: 272
  year: 2016
  ident: 2021042622492411600_BIO047225C70
  article-title: Transcriptional control of somatic cell reprogramming
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.12.003
– volume: 29
  start-page: 1074
  year: 2015
  ident: 2021042622492411600_BIO047225C63
  article-title: LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans
  publication-title: Genes Dev.
  doi: 10.1101/gad.256693.114
– volume: 462
  start-page: 595
  year: 2009
  ident: 2021042622492411600_BIO047225C22
  article-title: Direct cell reprogramming is a stochastic process amenable to acceleration
  publication-title: Nature
  doi: 10.1038/nature08592
– volume: 32
  start-page: 276
  year: 2008
  ident: 2021042622492411600_BIO047225C23
  article-title: Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.014
– volume: 483
  start-page: 598
  year: 2012
  ident: 2021042622492411600_BIO047225C43
  article-title: Chromatin-modifying enzymes as modulators of reprogramming
  publication-title: Nature
  doi: 10.1038/nature10953
– volume: 1
  start-page: 46
  year: 2013
  ident: 2021042622492411600_BIO047225C28
  article-title: WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2013.03.003
– volume: 5
  start-page: 659
  year: 2000
  ident: 2021042622492411600_BIO047225C56
  article-title: The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80245-2
– volume: 355
  start-page: 275
  year: 2011
  ident: 2021042622492411600_BIO047225C4
  article-title: Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.04.029
– volume: 162
  start-page: 412
  year: 2015
  ident: 2021042622492411600_BIO047225C7
  article-title: Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.016
– volume: 27
  start-page: 1033
  year: 2009
  ident: 2021042622492411600_BIO047225C11
  article-title: Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1580
– volume: 138
  start-page: 722
  year: 2009
  ident: 2021042622492411600_BIO047225C55
  article-title: Nanog is the gateway to the pluripotent ground state
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.039
– volume: 11
  start-page: 491
  year: 2012
  ident: 2021042622492411600_BIO047225C37
  article-title: Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.06.008
– volume: 19
  start-page: 66
  year: 2016
  ident: 2021042622492411600_BIO047225C75
  article-title: LIN28 regulates stem cell metabolism and conversion to primed pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.009
– volume: 22
  start-page: 746
  year: 2008
  ident: 2021042622492411600_BIO047225C13
  article-title: Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.1642408
– volume: 463
  start-page: 621
  year: 2010
  ident: 2021042622492411600_BIO047225C39
  article-title: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature08725
– volume: 113
  start-page: 3061
  year: 2012
  ident: 2021042622492411600_BIO047225C48
  article-title: Assessing iPSC reprogramming methods for their suitability in translational medicine
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24183
– volume: 14
  start-page: 1539
  year: 2008
  ident: 2021042622492411600_BIO047225C41
  article-title: Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
  publication-title: RNA
  doi: 10.1261/rna.1155108
– volume: 14
  start-page: 40
  year: 2014
  ident: 2021042622492411600_BIO047225C69
  article-title: The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.001
– volume: 8
  start-page: 77041
  year: 2017
  ident: 2021042622492411600_BIO047225C30
  article-title: Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20334
SSID ssj0000605693
Score 2.3064725
Snippet Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Cell activation
Colonies
Efficiency
epithelialization
Gene expression
Histone methyltransferase
induced pluripotent stem cell (ipsc)
Inhibitory postsynaptic potentials
Kinetics
KLF4 protein
Latency
lin28
lin41
miRNA
Mutation
Myc protein
Oct-4 protein
reprogramming efficiency
Signaling
Stem cells
Synergism
wnt
Wnt protein
β-Catenin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3La9RAGP-QouBFqq2aWmWKXjzEZvKYx7GWVoUSPSy0tzBPXNhmy3Zb2P_eb76ky64UvHhMZphMvvcMM78fwCfFY2N4qHOpXcxrWehcG6VzZb2zuiy9CqTpC9m26upK_9qg-kpnwgZ44EFwx8FVCUUrRCeKmttorefKe1HHxmH8pat7WPVsLKaGGIyJXVcjHimmoWM7nX8hZMRmKwMRUP9j1eXfhyQ3ss75LrwYy0V2MkzzJTwJ_St4NhBIrvagb0_an9-Y6T27-NGWivmFIQxWM5ut2JQ2DAIjHj6WtuhZwrCkA1nXmLKYXbHruScCL3zCEWpOY6G453Rfkl22E5auPtwT8Oo-TM7PJqff85FBIXcYyJY51kfG1ZUtZWNjE4VpioiLUm1FqhS5CqoyTWm9Kkqn0B1dIh8XQRY2HfDn1WvYwe-Ft8CMDtI5H7ivMO9xoWV0dQiVE9JaKVwGnx-E2rkRXTyRXMy6tMpABXSogG5QQAYf131vBkyNR3t9TbpZ90g42PQCraMbraP7l3VkcPig2W50ztuuxATAeYIqzOBo3YxulRRh-jC_wz4Y6CQRdGXwZjCE9UwwDGKhxlUGcstEtqa63dJPfxN0t9AoYFkc_I9_ewfPsXojMouiOYSd5eIuvIen7n45vV18IH_4A0L_ETw
  priority: 102
  providerName: Directory of Open Access Journals
Title NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities
URI https://www.ncbi.nlm.nih.gov/pubmed/31806618
https://www.proquest.com/docview/2762113714
https://www.proquest.com/docview/2322748602
https://pubmed.ncbi.nlm.nih.gov/PMC6918770
https://doaj.org/article/ec32544efc6041bfbbd18dd64f5c1309
Volume 8
WOSCitedRecordID wos000506171400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: PATMY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2046-6390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605693
  issn: 2046-6390
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iLUhc2JdAGRnBhUNonMXLCbWohUolRGgkhlPkLTDSNCkz00rz73n2ZAKDKi5cIiWxEiuf3-IX-_sAXgvaFIq6PObSNHHOExlLJWQstDVapqkVLiB9xstSTCay6gtui35Z5cYnBkdtO-Nr5AcpWi2lnl_u3cXP2KtG-b-rvYTGDux5loQsLN2rhhpLgrk6k1nPSorB6EBPu7eBH7HYikOBrv-6HPPvpZJ_xJ6Tu__b63twp886yeF6mNyHG659ALfWOpSrh9CWh-XnD0S1lpydlqkgdq4ClauazVZkGuoOjgQ5P-Ir_cRTYYZ1XecY-YhekfPOBh0wPMMn5DQ8C1HrwrZL8rUcE7-D4irwtz6C8cnx-P3HuBdiiA36w2WMaZYyeaZTXuimaJgqkgbntlIzn3BS4USmilRbkaRGoFUbr2HOHE-03ydAs8ewi-9zT4Eo6bgx1lGbYfikTPLG5M5lhnGtOTMRvNmgUpuepNxrZcxqP1lBBGtEsF4jGMGroe3Fmprj2lZHHtyhhafTDhe6-fe6t87amcxTtbnGsCSnutHaUmEty5vCYJCXEexv4K17G1_Uv7GN4OVwG63TA6Fa111iG_SXPOh8RfBkPZKGnqA3xXyPigj41hjb6ur2nXb6IzCAM4kfmCfP_t2t53Ab07ugdpEU-7C7nF-6F3DTXC2ni_kIdviEh6MYwd7RcVl9GYWKxCgYEV6rTj9V334BkNwkhw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAASPgwCE0zmb7gFBZSkedhjmM1HKK4iUw0jQpM9Oi-VH8R56dBQZV3HrgmNhyHPvze8_b9wG84LRMCmpinwlV-jELhC8KLnwutZIiDDU3rqdHLMv40ZEYb8DP7i6MPVbZ2URnqHWt7Br5doijllLLL_f25LtvVaPs7monodHAYt-sfuCUbfFm-AH792UY7n6cvN_zW1UBX-HgXvoYMxQqjmTIElkmZVokQYkTNSFTGz1RbnhUJKHUPAgVR4gqK8idGhZIe-idRljsJdiMEet8AJvj4cH4S7-oE-DkIBVRS4OK3m9bTuvXjpAxWXN8Th_gvKD277OZfzi73Rv_WTPdhOttVE12mmFwCzZMdRuuNDqbqztQZTvZ50-kqDQZDbOQEz0vHFVtMZutyNStqxji5AqJ3ckglurTnVs7Rs9O5Ioc19rpnOETlhBTVxaisnbXSslhNiH2hsiZ46e9C5OL-Nd7MMDvmQdACmGYUtpQHWF4QFPBShUbE6mUSclS5cGrDgS5aknYrRbILLeTMQRMjoDJG8B48LzPe9JQj5yb653FUp_D0oW7F_X8a95an9yoyFLRmVKlQUxlKaWmXOs0LhOFQYzwYKtDU97asEX-G0oePOuT0frYjigqU59iHvQHzOmYeXC_AW5fE_QWGM9S7gFbg_RaVddTquk3x3CeCmxgFjz8d7WewtW9ycEox37ffwTXMJR1yh5BsgWD5fzUPIbL6mw5XcyftOOUQH7BkP8Fl8Z3uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NANOG+and+LIN28+dramatically+improve+human+cell+reprogramming+by+modulating+LIN41+and+canonical+WNT+activities&rft.jtitle=Biology+open&rft.au=Wang%2C+Ling&rft.au=Su%2C+Yue&rft.au=Huang%2C+Chang&rft.au=Yin%2C+Yexuan&rft.date=2019-12-05&rft.issn=2046-6390&rft.eissn=2046-6390&rft.volume=8&rft.issue=12&rft_id=info:doi/10.1242%2Fbio.047225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_bio_047225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-6390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-6390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-6390&client=summon