Costs and quality of hospitals in different health care systems: a multi-level approach with propensity score matching

Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Health economics Ročník 20; číslo 1; s. 85 - 100
Hlavní autori: Schreyögg, Jonas, Stargardt, Tom, Tiemann, Oliver
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.01.2011
Wiley-Blackwell
Wiley Periodicals Inc
Edícia:Health Economics
Predmet:
ISSN:1057-9230, 1099-1050, 1099-1050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi‐level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi‐level models are recommendable to consider the clustered structure of the data when patient‐level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. [PUBLICATION ABSTRACT]
Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi‐level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi‐level models are recommendable to consider the clustered structure of the data when patient‐level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Copyright (C) 2010 John Wiley & Sons, Ltd.
Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro‐level data from hospitals in different health care systems. To do so, we developed a multi‐level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi‐level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi‐level models are recommendable to consider the clustered structure of the data when patient‐level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons. Copyright © 2010 John Wiley & Sons, Ltd.
Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons.
Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons.Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare micro-level data from hospitals in different health care systems. To do so, we developed a multi-level framework in combination with a propensity score matching technique using similarly structured data for patients receiving treatment for acute myocardial infarction in German and US Veterans Health Administration hospitals. Our case study shows important differences in results between multi-level regressions based on matched and unmatched samples. We conclude that propensity score matching techniques are an appropriate way to deal with the usual baseline imbalances across the samples from different countries. Multi-level models are recommendable to consider the clustered structure of the data when patient-level data from different hospitals and health care systems are compared. The results provide an important justification for exploring new ways in performing health system comparisons.
Author Schreyögg, Jonas
Stargardt, Tom
Tiemann, Oliver
Author_xml – sequence: 1
  givenname: Jonas
  surname: Schreyögg
  fullname: Schreyögg, Jonas
  email: schreyoegg@bwl.lmu.de
  organization: Department for Health Services Management, Munich School of Management, Munich University, Munich, Germany
– sequence: 2
  givenname: Tom
  surname: Stargardt
  fullname: Stargardt, Tom
  organization: Department for Health Services Management, Munich School of Management, Munich University, Munich, Germany
– sequence: 3
  givenname: Oliver
  surname: Tiemann
  fullname: Tiemann, Oliver
  organization: Department for Health Services Management, Munich School of Management, Munich University, Munich, Germany
BackLink http://www.econis.eu/PPNSET?PPN=654011540$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
https://www.ncbi.nlm.nih.gov/pubmed/20084662$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/wlyhlthec/v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85-100.htm$$DView record in RePEc
BookMark eNp1kllv1DAQxyNURA-Q-ARg8UJfstjO5fQNtqWtqECqOCReLK8zIS7OUdvZJd-eCduuRAUPc8j-zX9GHh9Ge13fQRQ9Z3TBKOVvGtALluXiUXTAaFnGjGZ0b86zIi55QvejQ-9vKMU7mj-J9jmlIs1zfhCtl70PnqiuIrejsiZMpK9J0_vBBGU9MR2pTF2Dgy6QBpQNDdHKAfGTD9D6E6JIO9pgYgtrsEQNg-uVbsjGIIn5AJ2fVb3usapVQTem-_E0elyjPDy7i0fRl_dnn5cX8dWn88vl26tYZ4kQcb6qaMmFSlbAy6pOdJWmNWVCF2ldsRyArTQv6oLWOWbVCl1Cudaq4BSqTCVH0eutLk5yO4IPsjVeg7Wqg370UnCWlWXKSyRfPSBv-tF1OJwUrOCiZKJA6HILORhAy8GZVrlJbuzU4MPgyVomilN005-EMQwGbY4DmsgkLkw2oUWtF3cNx1UL1U7sfjcIvNwCoPvO-B2QZykKo0NisSW06713UEuNWwum74JTxmKruRuX82Tz98CC4wcF96L_QOMtujEWpv9y8uJs-Tdv8F_82vHK_ZR5kRSZ_PbxXH74_u76-vQrkyL5DWAS19U
CitedBy_id crossref_primary_10_1097_MLR_0000000000002186
crossref_primary_10_1200_JCO_2017_75_2501
crossref_primary_10_1002_hec_2972
crossref_primary_10_3109_07853890_2011_586904
crossref_primary_10_1177_2050312114526589
crossref_primary_10_1097_MLR_0000000000000521
crossref_primary_10_1016_j_healthpol_2013_04_013
crossref_primary_10_1007_s10729_023_09661_4
crossref_primary_10_1002_nml_21074
crossref_primary_10_1016_j_healthpol_2012_01_011
crossref_primary_10_2165_11597340_000000000_00000
crossref_primary_10_1007_s10198_011_0355_6
crossref_primary_10_1002_hec_3270
crossref_primary_10_2337_dc24_0361
crossref_primary_10_1007_s00103_012_1478_3
crossref_primary_10_1007_s10729_012_9193_z
crossref_primary_10_1007_s10657_016_9531_6
crossref_primary_10_1016_j_healthpol_2019_01_010
crossref_primary_10_1002_hec_2941
crossref_primary_10_1007_s10729_011_9180_9
crossref_primary_10_1016_j_chieco_2018_10_007
crossref_primary_10_1186_s12888_016_0804_y
crossref_primary_10_2337_dc17_1183
crossref_primary_10_1002_hec_2828
crossref_primary_10_1136_bmjopen_2015_009186
crossref_primary_10_7326_M17_3365
crossref_primary_10_1177_1355819616682283
crossref_primary_10_2337_dc21_0407
crossref_primary_10_4236_health_2013_54093
crossref_primary_10_1002_hec_4492
crossref_primary_10_1002_hec_3262
crossref_primary_10_1016_j_seps_2020_100960
crossref_primary_10_1001_jamapediatrics_2021_0747
crossref_primary_10_1513_AnnalsATS_202008_1084RL
crossref_primary_10_1001_jamanetworkopen_2020_8939
crossref_primary_10_1002_hec_4891
Cites_doi 10.1002/1099-1050(200007)9:5<435::AID-HEC523>3.0.CO;2-Z
10.1093/pan/mpl013
10.1111/1468-0262.00092
10.1111/1468-0408.00109
10.1002/hec.1327
10.1002/hec.1177
10.1002/(SICI)1099-1050(199711)6:6<561::AID-HEC288>3.0.CO;2-X
10.2307/2529685
10.1016/S0167-6296(02)00058-9
10.1111/j.1467-985X.2007.00527.x
10.1002/bimj.200810488
10.1002/sim.2328
10.4135/9781412984577
10.1002/sim.3150
10.1016/j.jhealeco.2005.07.009
10.1111/j.1541-0420.2008.01127.x
10.1007/s10729-006-9094-0
10.1007/978-1-4757-3692-2
10.1080/01621459.1989.10478868
10.1111/j.1475-6773.2008.00938.x
10.2165/00148365-200605010-00003
10.1017/CBO9780511810725
10.4135/9781849209366
10.1016/S0895-4356(00)00321-8
10.1016/j.jclinepi.2004.03.012
10.1016/S0735-1097(01)01109-3
10.1002/hec.987
10.1002/hec.1060
10.1002/hec.916
10.1016/0167-6296(96)00003-3
10.1200/JCO.2003.03.126
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2010 John Wiley & Sons, Ltd.
Copyright Wiley Periodicals Inc. Jan 2011
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2010 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Periodicals Inc. Jan 2011
DBID BSCLL
AAYXX
CITATION
OQ6
CGR
CUY
CVF
ECM
EIF
NPM
DKI
X2L
7QJ
7X8
DOI 10.1002/hec.1568
DatabaseName Istex
CrossRef
ECONIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
RePEc IDEAS
RePEc
Applied Social Sciences Index & Abstracts (ASSIA)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Applied Social Sciences Index and Abstracts (ASSIA)
MEDLINE - Academic
DatabaseTitleList Applied Social Sciences Index and Abstracts (ASSIA)


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1099-1050
EndPage 100
ExternalDocumentID 2211073261
wlyhlthec_v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85_100_htm
20084662
654011540
10_1002_hec_1568
HEC1568
ark_67375_WNG_KZBRRDV1_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GeographicLocations United States
Germany
United States--US
GeographicLocations_xml – name: Germany
– name: United States
– name: United States--US
GroupedDBID ---
-~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1OL
1ZS
31~
33P
3WU
4.4
44B
4ZD
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5GY
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABQWH
ABSOO
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACGOF
ACHQT
ACMXC
ACPOU
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKFF
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AHBTC
AIACR
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DUUFO
EBD
EBS
EJD
EMOBN
EOH
F00
F01
F5P
FEDTE
FUBAC
G-S
G.N
G50
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WII
WIJ
WJL
WOHZO
WQZ
WVDHM
WXI
WXSBR
XG1
XV2
YHZ
ZZTAW
~IA
~WP
AAYXX
CITATION
O8X
OQ6
AAHHS
AARRQ
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIFKG
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RWI
WRC
WUP
WWH
-
08R
0R
1AW
31
3N
AAPBV
AAVGM
ABFLS
ACJLH
ACXME
ADDAD
ADRMI
AFVGU
AGJLS
AJYWA
DKI
GA
HZ
IA
IPNFZ
NF
P4A
PQEST
RIG
WP
X
X2L
Y3
7QJ
7X8
ID FETCH-LOGICAL-c5388-6bd0928a3be29df3cd44f018c74fd16ee1bc27f70f61bcdb1bc302cca720ed5a3
IEDL.DBID DRFUL
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285257300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-9230
1099-1050
IngestDate Sun Sep 28 07:13:06 EDT 2025
Mon Nov 10 22:00:53 EST 2025
Wed Aug 18 03:10:23 EDT 2021
Wed Feb 19 01:52:02 EST 2025
Mon Sep 22 08:27:02 EDT 2025
Tue Nov 18 22:01:07 EST 2025
Sat Nov 29 06:05:24 EST 2025
Sun Sep 21 06:22:46 EDT 2025
Sun Sep 21 06:19:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2010 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5388-6bd0928a3be29df3cd44f018c74fd16ee1bc27f70f61bcdb1bc302cca720ed5a3
Notes ark:/67375/WNG-KZBRRDV1-8
ArticleID:HEC1568
istex:C66A558264A214EE185FE15E5C036E8F2E132DFC
This article was published online on 18 January 2010. An error was subsequently identified in the author name. This notice is included in the online and print versions to indicate that both have been corrected [13 July 2010].
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PMID 20084662
PQID 817289187
PQPubID 31187
PageCount 16
ParticipantIDs proquest_miscellaneous_821599429
proquest_journals_817289187
repec_primary_wlyhlthec_v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85_100_htm
pubmed_primary_20084662
econis_primary_654011540
crossref_citationtrail_10_1002_hec_1568
crossref_primary_10_1002_hec_1568
wiley_primary_10_1002_hec_1568_HEC1568
istex_primary_ark_67375_WNG_KZBRRDV1_8
PublicationCentury 2000
PublicationDate 2011-01
January 2011
2011-01-00
2011
2011-Jan
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: York
PublicationSeriesTitle Health Economics
PublicationTitle Health economics
PublicationTitleAlternate Health Econ
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley-Blackwell
Wiley Periodicals Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley-Blackwell
– name: Wiley Periodicals Inc
References Rubin DB. 2006. Matched Sampling for Causal Effects. Cambridge Press: New York.
Austin PC. 2009. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 51: 171-184.
Botz C, Sutherland J, Lawrenson J. 2006. Cost weight compression: impact of cost data precision and completeness. Heath Care Financing Review 27: 111-122.
Kreft IGG, de Leeuw J. 1998. Introducing Multi-level Modeling. Sage Publications: Thousand Oaks.
Martin S, Smith P. 1996. Explaining variations in inpatient length of stay in the National Health Service. Journal of Health Economics 15: 279-304.
Yaisawarng S, Burgess JF. 2006. Performance-based budgeting in the public sector: an illustration from the VA health care system. Health Economics 15: 295-310.
Mitra N, Indurkhya A. 2005. A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data. Health Economics 14: 805-815.
Schreyögg J, Tiemann O, Busse R. 2006. Cost accounting to determine prices: how well do prices reflect costs in the German DRG-system? Health Care Management Science 9: 269-280.
Austin PC. 2008. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 27: 2037-2049.
Rosenbaum PR. 1989. Optimal matching for observational studies. Journal of the American Statistical Association 84: 1024-1032.
Carey K, Burgess J. 2000. Hospital costing: experience from the VHA. Financial Accountability and Management 16: 289-308.
Normand ST, Landrum MB, Guadagnoli E et al. 2001. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. Journal of Clinical Epidemiology 54: 387-398.
Rosenbaum PR. 2002. Observational Studies. Springer Publishers: New York.
Silber JH, Lorch SA, Rosenbaum PR et al. 2009. Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes. Health Services Research 44: 444-463.
Imai K, King G, Stuart EA. 2008. Misunderstandings among experimentalists and observationalists about causal inference. Journal of the Royal Statistical Association, Series A 171(Part 2): 481-502.
Boos DD, Stefanski LA, Wu Y. 2009. Fast FSR variable selection with applications to clinical trials. Biometrics 65: 692-700.
Tu JV, Austin PC, Walld R et al. 2001. Development and validation of the ontario acute myocardial infarction mortality prediction rules. Journal of the American College of Cardiology 37: 992-997.
Liao TF. 1994. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models. Sage Publications: Thousand Oaks.
Grieve R, Nixon R, Thompson SG et al. 2005. Using multilevel models for assessing the variability of multinational resource use and cost data. Health Economics 14: 185-196.
Hauck K, Street A. 2006. Performance assessment in the context of multiple objectives: a multivariate multilevel analysis. Journal of Health Economics 25: 1029-1048.
Sundararajan S, Henderson T, Perry C et al. 2004. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. Journal of Clinical Epidemiology 57: 1288-1294.
Rubin DB. 1973. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29: 185-203.
Austin PC, Mamdani MM. 2006. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 25: 2084-2106.
Ho DE, Imai K, King G et al. 2007. Matching as nonparametric preprocessing for reducing dependence in parametric causal inference. Political Analysis 15: 199-236.
Andrews DWK, Buchinsky M. 2000. A three-step method for choosing the number of bootstrap repetitions. Econometrica 68: 23-51.
Raudenbusch SW, Bryk AS. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage Publications: Thousand Oaks.
Schreyögg J, Tiemann O, Stargardt T et al. 2008. Cross-country comparison of costs: the use of episode-specific transitive purchasing power parities with standardised cost categories. Health Economics 17: S95-S103.
Evans E, Imanaka Y, Sekimoto M et al. 2007. Risk adjusted resource utilization for AMI patients treated in Japanese hospitals. Health Economics 16: 347-359.
Snijders TAB, Bosker R. 1999. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage Publications: London.
Haro JM, Kontodimas S, Negrin MA et al. 2006. Methodological aspects in the assessment of treatment effects in observational health outcomes studies. Applied Health Economics and Health Policy 5: 11-25.
Rice N, Jones A. 1997. Multilevel models and health economics. Health Economics 6: 561-575.
Carey K. 2000. A multi-level modeling approach to analysis of patient costs under managed care. Health Economics 9: 435-446.
Polsky D, Mandelblatt JS, Weeks JC et al. 2003. Economic evaluation of breast cancer treatment: considering the value of patient choice. Journal of Clinical Oncology 21: 1139-1146.
Shen YC. 2002. The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction. Journal of Health Economics 21: 901-922.
1989; 84
2009; 44
2009; 65
2000; 68
2000; 3
2000; 9
2006; 9
2008; 17
2006; 15
1998
2008
2006; 5
2006
1994
2003
2002
1997; 6
1996; 15
2007; 15
2007; 16
1999
2009; 51
2000; 16
2006; 27
2008; 27
2006; 25
2002; 21
2004; 57
1973; 29
2001; 37
2003; 21
2005; 14
2008; 171
2001; 54
Rosenbaum (10.1002/hec.1568-BIB26|cit26) 1989; 84
Shen (10.1002/hec.1568-BIB32|cit32) 2002; 21
Haro (10.1002/hec.1568-BIB12|cit12) 2006; 5
Rubin (10.1002/hec.1568-BIB28|cit28) 1973; 29
Barnett (10.1002/hec.1568-BIB5|cit5) 2003
Imai (10.1002/hec.1568-BIB15|cit15) 2008; 171
Yaisawarng (10.1002/hec.1568-BIB37|cit37) 2006; 15
Kreft (10.1002/hec.1568-BIB16|cit16) 1998
Martin (10.1002/hec.1568-BIB18|cit18) 1996; 15
Rice (10.1002/hec.1568-BIB25|cit25) 1997; 6
Normand (10.1002/hec.1568-BIB21|cit21) 2001; 54
Silber (10.1002/hec.1568-BIB33|cit33) 2009; 44
Austin (10.1002/hec.1568-BIB4|cit4) 2006; 25
Tu (10.1002/hec.1568-BIB36|cit36) 2001; 37
Carey (10.1002/hec.1568-BIB8|cit8) 2000; 9
Carey (10.1002/hec.1568-BIB9|cit9) 2000; 16
Mitra (10.1002/hec.1568-BIB19|cit19) 2005; 14
Polsky (10.1002/hec.1568-BIB23|cit23) 2003; 21
Austin (10.1002/hec.1568-BIB3|cit3) 2009; 51
Andrews (10.1002/hec.1568-BIB1|cit1) 2000; 68
Austin (10.1002/hec.1568-BIB2|cit2) 2008; 27
Ho (10.1002/hec.1568-BIB14|cit14) 2007; 15
Raudenbusch (10.1002/hec.1568-BIB24|cit24) 2002
Botz (10.1002/hec.1568-BIB7|cit7) 2006; 27
Schreyögg (10.1002/hec.1568-BIB31|cit31) 2008; 17
Grieve (10.1002/hec.1568-BIB11|cit11) 2005; 14
McClellan (10.1002/hec.1568-BIB20|cit20) 2000; 3
Liao (10.1002/hec.1568-BIB17|cit17) 1994
Rosenbaum (10.1002/hec.1568-BIB27|cit27) 2002
Schreyögg (10.1002/hec.1568-BIB30|cit30) 2006; 9
Evans (10.1002/hec.1568-BIB10|cit10) 2007; 16
10.1002/hec.1568-BIB22|cit22
Hauck (10.1002/hec.1568-BIB13|cit13) 2006; 25
Snijders (10.1002/hec.1568-BIB34|cit34) 1999
Boos (10.1002/hec.1568-BIB6|cit6) 2009; 65
Rubin (10.1002/hec.1568-BIB29|cit29) 2006
Sundararajan (10.1002/hec.1568-BIB35|cit35) 2004; 57
References_xml – reference: Grieve R, Nixon R, Thompson SG et al. 2005. Using multilevel models for assessing the variability of multinational resource use and cost data. Health Economics 14: 185-196.
– reference: Haro JM, Kontodimas S, Negrin MA et al. 2006. Methodological aspects in the assessment of treatment effects in observational health outcomes studies. Applied Health Economics and Health Policy 5: 11-25.
– reference: Rice N, Jones A. 1997. Multilevel models and health economics. Health Economics 6: 561-575.
– reference: Rosenbaum PR. 1989. Optimal matching for observational studies. Journal of the American Statistical Association 84: 1024-1032.
– reference: Mitra N, Indurkhya A. 2005. A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data. Health Economics 14: 805-815.
– reference: Austin PC. 2009. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 51: 171-184.
– reference: Rubin DB. 1973. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29: 185-203.
– reference: Imai K, King G, Stuart EA. 2008. Misunderstandings among experimentalists and observationalists about causal inference. Journal of the Royal Statistical Association, Series A 171(Part 2): 481-502.
– reference: Schreyögg J, Tiemann O, Stargardt T et al. 2008. Cross-country comparison of costs: the use of episode-specific transitive purchasing power parities with standardised cost categories. Health Economics 17: S95-S103.
– reference: Shen YC. 2002. The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction. Journal of Health Economics 21: 901-922.
– reference: Martin S, Smith P. 1996. Explaining variations in inpatient length of stay in the National Health Service. Journal of Health Economics 15: 279-304.
– reference: Raudenbusch SW, Bryk AS. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage Publications: Thousand Oaks.
– reference: Ho DE, Imai K, King G et al. 2007. Matching as nonparametric preprocessing for reducing dependence in parametric causal inference. Political Analysis 15: 199-236.
– reference: Snijders TAB, Bosker R. 1999. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage Publications: London.
– reference: Sundararajan S, Henderson T, Perry C et al. 2004. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. Journal of Clinical Epidemiology 57: 1288-1294.
– reference: Schreyögg J, Tiemann O, Busse R. 2006. Cost accounting to determine prices: how well do prices reflect costs in the German DRG-system? Health Care Management Science 9: 269-280.
– reference: Yaisawarng S, Burgess JF. 2006. Performance-based budgeting in the public sector: an illustration from the VA health care system. Health Economics 15: 295-310.
– reference: Andrews DWK, Buchinsky M. 2000. A three-step method for choosing the number of bootstrap repetitions. Econometrica 68: 23-51.
– reference: Rubin DB. 2006. Matched Sampling for Causal Effects. Cambridge Press: New York.
– reference: Rosenbaum PR. 2002. Observational Studies. Springer Publishers: New York.
– reference: Austin PC. 2008. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 27: 2037-2049.
– reference: Botz C, Sutherland J, Lawrenson J. 2006. Cost weight compression: impact of cost data precision and completeness. Heath Care Financing Review 27: 111-122.
– reference: Boos DD, Stefanski LA, Wu Y. 2009. Fast FSR variable selection with applications to clinical trials. Biometrics 65: 692-700.
– reference: Liao TF. 1994. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models. Sage Publications: Thousand Oaks.
– reference: Normand ST, Landrum MB, Guadagnoli E et al. 2001. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. Journal of Clinical Epidemiology 54: 387-398.
– reference: Tu JV, Austin PC, Walld R et al. 2001. Development and validation of the ontario acute myocardial infarction mortality prediction rules. Journal of the American College of Cardiology 37: 992-997.
– reference: Carey K. 2000. A multi-level modeling approach to analysis of patient costs under managed care. Health Economics 9: 435-446.
– reference: Austin PC, Mamdani MM. 2006. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 25: 2084-2106.
– reference: Evans E, Imanaka Y, Sekimoto M et al. 2007. Risk adjusted resource utilization for AMI patients treated in Japanese hospitals. Health Economics 16: 347-359.
– reference: Silber JH, Lorch SA, Rosenbaum PR et al. 2009. Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes. Health Services Research 44: 444-463.
– reference: Polsky D, Mandelblatt JS, Weeks JC et al. 2003. Economic evaluation of breast cancer treatment: considering the value of patient choice. Journal of Clinical Oncology 21: 1139-1146.
– reference: Carey K, Burgess J. 2000. Hospital costing: experience from the VHA. Financial Accountability and Management 16: 289-308.
– reference: Hauck K, Street A. 2006. Performance assessment in the context of multiple objectives: a multivariate multilevel analysis. Journal of Health Economics 25: 1029-1048.
– reference: Kreft IGG, de Leeuw J. 1998. Introducing Multi-level Modeling. Sage Publications: Thousand Oaks.
– volume: 54
  start-page: 387
  year: 2001
  end-page: 398
  article-title: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores
  publication-title: Journal of Clinical Epidemiology
– volume: 16
  start-page: 347
  year: 2007
  end-page: 359
  article-title: Risk adjusted resource utilization for AMI patients treated in Japanese hospitals
  publication-title: Health Economics
– volume: 27
  start-page: 111
  year: 2006
  end-page: 122
  article-title: Cost weight compression: impact of cost data precision and completeness
  publication-title: Heath Care Financing Review
– volume: 21
  start-page: 901
  year: 2002
  end-page: 922
  article-title: The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction
  publication-title: Journal of Health Economics
– volume: 84
  start-page: 1024
  year: 1989
  end-page: 1032
  article-title: Optimal matching for observational studies
  publication-title: Journal of the American Statistical Association
– volume: 3
  year: 2000
– volume: 15
  start-page: 279
  year: 1996
  end-page: 304
  article-title: Explaining variations in inpatient length of stay in the National Health Service
  publication-title: Journal of Health Economics
– year: 2003
– volume: 27
  start-page: 2037
  year: 2008
  end-page: 2049
  article-title: A critical appraisal of propensity‐score matching in the medical literature between 1996 and 2003
  publication-title: Statistics in Medicine
– volume: 21
  start-page: 1139
  year: 2003
  end-page: 1146
  article-title: Economic evaluation of breast cancer treatment: considering the value of patient choice
  publication-title: Journal of Clinical Oncology
– volume: 57
  start-page: 1288
  year: 2004
  end-page: 1294
  article-title: New ICD‐10 version of the Charlson comorbidity index predicted in‐hospital mortality
  publication-title: Journal of Clinical Epidemiology
– volume: 25
  start-page: 2084
  year: 2006
  end-page: 2106
  article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use
  publication-title: Statistics in Medicine
– volume: 15
  start-page: 199
  year: 2007
  end-page: 236
  article-title: Matching as nonparametric preprocessing for reducing dependence in parametric causal inference
  publication-title: Political Analysis
– year: 1994
– volume: 44
  start-page: 444
  year: 2009
  end-page: 463
  article-title: Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes
  publication-title: Health Services Research
– year: 1998
– volume: 9
  start-page: 269
  year: 2006
  end-page: 280
  article-title: Cost accounting to determine prices: how well do prices reflect costs in the German DRG‐system?
  publication-title: Health Care Management Science
– volume: 171
  start-page: 481
  issue: Part 2
  year: 2008
  end-page: 502
  article-title: Misunderstandings among experimentalists and observationalists about causal inference
  publication-title: Journal of the Royal Statistical Association, Series A
– volume: 51
  start-page: 171
  year: 2009
  end-page: 184
  article-title: Some methods of propensity‐score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations
  publication-title: Biometrical Journal
– volume: 5
  start-page: 11
  year: 2006
  end-page: 25
  article-title: Methodological aspects in the assessment of treatment effects in observational health outcomes studies
  publication-title: Applied Health Economics and Health Policy
– year: 2002
– year: 2008
– year: 2006
– volume: 15
  start-page: 295
  year: 2006
  end-page: 310
  article-title: Performance‐based budgeting in the public sector: an illustration from the VA health care system
  publication-title: Health Economics
– volume: 9
  start-page: 435
  year: 2000
  end-page: 446
  article-title: A multi‐level modeling approach to analysis of patient costs under managed care
  publication-title: Health Economics
– volume: 6
  start-page: 561
  year: 1997
  end-page: 575
  article-title: Multilevel models and health economics
  publication-title: Health Economics
– volume: 17
  start-page: S95
  year: 2008
  end-page: S103
  article-title: Cross‐country comparison of costs: the use of episode‐specific transitive purchasing power parities with standardised cost categories
  publication-title: Health Economics
– volume: 29
  start-page: 185
  year: 1973
  end-page: 203
  article-title: The use of matched sampling and regression adjustment to remove bias in observational studies
  publication-title: Biometrics
– volume: 65
  start-page: 692
  year: 2009
  end-page: 700
  article-title: Fast FSR variable selection with applications to clinical trials
  publication-title: Biometrics
– volume: 25
  start-page: 1029
  year: 2006
  end-page: 1048
  article-title: Performance assessment in the context of multiple objectives: a multivariate multilevel analysis
  publication-title: Journal of Health Economics
– volume: 14
  start-page: 805
  year: 2005
  end-page: 815
  article-title: A propensity score approach to estimating the cost‐effectiveness of medical therapies from observational data
  publication-title: Health Economics
– volume: 14
  start-page: 185
  year: 2005
  end-page: 196
  article-title: Using multilevel models for assessing the variability of multinational resource use and cost data
  publication-title: Health Economics
– volume: 68
  start-page: 23
  year: 2000
  end-page: 51
  article-title: A three‐step method for choosing the number of bootstrap repetitions
  publication-title: Econometrica
– volume: 16
  start-page: 289
  year: 2000
  end-page: 308
  article-title: Hospital costing: experience from the VHA
  publication-title: Financial Accountability and Management
– volume: 37
  start-page: 992
  year: 2001
  end-page: 997
  article-title: Development and validation of the ontario acute myocardial infarction mortality prediction rules
  publication-title: Journal of the American College of Cardiology
– year: 1999
– volume: 9
  start-page: 435
  year: 2000
  ident: 10.1002/hec.1568-BIB8|cit8
  article-title: A multi-level modeling approach to analysis of patient costs under managed care
  publication-title: Health Economics
  doi: 10.1002/1099-1050(200007)9:5<435::AID-HEC523>3.0.CO;2-Z
– volume: 15
  start-page: 199
  year: 2007
  ident: 10.1002/hec.1568-BIB14|cit14
  article-title: Matching as nonparametric preprocessing for reducing dependence in parametric causal inference
  publication-title: Political Analysis
  doi: 10.1093/pan/mpl013
– volume: 68
  start-page: 23
  year: 2000
  ident: 10.1002/hec.1568-BIB1|cit1
  article-title: A three-step method for choosing the number of bootstrap repetitions
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00092
– volume: 16
  start-page: 289
  year: 2000
  ident: 10.1002/hec.1568-BIB9|cit9
  article-title: Hospital costing: experience from the VHA
  publication-title: Financial Accountability and Management
  doi: 10.1111/1468-0408.00109
– volume: 17
  start-page: S95
  year: 2008
  ident: 10.1002/hec.1568-BIB31|cit31
  article-title: Cross-country comparison of costs: the use of episode-specific transitive purchasing power parities with standardised cost categories
  publication-title: Health Economics
  doi: 10.1002/hec.1327
– volume-title: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling
  year: 1999
  ident: 10.1002/hec.1568-BIB34|cit34
– volume: 16
  start-page: 347
  year: 2007
  ident: 10.1002/hec.1568-BIB10|cit10
  article-title: Risk adjusted resource utilization for AMI patients treated in Japanese hospitals
  publication-title: Health Economics
  doi: 10.1002/hec.1177
– volume: 6
  start-page: 561
  year: 1997
  ident: 10.1002/hec.1568-BIB25|cit25
  article-title: Multilevel models and health economics
  publication-title: Health Economics
  doi: 10.1002/(SICI)1099-1050(199711)6:6<561::AID-HEC288>3.0.CO;2-X
– volume: 29
  start-page: 185
  year: 1973
  ident: 10.1002/hec.1568-BIB28|cit28
  article-title: The use of matched sampling and regression adjustment to remove bias in observational studies
  publication-title: Biometrics
  doi: 10.2307/2529685
– volume: 21
  start-page: 901
  year: 2002
  ident: 10.1002/hec.1568-BIB32|cit32
  article-title: The effects of hospital ownership choice on patient outcomes after treatment for acute myocardial infarction
  publication-title: Journal of Health Economics
  doi: 10.1016/S0167-6296(02)00058-9
– volume: 171
  start-page: 481
  issue: Part 2
  year: 2008
  ident: 10.1002/hec.1568-BIB15|cit15
  article-title: Misunderstandings among experimentalists and observationalists about causal inference
  publication-title: Journal of the Royal Statistical Association, Series A
  doi: 10.1111/j.1467-985X.2007.00527.x
– volume: 51
  start-page: 171
  year: 2009
  ident: 10.1002/hec.1568-BIB3|cit3
  article-title: Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.200810488
– volume: 25
  start-page: 2084
  year: 2006
  ident: 10.1002/hec.1568-BIB4|cit4
  article-title: A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2328
– volume-title: Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models
  year: 1994
  ident: 10.1002/hec.1568-BIB17|cit17
  doi: 10.4135/9781412984577
– volume: 27
  start-page: 2037
  year: 2008
  ident: 10.1002/hec.1568-BIB2|cit2
  article-title: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3150
– volume: 25
  start-page: 1029
  year: 2006
  ident: 10.1002/hec.1568-BIB13|cit13
  article-title: Performance assessment in the context of multiple objectives: a multivariate multilevel analysis
  publication-title: Journal of Health Economics
  doi: 10.1016/j.jhealeco.2005.07.009
– volume: 65
  start-page: 692
  year: 2009
  ident: 10.1002/hec.1568-BIB6|cit6
  article-title: Fast FSR variable selection with applications to clinical trials
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01127.x
– volume: 27
  start-page: 111
  year: 2006
  ident: 10.1002/hec.1568-BIB7|cit7
  article-title: Cost weight compression: impact of cost data precision and completeness
  publication-title: Heath Care Financing Review
– volume: 9
  start-page: 269
  year: 2006
  ident: 10.1002/hec.1568-BIB30|cit30
  article-title: Cost accounting to determine prices: how well do prices reflect costs in the German DRG-system?
  publication-title: Health Care Management Science
  doi: 10.1007/s10729-006-9094-0
– volume-title: Observational Studies
  year: 2002
  ident: 10.1002/hec.1568-BIB27|cit27
  doi: 10.1007/978-1-4757-3692-2
– volume: 84
  start-page: 1024
  year: 1989
  ident: 10.1002/hec.1568-BIB26|cit26
  article-title: Optimal matching for observational studies
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1989.10478868
– volume: 44
  start-page: 444
  year: 2009
  ident: 10.1002/hec.1568-BIB33|cit33
  article-title: Time to send the preemie home? Additional maturity at discharge and subsequent health care costs and outcomes
  publication-title: Health Services Research
  doi: 10.1111/j.1475-6773.2008.00938.x
– volume: 5
  start-page: 11
  year: 2006
  ident: 10.1002/hec.1568-BIB12|cit12
  article-title: Methodological aspects in the assessment of treatment effects in observational health outcomes studies
  publication-title: Applied Health Economics and Health Policy
  doi: 10.2165/00148365-200605010-00003
– volume-title: Hierarchical Linear Models: Applications and Data Analysis Methods
  year: 2002
  ident: 10.1002/hec.1568-BIB24|cit24
– volume-title: Matched Sampling for Causal Effects
  year: 2006
  ident: 10.1002/hec.1568-BIB29|cit29
  doi: 10.1017/CBO9780511810725
– volume: 3
  volume-title: Frontiers in Health Policy Research
  year: 2000
  ident: 10.1002/hec.1568-BIB20|cit20
– ident: 10.1002/hec.1568-BIB22|cit22
– volume-title: Introducing Multi-level Modeling
  year: 1998
  ident: 10.1002/hec.1568-BIB16|cit16
  doi: 10.4135/9781849209366
– volume: 54
  start-page: 387
  year: 2001
  ident: 10.1002/hec.1568-BIB21|cit21
  article-title: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(00)00321-8
– volume: 57
  start-page: 1288
  year: 2004
  ident: 10.1002/hec.1568-BIB35|cit35
  article-title: New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2004.03.012
– volume: 37
  start-page: 992
  year: 2001
  ident: 10.1002/hec.1568-BIB36|cit36
  article-title: Development and validation of the ontario acute myocardial infarction mortality prediction rules
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/S0735-1097(01)01109-3
– volume-title: Cardiovascular Health Care Economics
  year: 2003
  ident: 10.1002/hec.1568-BIB5|cit5
– volume: 14
  start-page: 805
  year: 2005
  ident: 10.1002/hec.1568-BIB19|cit19
  article-title: A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data
  publication-title: Health Economics
  doi: 10.1002/hec.987
– volume: 15
  start-page: 295
  year: 2006
  ident: 10.1002/hec.1568-BIB37|cit37
  article-title: Performance-based budgeting in the public sector: an illustration from the VA health care system
  publication-title: Health Economics
  doi: 10.1002/hec.1060
– volume: 14
  start-page: 185
  year: 2005
  ident: 10.1002/hec.1568-BIB11|cit11
  article-title: Using multilevel models for assessing the variability of multinational resource use and cost data
  publication-title: Health Economics
  doi: 10.1002/hec.916
– volume: 15
  start-page: 279
  year: 1996
  ident: 10.1002/hec.1568-BIB18|cit18
  article-title: Explaining variations in inpatient length of stay in the National Health Service
  publication-title: Journal of Health Economics
  doi: 10.1016/0167-6296(96)00003-3
– volume: 21
  start-page: 1139
  year: 2003
  ident: 10.1002/hec.1568-BIB23|cit23
  article-title: Economic evaluation of breast cancer treatment: considering the value of patient choice
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2003.03.126
SSID ssj0009906
Score 2.1401887
Snippet Cross‐country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare...
Cross-country comparisons of costs and quality between hospitals are often made at the macro level. The goal of this study was to explore methods to compare...
SourceID proquest
repec
pubmed
econis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms acute myocardial infarction
Aged
Case studies
Comparative analysis
Data
Delivery of Health Care
Economic models
Germany - epidemiology
Health care
Health care expenditures
Health economics
Health services
Heart attacks
hospital costs
Hospital Costs - statistics & numerical data
Hospital Mortality - trends
Hospitals
Hospitals - standards
Humans
Justification
Male
Matching
Medical treatment
Middle Aged
Military hospitals
multilevel models
Myocardial infarction
Myocardial Infarction - drug therapy
Myocardial Infarction - economics
Patients
Propensity
Propensity Score
propensity score matching
Quality of care
Quality of Health Care
Studies
United States - epidemiology
Veterans
Title Costs and quality of hospitals in different health care systems: a multi-level approach with propensity score matching
URI https://api.istex.fr/ark:/67375/WNG-KZBRRDV1-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhec.1568
http://www.econis.eu/PPNSET?PPN=654011540
https://www.ncbi.nlm.nih.gov/pubmed/20084662
http://econpapers.repec.org/article/wlyhlthec/v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85-100.htm
https://www.proquest.com/docview/817289187
https://www.proquest.com/docview/821599429
Volume 20
WOSCitedRecordID wos000285257300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009906
  issn: 1057-9230
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5i3YSQEJdxWRhMRkLwFJZ7bN5YtzIJqFDFoNqL5SS2WlHSqunG-sZP4DfySzgnTjJNGhISUnNRfZLI9vHxZ_v4OwAvSG0i7NfcVJnMjeI8d7PCi1weZwLxaaxEYupgE-lwyMdj8anxqqS9MJYfoptwo5ZR22tq4Cqr9i9JQyc6f42DD74BmwGqbdSDzcPR4OTDJeWuqCNrUiBbF2GM11LPesF---yVzmiLRqDTClEqFfDFdZAT05Z6ofOrSLbuigZ3_ycT9-BOA0DZW6sx9-GGLrfh5sdmiX0bbtuJPGb3Jz2Ai_68WlVMlQWzGzDXbG7YpAk3UrFpydogKytmd1UycidjliO6esMUq70Wf__8NSMPJdbSmDOaA2YLWg0oyTOEVUSpyRBC1_6dD-FkcPS5f-w24RrcHK0mdxOsZBFwFWY6EIUJ8yKKjOfzPI1M4Sda-1kepCb1TIJ3RYan0AtQg9LA00WswkfQK-el3gGW-b4yieFcGTQycajCVKApwmcKFZvYc-BVW28yb7jMKaTGTFoW5kBiwUoqWAeed5ILy99xjcyOrfpOIkEcSzxF-KGXtTJ0KWr5jVzh0lh-Hb6T708PRqPDL77Ed-y22iIbK1BJTsG_hM9TB1iXis2X1mRUqednKIKQSwgEBQ48tjrWfYo8U6IkCRw4qJWuS_gxW0-wMvGfcxmqwMPTur7BsVyopnjQdYEHjymncrL6jhmp9fCvhSCPj_p0ffKvgrtwy86v0-8p9FbLM_0MtvLz1bRa7sFGOuZ7TZP8AyXeOP0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QRIiMu4LIyLkRA8heUeB55Yt1K0rkLVBhMvlpPYakVJq6Yb6xs_gd_IL-GcOMk0aUhISM1F9Uki28fHn-3j7wC8JLUJsF-zY6lTOwizzE5zJ7B5mCaIT0OZRLoKNhEPh_zkJPm0Bu-avTCGH6KdcKOWUdlrauA0Ib1zwRo6VtkbHH3wa7AeoBaFHVjfG_WOBxecu0kVWpMi2dqIY5yGe9bxdppnL_VGGzQEnZQIU6mEz6_CnJi2UHOVXYayVV_Uu_NfubgLt2sIyt4bnbkHa6rYhOuH9SL7JtwyU3nM7FC6D-fdWbksmSxyZrZgrthMs3EdcKRkk4I1YVaWzOyrZORQxgxLdPmWSVb5Lf7--WtKPkqsITJnNAvM5rQeUJBvCCuJVJMhiK48PB_AcW__qNu364ANdoZ2k9sRVnPicemnykty7Wd5EGjH5Vkc6NyNlHLTzIt17OgI7_IUT77joQ7FnqPyUPoPoVPMCrUFLHVdqSPNudRoZkJf-nGCxgifyWWoQ8eC103FiaxmM6egGlNheJg9gQUrqGAteNFKzg2DxxUyW6buW4kIkSwxFeGHXlXa0KbIxTdyhotD8WX4QRx83R2N9j67At-x3aiLqO1AKTiF_0pcHlvA2lRswLQqIws1O0URBF1JgrDAgkdGydpPkW9KEEWeBbuV1rUJP6arMVYm_nMmfOk5eFpVNzia8-UED7rO8eAh5VSMl98xI5Ui_rUQRH-_S9fH_yr4HG70jw4HYvBxeLANN81sO_2eQGe5OFVPYSM7W07KxbO6Zf4BaoI8BQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a2zQhIS7jsjIuRkLwFJZ7bHhi7crQRjVVbEy8WE5iqxUlrZpurG_8BH4jv4Rz4iTTpCEhITUX1SeJbJ9jf7aPvwPwktQmxH7NSZRJnTDKMifN3dDhUSoQn0ZKxKYKNpEMBvz0VBytwLtmL4zlh2gn3MgyqvaaDFzPcrNzyRo60tkbHH3wG7AWRiJGq1zrDfvHh5ecu6IKrUmRbB3EMW7DPev6O82zV3qjdRqCjkuEqVTCF9dhTkyb65nOrkLZqi_q3_mvXNyF2zUEZe-tztyDFV1swsanepF9E27ZqTxmdyjdh4vutFyUTBU5s1swl2xq2KgOOFKyccGaMCsLZvdVMnIoY5YlunzLFKv8Fn___DUhHyXWEJkzmgVmM1oPKMg3hJVEqskQRFceng_guL_3ubvv1AEbnAzbTe7EWM3C5ypItS9yE2R5GBrX41kSmtyLtfbSzE9M4poY7_IUT4Hrow4lvqvzSAUPYbWYFnoLWOp5ysSGc2WwmYkCFSQCGyN8JleRidwOvG4qTmY1mzkF1ZhIy8PsSyxYSQXbgRet5MwyeFwjs2XrvpWIEckSUxF-6FWlDW2Kmn8jZ7gkkl8GH-TB193hsHfiSXzHdqMusm4HSskp_JfweNIB1qaiAdOqjCr09AxFEHQJgbCgA4-skrWfIt-UMI79DuxWWtcm_JgsR1iZ-M-5DJTv4mlZ3eBoLlBjPOg6w4NHlFM5WnzHjFSK-NdCkPt7Xbo-_lfB57Bx1OvLw4-Dg224aSfb6fcEVhfzM_0U1rPzxbicP6sN8w-fPjuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Costs+and+quality+of+hospitals+in+different+health+care+systems%3A+a+multi%E2%80%90level+approach+with+propensity+score+matching&rft.jtitle=Health+economics&rft.au=Schrey%C3%B6gg%2C+Jonas&rft.au=Stargardt%2C+Tom&rft.au=Tiemann%2C+Oliver&rft.series=Health+Economics&rft.date=2011&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1057-9230&rft.eissn=1099-1050&rft.volume=20&rft.issue=1&rft.spage=85&rft.epage=100&rft_id=info:doi/10.1002%2Fhec.1568&rft.externalDocID=wlyhlthec_v_3a20_3ay_3a2011_3ai_3a1_3ap_3a85_100_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-9230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-9230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-9230&client=summon