Thought-Controlled Computer Applications: A Brain–Computer Interface System for Severe Disability Support
This study introduces an integrated computational environment that leverages Brain–Computer Interface (BCI) technology to enhance information access for individuals with severe disabilities. Traditional assistive technologies often rely on physical interactions, which can be challenging for this dem...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 24; číslo 20; s. 6759 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
01.10.2024
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study introduces an integrated computational environment that leverages Brain–Computer Interface (BCI) technology to enhance information access for individuals with severe disabilities. Traditional assistive technologies often rely on physical interactions, which can be challenging for this demographic. Our innovation focuses on creating new assistive technologies that use novel Human–Computer interfaces to provide a more intuitive and accessible experience. The proposed system offers four key applications to users controlled by four thoughts: an email client, a web browser, an e-learning tool, and both command-line and graphical user interfaces for managing computer resources. The BCI framework translates ElectroEncephaloGraphy (EEG) signals into commands or events using advanced signal processing and machine learning techniques. These identified commands are then processed by an integrative strategy that triggers the appropriate actions and provides real-time feedback on the screen. Our study shows that our framework achieved an 82% average classification accuracy using four distinct thoughts of 62 subjects and a 95% recognition rate for P300 signals from two users, highlighting its effectiveness in translating brain signals into actionable commands. Unlike most existing prototypes that rely on visual stimulation, our system is controlled by thought, inducing brain activity to manage the system’s Application Programming Interfaces (APIs). It switches to P300 mode for a virtual keyboard and text input. The proposed BCI system significantly improves the ability of individuals with severe disabilities to interact with various applications and manage computer resources. Our approach demonstrates superior performance in terms of classification accuracy and signal recognition compared to existing methods. |
|---|---|
| AbstractList | This study introduces an integrated computational environment that leverages Brain-Computer Interface (BCI) technology to enhance information access for individuals with severe disabilities. Traditional assistive technologies often rely on physical interactions, which can be challenging for this demographic. Our innovation focuses on creating new assistive technologies that use novel Human-Computer interfaces to provide a more intuitive and accessible experience. The proposed system offers four key applications to users controlled by four thoughts: an email client, a web browser, an e-learning tool, and both command-line and graphical user interfaces for managing computer resources. The BCI framework translates ElectroEncephaloGraphy (EEG) signals into commands or events using advanced signal processing and machine learning techniques. These identified commands are then processed by an integrative strategy that triggers the appropriate actions and provides real-time feedback on the screen. Our study shows that our framework achieved an 82% average classification accuracy using four distinct thoughts of 62 subjects and a 95% recognition rate for P300 signals from two users, highlighting its effectiveness in translating brain signals into actionable commands. Unlike most existing prototypes that rely on visual stimulation, our system is controlled by thought, inducing brain activity to manage the system's Application Programming Interfaces (APIs). It switches to P300 mode for a virtual keyboard and text input. The proposed BCI system significantly improves the ability of individuals with severe disabilities to interact with various applications and manage computer resources. Our approach demonstrates superior performance in terms of classification accuracy and signal recognition compared to existing methods. This study introduces an integrated computational environment that leverages Brain-Computer Interface (BCI) technology to enhance information access for individuals with severe disabilities. Traditional assistive technologies often rely on physical interactions, which can be challenging for this demographic. Our innovation focuses on creating new assistive technologies that use novel Human-Computer interfaces to provide a more intuitive and accessible experience. The proposed system offers four key applications to users controlled by four thoughts: an email client, a web browser, an e-learning tool, and both command-line and graphical user interfaces for managing computer resources. The BCI framework translates ElectroEncephaloGraphy (EEG) signals into commands or events using advanced signal processing and machine learning techniques. These identified commands are then processed by an integrative strategy that triggers the appropriate actions and provides real-time feedback on the screen. Our study shows that our framework achieved an 82% average classification accuracy using four distinct thoughts of 62 subjects and a 95% recognition rate for P300 signals from two users, highlighting its effectiveness in translating brain signals into actionable commands. Unlike most existing prototypes that rely on visual stimulation, our system is controlled by thought, inducing brain activity to manage the system's Application Programming Interfaces (APIs). It switches to P300 mode for a virtual keyboard and text input. The proposed BCI system significantly improves the ability of individuals with severe disabilities to interact with various applications and manage computer resources. Our approach demonstrates superior performance in terms of classification accuracy and signal recognition compared to existing methods.This study introduces an integrated computational environment that leverages Brain-Computer Interface (BCI) technology to enhance information access for individuals with severe disabilities. Traditional assistive technologies often rely on physical interactions, which can be challenging for this demographic. Our innovation focuses on creating new assistive technologies that use novel Human-Computer interfaces to provide a more intuitive and accessible experience. The proposed system offers four key applications to users controlled by four thoughts: an email client, a web browser, an e-learning tool, and both command-line and graphical user interfaces for managing computer resources. The BCI framework translates ElectroEncephaloGraphy (EEG) signals into commands or events using advanced signal processing and machine learning techniques. These identified commands are then processed by an integrative strategy that triggers the appropriate actions and provides real-time feedback on the screen. Our study shows that our framework achieved an 82% average classification accuracy using four distinct thoughts of 62 subjects and a 95% recognition rate for P300 signals from two users, highlighting its effectiveness in translating brain signals into actionable commands. Unlike most existing prototypes that rely on visual stimulation, our system is controlled by thought, inducing brain activity to manage the system's Application Programming Interfaces (APIs). It switches to P300 mode for a virtual keyboard and text input. The proposed BCI system significantly improves the ability of individuals with severe disabilities to interact with various applications and manage computer resources. Our approach demonstrates superior performance in terms of classification accuracy and signal recognition compared to existing methods. |
| Audience | Academic |
| Author | Belwafi, Kais Ghaffari, Fakhreddine |
| AuthorAffiliation | 1 Department of Computer Engineering, College of Computing & Informatics, University of Sharjah, Sharjah 26666, United Arab Emirates 2 Équipes de Traitement de l’Information et Systèmes, UMR 8051, CY Cergy Paris Université, École Nationale Supérieure de l’Electronique et de ses Applications (ENSEA), Centre National de la Recherche Scientifique (CNRS), 95000 Cergy, France; fakhreddine.ghaffari@cyu.fr |
| AuthorAffiliation_xml | – name: 1 Department of Computer Engineering, College of Computing & Informatics, University of Sharjah, Sharjah 26666, United Arab Emirates – name: 2 Équipes de Traitement de l’Information et Systèmes, UMR 8051, CY Cergy Paris Université, École Nationale Supérieure de l’Electronique et de ses Applications (ENSEA), Centre National de la Recherche Scientifique (CNRS), 95000 Cergy, France; fakhreddine.ghaffari@cyu.fr |
| Author_xml | – sequence: 1 givenname: Kais orcidid: 0000-0003-1455-439X surname: Belwafi fullname: Belwafi, Kais – sequence: 2 givenname: Fakhreddine orcidid: 0000-0002-0928-7963 surname: Ghaffari fullname: Ghaffari, Fakhreddine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460240$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkstuEzEUhkeoiF5gwQugkdjAIq1vc2ODQrhFqsQiZW157OPEYcae2p5K2fEOvCFPgtO0oSlorPHI_s43PtZ_mh1ZZyHLXmJ0TmmDLgJhBJVV0TzJTjAjbFITgo4efB9npyGsESKU0vpZdkwbViLC0En242rlxuUqTmbORu-6DlQ-c_0wRvD5dBg6I0U0zoZ3-TT_4IWxv3_-2gNzm95aSMgXmxChz7Xz-QJuwEP-0QTRms7ETb4Yh8H5-Dx7qkUX4MXdfJZ9__zpavZ1cvnty3w2vZzIglZxApIInLqhNStxWStBdc2YqnBRooYpRUC2pWgFE0ULjZa0whIUsKJsscAA9Cyb77zKiTUfvOmF33AnDL9dcH7JhY9GdsDbGkAoXbFWaSZZ0QqNQVJRNE06Aa6S6_3ONYxtD0pCuiXRHUgPd6xZ8aW74RgXaRRNMry5M3h3PUKIvDdBQtcJC24MnGKCUVkQihP6-hG6dqO36a62FKpYTUvyl1qK1IGx2qUfy62UT2vMGK5ZtT34-X-o9CjojUz50SatHxS8etjpvsX7rCTgYgdI70LwoLk08TYcyWw6jhHfppHv05gq3j6quJf-y_4BiMPfuw |
| CitedBy_id | crossref_primary_10_3390_app151810215 crossref_primary_10_1016_j_jneumeth_2025_110441 crossref_primary_10_3389_fncel_2025_1537462 crossref_primary_10_1109_ACCESS_2025_3608083 |
| Cites_doi | 10.32744/pse.2022.3.8 10.1109/TNSRE.2010.2068059 10.1109/MC.2008.431 10.1109/86.847819 10.1145/765995.765997 10.23919/CCC50068.2020.9188726 10.1109/TNSRE.2022.3198041 10.1155/2017/9816591 10.1109/BCI51272.2021.9385289 10.1109/CCMB.2014.7020704 10.3390/s21134293 10.1007/978-1-84996-092-2 10.1038/s41597-023-02445-z 10.1109/TNSRE.2015.2439298 10.3389/fnhum.2018.00014 10.1109/MC.2007.11 10.1007/978-3-642-02577-8_63 10.1038/s41597-021-00883-1 10.1109/TNSRE.2017.2766365 10.1007/978-3-642-12433-4_72 10.1145/638252.638255 10.1186/s12984-022-01047-x 10.1109/ICATIECE45860.2019.9063797 10.1088/1742-6596/90/1/012081 10.1109/TBME.2008.915728 10.1002/wics.101 10.1016/S1388-2457(02)00057-3 10.4018/IJSWIS.2017040104 10.1186/s12891-022-05384-9 10.1016/j.jneumeth.2018.04.013 10.3390/brainsci12070926 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24206759 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b8eeadf74bdf4c45baf1ec3a59967517 PMC11511559 A814418477 39460240 10_3390_s24206759 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c537t-ec2a16753846168da3f844d7156094dd2ecb6aba4a5be9fc371cede456b1a1ee3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341718000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:28:29 EST 2025 Tue Nov 04 02:05:06 EST 2025 Fri Sep 05 10:04:32 EDT 2025 Tue Oct 07 07:13:01 EDT 2025 Tue Nov 11 10:56:20 EST 2025 Tue Nov 04 18:13:49 EST 2025 Thu Apr 03 07:07:01 EDT 2025 Sat Nov 29 07:16:10 EST 2025 Tue Nov 18 21:53:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | brain-controlled internet browser Brain–Computer interface brain-controlled email motor imagery brain-controlled operating system EEG |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-ec2a16753846168da3f844d7156094dd2ecb6aba4a5be9fc371cede456b1a1ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1455-439X 0000-0002-0928-7963 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3120748362?pq-origsite=%requestingapplication% |
| PMID | 39460240 |
| PQID | 3120748362 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b8eeadf74bdf4c45baf1ec3a59967517 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511559 proquest_miscellaneous_3121065231 proquest_journals_3120748362 gale_infotracmisc_A814418477 gale_infotracacademiconefile_A814418477 pubmed_primary_39460240 crossref_citationtrail_10_3390_s24206759 crossref_primary_10_3390_s24206759 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Abdi (ref_36) 2010; 2 Stieger (ref_26) 2021; 8 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 Cichocki (ref_6) 2008; 41 Mugler (ref_18) 2010; 18 Zhu (ref_31) 2022; 30 Correa (ref_38) 2007; 90 Naik (ref_35) 2011; 35 ref_19 ref_39 ref_16 Ortiz (ref_3) 2007; 40 Zhang (ref_8) 2016; 24 ref_15 Gannouni (ref_25) 2017; 13 Yu (ref_9) 2017; 25 Rakotomamonjy (ref_27) 2008; 55 Dreyer (ref_29) 2023; 10 Tortora (ref_30) 2022; 19 ref_24 ref_23 ref_22 ref_21 Belwafi (ref_37) 2018; 305 Wolpaw (ref_5) 2002; 113 ref_1 Muglerab (ref_17) 2008; 10 Volodina (ref_20) 2022; 57 ref_2 Middendorf (ref_14) 2000; 8 ref_28 ref_4 ref_7 |
| References_xml | – volume: 57 start-page: 126 year: 2022 ident: ref_20 article-title: Formation of future teachers’ worldview culture by means of foreign-language education publication-title: Perspect. Sci. Educ. doi: 10.32744/pse.2022.3.8 – volume: 10 start-page: 56 year: 2008 ident: ref_17 article-title: Control of an Internet Browser Using the P300 Event-Related Potential publication-title: Int. J. Bioelectromagn. – volume: 18 start-page: 599 year: 2010 ident: ref_18 article-title: Design and implementation of a P300-based Brain–Computer interface for controlling an internet browser publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2068059 – volume: 41 start-page: 34 year: 2008 ident: ref_6 article-title: Noninvasive BCIs: Multiway Signal-Processing Array Decompositions publication-title: Computer doi: 10.1109/MC.2008.431 – volume: 8 start-page: 211 year: 2000 ident: ref_14 article-title: Brain–Computer interfaces based on the steady-state visual-evoked response publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.847819 – ident: ref_23 doi: 10.1145/765995.765997 – ident: ref_32 doi: 10.23919/CCC50068.2020.9188726 – volume: 30 start-page: 2283 year: 2022 ident: ref_31 article-title: On the Deep Learning Models for EEG-Based Brain–Computer Interface Using Motor Imagery publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3198041 – ident: ref_39 doi: 10.1155/2017/9816591 – ident: ref_7 doi: 10.1109/BCI51272.2021.9385289 – ident: ref_34 doi: 10.1109/CCMB.2014.7020704 – ident: ref_33 doi: 10.3390/s21134293 – ident: ref_12 doi: 10.1007/978-1-84996-092-2 – ident: ref_1 – volume: 10 start-page: 580 year: 2023 ident: ref_29 article-title: A large EEG database with users’ profile information for motor imagery Brain–Computer interface research publication-title: Sci. Data doi: 10.1038/s41597-023-02445-z – volume: 24 start-page: 128 year: 2016 ident: ref_8 article-title: Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2439298 – ident: ref_19 doi: 10.3389/fnhum.2018.00014 – volume: 40 start-page: 17 year: 2007 ident: ref_3 article-title: Brain–Computer interfaces: Where human and machine meet publication-title: Computer doi: 10.1109/MC.2007.11 – ident: ref_21 doi: 10.1007/978-3-642-02577-8_63 – volume: 8 start-page: 98 year: 2021 ident: ref_26 article-title: Continuous sensorimotor rhythm based brain computer interface learning in a large population publication-title: Sci. Data doi: 10.1038/s41597-021-00883-1 – volume: 35 start-page: 63 year: 2011 ident: ref_35 article-title: An overview of independent component analysis and its applications publication-title: Informatica – ident: ref_4 – volume: 25 start-page: 2516 year: 2017 ident: ref_9 article-title: Self-paced operation of a wheelchair based on a hybrid Brain–Computer interface combining motor imagery and P300 potential publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2766365 – ident: ref_22 doi: 10.1007/978-3-642-12433-4_72 – ident: ref_24 doi: 10.1145/638252.638255 – ident: ref_2 – volume: 19 start-page: 69 year: 2022 ident: ref_30 article-title: Neural correlates of user learning during long-term BCI training for the Cybathlon competition publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-022-01047-x – ident: ref_10 – ident: ref_11 doi: 10.1109/ICATIECE45860.2019.9063797 – volume: 90 start-page: 012081 year: 2007 ident: ref_38 article-title: Artifact removal from EEG signals using adaptive filters in cascade publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/90/1/012081 – ident: ref_15 – volume: 55 start-page: 1147 year: 2008 ident: ref_27 article-title: BCI Competition III: Dataset II—Ensemble of SVMs for BCI P300 Speller publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.915728 – ident: ref_13 – volume: 2 start-page: 433 year: 2010 ident: ref_36 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – volume: 113 start-page: 767 year: 2002 ident: ref_5 article-title: Brain–Computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 13 start-page: 55 year: 2017 ident: ref_25 article-title: BCWB: A P300 brain-controlled web browser publication-title: Int. J. Semant. Web Inf. Syst. doi: 10.4018/IJSWIS.2017040104 – ident: ref_28 doi: 10.1186/s12891-022-05384-9 – volume: 305 start-page: 1 year: 2018 ident: ref_37 article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.04.013 – ident: ref_16 doi: 10.3390/brainsci12070926 |
| SSID | ssj0023338 |
| Score | 2.4590478 |
| Snippet | This study introduces an integrated computational environment that leverages Brain–Computer Interface (BCI) technology to enhance information access for... This study introduces an integrated computational environment that leverages Brain-Computer Interface (BCI) technology to enhance information access for... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6759 |
| SubjectTerms | Access to information Adult Algorithms Applications programming Brain-Computer Interfaces brain-controlled email brain-controlled internet browser brain-controlled operating system Brain–Computer interface Decision trees Disability Disabled Persons - rehabilitation EEG Electroencephalography Electroencephalography - methods Electronic mail systems Event-Related Potentials, P300 - physiology Female Handicapped accessibility Humans Innovations Interfaces Keyboards Machine Learning Male motor imagery Online education Operating systems Personal computers Self-Help Devices Signal processing Signal Processing, Computer-Assisted User-Computer Interface Web browsers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxYxEB6k9KAH8du1VaIIelnavMnuJr29rRZPRbBCbyFfS4tlW_puC735H_yH_SXOJPsuuyh48bqZhUwyycyTTJ4BeM9rT6drVbkbgiql86pUoQ0lTymLLQIE7VOxieboSJ2c6K-TUl-UE5bpgfPA7TgVUdm2kS600svK2ZZHLyzRijQVT-_Idxu9BlMD1BKIvDKPkEBQv7NCR0ShsZ55n0TS_-dWPPFF8zzJieM5fAQPh4iRLXNPH8O92D2BBxMewafw4_iUiu305UFOPD-Pga3LNbDl5Ip6jy3ZPhWFuPv5axRIh4Kt9ZFl-nKGcSz7FtHGI_s0UPD2t4zqf2Ks_gy-H34-PvhSDlUUSl-Jpi-jX1iOuguMNHitghWtkjI09IRayxAW0bvaOitt5aJuvWi4jyFiYOW45TGK57DRXXTxJTBNXDPEqB5skFpUTi0iD7QLSCdq7Qr4uB5d4weKcap0cW4QatBEmHEiCng3il5mXo2_Ce3TFI0CRIWdPqCBmMFAzL8MpIAPNMGGFix2xtvh3QGqRNRXZqkIU6KTRsntmSQuND9vXpuIGRb6ygiO1icVhgEFvB2b6U9KXuvixXWSQeCNiJ8X8CJb1KiS0LImmrkC1MzWZjrPW7qz00QDjrE8p0vlV_9jlLbg_gL7kdMUt2Gjv7qOr2HT3_Rnq6s3aXH9BiiwLbA priority: 102 providerName: Directory of Open Access Journals |
| Title | Thought-Controlled Computer Applications: A Brain–Computer Interface System for Severe Disability Support |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39460240 https://www.proquest.com/docview/3120748362 https://www.proquest.com/docview/3121065231 https://pubmed.ncbi.nlm.nih.gov/PMC11511559 https://doaj.org/article/b8eeadf74bdf4c45baf1ec3a59967517 |
| Volume | 24 |
| WOSCitedRecordID | wos001341718000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RhAMceEMNJVoQElysdL3reM0FJSUVHBpFUKRwsvZlWrVKSpIicUH8B_4hv4QZe2NigThx8SE7UbzZeX27s98APOMDS7trabzvnIqlsSpWrnQxr0oWSwQIua2aTWSTiZrN8mm4Hr0KZZUbn1g56prtmeq20Qn33cLSjnlf8ARjn0Lv--ric0w9pOisNTTU2IEuEW_td6A7fXs0_dgAMIF4rGYXEgj1-ysMT5Qw562YVFH3_-mgtyJUu3pyKxwd3vy_E7kFN0Jayoa1Ht2GK35-B65vkRXehbPjE-ros44P6ur2c-_YpicEG26dg79kQzaizhM_v_9oBKqdx1Jbz2qOdIbJMnvv0ZA8ex14ftdfGTUZRUBwDz4cjo8P3sShVUNsU5GtY28TzfGvFJjO8IFyWpRKSpfRPe1cOpd4awbaaKlT4_PSioxb7zxmb4Zr7r24D535Yu53geVEaEO07U47mYvUqMRzR65GGjHITQQvNotV2MBjTu00zgvEM7SuRbOuETxtRC9q8o6_CY1oxRsB4tuuPlgsPxXBfAujPJpcmUnjSmllanTJvRWayG2ylGcRPCd9Kcgr4MtYHS434JSIX6sYKgKumAmg5F5LEq3Ztoc3WlMEb7IqfitJBE-aYfomVcjN_eKykkF0n2K6HsGDWkGbKYlcDojLLgLVUt3WnNsj89OTimscAQOnk-uH_36vR3AtwV-oqxz3oLNeXvrHcNV-WZ-ulj3YyWZZ9VQ96I7Gk-m7XrX5gc-jb-NesNNfSH1Mew |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbhMxEB2VFAl44H5ZKGAQCF5WjdferBcJobSlatQ2ikQrlafFt6UVVVKSFNQ3_oH_4KP4Emb2RlYg3vrAazxJ1sn4zIw9PgfgGe9Z2l2Lw65zKpTGqlC53IW8aFnMsUBIbSE2kQyH6uAgHS3Bj_ouDLVV1phYALWbWNojXxU8wminEG_fnHwOSTWKTldrCY3SLbb92Vcs2WavBxv4_z6Pos23e-tbYaUqENpYJPPQ20hzTJMFRl7eU06LXEnpErpSnErnIm9NTxstdWx8mluRcOudx0TDcM29F_i5F2BZorN3O7A8GuyO3jclnsCKr-QvEiLtrs4wAFJKnraiXiEO8GcIWIiB7f7MhYC3ee1_-6muw9UqtWb9ci3cgCU_vglXFggXb8GnvUNSJZqH62WH_rF3rNa1YP2Fs_xXrM_WSD3j57fvjUGxe5pr61nJ884w4WfvPIKBZxsVV_H8jJFQKhY1t2H_XGZ7BzrjydjfA5YSKQ9RzzvtZCpioyLPHcGlNKKXmgBe1u6Q2YqLnSRBjjOsychzssZzAnjamJ6UBCR_M1ojn2oMiDO8eGEy_ZhVEJQZ5RE28kQal0srY6Nz7q3QRNCTxDwJ4AV5ZEbIhg9jdXVBA6dEHGFZX1HxjdkMWq60LBGRbHu49susQsRZ9tspA3jSDNM7qctv7CenhQ3HlBhLjgDulkugmZJIZY_4-AJQrcXRmnN7ZHx0WPClY9HD6fT9_r-f6zFc2trb3cl2BsPtB3A5wm8ruzZXoDOfnvqHcNF-mR_Npo-qVc_gw3mvnl9QbppO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxNBDLZKihAceD8WCgwIBJdVOjuz2VkkhJKmEVVRFEGRelvmtbSiSkqSgnrjP_Bv-Dn8Eux9kRWIWw9cM06yTuzP9oznM8AT3rO0uxaHm86pUBqrQuVyF_KiZTHHAiG1xbCJZDxW-_vpZA1-1HdhqK2yxsQCqN3M0h55V_AIo51CvO3mVVvEZDh6dfw5pAlSdNJaj9MoTWTXn37F8m3xcmeI__XTKBpt7229DqsJA6GNRbIMvY00x5RZYBTmPeW0yJWULqHrxal0LvLW9LTRUsfGp7kVCbfeeUw6DNfce4Gfew7WE4E6dWB9sD2evG3KPYHVX8llJES62V1gMKT0PG1FwGJQwJ_hYCUetns1V4Lf6Mr__LNdhctVys36pY9cgzU_vQ6XVogYb8CnvQOaVrQMt8rO_SPvWD3vgvVXzvhfsD4b0FSNn9--NwLFrmqurWcl_zvDQoC98wgSng0rDuPlKaMBqljs3IT3Z6LtLehMZ1N_B1hKZD1ESe-0k6mIjYo8dwSj0oheagJ4XptGZiuOdhoVcpRhrUZWlDVWFMDjRvS4JCb5m9CA7KsRIC7x4oXZ_GNWQVNmlEc4yRNpXC6tjI3OubdCE3FPEvMkgGdknRkhHj6M1dXFDVSJuMOyvqKiHLMclNxoSSJS2fZybaNZhZSL7LeBBvCoWaZ3Uvff1M9OChmOqTKWIgHcLt2hUUmkskc8fQGolqO0dG6vTA8PCh51LIY4ncrf_fdzPYQL6DLZm53x7j24GOGXlc2cG9BZzk_8fThvvywPF_MHFQAw-HDWzvML2KSi6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thought-Controlled+Computer+Applications%3A+A+Brain%E2%80%93Computer+Interface+System+for+Severe+Disability+Support&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Belwafi%2C+Kais&rft.au=Ghaffari%2C+Fakhreddine&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206759&rft.externalDocID=A814418477 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |