Development of Deep Learning Model for the Recognition of Cracks on Concrete Surfaces

This paper is devoted to the development of a deep learning- (DL-) based model to detect crack fractures on concrete surfaces. The developed model for the classification of images was based on a DL Convolutional Neural Network (CNN). To train and validate the CNN model, a database containing 40,000...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Computational Intelligence and Soft Computing Ročník 2021; s. 1 - 10
Hlavní autori: Le, Tien-Thinh, Nguyen, Van-Hai, Le, Minh Vuong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Hindawi 2021
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:1687-9724, 1687-9732
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper is devoted to the development of a deep learning- (DL-) based model to detect crack fractures on concrete surfaces. The developed model for the classification of images was based on a DL Convolutional Neural Network (CNN). To train and validate the CNN model, a database containing 40,000 images of concrete surfaces (with and without cracks) was collected from the available literature. Several conditions on the concrete surfaces were taken into account such as illumination and surface finish (i.e., exposed, plastering, and paint). Various error measurement criteria such as accuracy, precision, recall, specificity, and F1-score were employed for accessing the quality of the developed model. Results showed that for the training dataset (50% of the database), the precision, recall, specificity, F1-score, and accuracy were 99.5%, 99.8%, 99.5%, 99.7%, and 99.7%, respectively. On the other hand, for the validating dataset, the precision, recall, specificity, F1-score, and accuracy are 96.5%, 98.8%, 96.6%, 97.7%, and 97.7%, respectively. Thus, the developed CNN model may be considered valid because it performs the classification of cracks well using the testing data. It is also confirmed that the developed DL-based model was robust and efficient, as it can take into account different conditions on the concrete surfaces. The CNN model developed in this study was compared with other works in the literature, showing that the CNN model could improve the accuracy of image classification, in comparison with previously published results. Finally, in further work, such model could be combined with Unmanned Aerial Vehicles (UAVs) to increase the productivity of concrete infrastructure inspection.
AbstractList This paper is devoted to the development of a deep learning- (DL-) based model to detect crack fractures on concrete surfaces. The developed model for the classification of images was based on a DL Convolutional Neural Network (CNN). To train and validate the CNN model, a database containing 40,000 images of concrete surfaces (with and without cracks) was collected from the available literature. Several conditions on the concrete surfaces were taken into account such as illumination and surface finish (i.e., exposed, plastering, and paint). Various error measurement criteria such as accuracy, precision, recall, specificity, and F1-score were employed for accessing the quality of the developed model. Results showed that for the training dataset (50% of the database), the precision, recall, specificity, F1-score, and accuracy were 99.5%, 99.8%, 99.5%, 99.7%, and 99.7%, respectively. On the other hand, for the validating dataset, the precision, recall, specificity, F1-score, and accuracy are 96.5%, 98.8%, 96.6%, 97.7%, and 97.7%, respectively. Thus, the developed CNN model may be considered valid because it performs the classification of cracks well using the testing data. It is also confirmed that the developed DL-based model was robust and efficient, as it can take into account different conditions on the concrete surfaces. The CNN model developed in this study was compared with other works in the literature, showing that the CNN model could improve the accuracy of image classification, in comparison with previously published results. Finally, in further work, such model could be combined with Unmanned Aerial Vehicles (UAVs) to increase the productivity of concrete infrastructure inspection.
Audience Academic
Author Le, Tien-Thinh
Le, Minh Vuong
Nguyen, Van-Hai
Author_xml – sequence: 1
  givenname: Tien-Thinh
  orcidid: 0000-0002-1603-5000
  surname: Le
  fullname: Le, Tien-Thinh
  organization: Faculty of Mechanical Engineering and MechatronicsPhenikaa UniversityYen Nghia, Ha DongHanoi 12116Vietnamphenikaa-uni.edu
– sequence: 2
  givenname: Van-Hai
  surname: Nguyen
  fullname: Nguyen, Van-Hai
  organization: Faculty of Mechanical Engineering and MechatronicsPhenikaa UniversityYen Nghia, Ha DongHanoi 12116Vietnamphenikaa-uni.edu
– sequence: 3
  givenname: Minh Vuong
  surname: Le
  fullname: Le, Minh Vuong
  organization: Faculty of EngineeringVietnam National University of AgricultureGia LamHanoi 100000Vietnamvnua.edu.vn
BookMark eNqNkltvVCEUhU9MTay1b_4AEh91WuBwfWym9pKMMVH7TDiwmVLPwAhnbPz3Mp3WW7QxPAA731qQvdfzbi_lBF33kuAjQjg_ppiSY6W44ow_6faJUHKmZU_3fpwpe9Yd1hoHjHuMmVRqv7s6ha8w5vUK0oRyQKcAa7QAW1JMS_QuexhRyAVN14A-gMvLFKeY0xadF-s-V9Qu85xcgQnQx00J1kF90T0NdqxweL8fdFdnbz_NL2aL9-eX85PFzPFeTjM_aKwEBOl4AA1AlHdyGBhwyXtrtdRgRRh67wVQkMCGwWkpuQQMA1WhP-gud74-2xuzLnFlyzeTbTR3hVyWxpYpuhEM0UIqSgaqATNLqdWEAaXKa491wKp5vdp5rUv-soE6mZu8Kal931COFRVcMv2TWtpmGlPIU2vDKlZnToQWuidEiscpxSjXlPWNOvoL1ZaHVXRtuiG2-m-2_yf45QW6E7iSay0QjIuT3Q6wCeNoCDbb7Jhtdsx9dprozR-ih8b-A3-9w69j8vY2Pk5_B-I9zzQ
CitedBy_id crossref_primary_10_1108_IJSI_08_2023_0082
crossref_primary_10_1109_ACCESS_2025_3585771
crossref_primary_10_1007_s00138_022_01327_5
crossref_primary_10_31127_tuje_1581564
crossref_primary_10_1108_CI_09_2021_0171
crossref_primary_10_1155_2021_6815802
crossref_primary_10_3233_JIFS_201628
crossref_primary_10_1109_ACCESS_2023_3324673
crossref_primary_10_1080_10910344_2023_2235610
crossref_primary_10_1155_2022_5406570
crossref_primary_10_1016_j_eswa_2025_129715
crossref_primary_10_1155_2022_9193511
crossref_primary_10_1111_mice_12932
crossref_primary_10_1108_IJBPA_12_2022_0186
crossref_primary_10_1108_IJBPA_06_2024_0128
crossref_primary_10_1155_2021_5551555
crossref_primary_10_1080_10298436_2025_2559863
crossref_primary_10_1080_15376494_2021_1969709
crossref_primary_10_1007_s11831_025_10284_x
crossref_primary_10_32604_cmes_2022_020160
Cites_doi 10.1016/j.conbuildmat.2019.01.091
10.1016/j.ijpvp.2021.104368
10.1080/15376494.2020.1839608
10.3390/s20061650
10.3390/infrastructures4020019
10.1016/s0378-4754(01)00295-6
10.1016/j.jsv.2004.08.040
10.1016/j.conbuildmat.2019.04.227
10.1016/0022-460x(90)90540-g
10.1016/j.commatsci.2020.109987
10.1016/j.imavis.2016.11.018
10.1016/j.istruc.2020.09.013
10.1061/(ASCE)CP.1943-5487.0000781
10.1617/s11527-021-01646-5
10.1016/j.measurement.2020.107651
10.1016/j.autcon.2018.07.008
10.1155/2018/6290498
10.1016/j.autcon.2018.11.028
10.1016/j.matpr.2020.01.435
10.1109/JAS.2020.1003387
10.1016/j.ymssp.2008.08.003
10.1016/j.measurement.2021.109198
10.1016/j.ifacol.2015.08.101
10.1016/j.egypro.2018.10.082
10.1177/0021998320953540
10.3390/app9142867
10.1016/j.neunet.2020.01.018
10.1201/b19381
10.1109/tits.2012.2208630
10.1155/2020/8832522
10.1016/j.autcon.2019.102946
10.1111/mice.12297
10.1002/nme.1975
10.1016/j.mechmat.2020.103608
10.3390/s20020328
10.1016/s0893-6080(98)00116-6
10.1155/2019/8796743
10.1016/j.conbuildmat.2018.08.011
10.1155/2020/8855069
10.1016/j.conbuildmat.2017.08.051
10.3390/s20051465
10.1109/tpami.2010.161
ContentType Journal Article
Copyright Copyright © 2021 Tien-Thinh Le et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Tien-Thinh Le et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Tien-Thinh Le et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Tien-Thinh Le et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/8858545
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Middle East & Africa Database (ProQuest)
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1687-9732
Editor Morabito, Francesco Carlo
Editor_xml – sequence: 1
  givenname: Francesco Carlo
  surname: Morabito
  fullname: Morabito, Francesco Carlo
EndPage 10
ExternalDocumentID oai_doaj_org_article_1967821b29e04a22a914e228d9d09f08
A696931176
A684259243
10_1155_2021_8858545
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 3V.
4.4
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABUWG
ACIPV
ADBBV
ADDVE
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CWDGH
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RHX
RNS
TR2
0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c537t-db9086ef7c5fe9ee18dc7bb4e5753aa979ea6fb3dd6e2e7e4bbc97757e0eb28f3
IEDL.DBID P5Z
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637408400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-9724
IngestDate Fri Oct 03 12:31:24 EDT 2025
Fri Jul 25 21:01:32 EDT 2025
Wed Oct 16 18:06:32 EDT 2024
Wed Oct 16 18:04:11 EDT 2024
Tue Oct 15 04:47:33 EDT 2024
Tue Oct 15 04:48:00 EDT 2024
Tue Nov 18 20:38:39 EST 2025
Sat Nov 29 03:05:37 EST 2025
Sun Jun 02 19:17:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-db9086ef7c5fe9ee18dc7bb4e5753aa979ea6fb3dd6e2e7e4bbc97757e0eb28f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1603-5000
OpenAccessLink https://www.proquest.com/docview/2508265749?pq-origsite=%requestingapplication%
PQID 2508265749
PQPubID 237331
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1967821b29e04a22a914e228d9d09f08
proquest_journals_2508265749
gale_infotracmisc_A696931176
gale_infotracmisc_A684259243
gale_infotracacademiconefile_A696931176
gale_infotracacademiconefile_A684259243
crossref_citationtrail_10_1155_2021_8858545
crossref_primary_10_1155_2021_8858545
hindawi_primary_10_1155_2021_8858545
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Computational Intelligence and Soft Computing
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 44
45
46
47
49
T. A. Carr (27)
H. Nahvi (9) 2002; 38
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
J. Camilo (38) 2018
G. Shengqi (51) 2020; 8
7
The MathWorks (48) 2018
ÇF. Özgenel (34) 2018
20
21
22
23
24
25
26
28
A. Gönenç-Sorguç (29)
D. V. Hemelrijck (8)
X. Xi (1) 2017; 155
C. Ieracitano (50) 2021; 8
30
31
32
33
36
39
L. Zhang (35)
M. Teichmann (37)
40
41
42
43
References_xml – ident: 3
  doi: 10.1016/j.conbuildmat.2019.01.091
– ident: 2
  doi: 10.1016/j.ijpvp.2021.104368
– volume: 8
  year: 2020
  ident: 51
  article-title: A steel surface defect recognition algorithm based on improved deep learning network model using feature visualization and quality evaluation
  publication-title: IEEE Access
– ident: 7
  doi: 10.1080/15376494.2020.1839608
– ident: 45
  doi: 10.3390/s20061650
– start-page: 1
  ident: 27
  article-title: Road crack detection using a single stage detector based deep neural network
– ident: 30
  doi: 10.3390/infrastructures4020019
– ident: 17
  doi: 10.1016/s0378-4754(01)00295-6
– ident: 10
  doi: 10.1016/j.jsv.2004.08.040
– ident: 39
  doi: 10.1016/j.conbuildmat.2019.04.227
– year: 2018
  ident: 38
  article-title: Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery
– ident: 11
  doi: 10.1016/0022-460x(90)90540-g
– ident: 12
  doi: 10.1016/j.commatsci.2020.109987
– ident: 19
  doi: 10.1016/j.imavis.2016.11.018
– ident: 6
  doi: 10.1016/j.istruc.2020.09.013
– ident: 24
  doi: 10.1061/(ASCE)CP.1943-5487.0000781
– start-page: 3708
  ident: 35
  article-title: Road crack detection using deep convolutional neural network
– ident: 33
  doi: 10.1617/s11527-021-01646-5
– ident: 5
  doi: 10.1016/j.measurement.2020.107651
– ident: 26
  doi: 10.1016/j.autcon.2018.07.008
– year: 2018
  ident: 34
  article-title: Concrete crack images for classification
– ident: 18
  doi: 10.1155/2018/6290498
– ident: 28
  doi: 10.1016/j.autcon.2018.11.028
– ident: 4
  doi: 10.1016/j.matpr.2020.01.435
– volume: 8
  start-page: 64
  issue: 1
  year: 2021
  ident: 50
  article-title: A novel automatic classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2020.1003387
– ident: 13
  doi: 10.1016/j.ymssp.2008.08.003
– ident: 20
  doi: 10.1016/j.measurement.2021.109198
– ident: 31
  doi: 10.1016/j.ifacol.2015.08.101
– ident: 32
  doi: 10.1016/j.egypro.2018.10.082
– ident: 43
  doi: 10.1177/0021998320953540
– ident: 25
  doi: 10.3390/app9142867
– start-page: 1013
  ident: 37
  article-title: MultiNet: real-time joint semantic reasoning for autonomous driving
– ident: 40
  doi: 10.1016/j.neunet.2020.01.018
– ident: 8
  article-title: Emerging technologies in non-destructive testing VI
  doi: 10.1201/b19381
– ident: 22
  doi: 10.1109/tits.2012.2208630
– volume: 38
  start-page: 537
  year: 2002
  ident: 9
  article-title: Crack detection in beams using experimental modal data and finite element model
  publication-title: International Journal of Mechanical Sciences
– ident: 14
  doi: 10.1155/2020/8832522
– volume-title: MATLAB
  year: 2018
  ident: 48
– ident: 29
  article-title: Ozgenel cf performance comparison of pretrained convolutional neural networks on crack detection in buildings
– ident: 44
  doi: 10.1016/j.autcon.2019.102946
– ident: 49
  doi: 10.1111/mice.12297
– ident: 21
  doi: 10.1002/nme.1975
– ident: 15
  doi: 10.1016/j.mechmat.2020.103608
– ident: 41
  doi: 10.3390/s20020328
– ident: 47
  doi: 10.1016/s0893-6080(98)00116-6
– ident: 23
  doi: 10.1155/2019/8796743
– ident: 46
  doi: 10.1016/j.conbuildmat.2018.08.011
– ident: 16
  doi: 10.1155/2020/8855069
– volume: 155
  start-page: 114
  year: 2017
  ident: 1
  article-title: Time to surface cracking and crack width of reinforced concrete structures under corrosion of multiple rebars
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.08.051
– ident: 42
  doi: 10.3390/s20051465
– ident: 36
  doi: 10.1109/tpami.2010.161
SSID ssib003004788
ssj0000395709
ssib044730003
Score 2.3724086
Snippet This paper is devoted to the development of a deep learning- (DL-) based model to detect crack fractures on concrete surfaces. The developed model for the...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Asphalt pavements
Cable television broadcasting industry
Concrete
Cracks
Datasets
Deep learning
Drone aircraft
Error analysis
Finite element analysis
Fractures
Image classification
Infrastructure
Inspection
Machine learning
Model accuracy
Neural networks
Recall
Repair & maintenance
Surface finish
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXRHmIhQX5UAQIrRrHr_hYFioOqEJAUW9WbE-gUpWtdrfw95lxvEsqQHvhmGTy8HjGni8z_szYgQKNQa0mBoAQZyolTT4nZymAqatQJ5HTBV8_2JOT5uzMfRxt9UU1YQM98KC4Q7QQnMREqB1Uqq3r1gkFdd0klyrXDct8K-tGYGqw3GrMC68U0bKXfGMeoyk9les_hEEvc7ZWm6p4remHgDhsKGNGq5xG81Wm9d8O3re-E2z-ef7HMJ7npuO77E4JKvnR0Jh9dgP6e2y_uO2Kvyzc0q_us9NRkRBfdPwtwCUvHKvfOG2MdsExjOUYFvJPm9qiRU-i8yUtx-d4MF_0GGuugX--WnZU0vWAnR6_-zJ_Pys7K8yilnaNPeEQykBnc60ZgGhStCFgxyF6aVtnHbSmCzIlAzVYUCFEDBS1hQqReNPJh2yvX_TwiHHdGFPFVkobDIKf6MCmFKMTMlQuOTFhrzf687HQjtPuFxc-ww-tPWnbF21P2POt9OVAt_EPuTfUFVsZIsnOJ9B0fDEdv8t0JuwFdaQnV8ZPim1ZkYANI1Isf5RzlAhQ5W5JZ5wUwpoJm16TRGeN1x7018u_7z4oNrWj9dONwfky5Kw8xrIIFbVV7vH_UM4TdpteOfxtmrK99fIKnrKb8cf6fLV8lr3tF5POIcs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoBRIXRHmI0IB8KAKEItav9fpYAlUPqEJAUW7W2p6FStWmStLy95lxnJBQULmtd2et9WPG8-2MPzN2oMGgU2uIASDEkU7JkM6pUQpQyyrIJHK44NtHe3LSTCbuUyFJml8P4eNqR_BcvG0ofqXNDtvBCwLlx5ONaVptksBrTRzsJbiYDTLFonKyh6hRpZyVepUC_0f1W4tT5vBfW-o7Pwgj_zy7ZrPzQnR0n90rHiQ_XA75HrsF_QO2V3R0zl8VIunXD9npRkYQn3b8PcAFL4Sq3zmdgnbO0Wfl6APyz6tEomlPouMZ7b3nWBhPe3QsF8C_XM46yt96xE6PPnwdH4_KMQqjaJRdYLc7xC3Q2ZxYBiCaFG0IOEoIVdrWWQdt3QWVUg0SLOgQInqFxkKFsLvp1GO22097eMK4aeq6iq1SNtSIdKIDm1KMTqhQueTEgL1Z9Z-PhWOcjro49xlrGOOpt33p7QF7sZa-WHJr_EPuHQ3FWoYYsfMNnCW-KJhHS4LOjgjSQaVbKVsnNEjZJJcq11XNgL2kgfSkt_hJsS3bD7BhxIDlD3NAEtGoulnS1U4JYesBG25JombGrYr--vj32wdlTt3Q-uFqwvliX-YeHVfEhcZq9_T_atlnd6m4_Hk0ZLuL2SU8Y7fj1eJsPnue9ekX_VUQfg
  priority: 102
  providerName: Hindawi Publishing
Title Development of Deep Learning Model for the Recognition of Cracks on Concrete Surfaces
URI https://dx.doi.org/10.1155/2021/8858545
https://www.proquest.com/docview/2508265749
https://doaj.org/article/1967821b29e04a22a914e228d9d09f08
Volume 2021
WOSCitedRecordID wos000637408400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044730003
  issn: 1687-9724
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: CWDGH
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkLUB5iYVn5UAQIRc3LcXxC7bJVEXQVLRQtXKz4kbZSlWyzW7jx25nxOtutePTAJVLiSRRrHp7xjL8hZDu1DJxahggASgepMQx1LgmMslkcqthELl3w5SMfj_PpVBR-w23uyyo7m-gMtWk07pHvwFINnjDjqXg7Ow-waxRmV30LjZtkE1ESsHVDwb6tyW-4jg6fpgjO7rOOzlJjkspVgUQZ6JrgcdrVxjOG2wLRTo55MzzrtLZqOXD_lQm_fYLB84_T34y5W6H27_3v3O6Tu943pbtLYdoiN2z9gGx57Z_TVx6i-vVDcrRWa0Sbir6zdkY9VOsxxf5qZxS8YQreJZ10JUpNjaTDFk_1U7gZNjW4rAtLP120FVaGPSJH-6PPw4PAN2gINEv4AhgqICKyFXcla9ZGudFcKeA_BEFlKbiwZVapxJjMxpbbVCkN_ibjNoSAPq-Sx2Sjbmr7hFCWZ1moyyThKoMYSgvLjdFaRIkKhRFRj7zpGCC1Ry_HJhpn0kUxjElkl_Ts6pEXK-rZErXjL3R7yMsVDWJtuwdNeyy96kqwUeBGRSoWNkzLOC5FlNo4zo0woajCvEdeoiRItAjwS7r0BxtgYoitJXddqhPi3OR6SpGJJIp41iP9K5Sg8_rKh_44fPn2thfKa2bf78RRess1l5ey-PTfw8_IHfzYcjuqTzYW7YV9Tm7p74vTeTsgm3ujcTEZuD0OuH7gAVwPf44GTkVhvHh_WHyFu8nB9Bcekji4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcEFKA91YQEfWgFCURMnjuMDQmVL1WqXFYIW9WbiR9pKVbLsbqn4U_xGZrzOdisePfXAMcnEspN5fOMZzxCyljkOoJZjBQBtosxajjKXRla7nMWa2cSHC74MxHBYHBzIj0vkZ3sWBtMqW53oFbVtDO6Rb4CpBiTMRSbfjr5F2DUKo6ttC40ZW_TdjzNw2SZvdrfg_64ztv1-r7cTha4CkeGpmMIsJMB4VwmfZ-VcUlgjtIZJA3IvSymkK_NKp9bmjjnhMq0NgCQuXAxeaFGlMO41cj1LC4Fy1RfRgrzEi9XoswyLwYcop7cMGBTzWSdJDrItBcvaXHzOcRsi2SgwTodnqxaspG8mMDcZN4_QWT87_s14eIu4ffd_-5b3yJ2AvenmTFhWyJKr75OVoN0m9GUowf3qAdlfyKWiTUW3nBvRUIr2kGL_uBMKaJ8Ceqaf2hSspkbS3hirFlC46DU1QPKpo59PxxVmvj0k-1eyvEdkuW5qt0ooL_I8NmWaCp2Dj2ikE9YaI5NUx9LKpENetz9cmVCdHZuEnCjvpXGukD1UYI8OWZ9Tj2ZVSf5C9w55Z06DtcT9jWZ8qIJqUqCDASYmmkkXZyVjpUwyx1hhpY1lFRcd8gI5T6HGgymZMhzcgIVh7TC16UO54Menl1PKXKZJIvIO6V6gBJ1mLgz0x8fnb68FIbhk9d2W_VXQzBN1zvuP__34Obm1s_dhoAa7w_4TchsHnm29dcnydHzqnpIb5vv0eDJ-5pUAJV-vWlJ-AZh4krM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGgIkXYFxEoYAfNgFCVRMnjuMHhEZLxbSpqoChaS8mvmSbNCWl7Zj4a_w6znGdrhOXPe2BxyQnVhyfq8_xdwjZSB0Hp5YjAoA2ndRajjKXdKx2GYs0s7FPF3zZFcNhvr8vRyvkZ3MWBssqG53oFbWtDe6Rd8FUgyfMRSq7ZSiLGPUHb8ffOthBCjOtTTuNOYvsuB9nEL5N32z3Ya03GRu8_9z70AkdBjqGJ2IGXyTBpXel8DVXzsW5NUJrmAB48UUhhXRFVurE2swxJ1yqtQGHiQsXQUSalwmMe41cFxBjYjnhiB8syU60jEyfpggMHzKe3kpggsxXoMQZyLkULG3q8jnHLYm4m2PODs9ZLVlM31hgYT5uHmHgfnb8myHx1nFw53_-r3fJ7eCT0625EK2TFVfdI-tB603pywDN_eo-2VuqsaJ1SfvOjWmAqD2k2FfuhEIUQMGrph-b0qy6QtLeBNEMKFz06gpc9Zmjn04nJVbEPSB7VzK9h2S1qiv3iFCeZ1lkiiQROoPY0UgnrDVGxomOpJVxi7xuFl-ZgNqOzUNOlI_eOFfIKiqwSotsLqjHc7SSv9C9Qz5a0CDGuL9RTw5VUFkKdDO4j7Fm0kVpwVgh49QxlltpI1lGeYu8QC5UqAnhk0wRDnTAxBBTTG35FC_E98nllDKTSRyLrEXaFyhB15kLA_3x8fnbG0EgLpl9uxEFFTT2VJ3LweN_P35O1kBA1O72cOcJuYXjznfk2mR1Njl1T8kN8312PJ088_qAkq9XLSi_AIR5m9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Deep+Learning+Model+for+the+Recognition+of+Cracks+on+Concrete+Surfaces&rft.jtitle=Applied+computational+intelligence+and+soft+computing&rft.au=Tien-Thinh+Le&rft.au=Van-Hai%2C+Nguyen&rft.au=Minh+Vuong+Le&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-9724&rft.eissn=1687-9732&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8858545&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9724&client=summon