Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health

Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Redox biology Jg. 12; S. 929 - 936
Hauptverfasser: Kanner, Joseph, Selhub, Jacob, Shpaizer, Adi, Rabkin, Boris, Shacham, Inbal, Tirosh, Oren
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier 01.08.2017
Schlagworte:
ISSN:2213-2317, 2213-2317
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R =0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health.
AbstractList Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R =0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health.
Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Keywords: Stomach, Red-meat, Lipid-peroxidation, Malondialdehyde – MDA, Postprandial, Polyphenols
Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health.Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health.
Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. • Absorption of diet MDA and ALEs in blood could induce risk factors for CVD and other diseases. • Red-meat generated MDA and ALEs in SGF are defined as ePOSI. • Reducing agents present in plant foods, reduced MDA and ALEs in SGF, are defined as rPOSI. • Calculated plant reducing agents by rPOSI was found to highly predict the reducing of ePOSI. • The POS index would help to quantify nutrition for promoting human health.
Author Rabkin, Boris
Tirosh, Oren
Selhub, Jacob
Shacham, Inbal
Shpaizer, Adi
Kanner, Joseph
AuthorAffiliation b Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
c Vitamin Metabolism and Aging, Jean Mayer USDA at Tufts University, Boston, MA, USA
a Department of Food Science, ARO Volcani Center, Bet-Dagan, Israel
AuthorAffiliation_xml – name: c Vitamin Metabolism and Aging, Jean Mayer USDA at Tufts University, Boston, MA, USA
– name: b Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
– name: a Department of Food Science, ARO Volcani Center, Bet-Dagan, Israel
Author_xml – sequence: 1
  givenname: Joseph
  surname: Kanner
  fullname: Kanner, Joseph
– sequence: 2
  givenname: Jacob
  surname: Selhub
  fullname: Selhub, Jacob
– sequence: 3
  givenname: Adi
  surname: Shpaizer
  fullname: Shpaizer, Adi
– sequence: 4
  givenname: Boris
  surname: Rabkin
  fullname: Rabkin, Boris
– sequence: 5
  givenname: Inbal
  surname: Shacham
  fullname: Shacham, Inbal
– sequence: 6
  givenname: Oren
  surname: Tirosh
  fullname: Tirosh, Oren
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28478382$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u3CAUha0qVZOmeYJKFct0MS5gbHAXlaqoPyNFmqhJ1-hiw5iRDVPA0eQB-t5lMmmUdFE2IDjnu-je87o4ct7ponhLcEkwaT5syqB7vyspJrzErMS0fVGcUEqqBa0IP3pyPi7OYtzgvIRglOBXxTEVjItK0JPi9489Bg1-0j4miDYi61BMfoJuQJPu7TwhdYeM9338iG4Gja6ycBvA9RZGtNrZHpK91eg6BR0jWrpe79D51ep6-T67AlIwguusWyM3p2CT9Q5lMxrmCRwaNIxpeFO8NDBGffawnxY_v365ufi-uFx9W158vlx0dcXToq2Mosb0DIhi3KiGa2g5pzVlShkDoERNhWpbaOuOE861bgSuGmWEIdi01WmxPHB7Dxu5DXaCcCc9WHl_4cNaQki2G7WsKBZtV1EKvGe5BLAmk0VdE6Oh6XhmfTqwtrPKfeq0SwHGZ9DnL84Ocu1vZc1ogyuSAecPgOB_zTomOdnY6TG3S_s5SiLahlHMGc7Sd09rPRb5O8csqA6CLvgYgzaPEoLlPjByI-8DI_eBkZjJHJjsav9xdTbBfkL5w3b8r_cPLbXKMw
CitedBy_id crossref_primary_10_1038_s41538_024_00282_x
crossref_primary_10_3390_antiox10081262
crossref_primary_10_3390_antiox11081513
crossref_primary_10_3390_nu16142274
crossref_primary_10_1016_j_envres_2019_04_035
crossref_primary_10_1080_09637486_2019_1677570
crossref_primary_10_3390_molecules30163356
crossref_primary_10_1007_s13410_022_01095_y
crossref_primary_10_1016_j_foodres_2018_03_034
crossref_primary_10_1016_j_biopha_2018_07_053
crossref_primary_10_3390_ijms25094769
crossref_primary_10_3390_biom10010146
crossref_primary_10_1016_j_foodchem_2021_129246
crossref_primary_10_3390_molecules25184105
crossref_primary_10_3390_antiox9070638
crossref_primary_10_1016_j_foodchem_2024_141774
crossref_primary_10_3389_fendo_2025_1393883
crossref_primary_10_1016_j_fbio_2022_101747
crossref_primary_10_3390_diseases9040066
crossref_primary_10_1016_j_ijgfs_2025_101147
crossref_primary_10_1155_2021_9965916
crossref_primary_10_1111_jfbc_13624
crossref_primary_10_3390_nu10101388
crossref_primary_10_1016_j_ijbiomac_2024_130897
crossref_primary_10_1016_j_foodchem_2021_129241
crossref_primary_10_3390_biom13060886
crossref_primary_10_3390_molecules24224028
crossref_primary_10_1016_j_foodres_2024_114969
crossref_primary_10_1038_s41598_025_98977_y
crossref_primary_10_1111_1750_3841_14460
crossref_primary_10_1080_10715762_2019_1612059
crossref_primary_10_1002_cche_10039
crossref_primary_10_3390_antiox12122103
crossref_primary_10_3390_ijms21176451
crossref_primary_10_1016_j_foodchem_2024_141085
crossref_primary_10_3390_nu11102373
crossref_primary_10_1016_j_bbapap_2022_140797
crossref_primary_10_3390_antiox9090797
crossref_primary_10_3390_foods10092230
crossref_primary_10_3390_antiox10050665
crossref_primary_10_3390_ijms242015068
Cites_doi 10.1016/j.atherosclerosis.2015.01.026
10.1016/S0891-5849(01)00718-3
10.1021/jf703700d
10.1021/jf040400w
10.1002/biof.1018
10.1007/s11745-005-1402-4
10.3109/10715762.2015.1040009
10.1172/JCI1314
10.1155/2017/8361493
10.1002/mnfr.200600303
10.1016/j.bbrc.2015.01.140
10.1002/mnfr.201200557
10.1021/jf040402g
10.1186/1741-7015-12-77
10.1111/dme.12120
10.1080/10408398709527457
10.1038/nature10146
10.1021/jf60226a057
10.3945/an.115.008433
10.1016/0140-6736(93)90206-V
10.1016/j.mam.2010.09.006
10.1074/jbc.271.17.9982
10.1007/s11154-016-9341-8
10.1016/j.redox.2016.01.010
10.1016/j.abb.2015.11.014
10.1039/C4FO00269E
10.1111/j.1365-2125.2012.04272.x
10.1073/pnas.94.12.6474
10.3945/jn.110.131490
10.1016/j.foodchem.2011.08.055
10.1681/ASN.2014101047
10.1016/j.jff.2012.09.008
10.18632/oncotarget.6920
10.2337/dc11-0091
10.1096/fj.07-9041com
10.1021/jf60219a025
10.3109/10715762.2015.1036052
10.1016/0309-1740(94)90040-X
10.1016/0003-9861(85)90282-6
10.1021/jf040401o
10.1007/BF02534512
10.1021/jf300193g
10.1016/j.numecd.2013.12.014
10.1021/acs.jafc.5b02149
10.1016/j.freeradbiomed.2004.09.017
10.1016/j.cardiores.2006.10.004
ContentType Journal Article
Copyright Copyright © 2017. Published by Elsevier B.V.
2017 The Authors. Published by Elsevier B.V. 2017
Copyright_xml – notice: Copyright © 2017. Published by Elsevier B.V.
