Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control

Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 56; no. 5; pp. 1407 - 1414
Main Authors: Hargrove, Levi J., Li, Guanglin, Englehart, Kevin B., Hudgins, Bernard S.
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9294, 1558-2531, 1558-2531
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This ldquotunesrdquo the data to allow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly (p<0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.
AbstractList Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This ldquotunesrdquo the data to allow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly (p<0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.
Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This "tunes" the data to allow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly (p<0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.
Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This Idquotunesrdquo the data to alow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly (p<0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.
Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This "tunes" the data to allow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly ( p < 0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This "tunes" the data to allow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly ( p < 0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.
Author Hargrove, Levi J.
Englehart, Kevin B.
Hudgins, Bernard S.
Li, Guanglin
Author_xml – sequence: 1
  givenname: Levi J.
  surname: Hargrove
  fullname: Hargrove, Levi J.
  email: l-hargrove@northwestern.edu
  organization: Inst. of Biomed. Eng., Univ. of New Brunswick, Fredericton, NB
– sequence: 2
  givenname: Guanglin
  surname: Li
  fullname: Li, Guanglin
  organization: Neural Eng. Center for Artificial Limbs, Rehabilitation Inst. of Chicago, Chicago, IL
– sequence: 3
  givenname: Kevin B.
  surname: Englehart
  fullname: Englehart, Kevin B.
  organization: Inst. of Biomed. Eng., Univ. of New Brunswick, Fredericton, NB
– sequence: 4
  givenname: Bernard S.
  surname: Hudgins
  fullname: Hudgins, Bernard S.
  organization: Inst. of Biomed. Eng., Univ. of New Brunswick, Fredericton, NB
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19473932$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1r3DAQhkVJaTZpf0ApFNNDe3KqL-vjuFmSNJDQpaRnI8vjoGBLW8kO7Ll_vHJ2m0MOWRDSaHjeGYZ5T9CRDx4Q-kjwGSFYf787v704oxirp4tI8gYtSFWpklaMHKEFxkSVmmp-jE5Seshfrrh4h46J5pJpRhfo7zo6b93G9MUqDJtc34-pWHrTb5NLxTrCJgYLKTl_X3QhFtdDTjxCW6x6k7Ods2Z0wRdLa6dorINUOF-szThC9OUvsOHeu5koz03KstttgB7sGJ3NHf0YQ_8eve1Mn-DD_j1Fvy8v7lY_ypufV9er5U1pKybHEnDbWAK6lazpukYD5m1jsNHSVkqxHCnT0kaKqlMtlbLhYDUoSSrLQAjKTtG3Xd08wZ8J0lgPLlnoe-MhTKlWQkouuNaZ_PoqKSRVGGt2EGRcYyU4OQhSQqTm9HBrihXjFZ6n-fICfAhTzIvLg1QiH0F4hj7voakZoK030Q0mbuv_BsiA3AE2hpQidLV149NGx2hcXxNcz1arZ6vVs8vqvdWykrxQPhd_RfNpp3EA8MxzIZhgnP0DsKXgEA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JSEN_2022_3166184
crossref_primary_10_3390_s19204596
crossref_primary_10_1016_j_bspc_2014_07_007
crossref_primary_10_1109_TIE_2014_2387337
crossref_primary_10_1186_1743_0003_8_25
crossref_primary_10_1109_TNSRE_2017_2771273
crossref_primary_10_1016_j_bspc_2021_102487
crossref_primary_10_1002_hed_70025
crossref_primary_10_1097_PXR_0000000000000037
crossref_primary_10_1186_1743_0003_9_74
crossref_primary_10_1109_TIM_2023_3311054
crossref_primary_10_1109_JSEN_2018_2813434
crossref_primary_10_1016_j_jneumeth_2018_07_008
crossref_primary_10_1016_j_bspc_2019_02_022
crossref_primary_10_1371_journal_pone_0203987
crossref_primary_10_3233_JIFS_169794
crossref_primary_10_1007_s11062_022_09922_y
crossref_primary_10_1007_s12541_017_0119_z
crossref_primary_10_1109_THMS_2025_3532209
crossref_primary_10_1111_aor_13153
crossref_primary_10_1109_TNSRE_2009_2039590
crossref_primary_10_1002_tee_21863
crossref_primary_10_1016_j_eswa_2012_04_084
crossref_primary_10_1097_JPO_0b013e31827af7c1
crossref_primary_10_3390_bios10080085
crossref_primary_10_1109_TNSRE_2012_2226916
crossref_primary_10_1177_2055668317708731
crossref_primary_10_1016_j_bspc_2012_09_001
crossref_primary_10_1016_j_robot_2014_08_012
crossref_primary_10_1109_TBME_2013_2296274
crossref_primary_10_3389_fnbot_2021_685961
crossref_primary_10_3390_bioengineering10030319
crossref_primary_10_1186_1743_0003_10_44
crossref_primary_10_1038_s41598_024_54952_7
crossref_primary_10_1109_TBME_2015_2498124
crossref_primary_10_1152_jn_00714_2012
crossref_primary_10_1016_j_bspc_2013_10_002
crossref_primary_10_1111_exsy_12221
crossref_primary_10_1186_s12984_016_0212_z
crossref_primary_10_3390_s19030610
crossref_primary_10_1007_s13246_016_0458_6
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_1137_110839072
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_1186_s12984_019_0516_x
crossref_primary_10_1109_TNSRE_2013_2243470
crossref_primary_10_1016_j_bspc_2014_05_001
crossref_primary_10_1097_JPO_0b013e3182524cce
crossref_primary_10_1109_ACCESS_2016_2593013
crossref_primary_10_1016_j_bspc_2017_06_010
crossref_primary_10_3390_electronics8111244
crossref_primary_10_1155_2013_148363
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_1515_bmt_2020_0343
crossref_primary_10_1109_TBME_2009_2034734
crossref_primary_10_1109_TBME_2020_3032077
crossref_primary_10_1109_JBHI_2015_2490718
crossref_primary_10_3389_fnins_2021_657958
crossref_primary_10_1080_10400435_2013_827138
crossref_primary_10_1515_bmt_2016_0224
crossref_primary_10_1016_j_bspc_2014_08_004
crossref_primary_10_3389_fnbot_2017_00007
crossref_primary_10_1007_s11517_016_1551_4
crossref_primary_10_1007_s00521_024_10001_y
crossref_primary_10_1109_JBHI_2013_2286455
crossref_primary_10_1016_j_jelekin_2012_06_009
crossref_primary_10_1016_j_bspc_2019_101737
crossref_primary_10_1016_j_bspc_2020_102292
crossref_primary_10_1109_JBHI_2013_2256920
crossref_primary_10_1109_TNSRE_2020_2986099
crossref_primary_10_1016_j_bspc_2013_06_006
crossref_primary_10_1016_j_bspc_2016_08_017
crossref_primary_10_1080_10400435_2015_1070303
crossref_primary_10_3390_s17071597
crossref_primary_10_1109_TNSRE_2017_2687520
crossref_primary_10_1007_s13246_015_0343_8
crossref_primary_10_3389_fnins_2016_00116
crossref_primary_10_1109_TBME_2011_2113182
crossref_primary_10_1007_s11517_014_1215_1
crossref_primary_10_1109_JSEN_2021_3098120
crossref_primary_10_3390_math11194087
crossref_primary_10_1109_TRO_2015_2395731
crossref_primary_10_1016_j_bbe_2019_07_007
crossref_primary_10_1016_j_eswa_2014_03_014
crossref_primary_10_1016_j_jelekin_2011_12_012
crossref_primary_10_1002_pca_2461
crossref_primary_10_1016_j_bspc_2018_04_011
crossref_primary_10_1016_S1672_6529_16_60377_3
crossref_primary_10_1049_htl_2018_5024
crossref_primary_10_1186_s12984_021_00839_x
crossref_primary_10_1111_aor_13004
crossref_primary_10_1109_TBME_2019_2913431
crossref_primary_10_1177_0300060520903617
crossref_primary_10_1152_japplphysiol_01251_2011
crossref_primary_10_1038_s41598_024_82519_z
crossref_primary_10_1111_exsy_12381
crossref_primary_10_3390_s130912431
crossref_primary_10_1016_j_compeleceng_2017_04_003
crossref_primary_10_1109_TBME_2016_2517742
crossref_primary_10_1109_TNSRE_2012_2218832
crossref_primary_10_1016_j_medengphy_2014_09_011
crossref_primary_10_1016_j_medengphy_2014_04_003
crossref_primary_10_1109_JTEHM_2018_2883943
crossref_primary_10_1016_j_bspc_2020_101981
crossref_primary_10_1016_j_bspc_2022_103695
crossref_primary_10_3390_s131013334
crossref_primary_10_1186_s12984_023_01171_2
crossref_primary_10_1038_s41551_021_00732_x
crossref_primary_10_3233_THC_199035
crossref_primary_10_1371_journal_pone_0127231
crossref_primary_10_1109_JBHI_2014_2330356
crossref_primary_10_1109_TMECH_2014_2360119
Cites_doi 10.1109/86.867872
10.1109/10.634653
10.1109/10.914793
10.1007/BF02476154
10.1109/TSMCC.2005.848183
10.1109/TBME.2008.2010392
10.1016/S0167-8655(99)00083-5
10.1016/S1350-4533(99)00055-7
10.1109/TNSRE.2007.891391
10.1109/TBME.2004.836492
10.1016/S0031-3203(02)00033-X
10.1515/9781400874668
10.1002/0471221317
10.1109/IEMBS.2007.4353853
10.3109/03093640409167756
10.1016/S1350-4533(99)00066-1
10.1109/TBME.2003.813539
10.1109/IEMBS.2003.1279711
10.1109/TRA.2003.808873
10.1109/TNANO.2008.2005187
10.1097/00008526-199600810-00003
10.1109/10.1370
10.1109/TBME.2006.889192
10.1109/TBME.2005.856295
10.1016/j.jelekin.2006.08.006
10.1016/0141-5425(82)90021-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2008.2008171
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
Engineering Research Database
MEDLINE
Engineering Research Database
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1414
ExternalDocumentID 2291639601
19473932
10_1109_TBME_2008_2008171
4663634
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c537t-e0dbc1e9d73bffb9e04dba0a97c5883a0a8ad2b765f8d277b4ec9e8715c3e6623
IEDL.DBID RIE
ISICitedReferencesCount 168
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266676300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Tue Oct 07 09:35:06 EDT 2025
Tue Sep 30 23:24:33 EDT 2025
Sun Sep 28 02:29:45 EDT 2025
Mon Oct 06 18:04:55 EDT 2025
Mon Oct 06 18:31:37 EDT 2025
Mon Jun 30 08:26:19 EDT 2025
Wed Feb 19 01:50:01 EST 2025
Tue Nov 18 22:32:05 EST 2025
Sat Nov 29 03:34:52 EST 2025
Wed Aug 27 02:39:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-e0dbc1e9d73bffb9e04dba0a97c5883a0a8ad2b765f8d277b4ec9e8715c3e6623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 19473932
PQID 856856614
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67280093
pubmed_primary_19473932
proquest_miscellaneous_867746499
proquest_miscellaneous_20834502
ieee_primary_4663634
crossref_citationtrail_10_1109_TBME_2008_2008171
proquest_miscellaneous_34908641
crossref_primary_10_1109_TBME_2008_2008171
proquest_miscellaneous_21179429
proquest_journals_856856614
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
bellman (ref19) 1961
ref30
ref33
ref32
childress (ref13) 2004
ref1
ref17
ref16
farry (ref24) 1997
kobrinski (ref2) 1960; 2
childress (ref4) 1969
chan (ref18) 2007
ref23
ref26
owens (ref11) 2004
kuiken (ref6) 2004; 28
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
(ref10) 2000
ref9
ref3
ref5
References_xml – ident: ref22
  doi: 10.1109/86.867872
– ident: ref16
  doi: 10.1109/10.634653
– ident: ref17
  doi: 10.1109/10.914793
– start-page: 219
  year: 2004
  ident: ref11
  publication-title: Atlas of Amputations and Limb Deficiencies
– ident: ref3
  doi: 10.1007/BF02476154
– ident: ref28
  doi: 10.1109/TSMCC.2005.848183
– ident: ref25
  doi: 10.1109/TBME.2008.2010392
– ident: ref30
  doi: 10.1016/S0167-8655(99)00083-5
– ident: ref31
  doi: 10.1016/S1350-4533(99)00055-7
– ident: ref33
  doi: 10.1109/TNSRE.2007.891391
– volume: 2
  start-page: 619
  year: 1960
  ident: ref2
  publication-title: Automatic and Remote Control Proc 1st IFAC Int Congr
– ident: ref21
  doi: 10.1109/TBME.2004.836492
– ident: ref27
  doi: 10.1016/S0031-3203(02)00033-X
– year: 1961
  ident: ref19
  publication-title: Adaptive Control Processes
  doi: 10.1515/9781400874668
– ident: ref26
  doi: 10.1002/0471221317
– ident: ref29
  doi: 10.1109/IEMBS.2007.4353853
– start-page: 50
  year: 1997
  ident: ref24
  article-title: applying genetic programming to control of an artificial arm
  publication-title: Proc Myoelectric Control (MEC 1997) Conf
– year: 2000
  ident: ref10
– start-page: 4s
  year: 1969
  ident: ref4
  article-title: a myoelectric three state controller using rate sensitivity
  publication-title: Proc 8th ICMBE
– volume: 28
  start-page: 245
  year: 2004
  ident: ref6
  article-title: the use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee
  publication-title: Prosthet Orthot Int
  doi: 10.3109/03093640409167756
– ident: ref20
  doi: 10.1016/S1350-4533(99)00066-1
– ident: ref15
  doi: 10.1109/TBME.2003.813539
– ident: ref23
  doi: 10.1109/IEMBS.2003.1279711
– year: 2007
  ident: ref18
  article-title: myoelectric control development toolbox
  publication-title: Proc 23rd Canadian Medical and Biological Engineering Society Conf
– ident: ref32
  doi: 10.1109/TRA.2003.808873
– ident: ref5
  doi: 10.1109/TNANO.2008.2005187
– ident: ref12
  doi: 10.1097/00008526-199600810-00003
– start-page: 173
  year: 2004
  ident: ref13
  publication-title: Atlas of Amputations and Limb Deficiencies Surgical Prosthetic and Rehabilitation Principles
– ident: ref14
  doi: 10.1109/10.1370
– ident: ref8
  doi: 10.1109/TBME.2006.889192
– ident: ref9
  doi: 10.1109/TBME.2005.856295
– ident: ref1
  doi: 10.1016/j.jelekin.2006.08.006
– ident: ref7
  doi: 10.1016/0141-5425(82)90021-8
SSID ssj0014846
Score 2.3879402
Snippet Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1407
SubjectTerms Algorithms
Amputee
Amputees
Conductors
Control systems
Data mining
Decorrelation
Dispersion
electromyography (EMG)
Electromyography - methods
Forearm - physiology
Humans
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Muscles
myoelectric
myoelectric signal (MES)
Pattern recognition
Pattern Recognition, Automated - methods
Principal Component Analysis
Principal components analysis
prostheses
Prosthetics
Rotation measurement
Signal Processing, Computer-Assisted
tranrsradial
Title Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control
URI https://ieeexplore.ieee.org/document/4663634
https://www.ncbi.nlm.nih.gov/pubmed/19473932
https://www.proquest.com/docview/856856614
https://www.proquest.com/docview/20834502
https://www.proquest.com/docview/21179429
https://www.proquest.com/docview/34908641
https://www.proquest.com/docview/67280093
https://www.proquest.com/docview/867746499
Volume 56
WOSCitedRecordID wos000266676300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SUEpz6CNpGydtqkNPpW5kS9bjmISEXjYsJYW9GethWCh22Ueg5_7xjCSv20A3UDDGxiNjeTTSSDP6PoCPnBvrW8fyxnCZc8Z13qAnnmtrXQgDUWpsJJuQNzdqNtPTHfg87oXx3sfkM_8lXMZYvuvtOiyVnXEcHgXju7ArpUh7tcaIAVdpUw4t0IBLzYcIZkH12e3F5CplTYZTISM7jOYBC658MBxFfpXtrmYccq5f_N_HvoTng2tJzlNbeAU7vjuA_b8ABw_g6WQIpR_C72laZscSoU_ou5BRQTYYJWQa0C7jHgIsSNCzJWn5wTsSeTRDhlFUKjm3dr1osItYknlHphGvs8u_bRKT-i6_wJHSkcmvPnHuzC25TAnyr-H79dXt5dd8YGTIbcXkKvfUGVt47SQzbWu0p9yZhjZa2kophleqcaWRomqVK6U03FvtcU5WWeYFelpvYK_DCh0BQcmqUdaoglvuqVattniPPZBwTVmIDOhGMbUd4MoDa8aPOk5bqK6DWhOL5qDWDD6NRX4mrI7HhA-DzkbBQV0ZnGy0Xw_WvKxVJfBARyaDD-NTNMMQW2k636-X-FbFeEXLRyQiGF-pt0uwEIQVvNguIQKZGNUsA7JFIsATcoHT2Azeprb751cMTf743zU_gWcpUhaSOd_B3mqx9u_hib1bzZeLUzS5mTqNJncPqw4pWw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StLTJoY-kady0jQ49lbqRLdmWjklISGl2WcoWcjPWw7BQ7LCPQs_94xk91m2hGygYY-ORsTySZqQZfR_Ae86Vtq1haaN4lXLGZdqgJ55KrY0LA1GqtCebqMZjcXMjJ1vwcdgLY631yWf2k7v0sXzT65VbKjvhaB5Lxh_AQ8ecFXdrDTEDLsK2HJphF84ljzHMjMqT6dnoIuRNulNWeX4YyR0aXP6XQfIMK5udTW90Lp_93-c-h6fRuSSnoTW8gC3b7cHuH5CDe_B4FIPp-_BrEhbasYQbFfrO5VSQNUoJmTi8S7-LAAsS9G1JWICwhngmTZdj5NVKTrVezRscJBZk1pGJR-zs0q_r1KS-S8_QVhoy-tkH1p2ZJuchRf4lfLu8mJ5fpZGTIdUFq5appUbpzEpTMdW2SlrKjWpoIytdCMHwSjQmV1VZtMLkVaW41dLirKzQzJboax3AdocVOgSCkkUjtBIZ19xSKVqp8R7HoNI0eVYmQNeKqXUELHe8Gd9rP3GhsnZqDTyaUa0JfBiK3Aa0jvuE953OBsGorgSO1tqvY39e1KIo8UBXJoHj4Sl2RBddaTrbrxb4VsF4QfN7JDwcXy43SzAXhi15tlmidHRiVLIEyAYJB1DIS5zIJvAqtN3fvyI2-df_rvkxPLmajq7r68_jL0ewE-JmLrXzDWwv5yv7Fh7pH8vZYv7Od7w7PAorvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+components+analysis+preprocessing+for+improved+classification+accuracies+in+pattern-recognition-based+myoelectric+control&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Hargrove%2C+Levi+J&rft.au=Li%2C+Guanglin&rft.au=Englehart%2C+Kevin+B&rft.au=Hudgins%2C+Bernard+S&rft.date=2009-05-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=56&rft.issue=5&rft.spage=1407&rft_id=info:doi/10.1109%2FTBME.2008.2008171&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon