Effect mechanism of ultrasound pretreatment on fibrillation Kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils

•Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size.•Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation.•Ultrasound can promote protein unfoldin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ultrasonics sonochemistry Ročník 78; s. 105741
Hlavní autoři: Hu, Anna, Li, Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.10.2021
Elsevier
Témata:
ISSN:1350-4177, 1873-2828, 1873-2828
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size.•Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation.•Ultrasound can promote protein unfolding and exposing more binding sites. Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.
AbstractList Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.
•Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size.•Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation.•Ultrasound can promote protein unfolding and exposing more binding sites. Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.
Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.
• Ultrasound can increase the formation rate of soy protein isolate nanofibrils. • Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle size. • Ultrasound can increase β-sheet contents of SPI nanofibrils, promoting the nanofibrils formation. • Ultrasound can promote protein unfolding and exposing more binding sites. Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.
ArticleNumber 105741
Author Hu, Anna
Li, Liang
Author_xml – sequence: 1
  givenname: Anna
  surname: Hu
  fullname: Hu, Anna
– sequence: 2
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  email: liliangneau@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34537680$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSPUiv7AK1ResmAG_ySxR0KIqipQtRIbWFuOc93xKLEH26k0j8ObcqfpIMqmqyTOPd-R7zln1VGIAarqgtElo6z9sFlOQ8kx2PWSU87wsJE1e1WdMiXFgiuujvBdNHRRMylPqrOcN5RSseL0dXUi6kbIVtHT6ve1c2ALGcGuTfB5JNERRCeT4xR6sk1QEpgyQigkBuJ8l_wwmOLx49YHKN7m92S73mVvo13D6K0ZUBa3kIqHTAxSckmTLVMCgi7J2ALJ571y75bjbj9fwAfic0Q2kGBCnK3ym-rYmSHD26fnefXzy_WPq2-Lu-9fb64u7xYW71IWhoJtlGJtyyXIXqhe1HQlnaFOmLZuqQXOOi5kY1bAuHPK8bZ2Tjawkg3vxXl1M3P7aDZ6m_xo0k5H4_XjQUz32uCN7ABamcb2slvJjrq6o8J0tWEC-h56ahqukPVpZm2nboTe4vKSGZ5Bn_8Jfq3v44NWddOoliHg3RMgxV8T5KJHny3g4gPEKWuOacsaM-Q4evGv11-TQ8Y48HEesCnmnMBp68tjgGjtB82o3ldKb_ShUnpfKT1XCuXtf_KDw4vCz7MQMLUHD0ln6yFY6H3CyuFa_UuIP6m98RQ
CitedBy_id crossref_primary_10_1007_s11694_025_03479_0
crossref_primary_10_1016_j_foodhyd_2024_109906
crossref_primary_10_1016_j_foodhyd_2025_111826
crossref_primary_10_1016_j_rser_2025_116264
crossref_primary_10_1016_j_foodchem_2024_138469
crossref_primary_10_1016_j_ultsonch_2022_106258
crossref_primary_10_1016_j_ultsonch_2023_106538
crossref_primary_10_1016_j_foodhyd_2024_110655
crossref_primary_10_1002_jsf2_90
crossref_primary_10_1016_j_foodhyd_2024_110066
crossref_primary_10_1016_j_foodhyd_2023_109195
crossref_primary_10_1016_j_foodhyd_2025_111233
crossref_primary_10_1007_s11694_023_02322_8
crossref_primary_10_1016_j_foodchem_2025_143252
crossref_primary_10_1016_j_foodres_2025_117340
crossref_primary_10_1111_1541_4337_13161
crossref_primary_10_1021_acs_jafc_5c08596
crossref_primary_10_1016_j_ultsonch_2024_106847
crossref_primary_10_1016_j_foodhyd_2024_110127
crossref_primary_10_1016_j_foodhyd_2024_110531
crossref_primary_10_1016_j_foodhyd_2024_110575
crossref_primary_10_1016_j_foodhyd_2023_109521
crossref_primary_10_1111_jfpp_17259
crossref_primary_10_1002_fft2_220
crossref_primary_10_1016_j_foodhyd_2022_108057
crossref_primary_10_1016_j_foodhyd_2023_109520
crossref_primary_10_1016_j_foodchem_2024_142559
crossref_primary_10_1016_j_lwt_2023_115473
crossref_primary_10_1016_j_ifset_2024_103909
crossref_primary_10_3389_fnut_2023_1140737
crossref_primary_10_1016_j_ultsonch_2024_107172
crossref_primary_10_1021_acs_jafc_5c07627
crossref_primary_10_1016_j_ijbiomac_2023_127871
crossref_primary_10_1016_j_lwt_2024_116958
crossref_primary_10_1016_j_ijbiomac_2024_131578
crossref_primary_10_1016_j_foodchem_2023_138201
crossref_primary_10_1016_j_foodhyd_2024_111009
crossref_primary_10_1016_j_foodhyd_2024_110796
crossref_primary_10_1016_j_foodhyd_2024_110435
crossref_primary_10_1016_j_ultsonch_2022_106193
crossref_primary_10_1016_j_foodhyd_2024_110761
crossref_primary_10_1016_j_foodhyd_2023_109695
crossref_primary_10_1016_j_ultsonch_2023_106673
crossref_primary_10_1016_j_foodhyd_2025_111691
crossref_primary_10_3390_foods13142281
crossref_primary_10_1016_j_foodres_2022_111268
crossref_primary_10_1016_j_foodhyd_2024_109735
crossref_primary_10_1016_j_lwt_2024_117045
crossref_primary_10_1002_1873_3468_14755
crossref_primary_10_1016_j_foodhyd_2023_108769
crossref_primary_10_1002_app_55492
crossref_primary_10_1016_j_ultsonch_2024_106904
crossref_primary_10_1016_j_ultsonch_2023_106526
crossref_primary_10_1111_ijfs_17196
crossref_primary_10_1016_j_foodchem_2024_139687
crossref_primary_10_1016_j_ultsonch_2022_105976
crossref_primary_10_1016_j_foodhyd_2023_108492
crossref_primary_10_1016_j_ijbiomac_2025_139942
crossref_primary_10_1016_j_ifset_2024_103606
crossref_primary_10_1016_j_ultsonch_2024_107157
crossref_primary_10_1016_j_foodhyd_2024_110191
crossref_primary_10_1016_j_ijbiomac_2025_147128
Cites_doi 10.1016/j.ymeth.2004.03.012
10.1016/j.foodhyd.2020.105918
10.1016/j.foodhyd.2019.03.004
10.1016/j.lwt.2020.109563
10.1021/jf201870z
10.1007/s10068-016-0093-8
10.1016/j.indcrop.2012.08.005
10.1016/j.ultsonch.2018.08.020
10.1021/bm301481v
10.1016/j.foodchem.2018.03.115
10.1016/j.ultsonch.2016.08.008
10.1016/j.foodchem.2020.126499
10.1016/j.jmb.2011.07.069
10.1016/j.foodhyd.2014.11.004
10.1080/10942912.2017.1336720
10.1038/227680a0
10.1021/bm7014224
10.1016/j.foodhyd.2018.02.001
10.1016/j.foodhyd.2018.09.001
10.1021/bm060584i
10.1021/jf4055215
10.1016/j.ultsonch.2019.104908
10.1016/j.jsb.2004.08.002
10.1016/j.foodhyd.2019.105554
10.1021/jp111528c
10.1016/j.foodhyd.2020.105846
10.1016/j.jfoodeng.2011.08.018
10.1016/j.foodhyd.2018.11.032
10.1021/jf300367k
10.1016/j.tifs.2018.03.013
10.1016/j.jfoodeng.2017.10.020
10.1016/j.ijbiomac.2017.01.128
10.1016/j.ultsonch.2020.105293
10.1016/j.ultsonch.2018.08.026
10.1016/j.foodchem.2021.129420
10.1021/jf063351r
10.1016/j.foodhyd.2013.01.016
10.1016/j.ultsonch.2021.105467
10.1110/ps.04831804
10.1016/j.foodhyd.2011.07.001
10.1016/j.ultsonch.2005.07.006
10.1016/j.foodres.2014.04.022
10.1007/s11483-009-9101-3
10.1016/j.foodhyd.2020.105729
10.1016/j.ultsonch.2016.02.010
10.1039/C9FO00961B
10.1016/j.foodhyd.2012.08.001
10.1016/j.ultsonch.2016.11.034
10.1016/j.ifset.2016.02.007
10.1016/j.foodres.2020.109289
10.1016/j.ultsonch.2020.104990
10.1016/j.ultsonch.2010.12.016
10.1021/jf101311f
10.1016/j.foodhyd.2020.106396
10.1021/jf1021658
10.1016/j.ultsonch.2018.02.007
10.1016/j.foodhyd.2016.03.039
10.1016/j.foodres.2017.08.059
10.3168/jds.2013-6843
10.1016/j.biotechadv.2019.107491
10.1016/j.lwt.2020.109213
10.1016/j.foodres.2012.05.004
10.1021/jf202541m
10.1016/j.tifs.2017.07.013
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ultsonch.2021.105741
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
ExternalDocumentID oai_doaj_org_article_8a5cd7b97b0f4b03ab4a13edded0a528
PMC8455861
34537680
10_1016_j_ultsonch_2021_105741
S1350417721002832
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c537t-a0ec58816627e7d38d34097fa0f3a6460ce21b2375a9e12ff8f264ff75e9752d3
IEDL.DBID DOA
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703605600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-4177
1873-2828
IngestDate Fri Oct 03 12:53:36 EDT 2025
Tue Sep 30 15:59:07 EDT 2025
Sun Sep 28 08:23:14 EDT 2025
Mon Jul 21 06:02:26 EDT 2025
Sat Nov 29 06:59:42 EST 2025
Tue Nov 18 21:47:43 EST 2025
Fri Feb 23 02:45:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structure
Ultrasound
Physicochemical property
Fibrillation kinetics
Soy protein isolate nanofibril
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-a0ec58816627e7d38d34097fa0f3a6460ce21b2375a9e12ff8f264ff75e9752d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/8a5cd7b97b0f4b03ab4a13edded0a528
PMID 34537680
PQID 2574743762
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8a5cd7b97b0f4b03ab4a13edded0a528
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455861
proquest_miscellaneous_2574743762
pubmed_primary_34537680
crossref_citationtrail_10_1016_j_ultsonch_2021_105741
crossref_primary_10_1016_j_ultsonch_2021_105741
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2021_105741
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jiang, Wang, Li, Wang, Liang, Wang, Chen, Ma, Qi, Zhang (b0315) 2014; 62
Alavi, Emam-Djomeh, Mohammadian, Salami, Moosavi-Movahedi (b0260) 2020; 101
Xia, Zhang, Chen, Hu, Rasulov, Bi, Huang, Pan (b0105) 2017; 100
Duque-Estrada, Kyriakopoulou, de Groot, van der Goot, Berton-Carabin (b0010) 2020; 318
Gulseren, Guzey, Bruce, Weiss (b0275) 2007; 14
Lara, Gourdin-Bertin, Adamcik, Bolisetty, Mezzenga (b0020) 2012; 13
Mohammadian, Madadlou (b0045) 2018; 75
Bhattacharya, Jain, Mukhopadhyay (b0030) 2011; 115
Zhang, Regenstein, Zhou, Yang (b0230) 2017; 34
Ng, Nyam, Nehdi, Chong, Lai, Tan (b0095) 2016; 25
Kroes-Nijboer, Venema, Bouman, van der Linden (b0070) 2009; 4
Martinez-Velasco, Lobato-Calleros, Hernandez-Rodriguez, Roman-Guerrero, Alvarez-Ramirez, Vernon-Carter (b0285) 2018; 44
Mantovani, Fattori, Michelon, Cunha (b0325) 2016; 60
Akkermans, Venema, van der Goot, Gruppen, Bakx, Boom, van der Linden (b0205) 2008; 9
Loveday, Su, Rao, Anema, Singh (b0025) 2012; 60
Hu, Li-Chan, Wan, Tian, Pan (b0195) 2013; 32
Chandrapala, Zisu, Palmer, Kentish, Ashokkumar (b0250) 2011; 18
Koo, Chung, Ogren, Mutilangi, McClements (b0100) 2018; 223
Li, Yang, Huang, Huang, Zhang, Yan (b0290) 2020; 265
Wu, Wu, Ma, Wang, Yu, Du (b0115) 2019; 89
Arnaudov, de Vries (b0080) 2006; 7
Taha, Hu, Zhang, Bakry, Khalifa, Pan, Hu (b0220) 2018; 49
Song, Zhou, Fu, Chen, Wu (b0225) 2013; 43
Zhao, Ma, Jing (b0060) 2020; 135
Stathopulos, Scholz, Hwang, Rumfeldt, Lepock, Meiering (b0295) 2004; 13
U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, nature, 227 (1970) 680-685. 10.1038/227680a0.
Loveday, Wang, Rao, Anema, Singh (b0075) 2011; 59
Awad, Moharram, Shaltout, Asker, Youssef (b0120) 2012; 48
Bolder, Sagis, Venema, van der Linden (b0090) 2007; 55
Hu, He, Jiang, Liao, Xiong, Zhao (b0245) 2020; 104
Hu, Cheung, Pan, Li-Chan (b0270) 2015; 45
Hu, He, Woo, Xiong, Hu, Zhao (b0240) 2019; 10
Zhang, Liang, Zhang, Chi, Tian, Li, Jiang, Li, Feng, Liu (b0215) 2020; 125
Xiang, Wu, Wei, Shao, Sun (b0065) 2021; 353
Li, Chen, Hua, Chen, Kong, Zhang (b0015) 2020; 105
Chagas, Laia, Ferreira, Ferreira (b0255) 2018; 259
Warji, Mardjan, Yuliani, Purwanti (b0055) 2017; 20
Li, Jiang, Wang, Wu, Liu, Li (b0210) 2020; 106
Li, Wang, Zhang, Geng, Xue, Chen (b0280) 2021; 111
Wu, Tu, Wang, Wu, Yu, Battino, El-Seedi, Du (b0005) 2020; 40
Munialo, Martin, van der Linden, de Jongh (b0170) 2014; 62
Gao, Xu, Ju, Zhao (b0165) 2013; 96
Nilsson (b0185) 2004; 34
Feng, Li, Zhang, Li, Liu, Jiang, Xu, Sun (b0300) 2019; 94
Tang, Wang (b0035) 2010; 58
Nakajima, Nishioka, Hirao, So, Goto, Ogi (b0145) 2017; 36
Mohammadian, Salami, Momen, Alavi, Emam-Djomeh, Moosavi-Movahedi (b0160) 2019; 87
Zhao, Li, Xu, Sheng, Qin, Chen, Li, Zhang (b0110) 2018; 80
Bhargava, Mor, Kumar, Sharanagat (b0125) 2021; 70
Tang, Zhang, Wen, Huang (b0150) 2010; 58
Zhong, Xiong (b0265) 2020; 62
Carrillo-Lopez, Garcia-Galicia, Tirado-Gallegos, Sanchez-Vega, Huerta-Jimenez, Ashokkumar, Alarcon-Rojo (b0135) 2021; 73
Ma, Zhang, Wang, Zhu (b0040) 2017; 98
Wang, Yang, Yin, Yuan, Xia, Qi (b0155) 2011; 59
Xue, Li, Adhikari (b0235) 2020; 64
Khatkar, Kaur, Khatkar, Mehta (b0180) 2018; 49
Amagliani, Schmitt (b0050) 2017; 67
Arzeni, Martínez, Zema, Arias, Pérez, Pilosof (b0200) 2012; 108
Qin, Luo, Cai, Zhong, Jiang, Zhao, Zheng (b0130) 2016; 31
So, Yagi, Sakurai, Ogi, Naiki, Goto (b0140) 2011; 412
Wang, Wang, Li, Bai, Li, Xu (b0310) 2020; 129
Krebs, Bromley, Donald (b0190) 2005; 149
Loveday, Wang, Rao, Anema, Singh (b0085) 2012; 27
Zhou, Liu, Zhou, Huang, Liu, Pan, Hu (b0305) 2016; 34
Hu, Wu, Li-Chan, Zhu, Zhang, Xu, Fan, Wang, Huang, Pan (b0320) 2013; 30
Li (10.1016/j.ultsonch.2021.105741_b0280) 2021; 111
Song (10.1016/j.ultsonch.2021.105741_b0225) 2013; 43
Li (10.1016/j.ultsonch.2021.105741_b0210) 2020; 106
Jiang (10.1016/j.ultsonch.2021.105741_b0315) 2014; 62
Mohammadian (10.1016/j.ultsonch.2021.105741_b0045) 2018; 75
Hu (10.1016/j.ultsonch.2021.105741_b0240) 2019; 10
Loveday (10.1016/j.ultsonch.2021.105741_b0075) 2011; 59
10.1016/j.ultsonch.2021.105741_b0175
Mantovani (10.1016/j.ultsonch.2021.105741_b0325) 2016; 60
Bhargava (10.1016/j.ultsonch.2021.105741_b0125) 2021; 70
Wang (10.1016/j.ultsonch.2021.105741_b0155) 2011; 59
Bhattacharya (10.1016/j.ultsonch.2021.105741_b0030) 2011; 115
Taha (10.1016/j.ultsonch.2021.105741_b0220) 2018; 49
Khatkar (10.1016/j.ultsonch.2021.105741_b0180) 2018; 49
Zhang (10.1016/j.ultsonch.2021.105741_b0230) 2017; 34
Stathopulos (10.1016/j.ultsonch.2021.105741_b0295) 2004; 13
Wang (10.1016/j.ultsonch.2021.105741_b0310) 2020; 129
Awad (10.1016/j.ultsonch.2021.105741_b0120) 2012; 48
Nilsson (10.1016/j.ultsonch.2021.105741_b0185) 2004; 34
Krebs (10.1016/j.ultsonch.2021.105741_b0190) 2005; 149
Zhang (10.1016/j.ultsonch.2021.105741_b0215) 2020; 125
Zhou (10.1016/j.ultsonch.2021.105741_b0305) 2016; 34
Li (10.1016/j.ultsonch.2021.105741_b0290) 2020; 265
Bolder (10.1016/j.ultsonch.2021.105741_b0090) 2007; 55
Qin (10.1016/j.ultsonch.2021.105741_b0130) 2016; 31
Amagliani (10.1016/j.ultsonch.2021.105741_b0050) 2017; 67
Hu (10.1016/j.ultsonch.2021.105741_b0245) 2020; 104
Feng (10.1016/j.ultsonch.2021.105741_b0300) 2019; 94
Martinez-Velasco (10.1016/j.ultsonch.2021.105741_b0285) 2018; 44
Warji (10.1016/j.ultsonch.2021.105741_b0055) 2017; 20
Kroes-Nijboer (10.1016/j.ultsonch.2021.105741_b0070) 2009; 4
Xiang (10.1016/j.ultsonch.2021.105741_b0065) 2021; 353
Wu (10.1016/j.ultsonch.2021.105741_b0115) 2019; 89
Hu (10.1016/j.ultsonch.2021.105741_b0320) 2013; 30
Zhao (10.1016/j.ultsonch.2021.105741_b0110) 2018; 80
Ng (10.1016/j.ultsonch.2021.105741_b0095) 2016; 25
Alavi (10.1016/j.ultsonch.2021.105741_b0260) 2020; 101
Wu (10.1016/j.ultsonch.2021.105741_b0005) 2020; 40
Koo (10.1016/j.ultsonch.2021.105741_b0100) 2018; 223
Chandrapala (10.1016/j.ultsonch.2021.105741_b0250) 2011; 18
Zhao (10.1016/j.ultsonch.2021.105741_b0060) 2020; 135
Loveday (10.1016/j.ultsonch.2021.105741_b0085) 2012; 27
Hu (10.1016/j.ultsonch.2021.105741_b0270) 2015; 45
Chagas (10.1016/j.ultsonch.2021.105741_b0255) 2018; 259
Xia (10.1016/j.ultsonch.2021.105741_b0105) 2017; 100
Duque-Estrada (10.1016/j.ultsonch.2021.105741_b0010) 2020; 318
Arzeni (10.1016/j.ultsonch.2021.105741_b0200) 2012; 108
Zhong (10.1016/j.ultsonch.2021.105741_b0265) 2020; 62
Xue (10.1016/j.ultsonch.2021.105741_b0235) 2020; 64
Ma (10.1016/j.ultsonch.2021.105741_b0040) 2017; 98
Li (10.1016/j.ultsonch.2021.105741_b0015) 2020; 105
Tang (10.1016/j.ultsonch.2021.105741_b0150) 2010; 58
Gao (10.1016/j.ultsonch.2021.105741_b0165) 2013; 96
Akkermans (10.1016/j.ultsonch.2021.105741_b0205) 2008; 9
So (10.1016/j.ultsonch.2021.105741_b0140) 2011; 412
Carrillo-Lopez (10.1016/j.ultsonch.2021.105741_b0135) 2021; 73
Hu (10.1016/j.ultsonch.2021.105741_b0195) 2013; 32
Mohammadian (10.1016/j.ultsonch.2021.105741_b0160) 2019; 87
Lara (10.1016/j.ultsonch.2021.105741_b0020) 2012; 13
Nakajima (10.1016/j.ultsonch.2021.105741_b0145) 2017; 36
Gulseren (10.1016/j.ultsonch.2021.105741_b0275) 2007; 14
Arnaudov (10.1016/j.ultsonch.2021.105741_b0080) 2006; 7
Loveday (10.1016/j.ultsonch.2021.105741_b0025) 2012; 60
Munialo (10.1016/j.ultsonch.2021.105741_b0170) 2014; 62
Tang (10.1016/j.ultsonch.2021.105741_b0035) 2010; 58
References_xml – volume: 59
  start-page: 8467
  year: 2011
  end-page: 8474
  ident: b0075
  article-title: Effect of pH, NaCl, CaCl2 and temperature on self-assembly of beta-lactoglobulin into nanofibrils: a central composite design study
  publication-title: J. Agric. Food Chem.
– volume: 259
  start-page: 166
  year: 2018
  end-page: 174
  ident: b0255
  article-title: Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds
  publication-title: Food Chem
– volume: 43
  start-page: 538
  year: 2013
  end-page: 544
  ident: b0225
  article-title: Effect of high-pressure homogenization on particle size and film properties of soy protein isolate
  publication-title: Ind. Crops Prod.
– volume: 125
  start-page: 109213
  year: 2020
  ident: b0215
  article-title: Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances
  publication-title: LWT
– volume: 412
  start-page: 568
  year: 2011
  end-page: 577
  ident: b0140
  article-title: Ultrasonication-dependent acceleration of amyloid fibril formation
  publication-title: J. Mol. Biol.
– volume: 60
  start-page: 5229
  year: 2012
  end-page: 5236
  ident: b0025
  article-title: Whey protein nanofibrils: the environment-morphology-functionality relationship in lyophilization, rehydration, and seeding
  publication-title: J. Agric. Food Chem.
– volume: 34
  start-page: 960
  year: 2017
  end-page: 967
  ident: b0230
  article-title: Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel
  publication-title: Ultrason Sonochem
– volume: 106
  start-page: 105918
  year: 2020
  ident: b0210
  article-title: Characterization of rice glutelin fibrils and their effect on in vitro rice starch digestibility
  publication-title: Food Hydrocolloids
– volume: 49
  start-page: 333
  year: 2018
  end-page: 342
  ident: b0180
  article-title: Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties
  publication-title: Ultrason Sonochem.
– volume: 14
  start-page: 173
  year: 2007
  end-page: 183
  ident: b0275
  article-title: Structural and functional changes in ultrasonicated bovine serum albumin solutions
  publication-title: Ultrason Sonochem
– volume: 45
  start-page: 102
  year: 2015
  end-page: 110
  ident: b0270
  article-title: Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin
  publication-title: Food Hydrocolloids
– volume: 75
  start-page: 115
  year: 2018
  end-page: 128
  ident: b0045
  article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition
  publication-title: Trends Food Sci. Technol.
– volume: 149
  start-page: 30
  year: 2005
  end-page: 37
  ident: b0190
  article-title: The binding of thioflavin-T to amyloid fibrils: localisation and implications
  publication-title: J. Struct. Biol.
– volume: 27
  start-page: 242
  year: 2012
  end-page: 249
  ident: b0085
  article-title: β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions
  publication-title: Food Hydrocolloids
– volume: 318
  year: 2020
  ident: b0010
  article-title: Oxidative stability of soy proteins: From ground soybeans to structured products
  publication-title: Food Chem.
– volume: 67
  start-page: 248
  year: 2017
  end-page: 259
  ident: b0050
  article-title: Globular plant protein aggregates for stabilization of food foams and emulsions
  publication-title: Trends Food Sci. Technol.
– volume: 13
  start-page: 4213
  year: 2012
  end-page: 4221
  ident: b0020
  article-title: Self-assembly of ovalbumin into amyloid and non-amyloid fibrils
  publication-title: Biomacromolecules
– volume: 135
  start-page: 109289
  year: 2020
  ident: b0060
  article-title: Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability
  publication-title: Food Res. Int.
– volume: 25
  start-page: 15
  year: 2016
  end-page: 21
  ident: b0095
  article-title: Impact of stirring speed on beta-lactoglobulin fibril formation
  publication-title: Food Sci. Biotechnol.
– volume: 44
  start-page: 97
  year: 2018
  end-page: 105
  ident: b0285
  article-title: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes
  publication-title: Ultrason Sonochem
– volume: 13
  start-page: 3017
  year: 2004
  end-page: 3027
  ident: b0295
  article-title: Sonication of proteins causes formation of aggregates that resemble amyloid
  publication-title: Protein Sci
– volume: 129
  year: 2020
  ident: b0310
  article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate
  publication-title: LWT
– volume: 60
  start-page: 288
  year: 2016
  end-page: 298
  ident: b0325
  article-title: Formation and pH-stability of whey protein fibrils in the presence of lecithin
  publication-title: Food Hydrocolloids
– volume: 62
  start-page: 595
  year: 2014
  end-page: 601
  ident: b0315
  article-title: Effects of ultrasound on the structure and physical properties of black bean protein isolates
  publication-title: Food Res. Int.
– volume: 62
  start-page: 2418
  year: 2014
  end-page: 2427
  ident: b0170
  article-title: Fibril formation from pea protein and subsequent gel formation
  publication-title: J. Agric. Food Chem.
– volume: 115
  start-page: 4195
  year: 2011
  end-page: 4205
  ident: b0030
  article-title: Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin
  publication-title: J. Phys. Chem. B
– volume: 108
  start-page: 463
  year: 2012
  end-page: 472
  ident: b0200
  article-title: Comparative study of high intensity ultrasound effects on food proteins functionality
  publication-title: J. Food Eng.
– volume: 62
  year: 2020
  ident: b0265
  article-title: Thermosonication-induced structural changes and solution properties of mung bean protein
  publication-title: Ultrason Sonochem
– volume: 105
  year: 2020
  ident: b0015
  article-title: Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins
  publication-title: Food Hydrocolloids
– reference: U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, nature, 227 (1970) 680-685. 10.1038/227680a0.
– volume: 100
  start-page: 268
  year: 2017
  end-page: 276
  ident: b0105
  article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin
  publication-title: Food Res Int
– volume: 20
  start-page: S1121
  year: 2017
  end-page: S1131
  ident: b0055
  article-title: Characterisation of nanofibrils from soy protein and their potential applications for food thickener and building blocks of microcapsules
  publication-title: Int. J. Food Properties
– volume: 111
  year: 2021
  ident: b0280
  article-title: Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils
  publication-title: Food Hydrocolloids
– volume: 353
  start-page: 129420
  year: 2021
  ident: b0065
  article-title: Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification
  publication-title: Food Chem.
– volume: 58
  start-page: 8061
  year: 2010
  end-page: 8068
  ident: b0150
  article-title: Formation of amyloid fibrils from kidney bean 7S globulin (Phaseolin) at pH 2.0
  publication-title: J. Agric. Food Chem.
– volume: 34
  start-page: 205
  year: 2016
  end-page: 213
  ident: b0305
  article-title: Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths
  publication-title: Innovative Food Sci. Emerg. Technol.
– volume: 58
  start-page: 11058
  year: 2010
  end-page: 11066
  ident: b0035
  article-title: Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin
  publication-title: J. Agric. Food. Chem.
– volume: 223
  start-page: 189
  year: 2018
  end-page: 196
  ident: b0100
  article-title: Extending protein functionality: Microfluidization of heat denatured whey protein fibrils
  publication-title: J. Food Eng.
– volume: 94
  start-page: 71
  year: 2019
  end-page: 79
  ident: b0300
  article-title: Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties
  publication-title: Food Hydrocolloids
– volume: 265
  year: 2020
  ident: b0290
  article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality
  publication-title: J. Food Eng.
– volume: 49
  start-page: 283
  year: 2018
  end-page: 293
  ident: b0220
  article-title: Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate
  publication-title: Ultrason Sonochem
– volume: 9
  start-page: 1474
  year: 2008
  end-page: 1479
  ident: b0205
  article-title: Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2
  publication-title: Biomacromolecules
– volume: 40
  start-page: 107491
  year: 2020
  ident: b0005
  article-title: Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity
  publication-title: Biotechnol. Adv.
– volume: 70
  start-page: 105293
  year: 2021
  ident: b0125
  article-title: Advances in application of ultrasound in food processing: A review
  publication-title: Ultrason Sonochem.
– volume: 104
  year: 2020
  ident: b0245
  article-title: Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity
  publication-title: Food Hydrocolloids
– volume: 101
  year: 2020
  ident: b0260
  article-title: Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter
  publication-title: Food Hydrocolloids
– volume: 7
  start-page: 3490
  year: 2006
  end-page: 3498
  ident: b0080
  article-title: Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine β-lactoglobulin
  publication-title: Biomacromolecules
– volume: 34
  start-page: 151
  year: 2004
  end-page: 160
  ident: b0185
  article-title: Techniques to study amyloid fibril formation in vitro
  publication-title: Methods
– volume: 31
  start-page: 590
  year: 2016
  end-page: 597
  ident: b0130
  article-title: Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment
  publication-title: Ultrason Sonochem.
– volume: 64
  year: 2020
  ident: b0235
  article-title: Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound
  publication-title: Ultrason Sonochem
– volume: 89
  start-page: 707
  year: 2019
  end-page: 714
  ident: b0115
  article-title: Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri)
  publication-title: Food Hydrocolloids
– volume: 59
  start-page: 11270
  year: 2011
  end-page: 11277
  ident: b0155
  article-title: Growth kinetics of amyloid-like fibrils derived from individual subunits of soy beta-conglycinin
  publication-title: J. Agric. Food Chem.
– volume: 48
  start-page: 410
  year: 2012
  end-page: 427
  ident: b0120
  article-title: Applications of ultrasound in analysis, processing and quality control of food: A review
  publication-title: Food Res. Int.
– volume: 10
  start-page: 8106
  year: 2019
  end-page: 8115
  ident: b0240
  article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance
  publication-title: Food Funct
– volume: 4
  start-page: 59
  year: 2009
  end-page: 63
  ident: b0070
  article-title: The Critical Aggregation Concentration of β-Lactoglobulin-Based Fibril Formation
  publication-title: Food Biophys.
– volume: 96
  start-page: 7383
  year: 2013
  end-page: 7392
  ident: b0165
  article-title: The effect of limited proteolysis by different proteases on the formation of whey protein fibrils
  publication-title: J. Dairy Sci.
– volume: 32
  start-page: 303
  year: 2013
  end-page: 311
  ident: b0195
  article-title: The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate
  publication-title: Food Hydrocolloids
– volume: 80
  start-page: 122
  year: 2018
  end-page: 129
  ident: b0110
  article-title: Application of ultrasound pretreatment and glycation in regulating the heat-induced amyloid-like aggregation of β-lactoglobulin
  publication-title: Food Hydrocolloids
– volume: 30
  start-page: 647
  year: 2013
  end-page: 655
  ident: b0320
  article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions
  publication-title: Food Hydrocolloids
– volume: 73
  year: 2021
  ident: b0135
  article-title: Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties
  publication-title: Ultrason Sonochem.
– volume: 18
  start-page: 951
  year: 2011
  end-page: 957
  ident: b0250
  article-title: Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate
  publication-title: Ultrason Sonochem
– volume: 98
  start-page: 717
  year: 2017
  end-page: 722
  ident: b0040
  article-title: Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme
  publication-title: Int. J. Biol. Macromol.
– volume: 55
  start-page: 5661
  year: 2007
  end-page: 5669
  ident: b0090
  article-title: Effect of stirring and seeding on whey protein fibril formation
  publication-title: J. Agric. Food. Chem.
– volume: 87
  start-page: 902
  year: 2019
  end-page: 914
  ident: b0160
  article-title: Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils
  publication-title: Food Hydrocolloids
– volume: 36
  start-page: 206
  year: 2017
  end-page: 211
  ident: b0145
  article-title: Drastic acceleration of fibrillation of insulin by transient cavitation bubble
  publication-title: Ultrason Sonochem
– volume: 34
  start-page: 151
  year: 2004
  ident: 10.1016/j.ultsonch.2021.105741_b0185
  article-title: Techniques to study amyloid fibril formation in vitro
  publication-title: Methods
  doi: 10.1016/j.ymeth.2004.03.012
– volume: 106
  start-page: 105918
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0210
  article-title: Characterization of rice glutelin fibrils and their effect on in vitro rice starch digestibility
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.105918
– volume: 94
  start-page: 71
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105741_b0300
  article-title: Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.03.004
– volume: 129
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0310
  article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate
  publication-title: LWT
  doi: 10.1016/j.lwt.2020.109563
– volume: 265
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0290
  article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality
  publication-title: J. Food Eng.
– volume: 59
  start-page: 8467
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105741_b0075
  article-title: Effect of pH, NaCl, CaCl2 and temperature on self-assembly of beta-lactoglobulin into nanofibrils: a central composite design study
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf201870z
– volume: 25
  start-page: 15
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105741_b0095
  article-title: Impact of stirring speed on beta-lactoglobulin fibril formation
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-016-0093-8
– volume: 43
  start-page: 538
  year: 2013
  ident: 10.1016/j.ultsonch.2021.105741_b0225
  article-title: Effect of high-pressure homogenization on particle size and film properties of soy protein isolate
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2012.08.005
– volume: 49
  start-page: 283
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0220
  article-title: Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2018.08.020
– volume: 13
  start-page: 4213
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105741_b0020
  article-title: Self-assembly of ovalbumin into amyloid and non-amyloid fibrils
  publication-title: Biomacromolecules
  doi: 10.1021/bm301481v
– volume: 259
  start-page: 166
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0255
  article-title: Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.03.115
– volume: 34
  start-page: 960
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105741_b0230
  article-title: Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2016.08.008
– volume: 318
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0010
  article-title: Oxidative stability of soy proteins: From ground soybeans to structured products
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126499
– volume: 412
  start-page: 568
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105741_b0140
  article-title: Ultrasonication-dependent acceleration of amyloid fibril formation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.07.069
– volume: 45
  start-page: 102
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105741_b0270
  article-title: Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.11.004
– volume: 20
  start-page: S1121
  issue: sup1
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105741_b0055
  article-title: Characterisation of nanofibrils from soy protein and their potential applications for food thickener and building blocks of microcapsules
  publication-title: Int. J. Food Properties
  doi: 10.1080/10942912.2017.1336720
– ident: 10.1016/j.ultsonch.2021.105741_b0175
  doi: 10.1038/227680a0
– volume: 9
  start-page: 1474
  issue: 5
  year: 2008
  ident: 10.1016/j.ultsonch.2021.105741_b0205
  article-title: Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2
  publication-title: Biomacromolecules
  doi: 10.1021/bm7014224
– volume: 80
  start-page: 122
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0110
  article-title: Application of ultrasound pretreatment and glycation in regulating the heat-induced amyloid-like aggregation of β-lactoglobulin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.02.001
– volume: 87
  start-page: 902
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105741_b0160
  article-title: Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.09.001
– volume: 7
  start-page: 3490
  issue: 12
  year: 2006
  ident: 10.1016/j.ultsonch.2021.105741_b0080
  article-title: Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine β-lactoglobulin
  publication-title: Biomacromolecules
  doi: 10.1021/bm060584i
– volume: 62
  start-page: 2418
  year: 2014
  ident: 10.1016/j.ultsonch.2021.105741_b0170
  article-title: Fibril formation from pea protein and subsequent gel formation
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf4055215
– volume: 62
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0265
  article-title: Thermosonication-induced structural changes and solution properties of mung bean protein
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2019.104908
– volume: 149
  start-page: 30
  issue: 1
  year: 2005
  ident: 10.1016/j.ultsonch.2021.105741_b0190
  article-title: The binding of thioflavin-T to amyloid fibrils: localisation and implications
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2004.08.002
– volume: 101
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0260
  article-title: Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105554
– volume: 115
  start-page: 4195
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105741_b0030
  article-title: Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp111528c
– volume: 105
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0015
  article-title: Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.105846
– volume: 108
  start-page: 463
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105741_b0200
  article-title: Comparative study of high intensity ultrasound effects on food proteins functionality
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2011.08.018
– volume: 89
  start-page: 707
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105741_b0115
  article-title: Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri)
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.11.032
– volume: 60
  start-page: 5229
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105741_b0025
  article-title: Whey protein nanofibrils: the environment-morphology-functionality relationship in lyophilization, rehydration, and seeding
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf300367k
– volume: 75
  start-page: 115
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0045
  article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2018.03.013
– volume: 223
  start-page: 189
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0100
  article-title: Extending protein functionality: Microfluidization of heat denatured whey protein fibrils
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2017.10.020
– volume: 98
  start-page: 717
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105741_b0040
  article-title: Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.01.128
– volume: 70
  start-page: 105293
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105741_b0125
  article-title: Advances in application of ultrasound in food processing: A review
  publication-title: Ultrason Sonochem.
  doi: 10.1016/j.ultsonch.2020.105293
– volume: 49
  start-page: 333
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0180
  article-title: Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties
  publication-title: Ultrason Sonochem.
  doi: 10.1016/j.ultsonch.2018.08.026
– volume: 353
  start-page: 129420
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105741_b0065
  article-title: Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129420
– volume: 55
  start-page: 5661
  issue: 14
  year: 2007
  ident: 10.1016/j.ultsonch.2021.105741_b0090
  article-title: Effect of stirring and seeding on whey protein fibril formation
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf063351r
– volume: 32
  start-page: 303
  year: 2013
  ident: 10.1016/j.ultsonch.2021.105741_b0195
  article-title: The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2013.01.016
– volume: 73
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105741_b0135
  article-title: Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties
  publication-title: Ultrason Sonochem.
  doi: 10.1016/j.ultsonch.2021.105467
– volume: 13
  start-page: 3017
  year: 2004
  ident: 10.1016/j.ultsonch.2021.105741_b0295
  article-title: Sonication of proteins causes formation of aggregates that resemble amyloid
  publication-title: Protein Sci
  doi: 10.1110/ps.04831804
– volume: 27
  start-page: 242
  issue: 1
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105741_b0085
  article-title: β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2011.07.001
– volume: 14
  start-page: 173
  year: 2007
  ident: 10.1016/j.ultsonch.2021.105741_b0275
  article-title: Structural and functional changes in ultrasonicated bovine serum albumin solutions
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2005.07.006
– volume: 62
  start-page: 595
  year: 2014
  ident: 10.1016/j.ultsonch.2021.105741_b0315
  article-title: Effects of ultrasound on the structure and physical properties of black bean protein isolates
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2014.04.022
– volume: 4
  start-page: 59
  issue: 2
  year: 2009
  ident: 10.1016/j.ultsonch.2021.105741_b0070
  article-title: The Critical Aggregation Concentration of β-Lactoglobulin-Based Fibril Formation
  publication-title: Food Biophys.
  doi: 10.1007/s11483-009-9101-3
– volume: 104
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0245
  article-title: Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.105729
– volume: 31
  start-page: 590
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105741_b0130
  article-title: Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment
  publication-title: Ultrason Sonochem.
  doi: 10.1016/j.ultsonch.2016.02.010
– volume: 10
  start-page: 8106
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105741_b0240
  article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance
  publication-title: Food Funct
  doi: 10.1039/C9FO00961B
– volume: 30
  start-page: 647
  year: 2013
  ident: 10.1016/j.ultsonch.2021.105741_b0320
  article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2012.08.001
– volume: 36
  start-page: 206
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105741_b0145
  article-title: Drastic acceleration of fibrillation of insulin by transient cavitation bubble
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2016.11.034
– volume: 34
  start-page: 205
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105741_b0305
  article-title: Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths
  publication-title: Innovative Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2016.02.007
– volume: 135
  start-page: 109289
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0060
  article-title: Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109289
– volume: 64
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0235
  article-title: Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2020.104990
– volume: 18
  start-page: 951
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105741_b0250
  article-title: Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2010.12.016
– volume: 58
  start-page: 8061
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105741_b0150
  article-title: Formation of amyloid fibrils from kidney bean 7S globulin (Phaseolin) at pH 2.0
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf101311f
– volume: 111
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105741_b0280
  article-title: Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106396
– volume: 58
  start-page: 11058
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105741_b0035
  article-title: Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf1021658
– volume: 44
  start-page: 97
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105741_b0285
  article-title: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2018.02.007
– volume: 60
  start-page: 288
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105741_b0325
  article-title: Formation and pH-stability of whey protein fibrils in the presence of lecithin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.03.039
– volume: 100
  start-page: 268
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105741_b0105
  article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2017.08.059
– volume: 96
  start-page: 7383
  year: 2013
  ident: 10.1016/j.ultsonch.2021.105741_b0165
  article-title: The effect of limited proteolysis by different proteases on the formation of whey protein fibrils
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2013-6843
– volume: 40
  start-page: 107491
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0005
  article-title: Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.107491
– volume: 125
  start-page: 109213
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105741_b0215
  article-title: Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances
  publication-title: LWT
  doi: 10.1016/j.lwt.2020.109213
– volume: 48
  start-page: 410
  issue: 2
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105741_b0120
  article-title: Applications of ultrasound in analysis, processing and quality control of food: A review
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2012.05.004
– volume: 59
  start-page: 11270
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105741_b0155
  article-title: Growth kinetics of amyloid-like fibrils derived from individual subunits of soy beta-conglycinin
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf202541m
– volume: 67
  start-page: 248
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105741_b0050
  article-title: Globular plant protein aggregates for stabilization of food foams and emulsions
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2017.07.013
SSID ssj0003920
Score 2.56911
Snippet •Ultrasound can increase the formation rate of soy protein isolate nanofibrils.•Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle...
Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound...
• Ultrasound can increase the formation rate of soy protein isolate nanofibrils. • Ultrasound-pretreated soy protein isolate nanofibrils has a smaller particle...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105741
SubjectTerms Fibrillation kinetics
Glycine max
Hydrophobic and Hydrophilic Interactions
Kinetics
Particle Size
Physicochemical property
Soy protein isolate nanofibril
Soybean Proteins
Special Section: Ultrasound Food Processing
Structure
Ultrasound
Viscosity
Title Effect mechanism of ultrasound pretreatment on fibrillation Kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils
URI https://dx.doi.org/10.1016/j.ultsonch.2021.105741
https://www.ncbi.nlm.nih.gov/pubmed/34537680
https://www.proquest.com/docview/2574743762
https://pubmed.ncbi.nlm.nih.gov/PMC8455861
https://doaj.org/article/8a5cd7b97b0f4b03ab4a13edded0a528
Volume 78
WOSCitedRecordID wos000703605600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: AIEXJ
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgAsEFQYESPiojcSTUie21c4SKCglUcQBpb5bj2CLVNqk2u0j8HP4pM3ay2sBhL1yT2LEzL5nneOYNIW-klbWQsEwNQO5zUWGZFycDYDkwWTa1DiomCn9Rl5d6uay-7pX6wpiwJA-cHtyZttI1qq5UzYKoGbe1sAX38FY2zMoypvkC65kWU-M3GLx-yg-WLBeFUnu5wVfvtqsNcNm4FVEWsdCtKGZuKar3z7zTv-zz7yDKPa908ZA8GOkkfZ-m8Yjc8t0xuXc-VXE7JndjiKcbHpPfSaiYXntM9m2Ha9oHCoNc2wFLK1GMPJyizmnf0YDJAKsUKkc_AxlFQee3NP0KwTpbUWgAmvU3GJvtB2qhl6RHu1176uZS0Hi3of9FozBE29EWQA88l3a269Othifk-8XHb-ef8rFAQ-4kV5vcMu-kxp3HUnnVcN1wlM8KlgVuF2LBnC-LuuRK2soXZQg6AP8KQUlfKUACf0qOur7zzwjVVpSBa8cWdYPJuBrWhh5WW1Y3wrqmyoic7GPcqF6ORTRWZgpTuzKTXQ3a1SS7ZuRs1-4m6XccbPEBzb-7GvW34wFApRlRaQ6hMiPVBB4zUplEUaCr9uAAXk9oMwAW3MCxne-3g4HPqwDGB_4rIycJfbthcoHCPJplRM1wOZvH_EzX_oh64lpIqRfF8_8x8RfkPk4lhTu-JEcAOv-K3HE_N-2wPiW31VKfxlf1D6AdSaM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+mechanism+of+ultrasound+pretreatment+on+fibrillation+Kinetics%2C+physicochemical+properties+and+structure+characteristics+of+soy+protein+isolate+nanofibrils&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Hu%2C+Anna&rft.au=Li%2C+Liang&rft.date=2021-10-01&rft.issn=1350-4177&rft.volume=78&rft.spage=105741&rft_id=info:doi/10.1016%2Fj.ultsonch.2021.105741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultsonch_2021_105741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon