Improved Small Object Detection Algorithm CRL-YOLOv5
Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved smal...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 24; číslo 19; s. 6437 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.10.2024
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model’s receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images. |
|---|---|
| AbstractList | Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model's receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images. Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model's receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images.Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features, often leading to missed or false detections. To address these challenges and enhance detection accuracy, this paper presents an improved small object detection algorithm, CRL-YOLOv5. The proposed approach integrates the Convolutional Block Attention Module (CBAM) attention mechanism into the C3 module of the backbone network, which enhances the localization accuracy of small objects. Additionally, the Receptive Field Block (RFB) module is introduced to expand the model's receptive field, thereby fully leveraging contextual information. Furthermore, the network architecture is restructured to include an additional detection layer specifically for small objects, allowing for deeper feature extraction from shallow layers. When tested on the VisDrone2019 small object dataset, CRL-YOLOv5 achieved an mAP50 of 39.2%, representing a 5.4% improvement over the original YOLOv5, effectively boosting the detection precision for small objects in images. |
| Audience | Academic |
| Author | Wang, Jiamin Wang, Kanglei Bai, Yuntian Men, Shujun Wang, Zhiyuan Yuan, Yutong Zhang, Lei |
| AuthorAffiliation | 2 Silesian College of Intelligent Science and Engineering, Yanshan University, Qinhuangdao 066004, China; baiyuntian186@stumail.ysu.edu.cn 1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; zhiyuanwang@stumail.ysu.edu.cn (Z.W.); menshujun@stumail.ysu.edu.cn (S.M.); ysuyyt@stumail.ysu.edu.cn (Y.Y.); wjm@stumail.ysu.edu.cn (J.W.); wangkl@stumail.ysu.edu.cn (K.W.) |
| AuthorAffiliation_xml | – name: 1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; zhiyuanwang@stumail.ysu.edu.cn (Z.W.); menshujun@stumail.ysu.edu.cn (S.M.); ysuyyt@stumail.ysu.edu.cn (Y.Y.); wjm@stumail.ysu.edu.cn (J.W.); wangkl@stumail.ysu.edu.cn (K.W.) – name: 2 Silesian College of Intelligent Science and Engineering, Yanshan University, Qinhuangdao 066004, China; baiyuntian186@stumail.ysu.edu.cn |
| Author_xml | – sequence: 1 givenname: Zhiyuan surname: Wang fullname: Wang, Zhiyuan – sequence: 2 givenname: Shujun surname: Men fullname: Men, Shujun – sequence: 3 givenname: Yuntian surname: Bai fullname: Bai, Yuntian – sequence: 4 givenname: Yutong surname: Yuan fullname: Yuan, Yutong – sequence: 5 givenname: Jiamin surname: Wang fullname: Wang, Jiamin – sequence: 6 givenname: Kanglei surname: Wang fullname: Wang, Kanglei – sequence: 7 givenname: Lei orcidid: 0000-0003-1160-3133 surname: Zhang fullname: Zhang, Lei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39409477$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk2L2zAQhkXZ0v1oD_0DxdDL9uBdSSNb1qmE9CsQCPTj0JMYyXJWwbZS2Qn031dutulmWXQYMXrmlUbzXpKzPvSOkNeM3gAoejtwwVQpQD4jF0xwkVec07MH-3NyOQwbSjkAVC_IOShBlZDygohFt41h7-rsW4dtm63Mxtkx--DGFHzos1m7DtGPd102_7rMf66Wq33xkjxvsB3cq_t4RX58-vh9_iVfrj4v5rNlbguQY27BFcoy4yhYKpFXjSgtoEAqsJK0RsCGU86gMo0srCgLzp0pikKZ2tAC4YosDrp1wI3eRt9h_K0Dev03EeJaYxy9bZ221InKqJqDcYIioqlBVKrC2ljV8Enr_UFruzOdq63rx4jtiejpSe_v9DrsNWNCKmCQFK7vFWL4tXPDqDs_WNe22LuwGzQwJqmUTLCEvn2EbsIu9umvJqosFZNK_afWmDrwfRPSxXYS1bOKgUwTpSJRN09QadWu8zYZofEpf1Lw5mGnxxb_DT0B7w6AjWEYomuOCKN6MpQ-Giqxt49Y60ecnJFe4dsnKv4AlMHIew |
| CitedBy_id | crossref_primary_10_1007_s10044_025_01471_4 crossref_primary_10_17492_computology_v4i2_2402 crossref_primary_10_1038_s41598_025_02194_6 |
| Cites_doi | 10.1007/978-3-319-46448-0_2 10.1007/978-3-030-01252-6_24 10.1109/CVPR52729.2023.00721 10.1016/j.patrec.2023.03.009 10.1109/ICCV.2015.169 10.1109/ICCV.2017.322 10.3390/s22093467 10.1109/CVPR.2018.00913 10.3390/rs15051249 10.1109/ICCVW54120.2021.00312 10.3390/app11167657 10.1016/j.engappai.2022.104914 10.1007/978-3-030-01234-2_1 10.3390/rs13234851 10.3390/rs14195063 10.1109/CVPR.2017.690 10.1016/j.jvcir.2023.103752 10.1007/s00521-022-08077-5 10.1109/CVPR.2014.81 10.1109/TPAMI.2016.2577031 10.1109/JSTARS.2022.3206399 10.3390/electronics12040817 10.1109/CVPR.2016.91 10.1109/CVPR.2017.106 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24196437 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c0e48b9d23be40aaabd34898adbc9f2a PMC11479313 A813764304 39409477 10_3390_s24196437 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) grantid: IPOC2021B06 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c537t-c3e59c1be03c07a28f46c3a4a04a870da3af202138bf75c46522eb5559bdb05a3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332880800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:46:19 EDT 2025 Tue Nov 04 02:05:04 EST 2025 Wed Oct 01 14:09:22 EDT 2025 Tue Oct 07 07:20:37 EDT 2025 Tue Nov 11 10:55:05 EST 2025 Tue Nov 04 18:18:34 EST 2025 Mon Jul 21 06:04:32 EDT 2025 Sat Nov 29 07:15:03 EST 2025 Tue Nov 18 21:26:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | small object detection spatial resolution YOLOv5 contextual information attention mechanisms digital images |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-c3e59c1be03c07a28f46c3a4a04a870da3af202138bf75c46522eb5559bdb05a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1160-3133 |
| OpenAccessLink | https://www.proquest.com/docview/3116691799?pq-origsite=%requestingapplication% |
| PMID | 39409477 |
| PQID | 3116691799 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c0e48b9d23be40aaabd34898adbc9f2a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11479313 proquest_miscellaneous_3117077141 proquest_journals_3116691799 gale_infotracmisc_A813764304 gale_infotracacademiconefile_A813764304 pubmed_primary_39409477 crossref_primary_10_3390_s24196437 crossref_citationtrail_10_3390_s24196437 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 ref_12 ref_11 ref_10 Liu (ref_18) 2022; 15 Mahaur (ref_13) 2023; 168 Dong (ref_16) 2022; 113 ref_19 Jia (ref_1) 2024; 60 Wang (ref_17) 2023; 35 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_3 Ren (ref_4) 2016; 39 ref_2 ref_28 ref_27 ref_26 ref_9 ref_8 Wang (ref_15) 2023; 90 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_9 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_20 doi: 10.1007/978-3-030-01252-6_24 – ident: ref_28 doi: 10.1109/CVPR52729.2023.00721 – volume: 168 start-page: 115 year: 2023 ident: ref_13 article-title: Small-object detection based on YOLOv5 in autonomous driving systems publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2023.03.009 – ident: ref_3 doi: 10.1109/ICCV.2015.169 – ident: ref_5 doi: 10.1109/ICCV.2017.322 – ident: ref_14 doi: 10.3390/s22093467 – ident: ref_22 doi: 10.1109/CVPR.2018.00913 – ident: ref_11 doi: 10.3390/rs15051249 – ident: ref_26 doi: 10.1109/ICCVW54120.2021.00312 – ident: ref_23 doi: 10.3390/app11167657 – volume: 113 start-page: 104914 year: 2022 ident: ref_16 article-title: A lightweight vehicles detection network model based on YOLOv5 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104914 – ident: ref_19 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_12 doi: 10.3390/rs13234851 – volume: 60 start-page: 68 year: 2024 ident: ref_1 article-title: Small Object Detection Algorithm Based on ATO-YOLO publication-title: J. Comput. Eng. – ident: ref_24 doi: 10.3390/rs14195063 – ident: ref_8 – ident: ref_7 doi: 10.1109/CVPR.2017.690 – volume: 90 start-page: 103752 year: 2023 ident: ref_15 article-title: FE-YOLOv5: Feature enhancement network based on YOLOv5 for small object detection publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2023.103752 – ident: ref_25 – volume: 35 start-page: 7853 year: 2023 ident: ref_17 article-title: Improved YOLOv5 network for real-time multi-scale traffic sign detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-08077-5 – ident: ref_27 – ident: ref_2 doi: 10.1109/CVPR.2014.81 – volume: 39 start-page: 1137 year: 2016 ident: ref_4 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 15 start-page: 8085 year: 2022 ident: ref_18 article-title: YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3206399 – ident: ref_10 doi: 10.3390/electronics12040817 – ident: ref_6 doi: 10.1109/CVPR.2016.91 – ident: ref_21 doi: 10.1109/CVPR.2017.106 |
| SSID | ssj0023338 |
| Score | 2.4966612 |
| Snippet | Detecting small objects in images poses significant challenges due to their limited pixel representation and the difficulty in extracting sufficient features,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6437 |
| SubjectTerms | Accuracy Algorithms attention mechanisms contextual information digital images Medical imaging equipment Remote sensing Semantics small object detection spatial resolution Telecommunication systems Telematics YOLOv5 |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEG9CCwoICS5R7diJ7eNSqDisuoiXysmynQldaZtFu2l_f8dJNtoIJC5c40nkeXlmrMk3AG8K9KHOc5eJYEwmMfBMu4pnJZI1B08ZRId482Ouzs70-bn5vDfqK_aE9fDAveCOA0Opvaly4VEy55yvhNSGPuiDqfMuNWLK7IqpodQSVHn1OEKCivrjLcWpCDylJtGnA-n_8yjei0XTPsm9wHN6H-4NGWM663f6AG5h8xDu7uEIPgLZXw1glX69dKtVuvDxdiX9gG3XaNWks9Wv9WbZXlymJ1_m2c_FfHFdPIbvpx-_nXzKhnEIWSiEarMgsDCBe2QiMOVyXcsyCCcdk468rnLC1TmFbKF9rYogS0qt0BdUMvjKs8KJJ3DQrBt8BmldSI4CUWnU0qCj3NWHIKiWUzW5JSbwbicmGwas8DiyYmWpZogStaNEE3g9kv7uATL-RvQ-ynokiJjW3QPStB00bf-l6QTeRk3Z6Hm0meCGHwiIpYhhZWeak31JwWQCRxNK8pgwXd7p2g4eu7WC87I0ER8vgVfjcnwzdqE1uL7qaBRTikuewNPeNEaW4oR5IxWxqidGM-F5utIsLzo8bypJ6ZTk4vn_kNIh3CEjkH2_4REctJsrfAG3w3W73G5edl5yA2pHF_s priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved Small Object Detection Algorithm CRL-YOLOv5 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39409477 https://www.proquest.com/docview/3116691799 https://www.proquest.com/docview/3117077141 https://pubmed.ncbi.nlm.nih.gov/PMC11479313 https://doaj.org/article/c0e48b9d23be40aaabd34898adbc9f2a |
| Volume | 24 |
| WOSCitedRecordID | wos001332880800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BxgM8jG8IjCogJHiJFsdObD-hbnQCqWur8aHuKbIdZ5vUpVub7ZG_nbOTdo1AvPCSB_sS-XJ3Pt_l8juA96nVpkwSFVEjZcSsIZFQBYkyi9psNJ4gPOLNzyEfjcR0Kidtwm3ZllWu9kS_URdz43Lke5SQLJMOv-zT5VXkuka5r6ttC427sO3aZjs959PbgIti_NWgCVEM7feW6K0c_BTv-CAP1f_nhrzhkbrVkhvu5_Dh_y78Eey0B8-w32jKY7hjqyfwYAOO8CmwJsNgi_DbhZrNwrF2SZrws619vVYV9men-OT67CI8OB5GJ-Ph-CZ9Bj8OB98PvkRtV4XIpJTXkaE2lYZoG1MTc5WIkmWGKqZiptB4C0VVmaDnp0KXPDUswxOa1SlGHrrQcaroc9iq5pV9CWGZMmKptVxYwaRVeATWxlAMCXmJ1m0D-Lh6z7lpIcdd54tZjqGHE0m-FkkA79aklw3Oxt-I9p2w1gQOGtsPzBeneWtpuYktE1oWCdWWxUopXVAmJGqgNrJMVAAfnKhzZ8C4GKPa_xCQJQeFlfcFQTVlNGYB7HYo0fBMd3ol8Lw1_GV-K-0A3q6n3Z2umK2y82tPw2POCSMBvGh0a82Sa1QvGUdWRUfrOjx3Z6rzMw8LjpEtbraEvvr3ul7DfRQvawoSd2GrXlzbN3DP3NTny0XPG5C_ih5s7w9Gk-Oez1Pg9ejXAMcmX48mJ78BOH0qjA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBQwCwcWq7V1nvQeEQkvVqiZBUFA4md31uK2UOiVxi_hT_EZm_WosELceuGYn0U72m9d6_A3A8wi1ycNQecxI6XE0gRerLPAGSGg2mjKIivHmSyJGo3gykR9W4Ff7Loxtq2x9YuWos5mxd-TrLAgGA2n5y94cf_fs1Cj7dLUdoVHDYhd__qCSbfF6Z5PO90UYbr3b29j2mqkCnomYKD3DMJIm0Ogz4wsVxjkfGKa48rki8GaKqTykyMdinYvI8AFlKKgjyrx1pv1IMfrdC3CR_LiwxZ6YnBV4jOq9mr2IMemvLyg6Wror0Yt51WiAPwPAUgTsd2cuhbut6__bH3UDrjWJtTusLeEmrGBxC64u0S3eBl7foGDmfjpS06k71vYSyt3EsupHK9zhdJ80KQ-O3I2Pifd1nIxPozvw-Vy2fRdWi1mB98HNIx4gQxQxxlyiohRfG8Oo5BU5eS904FV7rqlpKNXtZI9pSqWVhUDaQcCBZ53occ0j8jehtxYcnYCl_q4-mM3308aTpMZHHmuZhUwj95VSOmM8lmRh2sg8VA68tNBKrYOizRjVvGdBKlmqr3QYB2SGnPncgbWeJDkW019uAZY2jm2RnqHLgafdsv2mbdYrcHZSyQhfiIAHDtyrsdypxKS9UBCkatxDeU_n_kpxeFDRnlPlTsEkYA_-va8ncHl7732SJjuj3YdwhY6a182Xa7Bazk_wEVwyp-XhYv64Ml4Xvp23EfwGiTaBBA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48C4YChgEgosV27vOeg8IhYaIqCGJeKk9ubvrcVspdUqSFvHX-HXM2o6JBeLWA9fsJNrJfvNaj78BeB6hNlkYKo8ZKT2OJvBilQZeBwnNRlMGUTDefB2K0Sje25OTDfi5ehfGtlWufGLhqNOZsXfkbRYEnY60_GXtrGqLmPT6b06_eXaClH3SuhqnUUJkF398p_Jt8XrQo7N-EYb9d5933nvVhAHPREwsPcMwkibQ6DPjCxXGGe8YprjyuSIgp4qpLKQoyGKdicjwDmUrqCPKwnWq_Ugx-t1LsEkpOQ9bsDkZfJjs1-Ueo-qv5DJiTPrtBcVKS34lGhGwGBTwZzhYi4fNXs214Ne_8T__bTfhepVyu93SRm7BBua34doaEeMd4OXdCqbupxM1nbpjba-n3B4ui0613O1OD0mT5dGJu_Nx6O2Ph-Pz6C58uZBtb0Ern-V4H9ws4gEyRBFjzCUqSv61MYyKYZGRX0MHXq3OODEV2bqd-TFNqOiycEhqODjwrBY9LRlG_ib01gKlFrCk4MUHs_lhUvmYxPjIYy3TkGnkvlJKp4zHkmxPG5mFyoGXFmaJdV20GaOqNzBIJUsClnTjgAyUM587sN2QJJdjmssrsCWVy1skv5HmwNN62X7TtvHlODsrZIQvRMADB-6VuK5VYtJeNQhSNW4gvqFzcyU_PioI0ammpzATsAf_3tcTuELYT4aD0e5DuEonzcuuzG1oLedn-Agum_Pl8WL-uLJkFw4u2gp-AVJci1M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Small+Object+Detection+Algorithm+CRL-YOLOv5&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Zhiyuan&rft.au=Men%2C+Shujun&rft.au=Bai%2C+Yuntian&rft.au=Yuan%2C+Yutong&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=19&rft_id=info:doi/10.3390%2Fs24196437&rft.externalDocID=A813764304 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |