Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE
•The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and colour.•Compared the clustering quality of t-SNE against PCA on hyperspectral ink data.•Clustering quality compared using four different clust...
Saved in:
| Published in: | Forensic science international Vol. 311; p. 110194 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Ireland
Elsevier B.V
01.06.2020
Elsevier Limited |
| Subjects: | |
| ISSN: | 0379-0738, 1872-6283, 1872-6283 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and colour.•Compared the clustering quality of t-SNE against PCA on hyperspectral ink data.•Clustering quality compared using four different clustering quality indexes.•The t-SNE provided better visualization and clustering score.
Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA). |
|---|---|
| AbstractList | Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA). Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA).Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA). •The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and colour.•Compared the clustering quality of t-SNE against PCA on hyperspectral ink data.•Clustering quality compared using four different clustering quality indexes.•The t-SNE provided better visualization and clustering score. Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the electromagnetic spectrum. HSI is one of the non-invasive tools used in forensic document analysis, especially for ink analysis. The substantial information from multiple bands in HSI images empowers us to make non-destructive diagnosis and identification of forensic evidence in questioned documents. The presence of numerous band information in HSI data makes processing and storing becomes a computationally challenging task. Therefore, dimensionality reduction and visualization play a vital role in HSI data processing to achieve efficient processing and effortless understanding of the data. In this paper, an advanced approach known as t-Distributed Stochastic Neighbor embedding (t-SNE) algorithm is introduced into the ink analysis problem. t-SNE extracts the non-linear similarity features between spectra to scale them into a lower dimension. This capability of the t-SNE algorithm for ink spectral data is verified visually and quantitatively, the two-dimensional data generated by the t-SNE showed a better visualization and a greater improvement in clustering quality in comparison with Principal Component Analysis (PCA). |
| ArticleNumber | 110194 |
| Author | George, Sony Melit Devassy, Binu |
| Author_xml | – sequence: 1 givenname: Binu surname: Melit Devassy fullname: Melit Devassy, Binu email: binu.m.devassy@ntnu.no – sequence: 2 givenname: Sony surname: George fullname: George, Sony email: sony.george@ntnu.no |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32251968$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc9PFDEcxRsDkQX9F3QSL15m7Y_ptD0YQxDQhACJem46ne9ol9l2bTsk-9_bYcHDXuDU9OXzXpv3jtGBDx4Qek_wkmDSflothxCTdc7nJcW0qEVWzSu0IFLQuqWSHaAFZkLVWDB5hI5TWmGMOafta3TEKOVEtXKBbr-6Nfjkgjejy9sqQj_ZXK6V8X1179JU9GQelDBUf7YbiGkDNkczVs7fVb3JppqS87-rXP-4Pn-DDgczJnj7eJ6gXxfnP8--1Vc3l9_PTq9qy5nINQjS414KgQfaAcUcq16AAoWt5Hb-38CpIgMQNRDRYSLBSkW7xuBOGsnZCfq4y93E8HeClPXaJQvjaDyEKWnaYNxI1gr2PMpKZy1p1Ix-2ENXYYqlmzmQ8raRhM_Uu0dq6tbQ6010axO3-qnWAnzeATaGlCIM2rr8UGLpzY2aYD3PqFf6_4x6nlHvZix-sed_euJ55-nOCaX7ewdRFwi8hd7Fsprug3tBxpe9DDs676wZ72D7ooR_XZDQfw |
| CitedBy_id | crossref_primary_10_1007_s41019_022_00193_5 crossref_primary_10_3389_fimmu_2022_967277 crossref_primary_10_1146_annurev_matsci_080819_013103 crossref_primary_10_1111_1556_4029_14909 crossref_primary_10_1016_j_jhydrol_2021_126146 crossref_primary_10_1371_journal_pone_0322345 crossref_primary_10_1016_j_ijleo_2021_166267 crossref_primary_10_1002_jbio_202300315 crossref_primary_10_1051_itmconf_20224301017 crossref_primary_10_1016_j_scijus_2023_04_003 crossref_primary_10_1016_j_forsciint_2024_112348 crossref_primary_10_1007_s11042_022_13129_y crossref_primary_10_1016_j_procs_2020_08_058 crossref_primary_10_1007_s00521_020_05550_x crossref_primary_10_3390_agriengineering3030035 crossref_primary_10_1007_s10791_024_09459_0 crossref_primary_10_1016_j_eswa_2025_128118 crossref_primary_10_1016_j_mechmachtheory_2021_104445 crossref_primary_10_1038_s41598_022_11395_2 crossref_primary_10_3390_computation11090170 crossref_primary_10_1016_j_matchar_2021_111392 crossref_primary_10_1109_TVCG_2021_3114817 crossref_primary_10_1177_24518492251349080 crossref_primary_10_1111_1750_3841_16064 crossref_primary_10_1007_s40203_024_00300_6 crossref_primary_10_1038_s41598_021_85737_x crossref_primary_10_1109_ACCESS_2021_3137869 crossref_primary_10_1109_ACCESS_2025_3575955 crossref_primary_10_1002_jsfa_14083 crossref_primary_10_1109_ACCESS_2024_3388457 crossref_primary_10_1109_ACCESS_2021_3074088 crossref_primary_10_1155_2022_1173102 crossref_primary_10_1007_s10586_022_03634_y crossref_primary_10_1080_23744731_2024_2402200 crossref_primary_10_32604_jai_2023_043229 crossref_primary_10_3390_en15124247 crossref_primary_10_1155_2023_2206625 crossref_primary_10_3390_electronics12183909 crossref_primary_10_3390_s22020603 crossref_primary_10_3390_math12152388 crossref_primary_10_1021_acs_chemrev_4c00815 crossref_primary_10_1051_0004_6361_202348544 crossref_primary_10_3390_aerospace9080450 crossref_primary_10_3788_LOP242536 crossref_primary_10_32604_cmc_2021_018517 crossref_primary_10_3390_min13060808 crossref_primary_10_3390_foods12224061 crossref_primary_10_1039_D5AY00526D crossref_primary_10_1016_j_jfca_2024_106793 crossref_primary_10_1111_1556_4029_15617 crossref_primary_10_1016_j_microc_2023_108727 crossref_primary_10_1109_MCG_2021_3097730 crossref_primary_10_1016_j_jksuci_2022_07_024 crossref_primary_10_1109_TCBB_2023_3266232 crossref_primary_10_1007_s12665_023_10761_1 crossref_primary_10_1016_j_biosystemseng_2021_08_033 crossref_primary_10_3390_su15065569 crossref_primary_10_1155_2022_8046620 crossref_primary_10_1016_j_cmpb_2021_106121 crossref_primary_10_1016_j_snb_2023_133736 crossref_primary_10_1016_j_heliyon_2024_e35687 crossref_primary_10_3390_electronics12092082 crossref_primary_10_1002_jsfa_13450 crossref_primary_10_1007_s11668_022_01469_8 crossref_primary_10_1016_j_forsciint_2024_112236 crossref_primary_10_1088_1361_6501_acd8e1 crossref_primary_10_1109_TDEI_2022_3168332 crossref_primary_10_3390_molecules29143317 |
| Cites_doi | 10.3390/rs10020271 10.1109/LGRS.2005.846011 10.1109/LGRS.2008.915736 10.1016/B978-0-08-044894-7.01358-0 10.1016/j.forsciint.2005.04.044 10.1080/10408398.2010.543495 10.1007/s10479-011-0841-3 10.2307/2346830 10.1198/jasa.2003.s308 10.1016/0377-0427(87)90125-7 10.1016/j.forsciint.2013.07.017 10.1109/TGRS.2018.2794443 10.1016/j.patcog.2011.03.013 10.1117/1.JBO.19.1.010901 10.1109/TGRS.2005.863297 10.1109/TGRS.2008.2005729 10.1016/j.neucom.2013.11.045 10.1016/j.vibspec.2005.11.002 10.1016/S0378-4347(99)00312-6 10.1364/JOSA.61.000001 10.1109/36.298007 10.1016/j.rti.2005.04.003 10.1016/j.forsciint.2012.09.012 10.1515/pac-2017-0907 10.1007/s11042-018-5715-0 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. 2020. The Author(s) |
| Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. – notice: 2020. The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7QP 7RV 7U7 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. KB0 LK8 M0S M1P M2O M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
| DOI | 10.1016/j.forsciint.2020.110194 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Research Library Prep MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1872-6283 |
| ExternalDocumentID | 32251968 10_1016_j_forsciint_2020_110194 S0379073820300566 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .4L .FO .GJ .~1 04C 0R~ 186 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 7RV 7X7 88E 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN 9JO AABNK AAEDT AAEDW AAFJI AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMMH ABMZM ABOCM ABUDA ABUWG ABWVN ABXDB ABZDS ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADFRT ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AFZHZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJSZI AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOMHK APXCP ASPBG AVARZ AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKEYQ BKOJK BLXMC BMSDO BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EFLBG EIHBH EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HDY HMCUK HMK HMO HVGLF HZ~ I-F IAO IEA IHE ILT IOF ITC J1W KOM LK8 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OG0 OGGZJ OS0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRBVW PROAC PSQYO Q38 R2- RNS ROL RPZ SAE SCB SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSB SSH SSK SSO SSP SSU SSZ T5K TAE TN5 UKHRP ULE WH7 WOW WUQ Z5R ZGI ~02 ~G- ~HD 3V. 6I. AACTN AAFTH AAIAV AATCM ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AKYCK AMFUW DOVZS LCYCR RIG 9DU AAYXX AFFHD CITATION ALIPV NPM 7QP 7U7 7XB 8FK C1K K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c537t-e71d0d8770f2be20509d7e9e90c85c3225f5291fe19f17b018ec892b4a0b8a853 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538769400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0379-0738 1872-6283 |
| IngestDate | Sun Sep 28 00:18:11 EDT 2025 Thu Oct 02 10:48:14 EDT 2025 Sat Nov 29 14:50:30 EST 2025 Thu Apr 03 07:02:35 EDT 2025 Tue Nov 18 22:34:15 EST 2025 Sat Nov 29 07:14:15 EST 2025 Fri Feb 23 02:48:15 EST 2024 Tue Oct 14 19:30:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimensionality reduction Visualisation t-SNE Ink analysis Hyperspectral imaging |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-e71d0d8770f2be20509d7e9e90c85c3225f5291fe19f17b018ec892b4a0b8a853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S0379073820300566 |
| PMID | 32251968 |
| PQID | 2425648153 |
| PQPubID | 1226354 |
| ParticipantIDs | proquest_miscellaneous_2400483673 proquest_miscellaneous_2387261493 proquest_journals_2425648153 pubmed_primary_32251968 crossref_citationtrail_10_1016_j_forsciint_2020_110194 crossref_primary_10_1016_j_forsciint_2020_110194 elsevier_sciencedirect_doi_10_1016_j_forsciint_2020_110194 elsevier_clinicalkey_doi_10_1016_j_forsciint_2020_110194 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 2020-Jun 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland – name: Amsterdam |
| PublicationTitle | Forensic science international |
| PublicationTitleAlternate | Forensic Sci Int |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier Limited |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Limited |
| References | Harsanyi, Chang (bib0075) 1994; 32 Chang (bib0005) 2006 Zlotnick, Smith (bib0045) 1999; 733 García-Alonso, Pérez-Naranjo, Fernández-Caballero (bib0145) 2014; 219 Sun, Du (bib0110) 2018; 56 Kambhatla, Leen (bib0100) 1993 Tatzer, Wolf, Panner (bib0020) 2005; 11 Bandos, Bruzzone, Camps-Valls (bib0095) 2009; 47 Zhang, Chen, Zhuo, Liang, Li (bib0130) 2018; 10 Kingman, Kullback (bib0155) 2007 (bib0035) 1971; 61 Rousseeuw (bib0180) 1987; 20 Timmerman (bib0170) 2003; 98 Fischer, Kakoulli (bib0025) 2014; 51 Rosenberg, Hirschberg (bib0190) 2007; 1 “VNIR 1800.” [Online]. Available Ziȩba-Palus, Kunicki (bib0060) 2006; 158 McDaid, Greene, Hurley (bib0185) 2011 Renard, Bourennane, Blanc-Talon (bib0115) 2008; 5 Timmerman (bib0080) 2003; 98 Hartigan, Wong (bib0175) 2006; 28 [Accessed: 20-Aug-2019]. Morales, Ferrer, Diaz-Cabrera, Carmona, Thomas (bib0055) 2014 “Contrast Multi-Step Target.” [Online]. Available Martel (bib0105) 2018; 10 Devassy, George (bib0195) 2019 Pouyet, Rohani, Katsaggelos, Cossairt, Walton (bib0120) 2018; 90 Edelman, Gaston, van Leeuwen, Cullen, Aalders (bib0030) 2012; 223 Wyszecki, Günter, Stiles (bib0040) 2000 Mohammed, Minhas, Jonathan Wu, Sid-Ahmed (bib0160) 2011; 44 Braz, López-López, García-Ruiz (bib0065) 2013; 232 Van Der Maaten, Hinton (bib0070) 2008; 9 . Bartholomew (bib0165) 2010 Farrell, Mersereau (bib0085) 2005; 2 Song, Wang, Liu, Choo (bib0125) 2019; 78 Kher, Mulholland, Green, Reedy (bib0050) 2006; 40 Gisbrecht, Schulz, Hammer (bib0150) 2015; 147 Lu, Fei (bib0015) 2014; 19 ElMasry, Kamruzzaman, Sun, Allen (bib0010) 2012; 52 Wang, Chang (bib0090) 2006; 44 Kingman (10.1016/j.forsciint.2020.110194_bib0155) 2007 Sun (10.1016/j.forsciint.2020.110194_bib0110) 2018; 56 Edelman (10.1016/j.forsciint.2020.110194_bib0030) 2012; 223 Wang (10.1016/j.forsciint.2020.110194_bib0090) 2006; 44 García-Alonso (10.1016/j.forsciint.2020.110194_bib0145) 2014; 219 Farrell (10.1016/j.forsciint.2020.110194_bib0085) 2005; 2 Pouyet (10.1016/j.forsciint.2020.110194_bib0120) 2018; 90 Mohammed (10.1016/j.forsciint.2020.110194_bib0160) 2011; 44 Rousseeuw (10.1016/j.forsciint.2020.110194_bib0180) 1987; 20 ElMasry (10.1016/j.forsciint.2020.110194_bib0010) 2012; 52 Timmerman (10.1016/j.forsciint.2020.110194_bib0080) 2003; 98 10.1016/j.forsciint.2020.110194_bib0135 Morales (10.1016/j.forsciint.2020.110194_bib0055) 2014 Bandos (10.1016/j.forsciint.2020.110194_bib0095) 2009; 47 Hartigan (10.1016/j.forsciint.2020.110194_bib0175) 2006; 28 Zlotnick (10.1016/j.forsciint.2020.110194_bib0045) 1999; 733 Ziȩba-Palus (10.1016/j.forsciint.2020.110194_bib0060) 2006; 158 Chang (10.1016/j.forsciint.2020.110194_bib0005) 2006 Song (10.1016/j.forsciint.2020.110194_bib0125) 2019; 78 Rosenberg (10.1016/j.forsciint.2020.110194_bib0190) 2007; 1 Wyszecki (10.1016/j.forsciint.2020.110194_bib0040) 2000 Braz (10.1016/j.forsciint.2020.110194_bib0065) 2013; 232 Timmerman (10.1016/j.forsciint.2020.110194_bib0170) 2003; 98 Zhang (10.1016/j.forsciint.2020.110194_bib0130) 2018; 10 Devassy (10.1016/j.forsciint.2020.110194_bib0195) 2019 Kher (10.1016/j.forsciint.2020.110194_bib0050) 2006; 40 10.1016/j.forsciint.2020.110194_bib0140 Bartholomew (10.1016/j.forsciint.2020.110194_bib0165) 2010 McDaid (10.1016/j.forsciint.2020.110194_bib0185) 2011 Lu (10.1016/j.forsciint.2020.110194_bib0015) 2014; 19 Tatzer (10.1016/j.forsciint.2020.110194_bib0020) 2005; 11 Gisbrecht (10.1016/j.forsciint.2020.110194_bib0150) 2015; 147 Fischer (10.1016/j.forsciint.2020.110194_bib0025) 2014; 51 (10.1016/j.forsciint.2020.110194_bib0035) 1971; 61 Kambhatla (10.1016/j.forsciint.2020.110194_bib0100) 1993 Harsanyi (10.1016/j.forsciint.2020.110194_bib0075) 1994; 32 Martel (10.1016/j.forsciint.2020.110194_bib0105) 2018; 10 Renard (10.1016/j.forsciint.2020.110194_bib0115) 2008; 5 Van Der Maaten (10.1016/j.forsciint.2020.110194_bib0070) 2008; 9 |
| References_xml | – year: 2011 ident: bib0185 article-title: Normalized Mutual Information to evaluate overlapping community finding algorithms publication-title: arXiv e-prints – volume: 147 start-page: 71 year: 2015 end-page: 82 ident: bib0150 article-title: Parametric nonlinear dimensionality reduction using kernel t-SNE publication-title: Neurocomputing – volume: 10 year: 2018 ident: bib0105 article-title: Implementation of the Principal Component Analysis onto high-performance computer facilities for hyperspectral dimensionality reduction: results and comparisons publication-title: Remote Sens. (Basel) – year: 2006 ident: bib0005 article-title: Hyperspectral Data Exploitation: Theory and Applications – volume: 32 start-page: 779 year: 1994 end-page: 785 ident: bib0075 article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 374 year: 2010 end-page: 377 ident: bib0165 article-title: Principal components analysis publication-title: Int. Encycl. Educ. – volume: 5 start-page: 138 year: 2008 end-page: 142 ident: bib0115 article-title: Denoising and dimensionality reduction using multilinear tools for hyperspectral images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 28 start-page: 100 year: 2006 ident: bib0175 article-title: Algorithm AS 136: a K-Means clustering algorithm publication-title: Appl. Stat. – volume: 44 start-page: 2588 year: 2011 end-page: 2597 ident: bib0160 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recognit. – volume: 1 start-page: 410 year: 2007 end-page: 420 ident: bib0190 article-title: V-measure: a conditional entropy-based external cluster evaluation measure publication-title: Comput. Linguist. – volume: 98 start-page: 1082 year: 2003 end-page: 1083 ident: bib0170 article-title: Principal component analysis publication-title: J. Am. Stat. Assoc. – year: 2000 ident: bib0040 article-title: Color science: concepts and methods, quantitative data and formulae publication-title: Color Res. Appl. – volume: 223 start-page: 28 year: 2012 end-page: 39 ident: bib0030 article-title: Hyperspectral imaging for non-contact analysis of forensic traces publication-title: Forensic Sci. Int. – year: 2019 ident: bib0195 article-title: Ink classification using convolutional neural network publication-title: Norsk Informasjonssikkerhetskonferanse 2019 – volume: 98 year: 2003 ident: bib0080 publication-title: Principal Component Analysis – volume: 2 start-page: 192 year: 2005 end-page: 195 ident: bib0085 article-title: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets publication-title: IEEE Geosci. Remote Sens. Lett. – reference: “VNIR 1800.” [Online]. Available: – volume: 52 start-page: 999 year: 2012 end-page: 1023 ident: bib0010 article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review publication-title: Crit. Rev. Food Sci. Nutr. – volume: 40 start-page: 270 year: 2006 end-page: 277 ident: bib0050 article-title: Forensic classification of ballpoint pen inks using high performance liquid chromatography and infrared spectroscopy with principal components analysis and linear discriminant analysis publication-title: Vib. Spectrosc. – volume: 9 start-page: 2579 year: 2008 end-page: 2625 ident: bib0070 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 1 year: 1971 end-page: 11 ident: bib0035 article-title: Lightness and retinex theory publication-title: J. Opt. Soc. Am. – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0180 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – volume: 733 start-page: 265 year: 1999 end-page: 272 ident: bib0045 article-title: Chromatographic and electrophoretic approaches in ink analysis publication-title: J. Chromatogr. B Biomed. Sci. Appl. – volume: 56 start-page: 3185 year: 2018 end-page: 3195 ident: bib0110 article-title: Graph-regularized fast and robust principal component analysis for hyperspectral band selection publication-title: IEEE Trans. Geosci. Remote Sens. – reference: “Contrast Multi-Step Target.” [Online]. Available: – volume: 158 start-page: 164 year: 2006 end-page: 172 ident: bib0060 article-title: Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks publication-title: Forensic Sci. Int. – volume: 78 start-page: 4311 year: 2019 end-page: 4326 ident: bib0125 article-title: Improved t-SNE based manifold dimensional reduction for remote sensing data processing publication-title: Multimed. Tools Appl. – reference: . [Accessed: 20-Aug-2019]. – volume: 44 start-page: 1586 year: 2006 end-page: 1600 ident: bib0090 article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 19 start-page: 10901 year: 2014 ident: bib0015 article-title: Medical hyperspectral imaging: a review publication-title: J. Biomed. Opt. – volume: 47 start-page: 862 year: 2009 end-page: 873 ident: bib0095 article-title: Classification of hyperspectral images with regularized linear discriminant analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 232 start-page: 206 year: 2013 end-page: 212 ident: bib0065 article-title: Raman spectroscopy for forensic analysis of inks in questioned documents publication-title: Forensic Sci. Int. – volume: 10 year: 2018 ident: bib0130 article-title: An efficient hyperspectral image retrieval method: deep spectral-spatial feature extraction with DCGAN and dimensionality reduction using t-SNE-based NM hashing publication-title: Remote Sens. – reference: . – volume: 11 start-page: 99 year: 2005 end-page: 107 ident: bib0020 article-title: Industrial application for inline material sorting using hyperspectral imaging in the NIR range publication-title: Real Time Imaging – volume: 51 start-page: 3 year: 2014 end-page: 16 ident: bib0025 article-title: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications publication-title: Estud. Conserv. E Restauro – year: 2014 ident: bib0055 article-title: The use of hyperspectral analysis for ink identification in handwritten documents publication-title: Proceedings - International Carnahan Conference on Security Technology – start-page: 1213 year: 1993 end-page: 1218 ident: bib0100 article-title: Fast non-linear dimension reduction publication-title: IEEE International Conference on Neural Networks – Conference Proceedings – year: 2007 ident: bib0155 article-title: Information Theory and Statistics – volume: 90 start-page: 493 year: 2018 end-page: 506 ident: bib0120 article-title: Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach publication-title: Pure Appl. Chem. – volume: 219 start-page: 187 year: 2014 end-page: 202 ident: bib0145 article-title: Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms publication-title: Ann. Oper. Res. – volume: 10 issue: 2 year: 2018 ident: 10.1016/j.forsciint.2020.110194_bib0130 article-title: An efficient hyperspectral image retrieval method: deep spectral-spatial feature extraction with DCGAN and dimensionality reduction using t-SNE-based NM hashing publication-title: Remote Sens. doi: 10.3390/rs10020271 – volume: 2 start-page: 192 issue: 2 year: 2005 ident: 10.1016/j.forsciint.2020.110194_bib0085 article-title: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.846011 – volume: 5 start-page: 138 issue: 2 year: 2008 ident: 10.1016/j.forsciint.2020.110194_bib0115 article-title: Denoising and dimensionality reduction using multilinear tools for hyperspectral images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.915736 – start-page: 374 year: 2010 ident: 10.1016/j.forsciint.2020.110194_bib0165 article-title: Principal components analysis publication-title: Int. Encycl. Educ. doi: 10.1016/B978-0-08-044894-7.01358-0 – volume: 158 start-page: 164 issue: 2–3 year: 2006 ident: 10.1016/j.forsciint.2020.110194_bib0060 article-title: Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2005.04.044 – volume: 52 start-page: 999 issue: 11 year: 2012 ident: 10.1016/j.forsciint.2020.110194_bib0010 article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2010.543495 – year: 2014 ident: 10.1016/j.forsciint.2020.110194_bib0055 article-title: The use of hyperspectral analysis for ink identification in handwritten documents publication-title: Proceedings - International Carnahan Conference on Security Technology – year: 2000 ident: 10.1016/j.forsciint.2020.110194_bib0040 article-title: Color science: concepts and methods, quantitative data and formulae publication-title: Color Res. Appl. – volume: 219 start-page: 187 issue: 1 year: 2014 ident: 10.1016/j.forsciint.2020.110194_bib0145 article-title: Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms publication-title: Ann. Oper. Res. doi: 10.1007/s10479-011-0841-3 – volume: 28 start-page: 100 issue: 1 year: 2006 ident: 10.1016/j.forsciint.2020.110194_bib0175 article-title: Algorithm AS 136: a K-Means clustering algorithm publication-title: Appl. Stat. doi: 10.2307/2346830 – volume: 98 start-page: 1082 issue: June(464) year: 2003 ident: 10.1016/j.forsciint.2020.110194_bib0170 article-title: Principal component analysis publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2003.s308 – issue: October year: 2011 ident: 10.1016/j.forsciint.2020.110194_bib0185 article-title: Normalized Mutual Information to evaluate overlapping community finding algorithms publication-title: arXiv e-prints – volume: 20 start-page: 53 issue: C year: 1987 ident: 10.1016/j.forsciint.2020.110194_bib0180 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 98 issue: 464 year: 2003 ident: 10.1016/j.forsciint.2020.110194_bib0080 publication-title: Principal Component Analysis – ident: 10.1016/j.forsciint.2020.110194_bib0140 – volume: 1 start-page: 410 issue: June year: 2007 ident: 10.1016/j.forsciint.2020.110194_bib0190 article-title: V-measure: a conditional entropy-based external cluster evaluation measure publication-title: Comput. Linguist. – volume: 232 start-page: 206 issue: 1–3 year: 2013 ident: 10.1016/j.forsciint.2020.110194_bib0065 article-title: Raman spectroscopy for forensic analysis of inks in questioned documents publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2013.07.017 – volume: 56 start-page: 3185 issue: 6 year: 2018 ident: 10.1016/j.forsciint.2020.110194_bib0110 article-title: Graph-regularized fast and robust principal component analysis for hyperspectral band selection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2794443 – volume: 44 start-page: 2588 issue: 10–11 year: 2011 ident: 10.1016/j.forsciint.2020.110194_bib0160 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.03.013 – volume: 10 issue: 6 year: 2018 ident: 10.1016/j.forsciint.2020.110194_bib0105 article-title: Implementation of the Principal Component Analysis onto high-performance computer facilities for hyperspectral dimensionality reduction: results and comparisons publication-title: Remote Sens. (Basel) – volume: 19 start-page: 10901 issue: 1 year: 2014 ident: 10.1016/j.forsciint.2020.110194_bib0015 article-title: Medical hyperspectral imaging: a review publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.1.010901 – volume: 44 start-page: 1586 issue: 6 year: 2006 ident: 10.1016/j.forsciint.2020.110194_bib0090 article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.863297 – volume: 47 start-page: 862 issue: 3 year: 2009 ident: 10.1016/j.forsciint.2020.110194_bib0095 article-title: Classification of hyperspectral images with regularized linear discriminant analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2005729 – volume: 147 start-page: 71 issue: 1 year: 2015 ident: 10.1016/j.forsciint.2020.110194_bib0150 article-title: Parametric nonlinear dimensionality reduction using kernel t-SNE publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.045 – volume: 40 start-page: 270 issue: 2 year: 2006 ident: 10.1016/j.forsciint.2020.110194_bib0050 article-title: Forensic classification of ballpoint pen inks using high performance liquid chromatography and infrared spectroscopy with principal components analysis and linear discriminant analysis publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2005.11.002 – volume: 733 start-page: 265 issue: 1–2 year: 1999 ident: 10.1016/j.forsciint.2020.110194_bib0045 article-title: Chromatographic and electrophoretic approaches in ink analysis publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/S0378-4347(99)00312-6 – volume: 61 start-page: 1 issue: 1 year: 1971 ident: 10.1016/j.forsciint.2020.110194_bib0035 article-title: Lightness and retinex theory publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.61.000001 – year: 2007 ident: 10.1016/j.forsciint.2020.110194_bib0155 – year: 2006 ident: 10.1016/j.forsciint.2020.110194_bib0005 – volume: 32 start-page: 779 issue: 4 year: 1994 ident: 10.1016/j.forsciint.2020.110194_bib0075 article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.298007 – start-page: 1213 year: 1993 ident: 10.1016/j.forsciint.2020.110194_bib0100 article-title: Fast non-linear dimension reduction – ident: 10.1016/j.forsciint.2020.110194_bib0135 – volume: 51 start-page: 3 issue: sup1 year: 2014 ident: 10.1016/j.forsciint.2020.110194_bib0025 article-title: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications publication-title: Estud. Conserv. E Restauro – volume: 11 start-page: 99 issue: 2 year: 2005 ident: 10.1016/j.forsciint.2020.110194_bib0020 article-title: Industrial application for inline material sorting using hyperspectral imaging in the NIR range publication-title: Real Time Imaging doi: 10.1016/j.rti.2005.04.003 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.forsciint.2020.110194_bib0070 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 223 start-page: 28 issue: 1–3 year: 2012 ident: 10.1016/j.forsciint.2020.110194_bib0030 article-title: Hyperspectral imaging for non-contact analysis of forensic traces publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2012.09.012 – volume: 90 start-page: 493 issue: 3 year: 2018 ident: 10.1016/j.forsciint.2020.110194_bib0120 article-title: Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach publication-title: Pure Appl. Chem. doi: 10.1515/pac-2017-0907 – year: 2019 ident: 10.1016/j.forsciint.2020.110194_bib0195 article-title: Ink classification using convolutional neural network – volume: 78 start-page: 4311 issue: 4 year: 2019 ident: 10.1016/j.forsciint.2020.110194_bib0125 article-title: Improved t-SNE based manifold dimensional reduction for remote sensing data processing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5715-0 |
| SSID | ssj0005526 |
| Score | 2.6204908 |
| Snippet | •The t-SNE algorithm is introduced into forensic ink data analysis.•Created hyperspectra database of inks from 60 pens, from different manufactures, type and... Ink analysis is an important tool in forensic science and document analysis. Hyperspectral imaging (HSI) captures large number of narrowband images across the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110194 |
| SubjectTerms | Algorithms Cameras Clustering Cultural heritage Data processing Datasets Dimensionality reduction Discriminant analysis Embedding Feature extraction Forensic science Forensic sciences hyperspectral imagery Hyperspectral imaging information processing Ink analysis Narrowband Principal components analysis Probability quantitative analysis Reduction Software Spectrum analysis t-SNE Visualisation Visualization |
| Title | Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0379073820300566 https://dx.doi.org/10.1016/j.forsciint.2020.110194 https://www.ncbi.nlm.nih.gov/pubmed/32251968 https://www.proquest.com/docview/2425648153 https://www.proquest.com/docview/2387261493 https://www.proquest.com/docview/2400483673 |
| Volume | 311 |
| WOSCitedRecordID | wos000538769400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6283 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005526 issn: 0379-0738 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1872-6283 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0005526 issn: 0379-0738 databaseCode: M7P dateStart: 19970207 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1872-6283 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0005526 issn: 0379-0738 databaseCode: 7X7 dateStart: 19970207 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1872-6283 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0005526 issn: 0379-0738 databaseCode: 7RV dateStart: 19970207 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1872-6283 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0005526 issn: 0379-0738 databaseCode: BENPR dateStart: 19970207 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1872-6283 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0005526 issn: 0379-0738 databaseCode: M2O dateStart: 19970207 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgNSxZuyUFZG4hqROI-xe6l4bMUBllV5aG9W7Dhlqypbdrf9_czESSoObZG4RIriiSzPeB72588Ab2RBYdiRBsiWyigrc4wsUs1T6yz1jgKCdy1l_mecTtV8rmfdgtu6g1X2PrF11NXS8Rr5W06NC2YWSQ_Pf0d8axTvrnZXaGzBDrMkyBa6N7uCeOSy-AvTRXkgBZZFwyBK2ULgE51dF5GuyzjbyHP04H_7_BDudzmneBeM5BHc8c1j2A0LdiKcQ3oCs4_M8x84OigzFyvmdGWtibKpxOVizacvA_RHLGvxi-rXcExzRb-mglYw1lQwjP5EbKJv08lT-HE0-f7hU9RdtxC5PMVN5DGp4kohxrW0XjIxTIVeex07lTue-HUudVL7RNcJ2jhR3iktbVbGVpUU9p_BdrNs_HMQaZ0nFWJuJVWPlKHZVPrSlgq1lxbzbARFP-TGdVzkfCXGmelBZ6dm0JVhXZmgqxHEg-B5oOO4XUT1OjX9aVPyj4ZCxu2iB4Nol5CEROPfhPd7ozCdX1ibK4sYwevhM81o3qYpG7-8oDapQqprM31Tm9b1pgVSm71gnMN4sKbIr6oXN3fgJdzj3gbY2z5sb1YX_hXcdZebxXo1hi08_snPObZPNYad95Pp7Jjevsiv43ai_QEzkSzg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqEQlRFva0qW0dSU4RiTOw3alqqoKCMR2QYJK3EzsOGVRlYXdBcSf6m_sTJwE9QD0wqHneCIn_jwP-5sZgDWeoRm2uAKIpTxI8lQERmDMU6okdhYNgrN1yfy-GAzk8bE6mIHfbS4M0SpbnVgr6mJk6Yx8g1zjjCqLxF_OLwLqGkW3q20LDQ-LPXdzjSHb5PPuJq7vOufbW0ffdoKmq0Bg01hMAyeiIiykEGHJjeNU_6QQTjkVWplawneZchWVLlJlJEwYSWel4ibJQyNzSV0iUOXPJRQJEVWQ799SSlKe_cUhQ78TDdmwItImryn3kUrusoB3ebi1pdt-9r_9o-ew2PjU7KvfBC9gxlVLsOAPJJnPs3oJB5vUx8DXIMHIg42pZi2hkuVVwa6GE8ou9dQmNirZKcbnPg11jK_GgJ0Rl5ZRmsBPNg0OB1uv4MejfNRrmK1GlXsDLC7TqBAiNRyjY_RATcxdbnIplONGpEkPsnaJtW1qrVPLj1-6JdWd6Q4bmrChPTZ6EHaC577cyMMissWQbrNpUf9rNIkPi37qRBuHyztS_ya82oJQN3pvom8R2IOP3WPUWHQNlVdudIljYikwbk_UfWNq0xJnAscs-83Q_Q9aKbQbcuX-CXyA-Z2j733d3x3svYWnNHNP8VuF2en40r2DJ_ZqOpyM39ebmMHJY--IP0jcgyE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4SQqpY3CwWMBMeoifOwjYQqYHdF1Spa8ZB6M7HjwFYo2-5ui_hr_Dpm4iQVh7ZceuAcT5TE37zib2YAXvIM3bDFHUAsFUFSpCIwAnOeSiWxs-gQnG1a5h-IPJeHh2q6Br-7WhiiVXY2sTHU5dzSP_IdCo0z6iwS71QtLWI6muwenwQ0QYpOWrtxGh4i--7XT0zflm_2RrjXrzifjD-__xC0EwYCm8ZiFTgRlWEphQgrbhynXiilcMqp0MrUEtarlKuocpGqImHCSDorFTdJERpZSJoYgeZ_XWCQkQxg_d04n348J5ikPPuLUYZRKLq1WU0UTt4Q8COVXOQPL4p3G7832fqfv9ht2GyjbfbWq8cdWHP1XdjwvyqZr8C6B9MRTTjw3UkwJ2EL6mZLeGVFXbKz2ZLqTj3pic0r9h0zd1-gusBbYyrPiGXLqIDgG1sFn_LxffhyLS_1AAb1vHaPgMVVGpVCpIZj3oyxqYm5K0whhXLciDQZQtZtt7ZtF3YaBvJDd3S7I93jRBNOtMfJEMJe8Ng3IrlaRHZ40l2dLXoGjc7yatHXvWgbivkQ69-EtztA6tYiLvU5Gofwor-MtowOqIrazU9xTSwFZvSJumxN43TiTOCah14x-u9BO4UeRT6-_AGew01UBH2wl-8_gVv04J77tw2D1eLUPYUb9mw1Wy6etRrN4Ot1q8Qf_f6NPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+reduction+and+visualisation+of+hyperspectral+ink+data+using+t-SNE&rft.jtitle=Forensic+science+international&rft.au=Melit+Devassy%2C+Binu&rft.au=George%2C+Sony&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0379-0738&rft.volume=311&rft_id=info:doi/10.1016%2Fj.forsciint.2020.110194&rft.externalDocID=S0379073820300566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-0738&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-0738&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-0738&client=summon |