Costs and quality of hospitals in different health care systems: a multi-level approach with propensity score matching
Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensi...
Uložené v:
| Vydané v: | Health economics Ročník 20; číslo 1; s. 85 - 100 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2011
Wiley-Blackwell Wiley Periodicals Inc |
| Edícia: | Health Economics |
| Predmet: | |
| ISSN: | 1057-9230, 1099-1050, 1099-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi‐level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi‐level models are recommendable to consider the clustered structure of the data when patient‐level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Copyright © 2010 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. [PUBLICATION ABSTRACT] Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi‐level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi‐level models are recommendable to consider the clustered structure of the data when patient‐level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Copyright (C) 2010 John Wiley & Sons, Ltd. Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi‐level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi‐level models are recommendable to consider the clustered structure of the data when patient‐level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Copyright © 2010 John Wiley & Sons, Ltd. Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons.Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. |
| Author | Schreyögg, Jonas Stargardt, Tom Tiemann, Oliver |
| Author_xml | – sequence: 1 givenname: Jonas surname: Schreyögg fullname: Schreyögg, Jonas email: schreyoegg@bwl.lmu.de organization: Department for Health Services Management, Munich School of Management, Munich University, Munich, Germany – sequence: 2 givenname: Tom surname: Stargardt fullname: Stargardt, Tom organization: Department for Health Services Management, Munich School of Management, Munich University, Munich, Germany – sequence: 3 givenname: Oliver surname: Tiemann fullname: Tiemann, Oliver organization: Department for Health Services Management, Munich School of Management, Munich University, Munich, Germany |
| BackLink | http://www.econis.eu/PPNSET?PPN=654011540$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften https://www.ncbi.nlm.nih.gov/pubmed/20084662$$D View this record in MEDLINE/PubMed http://econpapers.repec.org/article/wlyhlthec/v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85-100.htm$$DView record in RePEc |
| BookMark | eNp1kllv1DAQxyNURA-Q-ARg8UJfstjO5fQNtqWtqECqOCReLK8zIS7OUdvZJd-eCduuRAUPc8j-zX9GHh9Ge13fQRQ9Z3TBKOVvGtALluXiUXTAaFnGjGZ0b86zIi55QvejQ-9vKMU7mj-J9jmlIs1zfhCtl70PnqiuIrejsiZMpK9J0_vBBGU9MR2pTF2Dgy6QBpQNDdHKAfGTD9D6E6JIO9pgYgtrsEQNg-uVbsjGIIn5AJ2fVb3usapVQTem-_E0elyjPDy7i0fRl_dnn5cX8dWn88vl26tYZ4kQcb6qaMmFSlbAy6pOdJWmNWVCF2ldsRyArTQv6oLWOWbVCl1Cudaq4BSqTCVH0eutLk5yO4IPsjVeg7Wqg370UnCWlWXKSyRfPSBv-tF1OJwUrOCiZKJA6HILORhAy8GZVrlJbuzU4MPgyVomilN005-EMQwGbY4DmsgkLkw2oUWtF3cNx1UL1U7sfjcIvNwCoPvO-B2QZykKo0NisSW06713UEuNWwum74JTxmKruRuX82Tz98CC4wcF96L_QOMtujEWpv9y8uJs-Tdv8F_82vHK_ZR5kRSZ_PbxXH74_u76-vQrkyL5DWAS19U |
| CitedBy_id | crossref_primary_10_1097_MLR_0000000000002186 crossref_primary_10_1200_JCO_2017_75_2501 crossref_primary_10_1002_hec_2972 crossref_primary_10_3109_07853890_2011_586904 crossref_primary_10_1177_2050312114526589 crossref_primary_10_1097_MLR_0000000000000521 crossref_primary_10_1016_j_healthpol_2013_04_013 crossref_primary_10_1007_s10729_023_09661_4 crossref_primary_10_1002_nml_21074 crossref_primary_10_1016_j_healthpol_2012_01_011 crossref_primary_10_2165_11597340_000000000_00000 crossref_primary_10_1007_s10198_011_0355_6 crossref_primary_10_1002_hec_3270 crossref_primary_10_2337_dc24_0361 crossref_primary_10_1007_s00103_012_1478_3 crossref_primary_10_1007_s10729_012_9193_z crossref_primary_10_1007_s10657_016_9531_6 crossref_primary_10_1016_j_healthpol_2019_01_010 crossref_primary_10_1002_hec_2941 crossref_primary_10_1007_s10729_011_9180_9 crossref_primary_10_1016_j_chieco_2018_10_007 crossref_primary_10_1186_s12888_016_0804_y crossref_primary_10_2337_dc17_1183 crossref_primary_10_1002_hec_2828 crossref_primary_10_1136_bmjopen_2015_009186 crossref_primary_10_7326_M17_3365 crossref_primary_10_1177_1355819616682283 crossref_primary_10_2337_dc21_0407 crossref_primary_10_4236_health_2013_54093 crossref_primary_10_1002_hec_4492 crossref_primary_10_1002_hec_3262 crossref_primary_10_1016_j_seps_2020_100960 crossref_primary_10_1001_jamapediatrics_2021_0747 crossref_primary_10_1513_AnnalsATS_202008_1084RL crossref_primary_10_1001_jamanetworkopen_2020_8939 crossref_primary_10_1002_hec_4891 |
| Cites_doi | 10.1002/1099-1050(200007)9:5<435::AID-HEC523>3.0.CO;2-Z 10.1093/pan/mpl013 10.1111/1468-0262.00092 10.1111/1468-0408.00109 10.1002/hec.1327 10.1002/hec.1177 10.1002/(SICI)1099-1050(199711)6:6<561::AID-HEC288>3.0.CO;2-X 10.2307/2529685 10.1016/S0167-6296(02)00058-9 10.1111/j.1467-985X.2007.00527.x 10.1002/bimj.200810488 10.1002/sim.2328 10.4135/9781412984577 10.1002/sim.3150 10.1016/j.jhealeco.2005.07.009 10.1111/j.1541-0420.2008.01127.x 10.1007/s10729-006-9094-0 10.1007/978-1-4757-3692-2 10.1080/01621459.1989.10478868 10.1111/j.1475-6773.2008.00938.x 10.2165/00148365-200605010-00003 10.1017/CBO9780511810725 10.4135/9781849209366 10.1016/S0895-4356(00)00321-8 10.1016/j.jclinepi.2004.03.012 10.1016/S0735-1097(01)01109-3 10.1002/hec.987 10.1002/hec.1060 10.1002/hec.916 10.1016/0167-6296(96)00003-3 10.1200/JCO.2003.03.126 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 John Wiley & Sons, Ltd. 2010 John Wiley & Sons, Ltd. Copyright Wiley Periodicals Inc. Jan 2011 |
| Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: 2010 John Wiley & Sons, Ltd. – notice: Copyright Wiley Periodicals Inc. Jan 2011 |
| DBID | BSCLL AAYXX CITATION OQ6 CGR CUY CVF ECM EIF NPM DKI X2L 7QJ 7X8 |
| DOI | 10.1002/hec.1568 |
| DatabaseName | Istex CrossRef ECONIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed RePEc IDEAS RePEc Applied Social Sciences Index & Abstracts (ASSIA) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Applied Social Sciences Index and Abstracts (ASSIA) MEDLINE - Academic |
| DatabaseTitleList | Applied Social Sciences Index and Abstracts (ASSIA) MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1099-1050 |
| EndPage | 100 |
| ExternalDocumentID | 2211073261 wlyhlthec_v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85_100_htm 20084662 654011540 10_1002_hec_1568 HEC1568 ark_67375_WNG_KZBRRDV1_8 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
| GeographicLocations | United States Germany United States--US |
| GeographicLocations_xml | – name: Germany – name: United States – name: United States--US |
| GroupedDBID | --- -~X ..I .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1OL 1ZS 31~ 33P 3WU 4.4 44B 4ZD 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5GY 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHQN AAIPD AAMMB AAMNL AANHP AAONW AAOUF AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABQWH ABSOO ABXGK ACAHQ ACBKW ACBWZ ACCZN ACGFS ACGOF ACHQT ACMXC ACPOU ACRPL ACSCC ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKFF AFWVQ AFZJQ AGHNM AGQPQ AGXDD AHBTC AIACR AIDQK AIDYY AIQQE AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-C D-D DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DUUFO EBD EBS EJD EMOBN EOH F00 F01 F5P FEDTE FUBAC G-S G.N G50 GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MXFUL MXMAN MXSSH N04 N06 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WH7 WHWMO WIB WIH WII WIJ WJL WOHZO WQZ WVDHM WXI WXSBR XG1 XV2 YHZ ZZTAW ~IA ~WP AAYXX CITATION O8X OQ6 AAHHS AARRQ ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIFKG AIWBW AJBDE CGR CUY CVF ECM EIF NPM RWI WRC WUP WWH - 08R 0R 1AW 31 3N AAPBV AAVGM ABFLS ACJLH ACXME ADDAD ADRMI AFVGU AGJLS AJYWA DKI GA HZ IA IPNFZ NF P4A PQEST RIG WP X X2L Y3 7QJ 7X8 |
| ID | FETCH-LOGICAL-c5388-6bd0928a3be29df3cd44f018c74fd16ee1bc27f70f61bcdb1bc302cca720ed5a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285257300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-9230 1099-1050 |
| IngestDate | Sun Sep 28 07:13:06 EDT 2025 Mon Nov 10 22:00:53 EST 2025 Wed Aug 18 03:10:23 EDT 2021 Wed Feb 19 01:52:02 EST 2025 Mon Sep 22 08:27:02 EDT 2025 Tue Nov 18 22:01:07 EST 2025 Sat Nov 29 06:05:24 EST 2025 Sun Sep 21 06:22:46 EDT 2025 Sun Sep 21 06:19:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 2010 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5388-6bd0928a3be29df3cd44f018c74fd16ee1bc27f70f61bcdb1bc302cca720ed5a3 |
| Notes | ark:/67375/WNG-KZBRRDV1-8 ArticleID:HEC1568 istex:C66A558264A214EE185FE15E5C036E8F2E132DFC This article was published online on 18 January 2010. An error was subsequently identified in the author name. This notice is included in the online and print versions to indicate that both have been corrected [13 July 2010]. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PMID | 20084662 |
| PQID | 817289187 |
| PQPubID | 31187 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_821599429 proquest_journals_817289187 repec_primary_wlyhlthec_v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85_100_htm pubmed_primary_20084662 econis_primary_654011540 crossref_citationtrail_10_1002_hec_1568 crossref_primary_10_1002_hec_1568 wiley_primary_10_1002_hec_1568_HEC1568 istex_primary_ark_67375_WNG_KZBRRDV1_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-01 January 2011 2011-01-00 2011 2011-Jan 20110101 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – month: 01 year: 2011 text: 2011-01 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: England – name: York |
| PublicationSeriesTitle | Health Economics |
| PublicationTitle | Health economics |
| PublicationTitleAlternate | Health Econ |
| PublicationYear | 2011 |
| Publisher | John Wiley & Sons, Ltd Wiley-Blackwell Wiley Periodicals Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley-Blackwell – name: Wiley Periodicals Inc |
