Effect mechanism of ultrasound pretreatment on fibrillation Kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils
•Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size.•Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation.•Ultrasound can promote protein unfoldin...
Uloženo v:
| Vydáno v: | Ultrasonics sonochemistry Ročník 78; s. 105741 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.10.2021
Elsevier |
| Témata: | |
| ISSN: | 1350-4177, 1873-2828, 1873-2828 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size.•Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation.•Ultrasound can promote protein unfolding and exposing more binding sites.
Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN. |
|---|---|
| AbstractList | Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN. Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN. • Ultrasound can increase the formation rate of soy protein isolate nanofibrils. • Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size. • Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation. • Ultrasound can promote protein unfolding and exposing more binding sites. Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN. •Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size.•Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation.•Ultrasound can promote protein unfolding and exposing more binding sites. Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN. |
| ArticleNumber | 105741 |
| Author | Hu, Anna Li, Liang |
| Author_xml | – sequence: 1 givenname: Anna surname: Hu fullname: Hu, Anna – sequence: 2 givenname: Liang surname: Li fullname: Li, Liang email: liliangneau@163.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34537680$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1u1DAUhSPUiv7AK1ResmAG_ySxR0KIqipQtRIbWFuOc93xKLEH26k0j8ObcqfpIMqmqyTOPd-R7zln1VGIAarqgtElo6z9sFlOQ8kx2PWSU87wsJE1e1WdMiXFgiuujvBdNHRRMylPqrOcN5RSseL0dXUi6kbIVtHT6ve1c2ALGcGuTfB5JNERRCeT4xR6sk1QEpgyQigkBuJ8l_wwmOLx49YHKN7m92S73mVvo13D6K0ZUBa3kIqHTAxSckmTLVMCgi7J2ALJ571y75bjbj9fwAfic0Q2kGBCnK3ym-rYmSHD26fnefXzy_WPq2-Lu-9fb64u7xYW71IWhoJtlGJtyyXIXqhe1HQlnaFOmLZuqQXOOi5kY1bAuHPK8bZ2Tjawkg3vxXl1M3P7aDZ6m_xo0k5H4_XjQUz32uCN7ABamcb2slvJjrq6o8J0tWEC-h56ahqukPVpZm2nboTe4vKSGZ5Bn_8Jfq3v44NWddOoliHg3RMgxV8T5KJHny3g4gPEKWuOacsaM-Q4evGv11-TQ8Y48HEesCnmnMBp68tjgGjtB82o3ldKb_ShUnpfKT1XCuXtf_KDw4vCz7MQMLUHD0ln6yFY6H3CyuFa_UuIP6m98RQ |
| CitedBy_id | crossref_primary_10_1007_s11694_025_03479_0 crossref_primary_10_1016_j_foodhyd_2024_109906 crossref_primary_10_1016_j_foodhyd_2025_111826 crossref_primary_10_1016_j_rser_2025_116264 crossref_primary_10_1016_j_foodchem_2024_138469 crossref_primary_10_1016_j_ultsonch_2022_106258 crossref_primary_10_1016_j_ultsonch_2023_106538 crossref_primary_10_1016_j_foodhyd_2024_110655 crossref_primary_10_1002_jsf2_90 crossref_primary_10_1016_j_foodhyd_2024_110066 crossref_primary_10_1016_j_foodhyd_2023_109195 crossref_primary_10_1016_j_foodhyd_2025_111233 crossref_primary_10_1007_s11694_023_02322_8 crossref_primary_10_1016_j_foodchem_2025_143252 crossref_primary_10_1016_j_foodres_2025_117340 crossref_primary_10_1111_1541_4337_13161 crossref_primary_10_1021_acs_jafc_5c08596 crossref_primary_10_1016_j_ultsonch_2024_106847 crossref_primary_10_1016_j_foodhyd_2024_110127 crossref_primary_10_1016_j_foodhyd_2024_110531 crossref_primary_10_1016_j_foodhyd_2024_110575 crossref_primary_10_1016_j_foodhyd_2023_109521 crossref_primary_10_1111_jfpp_17259 crossref_primary_10_1002_fft2_220 crossref_primary_10_1016_j_foodhyd_2022_108057 crossref_primary_10_1016_j_foodhyd_2023_109520 crossref_primary_10_1016_j_foodchem_2024_142559 crossref_primary_10_1016_j_lwt_2023_115473 crossref_primary_10_1016_j_ifset_2024_103909 crossref_primary_10_3389_fnut_2023_1140737 crossref_primary_10_1016_j_ultsonch_2024_107172 crossref_primary_10_1021_acs_jafc_5c07627 crossref_primary_10_1016_j_ijbiomac_2023_127871 crossref_primary_10_1016_j_lwt_2024_116958 crossref_primary_10_1016_j_ijbiomac_2024_131578 crossref_primary_10_1016_j_foodchem_2023_138201 crossref_primary_10_1016_j_foodhyd_2024_111009 crossref_primary_10_1016_j_foodhyd_2024_110796 crossref_primary_10_1016_j_foodhyd_2024_110435 crossref_primary_10_1016_j_ultsonch_2022_106193 crossref_primary_10_1016_j_foodhyd_2024_110761 crossref_primary_10_1016_j_foodhyd_2023_109695 crossref_primary_10_1016_j_ultsonch_2023_106673 crossref_primary_10_1016_j_foodhyd_2025_111691 crossref_primary_10_3390_foods13142281 crossref_primary_10_1016_j_foodres_2022_111268 crossref_primary_10_1016_j_foodhyd_2024_109735 crossref_primary_10_1016_j_lwt_2024_117045 crossref_primary_10_1002_1873_3468_14755 crossref_primary_10_1016_j_foodhyd_2023_108769 crossref_primary_10_1002_app_55492 crossref_primary_10_1016_j_ultsonch_2024_106904 crossref_primary_10_1016_j_ultsonch_2023_106526 crossref_primary_10_1111_ijfs_17196 crossref_primary_10_1016_j_foodchem_2024_139687 crossref_primary_10_1016_j_ultsonch_2022_105976 crossref_primary_10_1016_j_foodhyd_2023_108492 crossref_primary_10_1016_j_ijbiomac_2025_139942 crossref_primary_10_1016_j_ifset_2024_103606 crossref_primary_10_1016_j_ultsonch_2024_107157 crossref_primary_10_1016_j_foodhyd_2024_110191 crossref_primary_10_1016_j_ijbiomac_2025_147128 |
| Cites_doi | 10.1016/j.ymeth.2004.03.012 10.1016/j.foodhyd.2020.105918 10.1016/j.foodhyd.2019.03.004 10.1016/j.lwt.2020.109563 10.1021/jf201870z 10.1007/s10068-016-0093-8 10.1016/j.indcrop.2012.08.005 10.1016/j.ultsonch.2018.08.020 10.1021/bm301481v 10.1016/j.foodchem.2018.03.115 10.1016/j.ultsonch.2016.08.008 10.1016/j.foodchem.2020.126499 10.1016/j.jmb.2011.07.069 10.1016/j.foodhyd.2014.11.004 10.1080/10942912.2017.1336720 10.1038/227680a0 10.1021/bm7014224 10.1016/j.foodhyd.2018.02.001 10.1016/j.foodhyd.2018.09.001 10.1021/bm060584i 10.1021/jf4055215 10.1016/j.ultsonch.2019.104908 10.1016/j.jsb.2004.08.002 10.1016/j.foodhyd.2019.105554 10.1021/jp111528c 10.1016/j.foodhyd.2020.105846 10.1016/j.jfoodeng.2011.08.018 10.1016/j.foodhyd.2018.11.032 10.1021/jf300367k 10.1016/j.tifs.2018.03.013 10.1016/j.jfoodeng.2017.10.020 10.1016/j.ijbiomac.2017.01.128 10.1016/j.ultsonch.2020.105293 10.1016/j.ultsonch.2018.08.026 10.1016/j.foodchem.2021.129420 10.1021/jf063351r 10.1016/j.foodhyd.2013.01.016 10.1016/j.ultsonch.2021.105467 10.1110/ps.04831804 10.1016/j.foodhyd.2011.07.001 10.1016/j.ultsonch.2005.07.006 10.1016/j.foodres.2014.04.022 10.1007/s11483-009-9101-3 10.1016/j.foodhyd.2020.105729 10.1016/j.ultsonch.2016.02.010 10.1039/C9FO00961B 10.1016/j.foodhyd.2012.08.001 10.1016/j.ultsonch.2016.11.034 10.1016/j.ifset.2016.02.007 10.1016/j.foodres.2020.109289 10.1016/j.ultsonch.2020.104990 10.1016/j.ultsonch.2010.12.016 10.1021/jf101311f 10.1016/j.foodhyd.2020.106396 10.1021/jf1021658 10.1016/j.ultsonch.2018.02.007 10.1016/j.foodhyd.2016.03.039 10.1016/j.foodres.2017.08.059 10.3168/jds.2013-6843 10.1016/j.biotechadv.2019.107491 10.1016/j.lwt.2020.109213 10.1016/j.foodres.2012.05.004 10.1021/jf202541m 10.1016/j.tifs.2017.07.013 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.ultsonch.2021.105741 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-2828 |
| ExternalDocumentID | oai_doaj_org_article_8a5cd7b97b0f4b03ab4a13edded0a528 PMC8455861 34537680 10_1016_j_ultsonch_2021_105741 S1350417721002832 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c537t-a0ec58816627e7d38d34097fa0f3a6460ce21b2375a9e12ff8f264ff75e9752d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703605600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-4177 1873-2828 |
| IngestDate | Fri Oct 03 12:53:36 EDT 2025 Tue Sep 30 15:59:07 EDT 2025 Sun Sep 28 08:23:14 EDT 2025 Mon Jul 21 06:02:26 EDT 2025 Sat Nov 29 06:59:42 EST 2025 Tue Nov 18 21:47:43 EST 2025 Fri Feb 23 02:45:04 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structure Ultrasound Physicochemical property Fibrillation kinetics Soy protein isolate nanofibril |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-a0ec58816627e7d38d34097fa0f3a6460ce21b2375a9e12ff8f264ff75e9752d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8a5cd7b97b0f4b03ab4a13edded0a528 |
| PMID | 34537680 |
| PQID | 2574743762 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a5cd7b97b0f4b03ab4a13edded0a528 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455861 proquest_miscellaneous_2574743762 pubmed_primary_34537680 crossref_citationtrail_10_1016_j_ultsonch_2021_105741 crossref_primary_10_1016_j_ultsonch_2021_105741 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2021_105741 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics sonochemistry |
| PublicationTitleAlternate | Ultrason Sonochem |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Jiang, Wang, Li, Wang, Liang, Wang, Chen, Ma, Qi, Zhang (b0315) 2014; 62 Alavi, Emam-Djomeh, Mohammadian, Salami, Moosavi-Movahedi (b0260) 2020; 101 Xia, Zhang, Chen, Hu, Rasulov, Bi, Huang, Pan (b0105) 2017; 100 Duque-Estrada, Kyriakopoulou, de Groot, van der Goot, Berton-Carabin (b0010) 2020; 318 Gulseren, Guzey, Bruce, Weiss (b0275) 2007; 14 Lara, Gourdin-Bertin, Adamcik, Bolisetty, Mezzenga (b0020) 2012; 13 Mohammadian, Madadlou (b0045) 2018; 75 Bhattacharya, Jain, Mukhopadhyay (b0030) 2011; 115 Zhang, Regenstein, Zhou, Yang (b0230) 2017; 34 Ng, Nyam, Nehdi, Chong, Lai, Tan (b0095) 2016; 25 Kroes-Nijboer, Venema, Bouman, van der Linden (b0070) 2009; 4 Martinez-Velasco, Lobato-Calleros, Hernandez-Rodriguez, Roman-Guerrero, Alvarez-Ramirez, Vernon-Carter (b0285) 2018; 44 Mantovani, Fattori, Michelon, Cunha (b0325) 2016; 60 Akkermans, Venema, van der Goot, Gruppen, Bakx, Boom, van der Linden (b0205) 2008; 9 Loveday, Su, Rao, Anema, Singh (b0025) 2012; 60 Hu, Li-Chan, Wan, Tian, Pan (b0195) 2013; 32 Chandrapala, Zisu, Palmer, Kentish, Ashokkumar (b0250) 2011; 18 Koo, Chung, Ogren, Mutilangi, McClements (b0100) 2018; 223 Li, Yang, Huang, Huang, Zhang, Yan (b0290) 2020; 265 Wu, Wu, Ma, Wang, Yu, Du (b0115) 2019; 89 Arnaudov, de Vries (b0080) 2006; 7 Taha, Hu, Zhang, Bakry, Khalifa, Pan, Hu (b0220) 2018; 49 Song, Zhou, Fu, Chen, Wu (b0225) 2013; 43 Zhao, Ma, Jing (b0060) 2020; 135 Stathopulos, Scholz, Hwang, Rumfeldt, Lepock, Meiering (b0295) 2004; 13 U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, nature, 227 (1970) 680-685. 10.1038/227680a0. Loveday, Wang, Rao, Anema, Singh (b0075) 2011; 59 Awad, Moharram, Shaltout, Asker, Youssef (b0120) 2012; 48 Bolder, Sagis, Venema, van der Linden (b0090) 2007; 55 Hu, He, Jiang, Liao, Xiong, Zhao (b0245) 2020; 104 Hu, Cheung, Pan, Li-Chan (b0270) 2015; 45 Hu, He, Woo, Xiong, Hu, Zhao (b0240) 2019; 10 Zhang, Liang, Zhang, Chi, Tian, Li, Jiang, Li, Feng, Liu (b0215) 2020; 125 Xiang, Wu, Wei, Shao, Sun (b0065) 2021; 353 Li, Chen, Hua, Chen, Kong, Zhang (b0015) 2020; 105 Chagas, Laia, Ferreira, Ferreira (b0255) 2018; 259 Warji, Mardjan, Yuliani, Purwanti (b0055) 2017; 20 Li, Jiang, Wang, Wu, Liu, Li (b0210) 2020; 106 Li, Wang, Zhang, Geng, Xue, Chen (b0280) 2021; 111 Wu, Tu, Wang, Wu, Yu, Battino, El-Seedi, Du (b0005) 2020; 40 Munialo, Martin, van der Linden, de Jongh (b0170) 2014; 62 Gao, Xu, Ju, Zhao (b0165) 2013; 96 Nilsson (b0185) 2004; 34 Feng, Li, Zhang, Li, Liu, Jiang, Xu, Sun (b0300) 2019; 94 Tang, Wang (b0035) 2010; 58 Nakajima, Nishioka, Hirao, So, Goto, Ogi (b0145) 2017; 36 Mohammadian, Salami, Momen, Alavi, Emam-Djomeh, Moosavi-Movahedi (b0160) 2019; 87 Zhao, Li, Xu, Sheng, Qin, Chen, Li, Zhang (b0110) 2018; 80 Bhargava, Mor, Kumar, Sharanagat (b0125) 2021; 70 Tang, Zhang, Wen, Huang (b0150) 2010; 58 Zhong, Xiong (b0265) 2020; 62 Carrillo-Lopez, Garcia-Galicia, Tirado-Gallegos, Sanchez-Vega, Huerta-Jimenez, Ashokkumar, Alarcon-Rojo (b0135) 2021; 73 Ma, Zhang, Wang, Zhu (b0040) 2017; 98 Wang, Yang, Yin, Yuan, Xia, Qi (b0155) 2011; 59 Xue, Li, Adhikari (b0235) 2020; 64 Khatkar, Kaur, Khatkar, Mehta (b0180) 2018; 49 Amagliani, Schmitt (b0050) 2017; 67 Arzeni, Martínez, Zema, Arias, Pérez, Pilosof (b0200) 2012; 108 Qin, Luo, Cai, Zhong, Jiang, Zhao, Zheng (b0130) 2016; 31 So, Yagi, Sakurai, Ogi, Naiki, Goto (b0140) 2011; 412 Wang, Wang, Li, Bai, Li, Xu (b0310) 2020; 129 Krebs, Bromley, Donald (b0190) 2005; 149 Loveday, Wang, Rao, Anema, Singh (b0085) 2012; 27 Zhou, Liu, Zhou, Huang, Liu, Pan, Hu (b0305) 2016; 34 Hu, Wu, Li-Chan, Zhu, Zhang, Xu, Fan, Wang, Huang, Pan (b0320) 2013; 30 Li (10.1016/j.ultsonch.2021.105741_b0280) 2021; 111 Song (10.1016/j.ultsonch.2021.105741_b0225) 2013; 43 Li (10.1016/j.ultsonch.2021.105741_b0210) 2020; 106 Jiang (10.1016/j.ultsonch.2021.105741_b0315) 2014; 62 Mohammadian (10.1016/j.ultsonch.2021.105741_b0045) 2018; 75 Hu (10.1016/j.ultsonch.2021.105741_b0240) 2019; 10 Loveday (10.1016/j.ultsonch.2021.105741_b0075) 2011; 59 10.1016/j.ultsonch.2021.105741_b0175 Mantovani (10.1016/j.ultsonch.2021.105741_b0325) 2016; 60 Bhargava (10.1016/j.ultsonch.2021.105741_b0125) 2021; 70 Wang (10.1016/j.ultsonch.2021.105741_b0155) 2011; 59 Bhattacharya (10.1016/j.ultsonch.2021.105741_b0030) 2011; 115 Taha (10.1016/j.ultsonch.2021.105741_b0220) 2018; 49 Khatkar (10.1016/j.ultsonch.2021.105741_b0180) 2018; 49 Zhang (10.1016/j.ultsonch.2021.105741_b0230) 2017; 34 Stathopulos (10.1016/j.ultsonch.2021.105741_b0295) 2004; 13 Wang (10.1016/j.ultsonch.2021.105741_b0310) 2020; 129 Awad (10.1016/j.ultsonch.2021.105741_b0120) 2012; 48 Nilsson (10.1016/j.ultsonch.2021.105741_b0185) 2004; 34 Krebs (10.1016/j.ultsonch.2021.105741_b0190) 2005; 149 Zhang (10.1016/j.ultsonch.2021.105741_b0215) 2020; 125 Zhou (10.1016/j.ultsonch.2021.105741_b0305) 2016; 34 Li (10.1016/j.ultsonch.2021.105741_b0290) 2020; 265 Bolder (10.1016/j.ultsonch.2021.105741_b0090) 2007; 55 Qin (10.1016/j.ultsonch.2021.105741_b0130) 2016; 31 Amagliani (10.1016/j.ultsonch.2021.105741_b0050) 2017; 67 Hu (10.1016/j.ultsonch.2021.105741_b0245) 2020; 104 Feng (10.1016/j.ultsonch.2021.105741_b0300) 2019; 94 Martinez-Velasco (10.1016/j.ultsonch.2021.105741_b0285) 2018; 44 Warji (10.1016/j.ultsonch.2021.105741_b0055) 2017; 20 Kroes-Nijboer (10.1016/j.ultsonch.2021.105741_b0070) 2009; 4 Xiang (10.1016/j.ultsonch.2021.105741_b0065) 2021; 353 Wu (10.1016/j.ultsonch.2021.105741_b0115) 2019; 89 Hu (10.1016/j.ultsonch.2021.105741_b0320) 2013; 30 Zhao (10.1016/j.ultsonch.2021.105741_b0110) 2018; 80 Ng (10.1016/j.ultsonch.2021.105741_b0095) 2016; 25 Alavi (10.1016/j.ultsonch.2021.105741_b0260) 2020; 101 Wu (10.1016/j.ultsonch.2021.105741_b0005) 2020; 40 Koo (10.1016/j.ultsonch.2021.105741_b0100) 2018; 223 Chandrapala (10.1016/j.ultsonch.2021.105741_b0250) 2011; 18 Zhao (10.1016/j.ultsonch.2021.105741_b0060) 2020; 135 Loveday (10.1016/j.ultsonch.2021.105741_b0085) 2012; 27 Hu (10.1016/j.ultsonch.2021.105741_b0270) 2015; 45 Chagas (10.1016/j.ultsonch.2021.105741_b0255) 2018; 259 Xia (10.1016/j.ultsonch.2021.105741_b0105) 2017; 100 Duque-Estrada (10.1016/j.ultsonch.2021.105741_b0010) 2020; 318 Arzeni (10.1016/j.ultsonch.2021.105741_b0200) 2012; 108 Zhong (10.1016/j.ultsonch.2021.105741_b0265) 2020; 62 Xue (10.1016/j.ultsonch.2021.105741_b0235) 2020; 64 Ma (10.1016/j.ultsonch.2021.105741_b0040) 2017; 98 Li (10.1016/j.ultsonch.2021.105741_b0015) 2020; 105 Tang (10.1016/j.ultsonch.2021.105741_b0150) 2010; 58 Gao (10.1016/j.ultsonch.2021.105741_b0165) 2013; 96 Akkermans (10.1016/j.ultsonch.2021.105741_b0205) 2008; 9 So (10.1016/j.ultsonch.2021.105741_b0140) 2011; 412 Carrillo-Lopez (10.1016/j.ultsonch.2021.105741_b0135) 2021; 73 Hu (10.1016/j.ultsonch.2021.105741_b0195) 2013; 32 Mohammadian (10.1016/j.ultsonch.2021.105741_b0160) 2019; 87 Lara (10.1016/j.ultsonch.2021.105741_b0020) 2012; 13 Nakajima (10.1016/j.ultsonch.2021.105741_b0145) 2017; 36 Gulseren (10.1016/j.ultsonch.2021.105741_b0275) 2007; 14 Arnaudov (10.1016/j.ultsonch.2021.105741_b0080) 2006; 7 Loveday (10.1016/j.ultsonch.2021.105741_b0025) 2012; 60 Munialo (10.1016/j.ultsonch.2021.105741_b0170) 2014; 62 Tang (10.1016/j.ultsonch.2021.105741_b0035) 2010; 58 |
| References_xml | – volume: 59 start-page: 8467 year: 2011 end-page: 8474 ident: b0075 article-title: Effect of pH, NaCl, CaCl2 and temperature on self-assembly of beta-lactoglobulin into nanofibrils: a central composite design study publication-title: J. Agric. Food Chem. – volume: 259 start-page: 166 year: 2018 end-page: 174 ident: b0255 article-title: Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds publication-title: Food Chem – volume: 43 start-page: 538 year: 2013 end-page: 544 ident: b0225 article-title: Effect of high-pressure homogenization on particle size and film properties of soy protein isolate publication-title: Ind. Crops Prod. – volume: 125 start-page: 109213 year: 2020 ident: b0215 article-title: Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances publication-title: LWT – volume: 412 start-page: 568 year: 2011 end-page: 577 ident: b0140 article-title: Ultrasonication-dependent acceleration of amyloid fibril formation publication-title: J. Mol. Biol. – volume: 60 start-page: 5229 year: 2012 end-page: 5236 ident: b0025 article-title: Whey protein nanofibrils: the environment-morphology-functionality relationship in lyophilization, rehydration, and seeding publication-title: J. Agric. Food Chem. – volume: 34 start-page: 960 year: 2017 end-page: 967 ident: b0230 article-title: Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel publication-title: Ultrason Sonochem – volume: 106 start-page: 105918 year: 2020 ident: b0210 article-title: Characterization of rice glutelin fibrils and their effect on in vitro rice starch digestibility publication-title: Food Hydrocolloids – volume: 49 start-page: 333 year: 2018 end-page: 342 ident: b0180 article-title: Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties publication-title: Ultrason Sonochem. – volume: 14 start-page: 173 year: 2007 end-page: 183 ident: b0275 article-title: Structural and functional changes in ultrasonicated bovine serum albumin solutions publication-title: Ultrason Sonochem – volume: 45 start-page: 102 year: 2015 end-page: 110 ident: b0270 article-title: Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin publication-title: Food Hydrocolloids – volume: 75 start-page: 115 year: 2018 end-page: 128 ident: b0045 article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition publication-title: Trends Food Sci. Technol. – volume: 149 start-page: 30 year: 2005 end-page: 37 ident: b0190 article-title: The binding of thioflavin-T to amyloid fibrils: localisation and implications publication-title: J. Struct. Biol. – volume: 27 start-page: 242 year: 2012 end-page: 249 ident: b0085 article-title: β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions publication-title: Food Hydrocolloids – volume: 318 year: 2020 ident: b0010 article-title: Oxidative stability of soy proteins: From ground soybeans to structured products publication-title: Food Chem. – volume: 67 start-page: 248 year: 2017 end-page: 259 ident: b0050 article-title: Globular plant protein aggregates for stabilization of food foams and emulsions publication-title: Trends Food Sci. Technol. – volume: 13 start-page: 4213 year: 2012 end-page: 4221 ident: b0020 article-title: Self-assembly of ovalbumin into amyloid and non-amyloid fibrils publication-title: Biomacromolecules – volume: 135 start-page: 109289 year: 2020 ident: b0060 article-title: Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability publication-title: Food Res. Int. – volume: 25 start-page: 15 year: 2016 end-page: 21 ident: b0095 article-title: Impact of stirring speed on beta-lactoglobulin fibril formation publication-title: Food Sci. Biotechnol. – volume: 44 start-page: 97 year: 2018 end-page: 105 ident: b0285 article-title: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes publication-title: Ultrason Sonochem – volume: 13 start-page: 3017 year: 2004 end-page: 3027 ident: b0295 article-title: Sonication of proteins causes formation of aggregates that resemble amyloid publication-title: Protein Sci – volume: 129 year: 2020 ident: b0310 article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate publication-title: LWT – volume: 60 start-page: 288 year: 2016 end-page: 298 ident: b0325 article-title: Formation and pH-stability of whey protein fibrils in the presence of lecithin publication-title: Food Hydrocolloids – volume: 62 start-page: 595 year: 2014 end-page: 601 ident: b0315 article-title: Effects of ultrasound on the structure and physical properties of black bean protein isolates publication-title: Food Res. Int. – volume: 62 start-page: 2418 year: 2014 end-page: 2427 ident: b0170 article-title: Fibril formation from pea protein and subsequent gel formation publication-title: J. Agric. Food Chem. – volume: 115 start-page: 4195 year: 2011 end-page: 4205 ident: b0030 article-title: Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin publication-title: J. Phys. Chem. B – volume: 108 start-page: 463 year: 2012 end-page: 472 ident: b0200 article-title: Comparative study of high intensity ultrasound effects on food proteins functionality publication-title: J. Food Eng. – volume: 62 year: 2020 ident: b0265 article-title: Thermosonication-induced structural changes and solution properties of mung bean protein publication-title: Ultrason Sonochem – volume: 105 year: 2020 ident: b0015 article-title: Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins publication-title: Food Hydrocolloids – reference: U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, nature, 227 (1970) 680-685. 10.1038/227680a0. – volume: 100 start-page: 268 year: 2017 end-page: 276 ident: b0105 article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin publication-title: Food Res Int – volume: 20 start-page: S1121 year: 2017 end-page: S1131 ident: b0055 article-title: Characterisation of nanofibrils from soy protein and their potential applications for food thickener and building blocks of microcapsules publication-title: Int. J. Food Properties – volume: 111 year: 2021 ident: b0280 article-title: Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils publication-title: Food Hydrocolloids – volume: 353 start-page: 129420 year: 2021 ident: b0065 article-title: Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification publication-title: Food Chem. – volume: 58 start-page: 8061 year: 2010 end-page: 8068 ident: b0150 article-title: Formation of amyloid fibrils from kidney bean 7S globulin (Phaseolin) at pH 2.0 publication-title: J. Agric. Food Chem. – volume: 34 start-page: 205 year: 2016 end-page: 213 ident: b0305 article-title: Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths publication-title: Innovative Food Sci. Emerg. Technol. – volume: 58 start-page: 11058 year: 2010 end-page: 11066 ident: b0035 article-title: Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin publication-title: J. Agric. Food. Chem. – volume: 223 start-page: 189 year: 2018 end-page: 196 ident: b0100 article-title: Extending protein functionality: Microfluidization of heat denatured whey protein fibrils publication-title: J. Food Eng. – volume: 94 start-page: 71 year: 2019 end-page: 79 ident: b0300 article-title: Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties publication-title: Food Hydrocolloids – volume: 265 year: 2020 ident: b0290 article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality publication-title: J. Food Eng. – volume: 49 start-page: 283 year: 2018 end-page: 293 ident: b0220 article-title: Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate publication-title: Ultrason Sonochem – volume: 9 start-page: 1474 year: 2008 end-page: 1479 ident: b0205 article-title: Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2 publication-title: Biomacromolecules – volume: 40 start-page: 107491 year: 2020 ident: b0005 article-title: Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity publication-title: Biotechnol. Adv. – volume: 70 start-page: 105293 year: 2021 ident: b0125 article-title: Advances in application of ultrasound in food processing: A review publication-title: Ultrason Sonochem. – volume: 104 year: 2020 ident: b0245 article-title: Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity publication-title: Food Hydrocolloids – volume: 101 year: 2020 ident: b0260 article-title: Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter publication-title: Food Hydrocolloids – volume: 7 start-page: 3490 year: 2006 end-page: 3498 ident: b0080 article-title: Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine β-lactoglobulin publication-title: Biomacromolecules – volume: 34 start-page: 151 year: 2004 end-page: 160 ident: b0185 article-title: Techniques to study amyloid fibril formation in vitro publication-title: Methods – volume: 31 start-page: 590 year: 2016 end-page: 597 ident: b0130 article-title: Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment publication-title: Ultrason Sonochem. – volume: 64 year: 2020 ident: b0235 article-title: Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound publication-title: Ultrason Sonochem – volume: 89 start-page: 707 year: 2019 end-page: 714 ident: b0115 article-title: Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri) publication-title: Food Hydrocolloids – volume: 59 start-page: 11270 year: 2011 end-page: 11277 ident: b0155 article-title: Growth kinetics of amyloid-like fibrils derived from individual subunits of soy beta-conglycinin publication-title: J. Agric. Food Chem. – volume: 48 start-page: 410 year: 2012 end-page: 427 ident: b0120 article-title: Applications of ultrasound in analysis, processing and quality control of food: A review publication-title: Food Res. Int. – volume: 10 start-page: 8106 year: 2019 end-page: 8115 ident: b0240 article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance publication-title: Food Funct – volume: 4 start-page: 59 year: 2009 end-page: 63 ident: b0070 article-title: The Critical Aggregation Concentration of β-Lactoglobulin-Based Fibril Formation publication-title: Food Biophys. – volume: 96 start-page: 7383 year: 2013 end-page: 7392 ident: b0165 article-title: The effect of limited proteolysis by different proteases on the formation of whey protein fibrils publication-title: J. Dairy Sci. – volume: 32 start-page: 303 year: 2013 end-page: 311 ident: b0195 article-title: The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate publication-title: Food Hydrocolloids – volume: 80 start-page: 122 year: 2018 end-page: 129 ident: b0110 article-title: Application of ultrasound pretreatment and glycation in regulating the heat-induced amyloid-like aggregation of β-lactoglobulin publication-title: Food Hydrocolloids – volume: 30 start-page: 647 year: 2013 end-page: 655 ident: b0320 article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions publication-title: Food Hydrocolloids – volume: 73 year: 2021 ident: b0135 article-title: Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties publication-title: Ultrason Sonochem. – volume: 18 start-page: 951 year: 2011 end-page: 957 ident: b0250 article-title: Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate publication-title: Ultrason Sonochem – volume: 98 start-page: 717 year: 2017 end-page: 722 ident: b0040 article-title: Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme publication-title: Int. J. Biol. Macromol. – volume: 55 start-page: 5661 year: 2007 end-page: 5669 ident: b0090 article-title: Effect of stirring and seeding on whey protein fibril formation publication-title: J. Agric. Food. Chem. – volume: 87 start-page: 902 year: 2019 end-page: 914 ident: b0160 article-title: Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils publication-title: Food Hydrocolloids – volume: 36 start-page: 206 year: 2017 end-page: 211 ident: b0145 article-title: Drastic acceleration of fibrillation of insulin by transient cavitation bubble publication-title: Ultrason Sonochem – volume: 34 start-page: 151 year: 2004 ident: 10.1016/j.ultsonch.2021.105741_b0185 article-title: Techniques to study amyloid fibril formation in vitro publication-title: Methods doi: 10.1016/j.ymeth.2004.03.012 – volume: 106 start-page: 105918 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0210 article-title: Characterization of rice glutelin fibrils and their effect on in vitro rice starch digestibility publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105918 – volume: 94 start-page: 71 year: 2019 ident: 10.1016/j.ultsonch.2021.105741_b0300 article-title: Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.03.004 – volume: 129 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0310 article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate publication-title: LWT doi: 10.1016/j.lwt.2020.109563 – volume: 265 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0290 article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality publication-title: J. Food Eng. – volume: 59 start-page: 8467 year: 2011 ident: 10.1016/j.ultsonch.2021.105741_b0075 article-title: Effect of pH, NaCl, CaCl2 and temperature on self-assembly of beta-lactoglobulin into nanofibrils: a central composite design study publication-title: J. Agric. Food Chem. doi: 10.1021/jf201870z – volume: 25 start-page: 15 year: 2016 ident: 10.1016/j.ultsonch.2021.105741_b0095 article-title: Impact of stirring speed on beta-lactoglobulin fibril formation publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-016-0093-8 – volume: 43 start-page: 538 year: 2013 ident: 10.1016/j.ultsonch.2021.105741_b0225 article-title: Effect of high-pressure homogenization on particle size and film properties of soy protein isolate publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.08.005 – volume: 49 start-page: 283 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0220 article-title: Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2018.08.020 – volume: 13 start-page: 4213 year: 2012 ident: 10.1016/j.ultsonch.2021.105741_b0020 article-title: Self-assembly of ovalbumin into amyloid and non-amyloid fibrils publication-title: Biomacromolecules doi: 10.1021/bm301481v – volume: 259 start-page: 166 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0255 article-title: Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds publication-title: Food Chem doi: 10.1016/j.foodchem.2018.03.115 – volume: 34 start-page: 960 year: 2017 ident: 10.1016/j.ultsonch.2021.105741_b0230 article-title: Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2016.08.008 – volume: 318 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0010 article-title: Oxidative stability of soy proteins: From ground soybeans to structured products publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126499 – volume: 412 start-page: 568 year: 2011 ident: 10.1016/j.ultsonch.2021.105741_b0140 article-title: Ultrasonication-dependent acceleration of amyloid fibril formation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.07.069 – volume: 45 start-page: 102 year: 2015 ident: 10.1016/j.ultsonch.2021.105741_b0270 article-title: Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.11.004 – volume: 20 start-page: S1121 issue: sup1 year: 2017 ident: 10.1016/j.ultsonch.2021.105741_b0055 article-title: Characterisation of nanofibrils from soy protein and their potential applications for food thickener and building blocks of microcapsules publication-title: Int. J. Food Properties doi: 10.1080/10942912.2017.1336720 – ident: 10.1016/j.ultsonch.2021.105741_b0175 doi: 10.1038/227680a0 – volume: 9 start-page: 1474 issue: 5 year: 2008 ident: 10.1016/j.ultsonch.2021.105741_b0205 article-title: Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2 publication-title: Biomacromolecules doi: 10.1021/bm7014224 – volume: 80 start-page: 122 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0110 article-title: Application of ultrasound pretreatment and glycation in regulating the heat-induced amyloid-like aggregation of β-lactoglobulin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.02.001 – volume: 87 start-page: 902 year: 2019 ident: 10.1016/j.ultsonch.2021.105741_b0160 article-title: Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.09.001 – volume: 7 start-page: 3490 issue: 12 year: 2006 ident: 10.1016/j.ultsonch.2021.105741_b0080 article-title: Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine β-lactoglobulin publication-title: Biomacromolecules doi: 10.1021/bm060584i – volume: 62 start-page: 2418 year: 2014 ident: 10.1016/j.ultsonch.2021.105741_b0170 article-title: Fibril formation from pea protein and subsequent gel formation publication-title: J. Agric. Food Chem. doi: 10.1021/jf4055215 – volume: 62 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0265 article-title: Thermosonication-induced structural changes and solution properties of mung bean protein publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2019.104908 – volume: 149 start-page: 30 issue: 1 year: 2005 ident: 10.1016/j.ultsonch.2021.105741_b0190 article-title: The binding of thioflavin-T to amyloid fibrils: localisation and implications publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2004.08.002 – volume: 101 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0260 article-title: Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105554 – volume: 115 start-page: 4195 year: 2011 ident: 10.1016/j.ultsonch.2021.105741_b0030 article-title: Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin publication-title: J. Phys. Chem. B doi: 10.1021/jp111528c – volume: 105 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0015 article-title: Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105846 – volume: 108 start-page: 463 year: 2012 ident: 10.1016/j.ultsonch.2021.105741_b0200 article-title: Comparative study of high intensity ultrasound effects on food proteins functionality publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2011.08.018 – volume: 89 start-page: 707 year: 2019 ident: 10.1016/j.ultsonch.2021.105741_b0115 article-title: Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri) publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.11.032 – volume: 60 start-page: 5229 year: 2012 ident: 10.1016/j.ultsonch.2021.105741_b0025 article-title: Whey protein nanofibrils: the environment-morphology-functionality relationship in lyophilization, rehydration, and seeding publication-title: J. Agric. Food Chem. doi: 10.1021/jf300367k – volume: 75 start-page: 115 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0045 article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2018.03.013 – volume: 223 start-page: 189 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0100 article-title: Extending protein functionality: Microfluidization of heat denatured whey protein fibrils publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.10.020 – volume: 98 start-page: 717 year: 2017 ident: 10.1016/j.ultsonch.2021.105741_b0040 article-title: Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.01.128 – volume: 70 start-page: 105293 year: 2021 ident: 10.1016/j.ultsonch.2021.105741_b0125 article-title: Advances in application of ultrasound in food processing: A review publication-title: Ultrason Sonochem. doi: 10.1016/j.ultsonch.2020.105293 – volume: 49 start-page: 333 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0180 article-title: Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties publication-title: Ultrason Sonochem. doi: 10.1016/j.ultsonch.2018.08.026 – volume: 353 start-page: 129420 year: 2021 ident: 10.1016/j.ultsonch.2021.105741_b0065 article-title: Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129420 – volume: 55 start-page: 5661 issue: 14 year: 2007 ident: 10.1016/j.ultsonch.2021.105741_b0090 article-title: Effect of stirring and seeding on whey protein fibril formation publication-title: J. Agric. Food. Chem. doi: 10.1021/jf063351r – volume: 32 start-page: 303 year: 2013 ident: 10.1016/j.ultsonch.2021.105741_b0195 article-title: The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.01.016 – volume: 73 year: 2021 ident: 10.1016/j.ultsonch.2021.105741_b0135 article-title: Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties publication-title: Ultrason Sonochem. doi: 10.1016/j.ultsonch.2021.105467 – volume: 13 start-page: 3017 year: 2004 ident: 10.1016/j.ultsonch.2021.105741_b0295 article-title: Sonication of proteins causes formation of aggregates that resemble amyloid publication-title: Protein Sci doi: 10.1110/ps.04831804 – volume: 27 start-page: 242 issue: 1 year: 2012 ident: 10.1016/j.ultsonch.2021.105741_b0085 article-title: β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.07.001 – volume: 14 start-page: 173 year: 2007 ident: 10.1016/j.ultsonch.2021.105741_b0275 article-title: Structural and functional changes in ultrasonicated bovine serum albumin solutions publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2005.07.006 – volume: 62 start-page: 595 year: 2014 ident: 10.1016/j.ultsonch.2021.105741_b0315 article-title: Effects of ultrasound on the structure and physical properties of black bean protein isolates publication-title: Food Res. Int. doi: 10.1016/j.foodres.2014.04.022 – volume: 4 start-page: 59 issue: 2 year: 2009 ident: 10.1016/j.ultsonch.2021.105741_b0070 article-title: The Critical Aggregation Concentration of β-Lactoglobulin-Based Fibril Formation publication-title: Food Biophys. doi: 10.1007/s11483-009-9101-3 – volume: 104 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0245 article-title: Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105729 – volume: 31 start-page: 590 year: 2016 ident: 10.1016/j.ultsonch.2021.105741_b0130 article-title: Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment publication-title: Ultrason Sonochem. doi: 10.1016/j.ultsonch.2016.02.010 – volume: 10 start-page: 8106 year: 2019 ident: 10.1016/j.ultsonch.2021.105741_b0240 article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance publication-title: Food Funct doi: 10.1039/C9FO00961B – volume: 30 start-page: 647 year: 2013 ident: 10.1016/j.ultsonch.2021.105741_b0320 article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.08.001 – volume: 36 start-page: 206 year: 2017 ident: 10.1016/j.ultsonch.2021.105741_b0145 article-title: Drastic acceleration of fibrillation of insulin by transient cavitation bubble publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2016.11.034 – volume: 34 start-page: 205 year: 2016 ident: 10.1016/j.ultsonch.2021.105741_b0305 article-title: Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths publication-title: Innovative Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2016.02.007 – volume: 135 start-page: 109289 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0060 article-title: Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability publication-title: Food Res. Int. doi: 10.1016/j.foodres.2020.109289 – volume: 64 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0235 article-title: Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2020.104990 – volume: 18 start-page: 951 year: 2011 ident: 10.1016/j.ultsonch.2021.105741_b0250 article-title: Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2010.12.016 – volume: 58 start-page: 8061 year: 2010 ident: 10.1016/j.ultsonch.2021.105741_b0150 article-title: Formation of amyloid fibrils from kidney bean 7S globulin (Phaseolin) at pH 2.0 publication-title: J. Agric. Food Chem. doi: 10.1021/jf101311f – volume: 111 year: 2021 ident: 10.1016/j.ultsonch.2021.105741_b0280 article-title: Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106396 – volume: 58 start-page: 11058 year: 2010 ident: 10.1016/j.ultsonch.2021.105741_b0035 article-title: Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin publication-title: J. Agric. Food. Chem. doi: 10.1021/jf1021658 – volume: 44 start-page: 97 year: 2018 ident: 10.1016/j.ultsonch.2021.105741_b0285 article-title: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2018.02.007 – volume: 60 start-page: 288 year: 2016 ident: 10.1016/j.ultsonch.2021.105741_b0325 article-title: Formation and pH-stability of whey protein fibrils in the presence of lecithin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.03.039 – volume: 100 start-page: 268 year: 2017 ident: 10.1016/j.ultsonch.2021.105741_b0105 article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin publication-title: Food Res Int doi: 10.1016/j.foodres.2017.08.059 – volume: 96 start-page: 7383 year: 2013 ident: 10.1016/j.ultsonch.2021.105741_b0165 article-title: The effect of limited proteolysis by different proteases on the formation of whey protein fibrils publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-6843 – volume: 40 start-page: 107491 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0005 article-title: Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.107491 – volume: 125 start-page: 109213 year: 2020 ident: 10.1016/j.ultsonch.2021.105741_b0215 article-title: Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances publication-title: LWT doi: 10.1016/j.lwt.2020.109213 – volume: 48 start-page: 410 issue: 2 year: 2012 ident: 10.1016/j.ultsonch.2021.105741_b0120 article-title: Applications of ultrasound in analysis, processing and quality control of food: A review publication-title: Food Res. Int. doi: 10.1016/j.foodres.2012.05.004 – volume: 59 start-page: 11270 year: 2011 ident: 10.1016/j.ultsonch.2021.105741_b0155 article-title: Growth kinetics of amyloid-like fibrils derived from individual subunits of soy beta-conglycinin publication-title: J. Agric. Food Chem. doi: 10.1021/jf202541m – volume: 67 start-page: 248 year: 2017 ident: 10.1016/j.ultsonch.2021.105741_b0050 article-title: Globular plant protein aggregates for stabilization of food foams and emulsions publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.07.013 |
| SSID | ssj0003920 |
| Score | 2.56911 |
| Snippet | •Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle... Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound... • Ultrasound can increase the formation rate of soy protein isolate nanofibrils. • Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105741 |
| SubjectTerms | Fibrillation kinetics Glycine max Hydrophobic and Hydrophilic Interactions Kinetics Particle Size Physicochemical property Soy protein isolate nanofibril Soybean Proteins Special Section: Ultrasound Food Processing Structure Ultrasound Viscosity |
| Title | Effect mechanism of ultrasound pretreatment on fibrillation Kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils |
| URI | https://dx.doi.org/10.1016/j.ultsonch.2021.105741 https://www.ncbi.nlm.nih.gov/pubmed/34537680 https://www.proquest.com/docview/2574743762 https://pubmed.ncbi.nlm.nih.gov/PMC8455861 https://doaj.org/article/8a5cd7b97b0f4b03ab4a13edded0a528 |
| Volume | 78 |
| WOSCitedRecordID | wos000703605600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1873-2828 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-2828 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: AIEXJ dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgBYILguWrfKyMxJGwiT9i5wgrVkigFQdAvVmOY4ususmqaZH4OfxTZuykauDQC1JPbZ3YnZfMS_3mDSGvAy89s05mjSplJoRkWV3ig6vSlWailkV04Pv-WV1c6OWy-rLX6gs1YckeOP1wp9pK16i6UnUeRJ1zWwtbcA9XZZNbyWKZL7Ce6WFqvAdD1k_1wTLPRKHUXm3w5dvtagNcNm5FsCI2uhXFLC1F9_5ZdvqXff4totzLSuf3yb2RTtJ3aRkPyA3fHZM7Z1MXt2NyO0o83fCQ_E5GxfTKY7FvO1zRPlCY5NoO2FqJovJwUp3TvqMBiwFWSSpHPwEZRUPnNzT9FYJ9tqLRAAzrr1Gb7Qdq4SjJj3a79tTNraDxbEP_i0ZjiLajLYAeeC7tbNenUw2PyLfzD1_PPmZjg4bMSa42mc29kxp3HpnyquG64WifFWweuC1FmTvPippxJW3lCxaCDsC_QlDSV0qyhj8mR13f-aeEuuCrwOHFgI82urGuBm4Ycq-lhUAXCyKn-Bg3updjE42VmWRql2aKq8G4mhTXBTndjbtO_h0HR7zH8O--jf7b8Q1ApRlRaQ6hckGqCTxmpDKJosCh2oMTeDWhzQBYcAPHdr7fDgZurwIYH-SvBXmS0LebJhdozKPzBVEzXM7WMf-ka39EP3EtpNRl8ex_LPw5uYtLSXLHF-QIQOdfklvu56Yd1ifkplrqk3ip_gEuQUmr |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+mechanism+of+ultrasound+pretreatment+on+fibrillation+Kinetics%2C+physicochemical+properties+and+structure+characteristics+of+soy+protein+isolate+nanofibrils&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Hu%2C+Anna&rft.au=Li%2C+Liang&rft.date=2021-10-01&rft.pub=Elsevier&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=78&rft_id=info:doi/10.1016%2Fj.ultsonch.2021.105741&rft_id=info%3Apmid%2F34537680&rft.externalDocID=PMC8455861 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |