Improved Small Object Detection Algorithm CRL-YOLOv5

Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved smal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 24; číslo 19; s. 6437
Hlavní autoři: Wang, Zhiyuan, Men, Shujun, Bai, Yuntian, Yuan, Yutong, Wang, Jiamin, Wang, Kanglei, Zhang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.10.2024
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model’s receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images.
AbstractList Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model's receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images.
Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model's receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images.Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model's receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images.
Audience Academic
Author Wang, Jiamin
Wang, Kanglei
Bai, Yuntian
Men, Shujun
Wang, Zhiyuan
Yuan, Yutong
Zhang, Lei
AuthorAffiliation 2 Silesian College of Intelligent Science and Engineering, Yanshan University, Qinhuangdao 066004, China; baiyuntian186@stumail.ysu.edu.cn
1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; zhiyuanwang@stumail.ysu.edu.cn (Z.W.); menshujun@stumail.ysu.edu.cn (S.M.); ysuyyt@stumail.ysu.edu.cn (Y.Y.); wjm@stumail.ysu.edu.cn (J.W.); wangkl@stumail.ysu.edu.cn (K.W.)
AuthorAffiliation_xml – name: 1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; zhiyuanwang@stumail.ysu.edu.cn (Z.W.); menshujun@stumail.ysu.edu.cn (S.M.); ysuyyt@stumail.ysu.edu.cn (Y.Y.); wjm@stumail.ysu.edu.cn (J.W.); wangkl@stumail.ysu.edu.cn (K.W.)
– name: 2 Silesian College of Intelligent Science and Engineering, Yanshan University, Qinhuangdao 066004, China; baiyuntian186@stumail.ysu.edu.cn
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Wang
  fullname: Wang, Zhiyuan
– sequence: 2
  givenname: Shujun
  surname: Men
  fullname: Men, Shujun
– sequence: 3
  givenname: Yuntian
  surname: Bai
  fullname: Bai, Yuntian
– sequence: 4
  givenname: Yutong
  surname: Yuan
  fullname: Yuan, Yutong
– sequence: 5
  givenname: Jiamin
  surname: Wang
  fullname: Wang, Jiamin
– sequence: 6
  givenname: Kanglei
  surname: Wang
  fullname: Wang, Kanglei
– sequence: 7
  givenname: Lei
  orcidid: 0000-0003-1160-3133
  surname: Zhang
  fullname: Zhang, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39409477$$D View this record in MEDLINE/PubMed
BookMark eNptkk2L2zAQhkXZ0v1oD_0DxdDL9uBdSSNb1qmE9CsQCPTj0JMYyXJWwbZS2Qn031dutulmWXQYMXrmlUbzXpKzPvSOkNeM3gAoejtwwVQpQD4jF0xwkVec07MH-3NyOQwbSjkAVC_IOShBlZDygohFt41h7-rsW4dtm63Mxtkx--DGFHzos1m7DtGPd102_7rMf66Wq33xkjxvsB3cq_t4RX58-vh9_iVfrj4v5rNlbguQY27BFcoy4yhYKpFXjSgtoEAqsJK0RsCGU86gMo0srCgLzp0pikKZ2tAC4YosDrp1wI3eRt9h_K0Dev03EeJaYxy9bZ221InKqJqDcYIioqlBVKrC2ljV8Enr_UFruzOdq63rx4jtiejpSe_v9DrsNWNCKmCQFK7vFWL4tXPDqDs_WNe22LuwGzQwJqmUTLCEvn2EbsIu9umvJqosFZNK_afWmDrwfRPSxXYS1bOKgUwTpSJRN09QadWu8zYZofEpf1Lw5mGnxxb_DT0B7w6AjWEYomuOCKN6MpQ-Giqxt49Y60ecnJFe4dsnKv4AlMHIew
CitedBy_id crossref_primary_10_1007_s10044_025_01471_4
crossref_primary_10_17492_computology_v4i2_2402
crossref_primary_10_1038_s41598_025_02194_6
Cites_doi 10.1007/978-3-319-46448-0_2
10.1007/978-3-030-01252-6_24
10.1109/CVPR52729.2023.00721
10.1016/j.patrec.2023.03.009
10.1109/ICCV.2015.169
10.1109/ICCV.2017.322
10.3390/s22093467
10.1109/CVPR.2018.00913
10.3390/rs15051249
10.1109/ICCVW54120.2021.00312
10.3390/app11167657
10.1016/j.engappai.2022.104914
10.1007/978-3-030-01234-2_1
10.3390/rs13234851
10.3390/rs14195063
10.1109/CVPR.2017.690
10.1016/j.jvcir.2023.103752
10.1007/s00521-022-08077-5
10.1109/CVPR.2014.81
10.1109/TPAMI.2016.2577031
10.1109/JSTARS.2022.3206399
10.3390/electronics12040817
10.1109/CVPR.2016.91
10.1109/CVPR.2017.106
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24196437
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c0e48b9d23be40aaabd34898adbc9f2a
PMC11479313
A813764304
39409477
10_3390_s24196437
Genre Journal Article
GrantInformation_xml – fundername: Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)
  grantid: IPOC2021B06
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c537t-c3e59c1be03c07a28f46c3a4a04a870da3af202138bf75c46522eb5559bdb05a3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332880800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:19 EDT 2025
Tue Nov 04 02:05:04 EST 2025
Wed Oct 01 14:09:22 EDT 2025
Tue Oct 07 07:20:37 EDT 2025
Tue Nov 11 10:55:05 EST 2025
Tue Nov 04 18:18:34 EST 2025
Mon Jul 21 06:04:32 EDT 2025
Sat Nov 29 07:15:03 EST 2025
Tue Nov 18 21:26:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords small object detection
spatial resolution
YOLOv5
contextual information
attention mechanisms
digital images
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-c3e59c1be03c07a28f46c3a4a04a870da3af202138bf75c46522eb5559bdb05a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1160-3133
OpenAccessLink https://doaj.org/article/c0e48b9d23be40aaabd34898adbc9f2a
PMID 39409477
PQID 3116691799
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c0e48b9d23be40aaabd34898adbc9f2a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11479313
proquest_miscellaneous_3117077141
proquest_journals_3116691799
gale_infotracmisc_A813764304
gale_infotracacademiconefile_A813764304
pubmed_primary_39409477
crossref_primary_10_3390_s24196437
crossref_citationtrail_10_3390_s24196437
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_12
ref_11
ref_10
Liu (ref_18) 2022; 15
Mahaur (ref_13) 2023; 168
Dong (ref_16) 2022; 113
ref_19
Jia (ref_1) 2024; 60
Wang (ref_17) 2023; 35
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_3
Ren (ref_4) 2016; 39
ref_2
ref_28
ref_27
ref_26
ref_9
ref_8
Wang (ref_15) 2023; 90
ref_5
ref_7
ref_6
References_xml – ident: ref_9
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_20
  doi: 10.1007/978-3-030-01252-6_24
– ident: ref_28
  doi: 10.1109/CVPR52729.2023.00721
– volume: 168
  start-page: 115
  year: 2023
  ident: ref_13
  article-title: Small-object detection based on YOLOv5 in autonomous driving systems
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2023.03.009
– ident: ref_3
  doi: 10.1109/ICCV.2015.169
– ident: ref_5
  doi: 10.1109/ICCV.2017.322
– ident: ref_14
  doi: 10.3390/s22093467
– ident: ref_22
  doi: 10.1109/CVPR.2018.00913
– ident: ref_11
  doi: 10.3390/rs15051249
– ident: ref_26
  doi: 10.1109/ICCVW54120.2021.00312
– ident: ref_23
  doi: 10.3390/app11167657
– volume: 113
  start-page: 104914
  year: 2022
  ident: ref_16
  article-title: A lightweight vehicles detection network model based on YOLOv5
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104914
– ident: ref_19
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_12
  doi: 10.3390/rs13234851
– volume: 60
  start-page: 68
  year: 2024
  ident: ref_1
  article-title: Small Object Detection Algorithm Based on ATO-YOLO
  publication-title: J. Comput. Eng.
– ident: ref_24
  doi: 10.3390/rs14195063
– ident: ref_8
– ident: ref_7
  doi: 10.1109/CVPR.2017.690
– volume: 90
  start-page: 103752
  year: 2023
  ident: ref_15
  article-title: FE-YOLOv5: Feature enhancement network based on YOLOv5 for small object detection
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2023.103752
– ident: ref_25
– volume: 35
  start-page: 7853
  year: 2023
  ident: ref_17
  article-title: Improved YOLOv5 network for real-time multi-scale traffic sign detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-08077-5
– ident: ref_27
– ident: ref_2
  doi: 10.1109/CVPR.2014.81
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_4
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 15
  start-page: 8085
  year: 2022
  ident: ref_18
  article-title: YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3206399
– ident: ref_10
  doi: 10.3390/electronics12040817
– ident: ref_6
  doi: 10.1109/CVPR.2016.91
– ident: ref_21
  doi: 10.1109/CVPR.2017.106
SSID ssj0023338
Score 2.4966612
Snippet Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6437
SubjectTerms Accuracy
Algorithms
attention mechanisms
contextual information
digital images
Medical imaging equipment
Remote sensing
Semantics
small object detection
spatial resolution
Telecommunication systems
Telematics
YOLOv5
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3o9AQQEhwSWqEztr-4SWQsWh6iIe0nKKxo-0lbbZspv29zNOvOlGIC5c40nkybw8k8k3AG-4wToXDrPaC5-JkmOmuMUsR2kFmkKjY92wCXl0pOZz_SUW3NaxrXLjEztH7ZY21Mj3eJ5PJjrgl70__5WFqVHh62ocoXEdboSx2UHP5fwq4eKUf_VoQpxS-701RasAPyVHMaiD6v_TIW9FpHG35Fb4Obj7vxu_B3fiwTOd9ppyH6755gHc3oIjfAiirzB4l347w8UinZlQpEk_-rbr12rS6eKYntyenKX7Xw-zn7PD2WX5CH4cfPq-_zmLUxUyW3LZZpb7UtvceMYtk1ioWkwsR4FMIBmvQ451QZGfK1PL0ooJndC8KSnzMM6wEvlj2GmWjX8KKZNGI2XjzDqyfcYMOmLTFpTcGkXnogTebd5zZSPkeJh8sago9QgiqQaRJPB6ID3vcTb-RvQhCGsgCNDY3YXl6riKllZZ5oUy2tEevGCIaBwXSit0xuq6wATeBlFXwYBpMxbjfwjEUoDCqqYqJ6crOBMJ7I4oyfDseHkj8Coa_rq6knYCr4blcGdoZmv88qKjkUzKXOQJPOl1a2ApDKrXQhKraqR1I57HK83pSQcLTpktOducP_v3vp7DLRKv6BsSd2GnXV34F3DTXran69XLzoB-A4j8JFw
  priority: 102
  providerName: ProQuest
Title Improved Small Object Detection Algorithm CRL-YOLOv5
URI https://www.ncbi.nlm.nih.gov/pubmed/39409477
https://www.proquest.com/docview/3116691799
https://www.proquest.com/docview/3117077141
https://pubmed.ncbi.nlm.nih.gov/PMC11479313
https://doaj.org/article/c0e48b9d23be40aaabd34898adbc9f2a
Volume 24
WOSCitedRecordID wos001332880800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7B4AEeJn6OjFEFhAQv0ZzYqe3HbnQCaWurAVL3FJ0dh1XqUtRme-Rv55ykUSOQeOHFD_ZFsu98Pn_W5TuA99xgEYsco8IJF4mUY6S4xShGaQWaRGPO6mITcjJR87me7ZT68jlhDT1wo7hjy5xQRucJN04wRDQ5F0orzI3VRVJfjZjUWzDVQi1OyKvhEeIE6o83FKc88ZTsRZ-apP_Po3gnFvXzJHcCz9kT2G9vjOGomelTuOfKZ_B4h0fwOYjmacDl4dcbXC7DqfGvK-EnV9WJVmU4Wv5YrRfV9U14enkeXU3Pp3fpC_h-Nv52-jlqyyFENuWyiix3qbaxcYxbJjFRhRhajgKZQPK6HDkWCYVsrkwhUyuGdLVyJiXIYHLDUuQvYa9cle4VhEwajQSjmc3JaRkzmEutbUKo1Ci60ATwcaumzLZc4b5kxTIjzOA1mnUaDeBdJ_qzIcj4m9CJ13Un4Dmt6w6ydNZaOvuXpQP44C2Vec-jyVhsfyCgJXkOq2ykYjotBWcigKOeJHmM7Q9vbZ21HrvJeBwPh9rz4wXwthv2X_ostNKtbmsZyaSMRRzAQbM1uiX5CvNaSFqq6m2a3pr7I-XiuubzJkhKp2TMD_-Hll7DI9oEosk3PIK9an3r3sBDe1ctNusB3JdzWbdqAA9OxpPZ5aD2HGovfo2pb_blYnb1G1sZHnE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQICwSWqEzvr5IDQ0lK16rKLoJWWUxg_0lbaZstuWsSf4jcyzmO7EYhbD1zjSeSxP894nPE3AC-5wjwUBoPcChuImGOQcI1BiFILVFGKhlXFJuRwmIzH6acV-NXehXFpla1NrAy1mWp3Rr7Ow7DXSx1_2buT74GrGuX-rrYlNGpY7NqfPyhkm7_d2aT5fRVFWx_2NraDpqpAoGMuy0BzG6c6VJZxzSRGSS56mqNAJpDAa5BjHpHn44nKZaxFj3YoVsW081ZGsRg5ffcSXCY7Ll2wJ8fnAR6neK9mL-I8Zetz8o6O7kp2fF5VGuBPB7DkAbvZmUvubuvm_zZQt-BGs7H2-_VKuA0rtrgD15foFu-CqE9QrPG_HONk4o-UO4TyN21Z5aMVfn9yQJqUh8f-xudB8HU0GJ3F92D_Qrp9H1aLaWEfgs-kStEqzrQh28aYQkPDqiMK3lVC-z4P3rTzmumGUt1V9phkFFo5CGQLCHjwYiF6UvOI_E3ovQPHQsBRf1cPprODrLEkmWZWJCo11AcrGCIqw0WSJmiUTvMIPXjtoJU5A0Wd0djcsyCVHNVX1k9CciqCM-HBWkeSDIvuNrcAyxrDNs_O0eXB80Wze9Ml6xV2elrJSCZlKEIPHtRYXqjEU3egIEnVpIPyjs7dluLosKI9p8idnEnIH_27X8_g6vbex0E22BnuPoZrNNWiTr5cg9VydmqfwBV9Vh7NZ0-rxevDt4teBL8BrimBLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4E0xFDAIBBcra-86tg8IhYaIqCGJoEjtycw-3FZKnZKkRfw1fh2ztmNigbj1wNU7tna8385jPf4G4AWXmPlCo5cZYTwRcvRirtDzMVICZZCgZkWziWg0ig8OkskG_Fz9C2PLKlc2sTDUeqbsGXmb-36nk1j-snZWlUVMev23Z98820HKfmldtdMoIbJnfnyn9G3xZtCjtX4ZBP33-7sfvKrDgKdCHi09xU2YKF8axhWLMIgz0VEcBTKBBGSNHLOAvCCPZRaFSnQoWjEypChcaslC5PTcK7BJIbkIWrA5GXycHNbpHqfsr-Qy4jxh7QX5Skt-FTU8YNEo4E93sOYPm7Waa86vf_N_fm234EYVcrvdco_chg2T34Hra0SMd0GUZytGu59PcTp1x9IeT7k9sywq1XK3Oz0iTZbHp-7up6F3OB6OL8J78OVSpn0fWvksNw_AZZFM0EjOlCarx5hETa9YBZTWy5giQgder9Y4VRXZuu35MU0p6bJwSGs4OPC8Fj0rGUb-JvTOAqUWsKTgxYXZ_CitbEyqmBGxTDTNwQiGiFJzEScxaqmSLEAHXlmYpdZ00WQUVn9gkEqWBCztxj65G8GZcGCnIUkmRzWHV2BLK5O3SH8jzYFn9bC905bx5WZ2XshELIp84TuwXeK6Vokn9qghIlXjBuIbOjdH8pPjghCdcnpyMz5_-O95PYVrhP10OBjtPYItWmlRVmXuQGs5PzeP4aq6WJ4s5k-qnezC18veBb8AiDuLfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Small+Object+Detection+Algorithm+CRL-YOLOv5&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhiyuan+Wang&rft.au=Shujun+Men&rft.au=Yuntian+Bai&rft.au=Yutong+Yuan&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=19&rft.spage=6437&rft_id=info:doi/10.3390%2Fs24196437&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c0e48b9d23be40aaabd34898adbc9f2a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon