Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE

•The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and colour.•Compared the clustering quality of t-SNE against PCA on hyperspectral ink data.•Clustering quality compared using four different clust...

Full description

Saved in:
Bibliographic Details
Published in:Forensic science international Vol. 311; p. 110194
Main Authors: Melit Devassy, Binu, George, Sony
Format: Journal Article
Language:English
Published: Ireland Elsevier B.V 01.06.2020
Elsevier Limited
Subjects:
ISSN:0379-0738, 1872-6283, 1872-6283
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and colour.•Compared the clustering quality of t-SNE against PCA on hyperspectral ink data.•Clustering quality compared using four different clustering quality indexes.•The t-SNE provided better visualization and clustering score. Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA).
AbstractList Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA).
Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA).Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA).
•The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and colour.•Compared the clustering quality of t-SNE against PCA on hyperspectral ink data.•Clustering quality compared using four different clustering quality indexes.•The t-SNE provided better visualization and clustering score. Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA).
ArticleNumber 110194
Author George, Sony
Melit Devassy, Binu
Author_xml – sequence: 1
  givenname: Binu
  surname: Melit Devassy
  fullname: Melit Devassy, Binu
  email: binu.m.devassy@ntnu.no
– sequence: 2
  givenname: Sony
  surname: George
  fullname: George, Sony
  email: sony.george@ntnu.no
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32251968$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9PFDEcxRsDkQX9F3QSL15m7Y_ptD0YQxDQhACJem46ne9ol9l2bTsk-9_bYcHDXuDU9OXzXpv3jtGBDx4Qek_wkmDSflothxCTdc7nJcW0qEVWzSu0IFLQuqWSHaAFZkLVWDB5hI5TWmGMOafta3TEKOVEtXKBbr-6Nfjkgjejy9sqQj_ZXK6V8X1179JU9GQelDBUf7YbiGkDNkczVs7fVb3JppqS87-rXP-4Pn-DDgczJnj7eJ6gXxfnP8--1Vc3l9_PTq9qy5nINQjS414KgQfaAcUcq16AAoWt5Hb-38CpIgMQNRDRYSLBSkW7xuBOGsnZCfq4y93E8HeClPXaJQvjaDyEKWnaYNxI1gr2PMpKZy1p1Ix-2ENXYYqlmzmQ8raRhM_Uu0dq6tbQ6010axO3-qnWAnzeATaGlCIM2rr8UGLpzY2aYD3PqFf6_4x6nlHvZix-sed_euJ55-nOCaX7ewdRFwi8hd7Fsprug3tBxpe9DDs676wZ72D7ooR_XZDQfw
CitedBy_id crossref_primary_10_1007_s41019_022_00193_5
crossref_primary_10_3389_fimmu_2022_967277
crossref_primary_10_1146_annurev_matsci_080819_013103
crossref_primary_10_1111_1556_4029_14909
crossref_primary_10_1016_j_jhydrol_2021_126146
crossref_primary_10_1371_journal_pone_0322345
crossref_primary_10_1016_j_ijleo_2021_166267
crossref_primary_10_1002_jbio_202300315
crossref_primary_10_1051_itmconf_20224301017
crossref_primary_10_1016_j_scijus_2023_04_003
crossref_primary_10_1016_j_forsciint_2024_112348
crossref_primary_10_1007_s11042_022_13129_y
crossref_primary_10_1016_j_procs_2020_08_058
crossref_primary_10_1007_s00521_020_05550_x
crossref_primary_10_3390_agriengineering3030035
crossref_primary_10_1007_s10791_024_09459_0
crossref_primary_10_1016_j_eswa_2025_128118
crossref_primary_10_1016_j_mechmachtheory_2021_104445
crossref_primary_10_1038_s41598_022_11395_2
crossref_primary_10_3390_computation11090170
crossref_primary_10_1016_j_matchar_2021_111392
crossref_primary_10_1109_TVCG_2021_3114817
crossref_primary_10_1177_24518492251349080
crossref_primary_10_1111_1750_3841_16064
crossref_primary_10_1007_s40203_024_00300_6
crossref_primary_10_1038_s41598_021_85737_x
crossref_primary_10_1109_ACCESS_2021_3137869
crossref_primary_10_1109_ACCESS_2025_3575955
crossref_primary_10_1002_jsfa_14083
crossref_primary_10_1109_ACCESS_2024_3388457
crossref_primary_10_1109_ACCESS_2021_3074088
crossref_primary_10_1155_2022_1173102
crossref_primary_10_1007_s10586_022_03634_y
crossref_primary_10_1080_23744731_2024_2402200
crossref_primary_10_32604_jai_2023_043229
crossref_primary_10_3390_en15124247
crossref_primary_10_1155_2023_2206625
crossref_primary_10_3390_electronics12183909
crossref_primary_10_3390_s22020603
crossref_primary_10_3390_math12152388
crossref_primary_10_1021_acs_chemrev_4c00815
crossref_primary_10_1051_0004_6361_202348544
crossref_primary_10_3390_aerospace9080450
crossref_primary_10_3788_LOP242536
crossref_primary_10_32604_cmc_2021_018517
crossref_primary_10_3390_min13060808
crossref_primary_10_3390_foods12224061
crossref_primary_10_1039_D5AY00526D
crossref_primary_10_1016_j_jfca_2024_106793
crossref_primary_10_1111_1556_4029_15617
crossref_primary_10_1016_j_microc_2023_108727
crossref_primary_10_1109_MCG_2021_3097730
crossref_primary_10_1016_j_jksuci_2022_07_024
crossref_primary_10_1109_TCBB_2023_3266232
crossref_primary_10_1007_s12665_023_10761_1
crossref_primary_10_1016_j_biosystemseng_2021_08_033
crossref_primary_10_3390_su15065569
crossref_primary_10_1155_2022_8046620
crossref_primary_10_1016_j_cmpb_2021_106121
crossref_primary_10_1016_j_snb_2023_133736
crossref_primary_10_1016_j_heliyon_2024_e35687
crossref_primary_10_3390_electronics12092082
crossref_primary_10_1002_jsfa_13450
crossref_primary_10_1007_s11668_022_01469_8
crossref_primary_10_1016_j_forsciint_2024_112236
crossref_primary_10_1088_1361_6501_acd8e1
crossref_primary_10_1109_TDEI_2022_3168332
crossref_primary_10_3390_molecules29143317
Cites_doi 10.3390/rs10020271
10.1109/LGRS.2005.846011
10.1109/LGRS.2008.915736
10.1016/B978-0-08-044894-7.01358-0
10.1016/j.forsciint.2005.04.044
10.1080/10408398.2010.543495
10.1007/s10479-011-0841-3
10.2307/2346830
10.1198/jasa.2003.s308
10.1016/0377-0427(87)90125-7
10.1016/j.forsciint.2013.07.017
10.1109/TGRS.2018.2794443
10.1016/j.patcog.2011.03.013
10.1117/1.JBO.19.1.010901
10.1109/TGRS.2005.863297
10.1109/TGRS.2008.2005729
10.1016/j.neucom.2013.11.045
10.1016/j.vibspec.2005.11.002
10.1016/S0378-4347(99)00312-6
10.1364/JOSA.61.000001
10.1109/36.298007
10.1016/j.rti.2005.04.003
10.1016/j.forsciint.2012.09.012
10.1515/pac-2017-0907
10.1007/s11042-018-5715-0
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
2020. The Author(s)
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: 2020. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7QP
7RV
7U7
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2O
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1016/j.forsciint.2020.110194
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Research Library Prep
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1872-6283
ExternalDocumentID 32251968
10_1016_j_forsciint_2020_110194
S0379073820300566
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.4L
.FO
.GJ
.~1
04C
0R~
186
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUDA
ABUWG
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AFZHZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJSZI
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKOJK
BLXMC
BMSDO
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EFLBG
EIHBH
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HDY
HMCUK
HMK
HMO
HVGLF
HZ~
I-F
IAO
IEA
IHE
ILT
IOF
ITC
J1W
KOM
LK8
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OG0
OGGZJ
OS0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRBVW
PROAC
PSQYO
Q38
R2-
RNS
ROL
RPZ
SAE
SCB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSB
SSH
SSK
SSO
SSP
SSU
SSZ
T5K
TAE
TN5
UKHRP
ULE
WH7
WOW
WUQ
Z5R
ZGI
~02
~G-
~HD
3V.
6I.
AACTN
AAFTH
AAIAV
AATCM
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AKYCK
AMFUW
DOVZS
LCYCR
RIG
9DU
AAYXX
AFFHD
CITATION
ALIPV
NPM
7QP
7U7
7XB
8FK
C1K
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c537t-e71d0d8770f2be20509d7e9e90c85c3225f5291fe19f17b018ec892b4a0b8a853
IEDL.DBID M7P
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538769400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0379-0738
1872-6283
IngestDate Sun Sep 28 00:18:11 EDT 2025
Thu Oct 02 10:48:14 EDT 2025
Sat Nov 29 14:50:30 EST 2025
Thu Apr 03 07:02:35 EDT 2025
Tue Nov 18 22:34:15 EST 2025
Sat Nov 29 07:14:15 EST 2025
Fri Feb 23 02:48:15 EST 2024
Tue Oct 14 19:30:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Visualisation
t-SNE
Ink analysis
Hyperspectral imaging
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-e71d0d8770f2be20509d7e9e90c85c3225f5291fe19f17b018ec892b4a0b8a853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0379073820300566
PMID 32251968
PQID 2425648153
PQPubID 1226354
ParticipantIDs proquest_miscellaneous_2400483673
proquest_miscellaneous_2387261493
proquest_journals_2425648153
pubmed_primary_32251968
crossref_citationtrail_10_1016_j_forsciint_2020_110194
crossref_primary_10_1016_j_forsciint_2020_110194
elsevier_sciencedirect_doi_10_1016_j_forsciint_2020_110194
elsevier_clinicalkey_doi_10_1016_j_forsciint_2020_110194
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-Jun
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Amsterdam
PublicationTitle Forensic science international
PublicationTitleAlternate Forensic Sci Int
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Harsanyi, Chang (bib0075) 1994; 32
Chang (bib0005) 2006
Zlotnick, Smith (bib0045) 1999; 733
García-Alonso, Pérez-Naranjo, Fernández-Caballero (bib0145) 2014; 219
Sun, Du (bib0110) 2018; 56
Kambhatla, Leen (bib0100) 1993
Tatzer, Wolf, Panner (bib0020) 2005; 11
Bandos, Bruzzone, Camps-Valls (bib0095) 2009; 47
Zhang, Chen, Zhuo, Liang, Li (bib0130) 2018; 10
Kingman, Kullback (bib0155) 2007
(bib0035) 1971; 61
Rousseeuw (bib0180) 1987; 20
Timmerman (bib0170) 2003; 98
Fischer, Kakoulli (bib0025) 2014; 51
Rosenberg, Hirschberg (bib0190) 2007; 1
“VNIR 1800.” [Online]. Available
Ziȩba-Palus, Kunicki (bib0060) 2006; 158
McDaid, Greene, Hurley (bib0185) 2011
Renard, Bourennane, Blanc-Talon (bib0115) 2008; 5
Timmerman (bib0080) 2003; 98
Hartigan, Wong (bib0175) 2006; 28
[Accessed: 20-Aug-2019].
Morales, Ferrer, Diaz-Cabrera, Carmona, Thomas (bib0055) 2014
“Contrast Multi-Step Target.” [Online]. Available
Martel (bib0105) 2018; 10
Devassy, George (bib0195) 2019
Pouyet, Rohani, Katsaggelos, Cossairt, Walton (bib0120) 2018; 90
Edelman, Gaston, van Leeuwen, Cullen, Aalders (bib0030) 2012; 223
Wyszecki, Günter, Stiles (bib0040) 2000
Mohammed, Minhas, Jonathan Wu, Sid-Ahmed (bib0160) 2011; 44
Braz, López-López, García-Ruiz (bib0065) 2013; 232
Van Der Maaten, Hinton (bib0070) 2008; 9
.
Bartholomew (bib0165) 2010
Farrell, Mersereau (bib0085) 2005; 2
Song, Wang, Liu, Choo (bib0125) 2019; 78
Kher, Mulholland, Green, Reedy (bib0050) 2006; 40
Gisbrecht, Schulz, Hammer (bib0150) 2015; 147
Lu, Fei (bib0015) 2014; 19
ElMasry, Kamruzzaman, Sun, Allen (bib0010) 2012; 52
Wang, Chang (bib0090) 2006; 44
Kingman (10.1016/j.forsciint.2020.110194_bib0155) 2007
Sun (10.1016/j.forsciint.2020.110194_bib0110) 2018; 56
Edelman (10.1016/j.forsciint.2020.110194_bib0030) 2012; 223
Wang (10.1016/j.forsciint.2020.110194_bib0090) 2006; 44
García-Alonso (10.1016/j.forsciint.2020.110194_bib0145) 2014; 219
Farrell (10.1016/j.forsciint.2020.110194_bib0085) 2005; 2
Pouyet (10.1016/j.forsciint.2020.110194_bib0120) 2018; 90
Mohammed (10.1016/j.forsciint.2020.110194_bib0160) 2011; 44
Rousseeuw (10.1016/j.forsciint.2020.110194_bib0180) 1987; 20
ElMasry (10.1016/j.forsciint.2020.110194_bib0010) 2012; 52
Timmerman (10.1016/j.forsciint.2020.110194_bib0080) 2003; 98
10.1016/j.forsciint.2020.110194_bib0135
Morales (10.1016/j.forsciint.2020.110194_bib0055) 2014
Bandos (10.1016/j.forsciint.2020.110194_bib0095) 2009; 47
Hartigan (10.1016/j.forsciint.2020.110194_bib0175) 2006; 28
Zlotnick (10.1016/j.forsciint.2020.110194_bib0045) 1999; 733
Ziȩba-Palus (10.1016/j.forsciint.2020.110194_bib0060) 2006; 158
Chang (10.1016/j.forsciint.2020.110194_bib0005) 2006
Song (10.1016/j.forsciint.2020.110194_bib0125) 2019; 78
Rosenberg (10.1016/j.forsciint.2020.110194_bib0190) 2007; 1
Wyszecki (10.1016/j.forsciint.2020.110194_bib0040) 2000
Braz (10.1016/j.forsciint.2020.110194_bib0065) 2013; 232
Timmerman (10.1016/j.forsciint.2020.110194_bib0170) 2003; 98
Zhang (10.1016/j.forsciint.2020.110194_bib0130) 2018; 10
Devassy (10.1016/j.forsciint.2020.110194_bib0195) 2019
Kher (10.1016/j.forsciint.2020.110194_bib0050) 2006; 40
10.1016/j.forsciint.2020.110194_bib0140
Bartholomew (10.1016/j.forsciint.2020.110194_bib0165) 2010
McDaid (10.1016/j.forsciint.2020.110194_bib0185) 2011
Lu (10.1016/j.forsciint.2020.110194_bib0015) 2014; 19
Tatzer (10.1016/j.forsciint.2020.110194_bib0020) 2005; 11
Gisbrecht (10.1016/j.forsciint.2020.110194_bib0150) 2015; 147
Fischer (10.1016/j.forsciint.2020.110194_bib0025) 2014; 51
(10.1016/j.forsciint.2020.110194_bib0035) 1971; 61
Kambhatla (10.1016/j.forsciint.2020.110194_bib0100) 1993
Harsanyi (10.1016/j.forsciint.2020.110194_bib0075) 1994; 32
Martel (10.1016/j.forsciint.2020.110194_bib0105) 2018; 10
Renard (10.1016/j.forsciint.2020.110194_bib0115) 2008; 5
Van Der Maaten (10.1016/j.forsciint.2020.110194_bib0070) 2008; 9
References_xml – year: 2011
  ident: bib0185
  article-title: Normalized Mutual Information to evaluate overlapping community finding algorithms
  publication-title: arXiv e-prints
– volume: 147
  start-page: 71
  year: 2015
  end-page: 82
  ident: bib0150
  article-title: Parametric nonlinear dimensionality reduction using kernel t-SNE
  publication-title: Neurocomputing
– volume: 10
  year: 2018
  ident: bib0105
  article-title: Implementation of the Principal Component Analysis onto high-performance computer facilities for hyperspectral dimensionality reduction: results and comparisons
  publication-title: Remote Sens. (Basel)
– year: 2006
  ident: bib0005
  article-title: Hyperspectral Data Exploitation: Theory and Applications
– volume: 32
  start-page: 779
  year: 1994
  end-page: 785
  ident: bib0075
  article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 374
  year: 2010
  end-page: 377
  ident: bib0165
  article-title: Principal components analysis
  publication-title: Int. Encycl. Educ.
– volume: 5
  start-page: 138
  year: 2008
  end-page: 142
  ident: bib0115
  article-title: Denoising and dimensionality reduction using multilinear tools for hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 28
  start-page: 100
  year: 2006
  ident: bib0175
  article-title: Algorithm AS 136: a K-Means clustering algorithm
  publication-title: Appl. Stat.
– volume: 44
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: bib0160
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 410
  year: 2007
  end-page: 420
  ident: bib0190
  article-title: V-measure: a conditional entropy-based external cluster evaluation measure
  publication-title: Comput. Linguist.
– volume: 98
  start-page: 1082
  year: 2003
  end-page: 1083
  ident: bib0170
  article-title: Principal component analysis
  publication-title: J. Am. Stat. Assoc.
– year: 2000
  ident: bib0040
  article-title: Color science: concepts and methods, quantitative data and formulae
  publication-title: Color Res. Appl.
– volume: 223
  start-page: 28
  year: 2012
  end-page: 39
  ident: bib0030
  article-title: Hyperspectral imaging for non-contact analysis of forensic traces
  publication-title: Forensic Sci. Int.
– year: 2019
  ident: bib0195
  article-title: Ink classification using convolutional neural network
  publication-title: Norsk Informasjonssikkerhetskonferanse 2019
– volume: 98
  year: 2003
  ident: bib0080
  publication-title: Principal Component Analysis
– volume: 2
  start-page: 192
  year: 2005
  end-page: 195
  ident: bib0085
  article-title: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: “VNIR 1800.” [Online]. Available:
– volume: 52
  start-page: 999
  year: 2012
  end-page: 1023
  ident: bib0010
  article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 40
  start-page: 270
  year: 2006
  end-page: 277
  ident: bib0050
  article-title: Forensic classification of ballpoint pen inks using high performance liquid chromatography and infrared spectroscopy with principal components analysis and linear discriminant analysis
  publication-title: Vib. Spectrosc.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2625
  ident: bib0070
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 1
  year: 1971
  end-page: 11
  ident: bib0035
  article-title: Lightness and retinex theory
  publication-title: J. Opt. Soc. Am.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0180
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 733
  start-page: 265
  year: 1999
  end-page: 272
  ident: bib0045
  article-title: Chromatographic and electrophoretic approaches in ink analysis
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
– volume: 56
  start-page: 3185
  year: 2018
  end-page: 3195
  ident: bib0110
  article-title: Graph-regularized fast and robust principal component analysis for hyperspectral band selection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: “Contrast Multi-Step Target.” [Online]. Available:
– volume: 158
  start-page: 164
  year: 2006
  end-page: 172
  ident: bib0060
  article-title: Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks
  publication-title: Forensic Sci. Int.
– volume: 78
  start-page: 4311
  year: 2019
  end-page: 4326
  ident: bib0125
  article-title: Improved t-SNE based manifold dimensional reduction for remote sensing data processing
  publication-title: Multimed. Tools Appl.
– reference: . [Accessed: 20-Aug-2019].
– volume: 44
  start-page: 1586
  year: 2006
  end-page: 1600
  ident: bib0090
  article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 19
  start-page: 10901
  year: 2014
  ident: bib0015
  article-title: Medical hyperspectral imaging: a review
  publication-title: J. Biomed. Opt.
– volume: 47
  start-page: 862
  year: 2009
  end-page: 873
  ident: bib0095
  article-title: Classification of hyperspectral images with regularized linear discriminant analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 232
  start-page: 206
  year: 2013
  end-page: 212
  ident: bib0065
  article-title: Raman spectroscopy for forensic analysis of inks in questioned documents
  publication-title: Forensic Sci. Int.
– volume: 10
  year: 2018
  ident: bib0130
  article-title: An efficient hyperspectral image retrieval method: deep spectral-spatial feature extraction with DCGAN and dimensionality reduction using t-SNE-based NM hashing
  publication-title: Remote Sens.
– reference: .
– volume: 11
  start-page: 99
  year: 2005
  end-page: 107
  ident: bib0020
  article-title: Industrial application for inline material sorting using hyperspectral imaging in the NIR range
  publication-title: Real Time Imaging
– volume: 51
  start-page: 3
  year: 2014
  end-page: 16
  ident: bib0025
  article-title: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications
  publication-title: Estud. Conserv. E Restauro
– year: 2014
  ident: bib0055
  article-title: The use of hyperspectral analysis for ink identification in handwritten documents
  publication-title: Proceedings - International Carnahan Conference on Security Technology
– start-page: 1213
  year: 1993
  end-page: 1218
  ident: bib0100
  article-title: Fast non-linear dimension reduction
  publication-title: IEEE International Conference on Neural Networks – Conference Proceedings
– year: 2007
  ident: bib0155
  article-title: Information Theory and Statistics
– volume: 90
  start-page: 493
  year: 2018
  end-page: 506
  ident: bib0120
  article-title: Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach
  publication-title: Pure Appl. Chem.
– volume: 219
  start-page: 187
  year: 2014
  end-page: 202
  ident: bib0145
  article-title: Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms
  publication-title: Ann. Oper. Res.
– volume: 10
  issue: 2
  year: 2018
  ident: 10.1016/j.forsciint.2020.110194_bib0130
  article-title: An efficient hyperspectral image retrieval method: deep spectral-spatial feature extraction with DCGAN and dimensionality reduction using t-SNE-based NM hashing
  publication-title: Remote Sens.
  doi: 10.3390/rs10020271
– volume: 2
  start-page: 192
  issue: 2
  year: 2005
  ident: 10.1016/j.forsciint.2020.110194_bib0085
  article-title: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.846011
– volume: 5
  start-page: 138
  issue: 2
  year: 2008
  ident: 10.1016/j.forsciint.2020.110194_bib0115
  article-title: Denoising and dimensionality reduction using multilinear tools for hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.915736
– start-page: 374
  year: 2010
  ident: 10.1016/j.forsciint.2020.110194_bib0165
  article-title: Principal components analysis
  publication-title: Int. Encycl. Educ.
  doi: 10.1016/B978-0-08-044894-7.01358-0
– volume: 158
  start-page: 164
  issue: 2–3
  year: 2006
  ident: 10.1016/j.forsciint.2020.110194_bib0060
  article-title: Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2005.04.044
– volume: 52
  start-page: 999
  issue: 11
  year: 2012
  ident: 10.1016/j.forsciint.2020.110194_bib0010
  article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2010.543495
– year: 2014
  ident: 10.1016/j.forsciint.2020.110194_bib0055
  article-title: The use of hyperspectral analysis for ink identification in handwritten documents
  publication-title: Proceedings - International Carnahan Conference on Security Technology
– year: 2000
  ident: 10.1016/j.forsciint.2020.110194_bib0040
  article-title: Color science: concepts and methods, quantitative data and formulae
  publication-title: Color Res. Appl.
– volume: 219
  start-page: 187
  issue: 1
  year: 2014
  ident: 10.1016/j.forsciint.2020.110194_bib0145
  article-title: Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-011-0841-3
– volume: 28
  start-page: 100
  issue: 1
  year: 2006
  ident: 10.1016/j.forsciint.2020.110194_bib0175
  article-title: Algorithm AS 136: a K-Means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 98
  start-page: 1082
  issue: June(464)
  year: 2003
  ident: 10.1016/j.forsciint.2020.110194_bib0170
  article-title: Principal component analysis
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2003.s308
– issue: October
  year: 2011
  ident: 10.1016/j.forsciint.2020.110194_bib0185
  article-title: Normalized Mutual Information to evaluate overlapping community finding algorithms
  publication-title: arXiv e-prints
– volume: 20
  start-page: 53
  issue: C
  year: 1987
  ident: 10.1016/j.forsciint.2020.110194_bib0180
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 98
  issue: 464
  year: 2003
  ident: 10.1016/j.forsciint.2020.110194_bib0080
  publication-title: Principal Component Analysis
– ident: 10.1016/j.forsciint.2020.110194_bib0140
– volume: 1
  start-page: 410
  issue: June
  year: 2007
  ident: 10.1016/j.forsciint.2020.110194_bib0190
  article-title: V-measure: a conditional entropy-based external cluster evaluation measure
  publication-title: Comput. Linguist.
– volume: 232
  start-page: 206
  issue: 1–3
  year: 2013
  ident: 10.1016/j.forsciint.2020.110194_bib0065
  article-title: Raman spectroscopy for forensic analysis of inks in questioned documents
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2013.07.017
– volume: 56
  start-page: 3185
  issue: 6
  year: 2018
  ident: 10.1016/j.forsciint.2020.110194_bib0110
  article-title: Graph-regularized fast and robust principal component analysis for hyperspectral band selection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2794443
– volume: 44
  start-page: 2588
  issue: 10–11
  year: 2011
  ident: 10.1016/j.forsciint.2020.110194_bib0160
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.03.013
– volume: 10
  issue: 6
  year: 2018
  ident: 10.1016/j.forsciint.2020.110194_bib0105
  article-title: Implementation of the Principal Component Analysis onto high-performance computer facilities for hyperspectral dimensionality reduction: results and comparisons
  publication-title: Remote Sens. (Basel)
– volume: 19
  start-page: 10901
  issue: 1
  year: 2014
  ident: 10.1016/j.forsciint.2020.110194_bib0015
  article-title: Medical hyperspectral imaging: a review
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.1.010901
– volume: 44
  start-page: 1586
  issue: 6
  year: 2006
  ident: 10.1016/j.forsciint.2020.110194_bib0090
  article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.863297
– volume: 47
  start-page: 862
  issue: 3
  year: 2009
  ident: 10.1016/j.forsciint.2020.110194_bib0095
  article-title: Classification of hyperspectral images with regularized linear discriminant analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2005729
– volume: 147
  start-page: 71
  issue: 1
  year: 2015
  ident: 10.1016/j.forsciint.2020.110194_bib0150
  article-title: Parametric nonlinear dimensionality reduction using kernel t-SNE
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.045
– volume: 40
  start-page: 270
  issue: 2
  year: 2006
  ident: 10.1016/j.forsciint.2020.110194_bib0050
  article-title: Forensic classification of ballpoint pen inks using high performance liquid chromatography and infrared spectroscopy with principal components analysis and linear discriminant analysis
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2005.11.002
– volume: 733
  start-page: 265
  issue: 1–2
  year: 1999
  ident: 10.1016/j.forsciint.2020.110194_bib0045
  article-title: Chromatographic and electrophoretic approaches in ink analysis
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
  doi: 10.1016/S0378-4347(99)00312-6
– volume: 61
  start-page: 1
  issue: 1
  year: 1971
  ident: 10.1016/j.forsciint.2020.110194_bib0035
  article-title: Lightness and retinex theory
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.61.000001
– year: 2007
  ident: 10.1016/j.forsciint.2020.110194_bib0155
– year: 2006
  ident: 10.1016/j.forsciint.2020.110194_bib0005
– volume: 32
  start-page: 779
  issue: 4
  year: 1994
  ident: 10.1016/j.forsciint.2020.110194_bib0075
  article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.298007
– start-page: 1213
  year: 1993
  ident: 10.1016/j.forsciint.2020.110194_bib0100
  article-title: Fast non-linear dimension reduction
– ident: 10.1016/j.forsciint.2020.110194_bib0135
– volume: 51
  start-page: 3
  issue: sup1
  year: 2014
  ident: 10.1016/j.forsciint.2020.110194_bib0025
  article-title: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications
  publication-title: Estud. Conserv. E Restauro
– volume: 11
  start-page: 99
  issue: 2
  year: 2005
  ident: 10.1016/j.forsciint.2020.110194_bib0020
  article-title: Industrial application for inline material sorting using hyperspectral imaging in the NIR range
  publication-title: Real Time Imaging
  doi: 10.1016/j.rti.2005.04.003
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.forsciint.2020.110194_bib0070
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 223
  start-page: 28
  issue: 1–3
  year: 2012
  ident: 10.1016/j.forsciint.2020.110194_bib0030
  article-title: Hyperspectral imaging for non-contact analysis of forensic traces
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2012.09.012
– volume: 90
  start-page: 493
  issue: 3
  year: 2018
  ident: 10.1016/j.forsciint.2020.110194_bib0120
  article-title: Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2017-0907
– year: 2019
  ident: 10.1016/j.forsciint.2020.110194_bib0195
  article-title: Ink classification using convolutional neural network
– volume: 78
  start-page: 4311
  issue: 4
  year: 2019
  ident: 10.1016/j.forsciint.2020.110194_bib0125
  article-title: Improved t-SNE based manifold dimensional reduction for remote sensing data processing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5715-0
SSID ssj0005526
Score 2.6204908
Snippet •The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and...
Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110194
SubjectTerms Algorithms
Cameras
Clustering
Cultural heritage
Data processing
Datasets
Dimensionality reduction
Discriminant analysis
Embedding
Feature extraction
Forensic science
Forensic sciences
hyperspectral imagery
Hyperspectral imaging
information processing
Ink analysis
Narrowband
Principal components analysis
Probability
quantitative analysis
Reduction
Software
Spectrum analysis
t-SNE
Visualisation
Visualization
Title Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0379073820300566
https://dx.doi.org/10.1016/j.forsciint.2020.110194
https://www.ncbi.nlm.nih.gov/pubmed/32251968
https://www.proquest.com/docview/2425648153
https://www.proquest.com/docview/2387261493
https://www.proquest.com/docview/2400483673
Volume 311
WOSCitedRecordID wos000538769400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: M7P
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: 7RV
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: BENPR
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: 7X7
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: M2O
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6SuIdC6Lup09So0OvSXe1DUi8haR1yqWvSB74JrVbbuoR1Yjv5_Z2Rdtf0kAfksrBYY8SO5iV9-gbggyGSJ5VWUUknrVmWy6hMSw8aF07EhtdF7ZtNiMlEzmZq2m64rVpYZecTvaOuFpb2yD9SalwQs0h6eHEZUdcoOl1tW2hsw4BYEriH7k03EI-cF_9hujAPxMAybwhEyT0EPlHZTRHppozTR56Tpw-d8zN40uac7Cgskuew5ZoXsBs27Fi4h_QSpl-I5z9wdGBmzpbE6UpaY6ap2PV8RbcvA_SHLWr2B-vXcE1ziX-NBS0jrCkjGP1vto6-T8av4OfJ-Mfn06httxDZPBXryImkiispRFzz0nEihqmEU07FVuaWDL_OuUpql6g6Eahb6axUvMxMXEqDYf817DSLxr0BhjWctCnW6aXgmckKk8VOGV7msshsodQQiu6Ta9tykVNLjHPdgc7-6l5XmnSlg66GEPeCF4GO424R2elUd7dN0T9qDBl3i37qRduEJCQa9xM-6BaFbv3CSm9WxBDe9z-jRdMxjWnc4grHpFJgXYsWdMsY73rTQuCYvbA4--9BmkILlPu3T-AtPKbZBtjbAeysl1fuHTyy1-v5ajmCbXH2i54z4Z9yBIPj8WR6hm9f-beRN7R_LTss5g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD8haKIJwW-4iloTfVzcum5tSYwxAoGAVxIx4a12XSeXkF249wLhn-Jv9Jx1G_EB8IUHn9ezbO2v56P9nXMA3lsq8qTTMiroplWITEVFWjSkcellbHmVV02zCTkcqv19vTsHl10uDNEqO53YKOpy7OiM_CO5xjlVFkk_H59E1DWKble7FhoBFtv-4hxDtumnrTVc3w-cb6zvfd2M2q4CkctSOYu8TMq4VFLGFS88p_onpfTa69ipzBG-q4zrpPKJrhKJv6C8U5oXwsaFsoq6RKDKvycoEiKqIP9-RSnJeP4Xhwz9TjRko5pIm7yh3CdaXGcBr_NwG0u38eh_m6PHsNj61OxL2ARPYM7XT2EhHEiykGf1DHbXqI9BqEGCkQebUM1aQiWzdcnORlPKLg3UJjau2AHG5yENdYKvxoCdEZeWUZrAbzaLfgzXn8PPO_mpFzBfj2u_DAxjVOVSj6iWXFiRWxF7bXmRqVy4XOsB5N0SG9fWWqeWH0emI9Udmh4bhrBhAjYGEPeCx6HcyO0iqsOQ6bJpUf8bNIm3i672oq3DFRypfxNe6UBoWr03NVcIHMC7_jFqLLqGsrUfn-KYVEmM21FD3DCmMS1pLnHMUtgM_XzQSqGGUS9v_oC38GBz79uO2dkabr-Ch_TlgeK3AvOzyal_Dffd2Ww0nbxpNjGDX3e9I_4AOeCDJw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4SQUHmWbilgJDhGTZyH7UoIAbsrqqJoxUPqzTiOA4tQtt3dFvHX-uuYiZNUHNpy6YFzPFESf_OKv5kBeGGoyZOKy6Cgk9YkSWVQxEVDGhdOhIZXWdUMmxB5Lg8P1XQNzrpaGKJVdjaxMdTl3NI_8l0KjTPqLBLvVi0tYjqavD46DmiCFJ20duM0PEQO3O9fmL4tX-2PcK9fcj4Zf373PmgnDAQ2jcUqcCIqw1IKEVa8cJx6oZTCKadCK1NLWK9SrqLKRaqKBL6OdFYqXiQmLKSRNDECzf-6wCAjGcD623E-_XhOMEl59hejDKNQdGuzmiicvCHgRyq5yB9eFO82fm9y53_-Yndho4222RuvHvdgzdX34bb_Vcl8BdYDmI5owoHvToI5CVtQN1vCKzN1yU5nS6o79aQnNq_Yd8zcfYHqAm-NqTwjli2jAoJvbBV8yscP4cu1vNQmDOp57baAYfYqbewQ74InJslMEjpleJHKLLGZUkPIuu3Wtu3CTsNAfuqObvdD9zjRhBPtcTKEsBc88o1IrhaRHZ50V2eLnkGjs7xadK8XbUMxH2L9m_BOB0jdWsSlPkfjEJ73l9GW0QGVqd38BNfEUmBGj7bjkjWN04kzgWseecXovwftFNoeuX35AzyDm6gI-sN-fvAYbtGDe-7fDgxWixP3BG7Y09VsuXjaajSDr9etEn8A7dCNRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+reduction+and+visualisation+of+hyperspectral+ink+data+using+t-SNE&rft.jtitle=Forensic+science+international&rft.au=Melit+Devassy%2C+Binu&rft.au=George%2C+Sony&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0379-0738&rft.volume=311&rft_id=info:doi/10.1016%2Fj.forsciint.2020.110194&rft.externalDocID=S0379073820300566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-0738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-0738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-0738&client=summon