| References | Rubin DB. 2006. Matched Sampling for Causal Effects. Cambridge Press: New York. Austin PC. 2009. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 51: 171-184. Botz C, Sutherland J, Lawrenson J. 2006. Cost weight compression: impact of cost data precision and completeness. Heath Care Financing Review 27: 111-122. Kreft IGG, de Leeuw J. 1998. Introducing Multi-level Modeling. Sage Publications: Thousand Oaks. Martin S, Smith P. 1996. Explaining variations in inpatient length of stay in the National Health Service. Journal of Health Economics 15: 279-304. Yaisawarng S, Burgess JF. 2006. Performance-based budgeting in the public sector: an illustration from the VA health care system. Health Economics 15: 295-310. Mitra N, Indurkhya A. 2005. A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data. Health Economics 14: 805-815. Schreyögg J, Tiemann O, Busse R. 2006. Cost accounting to determine prices: how well do prices reflect costs in the German DRG-system? Health Care Management Science 9: 269-280. Austin PC. 2008. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 27: 2037-2049. Rosenbaum PR. 1989. Optimal matching for observational studies. Journal of the American Statistical Association 84: 1024-1032. Carey K, Burgess J. 2000. Hospital costing: experience from the VHA. Financial Accountability and Management 16: 289-308. Normand ST, Landrum MB, Guadagnoli E et al. 2001. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. Journal of Clinical Epidemiology 54: 387-398. Rosenbaum PR. 2002. Observational Studies. Springer Publishers: New York. Silber JH, Lorch SA, Rosenbaum PR et al. 2009. Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes. Health Services Research 44: 444-463. Imai K, King G, Stuart EA. 2008. Misunderstandings among experimentalists and observationalists about causal inference. Journal of the Royal Statistical Association, Series A 171(Part 2): 481-502. Boos DD, Stefanski LA, Wu Y. 2009. Fast FSR variable selection with applications to clinical trials. Biometrics 65: 692-700. Tu JV, Austin PC, Walld R et al. 2001. Development and validation of the ontario acute myocardial infarction mortality prediction rules. Journal of the American College of Cardiology 37: 992-997. Liao TF. 1994. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models. Sage Publications: Thousand Oaks. Grieve R, Nixon R, Thompson SG et al. 2005. Using multilevel models for assessing the variability of multinational resource use and cost data. Health Economics 14: 185-196. Hauck K, Street A. 2006. Performance assessment in the context of multiple objectives: a multivariate multilevel analysis. Journal of Health Economics 25: 1029-1048. Sundararajan S, Henderson T, Perry C et al. 2004. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. Journal of Clinical Epidemiology 57: 1288-1294. Rubin DB. 1973. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29: 185-203. Austin PC, Mamdani MM. 2006. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 25: 2084-2106. Ho DE, Imai K, King G et al. 2007. Matching as nonparametric preprocessing for reducing dependence in parametric causal inference. Political Analysis 15: 199-236. Andrews DWK, Buchinsky M. 2000. A three-step method for choosing the number of bootstrap repetitions. Econometrica 68: 23-51. Raudenbusch SW, Bryk AS. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage Publications: Thousand Oaks. Schreyögg J, Tiemann O, Stargardt T et al. 2008. Cross-country comparison of costs: the use of episode-specific transitive purchasing power parities with standardised cost categories. Health Economics 17: S95-S103. Evans E, Imanaka Y, Sekimoto M et al. 2007. Risk adjusted resource utilization for AMI patients treated in Japanese hospitals. Health Economics 16: 347-359. Snijders TAB, Bosker R. 1999. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage Publications: London. Haro JM, Kontodimas S, Negrin MA et al. 2006. Methodological aspects in the assessment of treatment effects in observational health outcomes studies. Applied Health Economics and Health Policy 5: 11-25. Rice N, Jones A. 1997. Multilevel models and health economics. Health Economics 6: 561-575. Carey K. 2000. A multi-level modeling approach to analysis of patient costs under managed care. Health Economics 9: 435-446. Polsky D, Mandelblatt JS, Weeks JC et al. 2003. Economic evaluation of breast cancer treatment: considering the value of patient choice. Journal of Clinical Oncology 21: 1139-1146. Shen YC. 2002. The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction. Journal of Health Economics 21: 901-922. 1989; 84 2009; 44 2009; 65 2000; 68 2000; 3 2000; 9 2006; 9 2008; 17 2006; 15 1998 2008 2006; 5 2006 1994 2003 2002 1997; 6 1996; 15 2007; 15 2007; 16 1999 2009; 51 2000; 16 2006; 27 2008; 27 2006; 25 2002; 21 2004; 57 1973; 29 2001; 37 2003; 21 2005; 14 2008; 171 2001; 54 Rosenbaum (10.1002/hec.1568-BIB26|cit26) 1989; 84 Shen (10.1002/hec.1568-BIB32|cit32) 2002; 21 Haro (10.1002/hec.1568-BIB12|cit12) 2006; 5 Rubin (10.1002/hec.1568-BIB28|cit28) 1973; 29 Barnett (10.1002/hec.1568-BIB5|cit5) 2003 Imai (10.1002/hec.1568-BIB15|cit15) 2008; 171 Yaisawarng (10.1002/hec.1568-BIB37|cit37) 2006; 15 Kreft (10.1002/hec.1568-BIB16|cit16) 1998 Martin (10.1002/hec.1568-BIB18|cit18) 1996; 15 Rice (10.1002/hec.1568-BIB25|cit25) 1997; 6 Normand (10.1002/hec.1568-BIB21|cit21) 2001; 54 Silber (10.1002/hec.1568-BIB33|cit33) 2009; 44 Austin (10.1002/hec.1568-BIB4|cit4) 2006; 25 Tu (10.1002/hec.1568-BIB36|cit36) 2001; 37 Carey (10.1002/hec.1568-BIB8|cit8) 2000; 9 Carey (10.1002/hec.1568-BIB9|cit9) 2000; 16 Mitra (10.1002/hec.1568-BIB19|cit19) 2005; 14 Polsky (10.1002/hec.1568-BIB23|cit23) 2003; 21 Austin (10.1002/hec.1568-BIB3|cit3) 2009; 51 Andrews (10.1002/hec.1568-BIB1|cit1) 2000; 68 Austin (10.1002/hec.1568-BIB2|cit2) 2008; 27 Ho (10.1002/hec.1568-BIB14|cit14) 2007; 15 Raudenbusch (10.1002/hec.1568-BIB24|cit24) 2002 Botz (10.1002/hec.1568-BIB7|cit7) 2006; 27 Schreyögg (10.1002/hec.1568-BIB31|cit31) 2008; 17 Grieve (10.1002/hec.1568-BIB11|cit11) 2005; 14 McClellan (10.1002/hec.1568-BIB20|cit20) 2000; 3 Liao (10.1002/hec.1568-BIB17|cit17) 1994 Rosenbaum (10.1002/hec.1568-BIB27|cit27) 2002 Schreyögg (10.1002/hec.1568-BIB30|cit30) 2006; 9 Evans (10.1002/hec.1568-BIB10|cit10) 2007; 16 10.1002/hec.1568-BIB22|cit22 Hauck (10.1002/hec.1568-BIB13|cit13) 2006; 25 Snijders (10.1002/hec.1568-BIB34|cit34) 1999 Boos (10.1002/hec.1568-BIB6|cit6) 2009; 65 Rubin (10.1002/hec.1568-BIB29|cit29) 2006 Sundararajan (10.1002/hec.1568-BIB35|cit35) 2004; 57 |
| References_xml | – reference: Grieve R, Nixon R, Thompson SG et al. 2005. Using multilevel models for assessing the variability of multinational resource use and cost data. Health Economics 14: 185-196. – reference: Haro JM, Kontodimas S, Negrin MA et al. 2006. Methodological aspects in the assessment of treatment effects in observational health outcomes studies. Applied Health Economics and Health Policy 5: 11-25. – reference: Rice N, Jones A. 1997. Multilevel models and health economics. Health Economics 6: 561-575. – reference: Rosenbaum PR. 1989. Optimal matching for observational studies. Journal of the American Statistical Association 84: 1024-1032. – reference: Mitra N, Indurkhya A. 2005. A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data. Health Economics 14: 805-815. – reference: Austin PC. 2009. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 51: 171-184. – reference: Rubin DB. 1973. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29: 185-203. – reference: Imai K, King G, Stuart EA. 2008. Misunderstandings among experimentalists and observationalists about causal inference. Journal of the Royal Statistical Association, Series A 171(Part 2): 481-502. – reference: Schreyögg J, Tiemann O, Stargardt T et al. 2008. Cross-country comparison of costs: the use of episode-specific transitive purchasing power parities with standardised cost categories. Health Economics 17: S95-S103. – reference: Shen YC. 2002. The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction. Journal of Health Economics 21: 901-922. – reference: Martin S, Smith P. 1996. Explaining variations in inpatient length of stay in the National Health Service. Journal of Health Economics 15: 279-304. – reference: Raudenbusch SW, Bryk AS. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage Publications: Thousand Oaks. – reference: Ho DE, Imai K, King G et al. 2007. Matching as nonparametric preprocessing for reducing dependence in parametric causal inference. Political Analysis 15: 199-236. – reference: Snijders TAB, Bosker R. 1999. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage Publications: London. – reference: Sundararajan S, Henderson T, Perry C et al. 2004. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. Journal of Clinical Epidemiology 57: 1288-1294. – reference: Schreyögg J, Tiemann O, Busse R. 2006. Cost accounting to determine prices: how well do prices reflect costs in the German DRG-system? Health Care Management Science 9: 269-280. – reference: Yaisawarng S, Burgess JF. 2006. Performance-based budgeting in the public sector: an illustration from the VA health care system. Health Economics 15: 295-310. – reference: Andrews DWK, Buchinsky M. 2000. A three-step method for choosing the number of bootstrap repetitions. Econometrica 68: 23-51. – reference: Rubin DB. 2006. Matched Sampling for Causal Effects. Cambridge Press: New York. – reference: Rosenbaum PR. 2002. Observational Studies. Springer Publishers: New York. – reference: Austin PC. 2008. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 27: 2037-2049. – reference: Botz C, Sutherland J, Lawrenson J. 2006. Cost weight compression: impact of cost data precision and completeness. Heath Care Financing Review 27: 111-122. – reference: Boos DD, Stefanski LA, Wu Y. 2009. Fast FSR variable selection with applications to clinical trials. Biometrics 65: 692-700. – reference: Liao TF. 1994. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models. Sage Publications: Thousand Oaks. – reference: Normand ST, Landrum MB, Guadagnoli E et al. 2001. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. Journal of Clinical Epidemiology 54: 387-398. – reference: Tu JV, Austin PC, Walld R et al. 2001. Development and validation of the ontario acute myocardial infarction mortality prediction rules. Journal of the American College of Cardiology 37: 992-997. – reference: Carey K. 2000. A multi-level modeling approach to analysis of patient costs under managed care. Health Economics 9: 435-446. – reference: Austin PC, Mamdani MM. 2006. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 25: 2084-2106. – reference: Evans E, Imanaka Y, Sekimoto M et al. 2007. Risk adjusted resource utilization for AMI patients treated in Japanese hospitals. Health Economics 16: 347-359. – reference: Silber JH, Lorch SA, Rosenbaum PR et al. 2009. Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes. Health Services Research 44: 444-463. – reference: Polsky D, Mandelblatt JS, Weeks JC et al. 2003. Economic evaluation of breast cancer treatment: considering the value of patient choice. Journal of Clinical Oncology 21: 1139-1146. – reference: Carey K, Burgess J. 2000. Hospital costing: experience from the VHA. Financial Accountability and Management 16: 289-308. – reference: Hauck K, Street A. 2006. Performance assessment in the context of multiple objectives: a multivariate multilevel analysis. Journal of Health Economics 25: 1029-1048. – reference: Kreft IGG, de Leeuw J. 1998. Introducing Multi-level Modeling. Sage Publications: Thousand Oaks. – volume: 54 start-page: 387 year: 2001 end-page: 398 article-title: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores publication-title: Journal of Clinical Epidemiology – volume: 16 start-page: 347 year: 2007 end-page: 359 article-title: Risk adjusted resource utilization for AMI patients treated in Japanese hospitals publication-title: Health Economics – volume: 27 start-page: 111 year: 2006 end-page: 122 article-title: Cost weight compression: impact of cost data precision and completeness publication-title: Heath Care Financing Review – volume: 21 start-page: 901 year: 2002 end-page: 922 article-title: The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction publication-title: Journal of Health Economics – volume: 84 start-page: 1024 year: 1989 end-page: 1032 article-title: Optimal matching for observational studies publication-title: Journal of the American Statistical Association – volume: 3 year: 2000 – volume: 15 start-page: 279 year: 1996 end-page: 304 article-title: Explaining variations in inpatient length of stay in the National Health Service publication-title: Journal of Health Economics – year: 2003 – volume: 27 start-page: 2037 year: 2008 end-page: 2049 article-title: A critical appraisal of propensity‐score matching in the medical literature between 1996 and 2003 publication-title: Statistics in Medicine – volume: 21 start-page: 1139 year: 2003 end-page: 1146 article-title: Economic evaluation of breast cancer treatment: considering the value of patient choice publication-title: Journal of Clinical Oncology – volume: 57 start-page: 1288 year: 2004 end-page: 1294 article-title: New ICD‐10 version of the Charlson comorbidity index predicted in‐hospital mortality publication-title: Journal of Clinical Epidemiology – volume: 25 start-page: 2084 year: 2006 end-page: 2106 article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use publication-title: Statistics in Medicine – volume: 15 start-page: 199 year: 2007 end-page: 236 article-title: Matching as nonparametric preprocessing for reducing dependence in parametric causal inference publication-title: Political Analysis – year: 1994 – volume: 44 start-page: 444 year: 2009 end-page: 463 article-title: Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes publication-title: Health Services Research – year: 1998 – volume: 9 start-page: 269 year: 2006 end-page: 280 article-title: Cost accounting to determine prices: how well do prices reflect costs in the German DRG‐system? publication-title: Health Care Management Science – volume: 171 start-page: 481 issue: Part 2 year: 2008 end-page: 502 article-title: Misunderstandings among experimentalists and observationalists about causal inference publication-title: Journal of the Royal Statistical Association, Series A – volume: 51 start-page: 171 year: 2009 end-page: 184 article-title: Some methods of propensity‐score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations publication-title: Biometrical Journal – volume: 5 start-page: 11 year: 2006 end-page: 25 article-title: Methodological aspects in the assessment of treatment effects in observational health outcomes studies publication-title: Applied Health Economics and Health Policy – year: 2002 – year: 2008 – year: 2006 – volume: 15 start-page: 295 year: 2006 end-page: 310 article-title: Performance‐based budgeting in the public sector: an illustration from the VA health care system publication-title: Health Economics – volume: 9 start-page: 435 year: 2000 end-page: 446 article-title: A multi‐level modeling approach to analysis of patient costs under managed care publication-title: Health Economics – volume: 6 start-page: 561 year: 1997 end-page: 575 article-title: Multilevel models and health economics publication-title: Health Economics – volume: 17 start-page: S95 year: 2008 end-page: S103 article-title: Cross‐country comparison of costs: the use of episode‐specific transitive purchasing power parities with standardised cost categories publication-title: Health Economics – volume: 29 start-page: 185 year: 1973 end-page: 203 article-title: The use of matched sampling and regression adjustment to remove bias in observational studies publication-title: Biometrics – volume: 65 start-page: 692 year: 2009 end-page: 700 article-title: Fast FSR variable selection with applications to clinical trials publication-title: Biometrics – volume: 25 start-page: 1029 year: 2006 end-page: 1048 article-title: Performance assessment in the context of multiple objectives: a multivariate multilevel analysis publication-title: Journal of Health Economics – volume: 14 start-page: 805 year: 2005 end-page: 815 article-title: A propensity score approach to estimating the cost‐effectiveness of medical therapies from observational data publication-title: Health Economics – volume: 14 start-page: 185 year: 2005 end-page: 196 article-title: Using multilevel models for assessing the variability of multinational resource use and cost data publication-title: Health Economics – volume: 68 start-page: 23 year: 2000 end-page: 51 article-title: A three‐step method for choosing the number of bootstrap repetitions publication-title: Econometrica – volume: 16 start-page: 289 year: 2000 end-page: 308 article-title: Hospital costing: experience from the VHA publication-title: Financial Accountability and Management – volume: 37 start-page: 992 year: 2001 end-page: 997 article-title: Development and validation of the ontario acute myocardial infarction mortality prediction rules publication-title: Journal of the American College of Cardiology – year: 1999 – volume: 9 start-page: 435 year: 2000 ident: 10.1002/hec.1568-BIB8|cit8 article-title: A multi-level modeling approach to analysis of patient costs under managed care publication-title: Health Economics doi: 10.1002/1099-1050(200007)9:5<435::AID-HEC523>3.0.CO;2-Z – volume: 15 start-page: 199 year: 2007 ident: 10.1002/hec.1568-BIB14|cit14 article-title: Matching as nonparametric preprocessing for reducing dependence in parametric causal inference publication-title: Political Analysis doi: 10.1093/pan/mpl013 – volume: 68 start-page: 23 year: 2000 ident: 10.1002/hec.1568-BIB1|cit1 article-title: A three-step method for choosing the number of bootstrap repetitions publication-title: Econometrica doi: 10.1111/1468-0262.00092 – volume: 16 start-page: 289 year: 2000 ident: 10.1002/hec.1568-BIB9|cit9 article-title: Hospital costing: experience from the VHA publication-title: Financial Accountability and Management doi: 10.1111/1468-0408.00109 – volume: 17 start-page: S95 year: 2008 ident: 10.1002/hec.1568-BIB31|cit31 article-title: Cross-country comparison of costs: the use of episode-specific transitive purchasing power parities with standardised cost categories publication-title: Health Economics doi: 10.1002/hec.1327 – volume-title: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling year: 1999 ident: 10.1002/hec.1568-BIB34|cit34 – volume: 16 start-page: 347 year: 2007 ident: 10.1002/hec.1568-BIB10|cit10 article-title: Risk adjusted resource utilization for AMI patients treated in Japanese hospitals publication-title: Health Economics doi: 10.1002/hec.1177 – volume: 6 start-page: 561 year: 1997 ident: 10.1002/hec.1568-BIB25|cit25 article-title: Multilevel models and health economics publication-title: Health Economics doi: 10.1002/(SICI)1099-1050(199711)6:6<561::AID-HEC288>3.0.CO;2-X – volume: 29 start-page: 185 year: 1973 ident: 10.1002/hec.1568-BIB28|cit28 article-title: The use of matched sampling and regression adjustment to remove bias in observational studies publication-title: Biometrics doi: 10.2307/2529685 – volume: 21 start-page: 901 year: 2002 ident: 10.1002/hec.1568-BIB32|cit32 article-title: The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction publication-title: Journal of Health Economics doi: 10.1016/S0167-6296(02)00058-9 – volume: 171 start-page: 481 issue: Part 2 year: 2008 ident: 10.1002/hec.1568-BIB15|cit15 article-title: Misunderstandings among experimentalists and observationalists about causal inference publication-title: Journal of the Royal Statistical Association, Series A doi: 10.1111/j.1467-985X.2007.00527.x – volume: 51 start-page: 171 year: 2009 ident: 10.1002/hec.1568-BIB3|cit3 article-title: Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations publication-title: Biometrical Journal doi: 10.1002/bimj.200810488 – volume: 25 start-page: 2084 year: 2006 ident: 10.1002/hec.1568-BIB4|cit4 article-title: A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use publication-title: Statistics in Medicine doi: 10.1002/sim.2328 – volume-title: Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models year: 1994 ident: 10.1002/hec.1568-BIB17|cit17 doi: 10.4135/9781412984577 – volume: 27 start-page: 2037 year: 2008 ident: 10.1002/hec.1568-BIB2|cit2 article-title: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003 publication-title: Statistics in Medicine doi: 10.1002/sim.3150 – volume: 25 start-page: 1029 year: 2006 ident: 10.1002/hec.1568-BIB13|cit13 article-title: Performance assessment in the context of multiple objectives: a multivariate multilevel analysis publication-title: Journal of Health Economics doi: 10.1016/j.jhealeco.2005.07.009 – volume: 65 start-page: 692 year: 2009 ident: 10.1002/hec.1568-BIB6|cit6 article-title: Fast FSR variable selection with applications to clinical trials publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01127.x – volume: 27 start-page: 111 year: 2006 ident: 10.1002/hec.1568-BIB7|cit7 article-title: Cost weight compression: impact of cost data precision and completeness publication-title: Heath Care Financing Review – volume: 9 start-page: 269 year: 2006 ident: 10.1002/hec.1568-BIB30|cit30 article-title: Cost accounting to determine prices: how well do prices reflect costs in the German DRG-system? publication-title: Health Care Management Science doi: 10.1007/s10729-006-9094-0 – volume-title: Observational Studies year: 2002 ident: 10.1002/hec.1568-BIB27|cit27 doi: 10.1007/978-1-4757-3692-2 – volume: 84 start-page: 1024 year: 1989 ident: 10.1002/hec.1568-BIB26|cit26 article-title: Optimal matching for observational studies publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1989.10478868 – volume: 44 start-page: 444 year: 2009 ident: 10.1002/hec.1568-BIB33|cit33 article-title: Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes publication-title: Health Services Research doi: 10.1111/j.1475-6773.2008.00938.x – volume: 5 start-page: 11 year: 2006 ident: 10.1002/hec.1568-BIB12|cit12 article-title: Methodological aspects in the assessment of treatment effects in observational health outcomes studies publication-title: Applied Health Economics and Health Policy doi: 10.2165/00148365-200605010-00003 – volume-title: Hierarchical Linear Models: Applications and Data Analysis Methods year: 2002 ident: 10.1002/hec.1568-BIB24|cit24 – volume-title: Matched Sampling for Causal Effects year: 2006 ident: 10.1002/hec.1568-BIB29|cit29 doi: 10.1017/CBO9780511810725 – volume: 3 volume-title: Frontiers in Health Policy Research year: 2000 ident: 10.1002/hec.1568-BIB20|cit20 – ident: 10.1002/hec.1568-BIB22|cit22 – volume-title: Introducing Multi-level Modeling year: 1998 ident: 10.1002/hec.1568-BIB16|cit16 doi: 10.4135/9781849209366 – volume: 54 start-page: 387 year: 2001 ident: 10.1002/hec.1568-BIB21|cit21 article-title: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores publication-title: Journal of Clinical Epidemiology doi: 10.1016/S0895-4356(00)00321-8 – volume: 57 start-page: 1288 year: 2004 ident: 10.1002/hec.1568-BIB35|cit35 article-title: New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2004.03.012 – volume: 37 start-page: 992 year: 2001 ident: 10.1002/hec.1568-BIB36|cit36 article-title: Development and validation of the ontario acute myocardial infarction mortality prediction rules publication-title: Journal of the American College of Cardiology doi: 10.1016/S0735-1097(01)01109-3 – volume-title: Cardiovascular Health Care Economics year: 2003 ident: 10.1002/hec.1568-BIB5|cit5 – volume: 14 start-page: 805 year: 2005 ident: 10.1002/hec.1568-BIB19|cit19 article-title: A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data publication-title: Health Economics doi: 10.1002/hec.987 – volume: 15 start-page: 295 year: 2006 ident: 10.1002/hec.1568-BIB37|cit37 article-title: Performance-based budgeting in the public sector: an illustration from the VA health care system publication-title: Health Economics doi: 10.1002/hec.1060 – volume: 14 start-page: 185 year: 2005 ident: 10.1002/hec.1568-BIB11|cit11 article-title: Using multilevel models for assessing the variability of multinational resource use and cost data publication-title: Health Economics doi: 10.1002/hec.916 – volume: 15 start-page: 279 year: 1996 ident: 10.1002/hec.1568-BIB18|cit18 article-title: Explaining variations in inpatient length of stay in the National Health Service publication-title: Journal of Health Economics doi: 10.1016/0167-6296(96)00003-3 – volume: 21 start-page: 1139 year: 2003 ident: 10.1002/hec.1568-BIB23|cit23 article-title: Economic evaluation of breast cancer treatment: considering the value of patient choice publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2003.03.126 |
| SSID | ssj0009906 |
| Score | 2.1401887 |
| Snippet | Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare... Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare... |
| SourceID | proquest repec pubmed econis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 85 |
| SubjectTerms | acute myocardial infarction Aged Case studies Comparative analysis Data Delivery of Health Care Economic models Germany - epidemiology Health care Health care expenditures Health economics Health services Heart attacks hospital costs Hospital Costs - statistics & numerical data Hospital Mortality - trends Hospitals Hospitals - standards Humans Justification Male Matching Medical treatment Middle Aged Military hospitals multilevel models Myocardial infarction Myocardial Infarction - drug therapy Myocardial Infarction - economics Patients Propensity Propensity Score propensity score matching Quality of care Quality of Health Care Studies United States - epidemiology Veterans |
| Title | Costs and quality of hospitals in different health care systems: a multi-level approach with propensity score matching |
| URI | https://api.istex.fr/ark:/67375/WNG-KZBRRDV1-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhec.1568 http://www.econis.eu/PPNSET?PPN=654011540 https://www.ncbi.nlm.nih.gov/pubmed/20084662 http://econpapers.repec.org/article/wlyhlthec/v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85-100.htm https://www.proquest.com/docview/817289187 https://www.proquest.com/docview/821599429 |
| Volume | 20 |
| WOSCitedRecordID | wos000285257300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009906 issn: 1057-9230 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5i3YSQEJdxWRhMRkLwFJZ7bN5YtzIJqFDFoNqL5SS2WlHSqunG-sZP4DfySzgnTjJNGhISUnNRfZLI9vHxZ_v4OwAvSG0i7NfcVJnMjeI8d7PCi1weZwLxaaxEYupgE-lwyMdj8anxqqS9MJYfoptwo5ZR22tq4Cqr9i9JQyc6f42DD74BmwGqbdSDzcPR4OTDJeWuqCNrUiBbF2GM11LPesF---yVzmiLRqDTClEqFfDFdZAT05Z6ofOrSLbuigZ3_ycT9-BOA0DZW6sx9-GGLrfh5sdmiX0bbtuJPGb3Jz2Ai_68WlVMlQWzGzDXbG7YpAk3UrFpydogKytmd1UycidjliO6esMUq70Wf__8NSMPJdbSmDOaA2YLWg0oyTOEVUSpyRBC1_6dD-FkcPS5f-w24RrcHK0mdxOsZBFwFWY6EIUJ8yKKjOfzPI1M4Sda-1kepCb1TIJ3RYan0AtQg9LA00WswkfQK-el3gGW-b4yieFcGTQycajCVKApwmcKFZvYc-BVW28yb7jMKaTGTFoW5kBiwUoqWAeed5ILy99xjcyOrfpOIkEcSzxF-KGXtTJ0KWr5jVzh0lh-Hb6T708PRqPDL77Ed-y22iIbK1BJTsG_hM9TB1iXis2X1mRUqednKIKQSwgEBQ48tjrWfYo8U6IkCRw4qJWuS_gxW0-wMvGfcxmqwMPTur7BsVyopnjQdYEHjymncrL6jhmp9fCvhSCPj_p0ffKvgrtwy86v0-8p9FbLM_0MtvLz1bRa7sFGOuZ7TZP8AyXeOP0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QRIiMu4LIyLkRA8heUeB55Yt1K0rkLVBhMvlpPYakVJq6Yb6xs_gd_IL-GcOMk0aUhISM1F9Uki28fHn-3j7wC8JLUJsF-zY6lTOwizzE5zJ7B5mCaIT0OZRLoKNhEPh_zkJPm0Bu-avTCGH6KdcKOWUdlrauA0Ib1zwRo6VtkbHH3wa7AeoBaFHVjfG_WOBxecu0kVWpMi2dqIY5yGe9bxdppnL_VGGzQEnZQIU6mEz6_CnJi2UHOVXYayVV_Uu_NfubgLt2sIyt4bnbkHa6rYhOuH9SL7JtwyU3nM7FC6D-fdWbksmSxyZrZgrthMs3EdcKRkk4I1YVaWzOyrZORQxgxLdPmWSVb5Lf7--WtKPkqsITJnNAvM5rQeUJBvCCuJVJMhiK48PB_AcW__qNu364ANdoZ2k9sRVnPicemnykty7Wd5EGjH5Vkc6NyNlHLTzIt17OgI7_IUT77joQ7FnqPyUPoPoVPMCrUFLHVdqSPNudRoZkJf-nGCxgifyWWoQ8eC103FiaxmM6egGlNheJg9gQUrqGAteNFKzg2DxxUyW6buW4kIkSwxFeGHXlXa0KbIxTdyhotD8WX4QRx83R2N9j67At-x3aiLqO1AKTiF_0pcHlvA2lRswLQqIws1O0URBF1JgrDAgkdGydpPkW9KEEWeBbuV1rUJP6arMVYm_nMmfOk5eFpVNzia8-UED7rO8eAh5VSMl98xI5Ui_rUQRH-_S9fH_yr4HG70jw4HYvBxeLANN81sO_2eQGe5OFVPYSM7W07KxbO6Zf4BaoI8BQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a2zQhIS7jsjIuRkLwFJZ7bHhi7crQRjVVbEy8WE5iqxUlrZpurG_8BH4jv4Rz4iTTpCEhITUX1SeJbJ9jf7aPvwPwktQmxH7NSZRJnTDKMifN3dDhUSoQn0ZKxKYKNpEMBvz0VBytwLtmL4zlh2gn3MgyqvaaDFzPcrNzyRo60tkbHH3wG7AWRiJGq1zrDfvHh5ecu6IKrUmRbB3EMW7DPev6O82zV3qjdRqCjkuEqVTCF9dhTkyb65nOrkLZqi_q3_mvXNyF2zUEZe-tztyDFV1swsanepF9E27ZqTxmdyjdh4vutFyUTBU5s1swl2xq2KgOOFKyccGaMCsLZvdVMnIoY5YlunzLFKv8Fn___DUhHyXWEJkzmgVmM1oPKMg3hJVEqskQRFceng_guL_3ubvv1AEbnAzbTe7EWM3C5ypItS9yE2R5GBrX41kSmtyLtfbSzE9M4poY7_IUT4Hrow4lvqvzSAUPYbWYFnoLWOp5ysSGc2WwmYkCFSQCGyN8JleRidwOvG4qTmY1mzkF1ZhIy8PsSyxYSQXbgRet5MwyeFwjs2XrvpWIEckSUxF-6FWlDW2Kmn8jZ7gkkl8GH-TB193hsHfiSXzHdqMusm4HSskp_JfweNIB1qaiAdOqjCr09AxFEHQJgbCgA4-skrWfIt-UMI79DuxWWtcm_JgsR1iZ-M-5DJTv4mlZ3eBoLlBjPOg6w4NHlFM5WnzHjFSK-NdCkPt7Xbo-_lfB57Bx1OvLw4-Dg224aSfb6fcEVhfzM_0U1rPzxbicP6sN8w-fPjuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Costs+and+quality+of+hospitals+in+different+health+care+systems%3A+a+multi%E2%80%90level+approach+with+propensity+score+matching&rft.jtitle=Health+economics&rft.au=Schrey%C3%B6gg%2C+Jonas&rft.au=Stargardt%2C+Tom&rft.au=Tiemann%2C+Oliver&rft.series=Health+Economics&rft.date=2011&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1057-9230&rft.eissn=1099-1050&rft.volume=20&rft.issue=1&rft.spage=85&rft.epage=100&rft_id=info:doi/10.1002%2Fhec.1568&rft.externalDocID=wlyhlthec_v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85_100_htm |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-9230&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-9230&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-9230&client=summon |