– notice: 2017 The Authors. Published by Elsevier B.V. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2017.04.029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
EndPage 936
ExternalDocumentID oai_doaj_org_article_32089c322a7d4725a468b98551fea6c7
PMC5426031
28478382
10_1016_j_redox_2017_04_029
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABGSF
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADUVX
ADVLN
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c537t-93fb2ffd4a1b47fb67ea9772524bbffaab8528b99a95c7177ee68036bf8f10f93
IEDL.DBID DOA
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403328700092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-2317
IngestDate Fri Oct 03 12:51:03 EDT 2025
Tue Sep 30 16:05:10 EDT 2025
Fri Jul 11 07:59:32 EDT 2025
Mon Jul 21 06:08:21 EDT 2025
Wed Nov 05 20:49:51 EST 2025
Tue Nov 18 22:33:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Red-meat
Polyphenols
Stomach
Malondialdehyde – MDA
Lipid-peroxidation
Postprandial
Language English
License Copyright © 2017. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-93fb2ffd4a1b47fb67ea9772524bbffaab8528b99a95c7177ee68036bf8f10f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/32089c322a7d4725a468b98551fea6c7
PMID 28478382
PQID 1896420740
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_32089c322a7d4725a468b98551fea6c7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426031
proquest_miscellaneous_1896420740
pubmed_primary_28478382
crossref_primary_10_1016_j_redox_2017_04_029
crossref_citationtrail_10_1016_j_redox_2017_04_029
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2017
Publisher Elsevier
Publisher_xml – name: Elsevier
References Libby (10.1016/j.redox.2017.04.029_bib1) 2011; 473
Kanner (10.1016/j.redox.2017.04.029_bib35) 2001; 31
Halliwell (10.1016/j.redox.2017.04.029_bib48) 2013; 75
Amaki (10.1016/j.redox.2017.04.029_bib17) 2004; 90
Gorelik (10.1016/j.redox.2017.04.029_bib20) 2008; 56
Kanner (10.1016/j.redox.2017.04.029_bib38) 1978; 26
Kadiiska (10.1016/j.redox.2017.04.029_bib19) 2005; 38
Ursini (10.1016/j.redox.2017.04.029_bib47) 2016; 8
Gorelik (10.1016/j.redox.2017.04.029_bib21) 2013; 5
Kanner (10.1016/j.redox.2017.04.029_bib4) 2012; 60
Koschinsky (10.1016/j.redox.2017.04.029_bib22) 1997; 94
Croft (10.1016/j.redox.2017.04.029_bib26) 2016; 595
Tresserra-Rimbau (10.1016/j.redox.2017.04.029_bib31) 2014; 24
Gobert (10.1016/j.redox.2017.04.029_bib30) 2014; 5
Tresserra-Rimbau (10.1016/j.redox.2017.04.029_bib32) 2014; 12
Lapidot (10.1016/j.redox.2017.04.029_bib40) 2005; 53
Stinghen (10.1016/j.redox.2017.04.029_bib11) 2016; 27
Lapidot (10.1016/j.redox.2017.04.029_bib43) 2005; 53
Hull (10.1016/j.redox.2017.04.029_bib44) 2012; 131
Gorelik (10.1016/j.redox.2017.04.029_bib8) 2008; 22
Li (10.1016/j.redox.2017.04.029_bib28) 2013; 30
Suomela (10.1016/j.redox.2017.04.029_bib6) 2005; 40
Draper (10.1016/j.redox.2017.04.029_bib5) 1984; 19
Kanner (10.1016/j.redox.2017.04.029_bib41) 1987; 25
Del Turco (10.1016/j.redox.2017.04.029_bib10) 2012; 38
Urquiaga (10.1016/j.redox.2017.04.029_bib29) 2017; 2017
Gorelik (10.1016/j.redox.2017.04.029_bib37) 2005; 53
Fu (10.1016/j.redox.2017.04.029_bib45) 1996; 271
Uchida (10.1016/j.redox.2017.04.029_bib14) 2015; 49
Kanner (10.1016/j.redox.2017.04.029_bib3) 2007; 51
Tomita (10.1016/j.redox.2017.04.029_bib12) 2016; 7
Steinberg (10.1016/j.redox.2017.04.029_bib16) 1989; 320
Ito (10.1016/j.redox.2017.04.029_bib18) 2015; 239
Sirota (10.1016/j.redox.2017.04.029_bib33) 2013; 57
Uribarri (10.1016/j.redox.2017.04.029_bib9) 2015; 6
Rabbani (10.1016/j.redox.2017.04.029_bib15) 2015; 458
Frankel (10.1016/j.redox.2017.04.029_bib23) 1993; 341
Grootveld (10.1016/j.redox.2017.04.029_bib7) 1998; 101
Tirosh (10.1016/j.redox.2017.04.029_bib34) 2015; 63
Kanner (10.1016/j.redox.2017.04.029_bib36) 1985; 237
Ceriello (10.1016/j.redox.2017.04.029_bib2) 2016; 17
Fraga (10.1016/j.redox.2017.04.029_bib24) 2010; 31
Uribarri (10.1016/j.redox.2017.04.029_bib46) 2011; 34
Wei (10.1016/j.redox.2017.04.029_bib13) 2015; 49
Kanner (10.1016/j.redox.2017.04.029_bib42) 1994; 36
Halliwell (10.1016/j.redox.2017.04.029_bib25) 2007; 73
Hollman (10.1016/j.redox.2017.04.029_bib27) 2011; 141
Kanner (10.1016/j.redox.2017.04.029_bib39) 1979; 27
26165509 - J Agric Food Chem. 2015 Aug 12;63(31):7016-23
25968950 - Free Radic Res. 2015;49(7):896-904
6521608 - Lipids. 1984 Nov;19(11):836-43
9502761 - J Clin Invest. 1998 Mar 15;101(6):1210-8
23322503 - Mol Nutr Food Res. 2013 May;57(5):916-9
22061459 - Meat Sci. 1994;36(1-2):169-89
16094852 - Lipids. 2005 May;40(5):437-44
15853377 - J Agric Food Chem. 2005 May 4;53(9):3391-6
27095227 - Arch Biochem Biophys. 2016 Apr 1;595:120-4
26178030 - Adv Nutr. 2015 Jul 15;6(4):461-73
8626637 - J Biol Chem. 1996 Apr 26;271(17):9982-6
24552647 - Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):639-47
544662 - J Agric Food Chem. 1979 Nov-Dec;27(6):1316-8
26880302 - Rev Endocr Metab Disord. 2016 Mar;17 (1):111-6
15721980 - Free Radic Biol Med. 2005 Mar 15;38(6):698-710
23320544 - Diabet Med. 2013 May;30(5):590-5
3304843 - Crit Rev Food Sci Nutr. 1987;25(4):317-64
20854840 - Mol Aspects Med. 2010 Dec;31(6):435-45
18540628 - J Agric Food Chem. 2008 Jul 9;56(13):5002-7
9177242 - Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6474-9
22420826 - Br J Clin Pharmacol. 2013 Mar;75(3):637-44
15853376 - J Agric Food Chem. 2005 May 4;53(9):3383-90
25682029 - Atherosclerosis. 2015 Apr;239(2):311-7
26783961 - Oncotarget. 2016 Mar 8;7(10 ):11018-32
21709297 - Diabetes Care. 2011 Jul;34(7):1610-6
2648148 - N Engl J Med. 1989 Apr 6;320(14):915-24
28243359 - Oxid Med Cell Longev. 2017;2017:8361493
25029433 - Food Funct. 2014 Sep;5(9):2166-74
22530973 - J Agric Food Chem. 2012 Sep 12;60(36):8790-6
11728810 - Free Radic Biol Med. 2001 Dec 1;31(11):1388-95
25968945 - Free Radic Res. 2015;49(7):905-17
25666945 - Biochem Biophys Res Commun. 2015 Mar 6;458(2):221-6
8094487 - Lancet. 1993 Feb 20;341(8843):454-7
3977316 - Arch Biochem Biophys. 1985 Mar;237(2):314-21
17712060 - FASEB J. 2008 Jan;22(1):41-6
15853378 - J Agric Food Chem. 2005 May 4;53(9):3397-402
21593864 - Nature. 2011 May 19;473(7347):317-25
15367526 - Heart. 2004 Oct;90(10):1211-3
21451125 - J Nutr. 2011 May;141(5):989S-1009S
17854006 - Mol Nutr Food Res. 2007 Sep;51(9):1094-101
26311460 - J Am Soc Nephrol. 2016 Feb;27(2):354-70
24886552 - BMC Med. 2014 May 13;12:77
22488968 - Biofactors. 2012 Jul-Aug;38(4):266-74
26820564 - Redox Biol. 2016 Aug;8:205-15
17141749 - Cardiovasc Res. 2007 Jan 15;73(2):341-7
References_xml – volume: 239
  start-page: 311
  year: 2015
  ident: 10.1016/j.redox.2017.04.029_bib18
  article-title: Malondialdehyde-modified low-density lipoprotein is a predictor of cardiac events in patients with stable angina on lipid-lowering therapy after percutaneous coronary intervention using drug-eluting stent
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.01.026
– volume: 31
  start-page: 1388
  year: 2001
  ident: 10.1016/j.redox.2017.04.029_bib35
  article-title: The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00718-3
– volume: 56
  start-page: 5002
  year: 2008
  ident: 10.1016/j.redox.2017.04.029_bib20
  article-title: The stomach as a "bioreactor": when red meat meets red wine
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf703700d
– volume: 53
  start-page: 3391
  year: 2005
  ident: 10.1016/j.redox.2017.04.029_bib43
  article-title: Lipid hydroperoxidase activity of myoglobin and phenolic antioxidants in simulated gastric fluid
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf040400w
– volume: 38
  start-page: 266
  year: 2012
  ident: 10.1016/j.redox.2017.04.029_bib10
  article-title: An update on advanced glycation endproducts and atherosclerosis
  publication-title: BioFactors
  doi: 10.1002/biof.1018
– volume: 40
  start-page: 437
  year: 2005
  ident: 10.1016/j.redox.2017.04.029_bib6
  article-title: Triacylglycerol oxidation in pig lipoproteins after a diet rich in oxidized sunflower seed oil
  publication-title: Lipids
  doi: 10.1007/s11745-005-1402-4
– volume: 49
  start-page: 905
  year: 2015
  ident: 10.1016/j.redox.2017.04.029_bib13
  article-title: Covalent modification of DNA by alpha, beta-unsaturated aldehydes derived from lipid peroxidation: recent progress and challenges
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2015.1040009
– volume: 101
  start-page: 1210
  year: 1998
  ident: 10.1016/j.redox.2017.04.029_bib7
  article-title: In vivo absorption, metabolism, and urinary excretion of alpha, beta-unsaturated aldehydes in experimental animals. relevance to the development of cardiovascular diseases by the dietary ingestion of thermally stressed polyunsaturate-rich culinary oils
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI1314
– volume: 2017
  start-page: 8361493
  year: 2017
  ident: 10.1016/j.redox.2017.04.029_bib29
  article-title: A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans
  publication-title: Oxid. Med. Cell Long.
  doi: 10.1155/2017/8361493
– volume: 51
  start-page: 1094
  year: 2007
  ident: 10.1016/j.redox.2017.04.029_bib3
  article-title: Dietary advanced lipid oxidation endproducts are risk factors to human health
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200600303
– volume: 458
  start-page: 221
  year: 2015
  ident: 10.1016/j.redox.2017.04.029_bib15
  article-title: Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.01.140
– volume: 57
  start-page: 916
  year: 2013
  ident: 10.1016/j.redox.2017.04.029_bib33
  article-title: Coffee polyphenols protect human plasma from postprandial carbonyl modifications
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201200557
– volume: 53
  start-page: 3383
  year: 2005
  ident: 10.1016/j.redox.2017.04.029_bib40
  article-title: Lipid peroxidation by "free" iron ions and myoglobin as affected by dietary antioxidants in simulated gastric fluids
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf040402g
– volume: 12
  start-page: 77
  year: 2014
  ident: 10.1016/j.redox.2017.04.029_bib32
  article-title: Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-12-77
– volume: 30
  start-page: 590
  year: 2013
  ident: 10.1016/j.redox.2017.04.029_bib28
  article-title: Decrease of postprandial endothelial dysfunction by spice mix added to high-fat hamburger meat in men with Type2 diabetes mellitus
  publication-title: Diabet. Med.
  doi: 10.1111/dme.12120
– volume: 25
  start-page: 317
  year: 1987
  ident: 10.1016/j.redox.2017.04.029_bib41
  article-title: Initiation of lipid peroxidation in biological systems
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398709527457
– volume: 473
  start-page: 317
  year: 2011
  ident: 10.1016/j.redox.2017.04.029_bib1
  article-title: Progress and challenges in translating the biology of atherosclerosis
  publication-title: Nature
  doi: 10.1038/nature10146
– volume: 27
  start-page: 1316
  year: 1979
  ident: 10.1016/j.redox.2017.04.029_bib39
  article-title: Content and stability of Alpha-tocopherol in fresh and dehydrated pepper fruits (Capsicum-Annuum-L)
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60226a057
– volume: 6
  start-page: 461
  year: 2015
  ident: 10.1016/j.redox.2017.04.029_bib9
  article-title: Dietary advanced glycation end products and their role in health and disease
  publication-title: Adv. Nutr.
  doi: 10.3945/an.115.008433
– volume: 341
  start-page: 454
  year: 1993
  ident: 10.1016/j.redox.2017.04.029_bib23
  article-title: Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine
  publication-title: Lancet
  doi: 10.1016/0140-6736(93)90206-V
– volume: 31
  start-page: 435
  year: 2010
  ident: 10.1016/j.redox.2017.04.029_bib24
  article-title: Basic biochemical mechanisms behind the health benefits of polyphenols
  publication-title: Mol. Asp. Med.
  doi: 10.1016/j.mam.2010.09.006
– volume: 271
  start-page: 9982
  year: 1996
  ident: 10.1016/j.redox.2017.04.029_bib45
  article-title: The advanced glycation end product, N-(epsilon)(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.17.9982
– volume: 17
  start-page: 111
  year: 2016
  ident: 10.1016/j.redox.2017.04.029_bib2
  article-title: Atherogenicity of postprandial hyperglycemia and lipotoxicity
  publication-title: Rev. Endocr. Metab. Disord.
  doi: 10.1007/s11154-016-9341-8
– volume: 8
  start-page: 205
  year: 2016
  ident: 10.1016/j.redox.2017.04.029_bib47
  article-title: Redox homeostasis: the golden mean of healthy living
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2016.01.010
– volume: 595
  start-page: 120
  year: 2016
  ident: 10.1016/j.redox.2017.04.029_bib26
  article-title: Dietary polyphenols: antioxidants or not?
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2015.11.014
– volume: 5
  start-page: 2166
  year: 2014
  ident: 10.1016/j.redox.2017.04.029_bib30
  article-title: Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion
  publication-title: Food Funct.
  doi: 10.1039/C4FO00269E
– volume: 75
  start-page: 637
  year: 2013
  ident: 10.1016/j.redox.2017.04.029_bib48
  article-title: The antioxidant paradox: less paradoxical now?
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/j.1365-2125.2012.04272.x
– volume: 94
  start-page: 6474
  year: 1997
  ident: 10.1016/j.redox.2017.04.029_bib22
  article-title: Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.12.6474
– volume: 141
  start-page: 989S
  year: 2011
  ident: 10.1016/j.redox.2017.04.029_bib27
  article-title: The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established
  publication-title: J. Nutr.
  doi: 10.3945/jn.110.131490
– volume: 131
  start-page: 170
  year: 2012
  ident: 10.1016/j.redox.2017.04.029_bib44
  article-title: N-epsilon-(carboxymethyl)lysine content of foods commonly consumed in a Western style diet
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2011.08.055
– volume: 27
  start-page: 354
  year: 2016
  ident: 10.1016/j.redox.2017.04.029_bib11
  article-title: Uremic toxicity of advanced glycation end products in CKD
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2014101047
– volume: 320
  start-page: 915
  year: 1989
  ident: 10.1016/j.redox.2017.04.029_bib16
  article-title: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity
  publication-title: N. Engl. J. Med.
– volume: 5
  start-page: 163
  year: 2013
  ident: 10.1016/j.redox.2017.04.029_bib21
  article-title: A rational approach to prevent postprandial modification of LDL by dietary polyphenols
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.09.008
– volume: 7
  start-page: 11018
  year: 2016
  ident: 10.1016/j.redox.2017.04.029_bib12
  article-title: Aldehyde dehydrogenase 1A1 in stem cells and cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6920
– volume: 90
  start-page: 1211
  year: 2004
  ident: 10.1016/j.redox.2017.04.029_bib17
  article-title: Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease
  publication-title: Heart (Br. Card. Soc.)
– volume: 34
  start-page: 1610
  year: 2011
  ident: 10.1016/j.redox.2017.04.029_bib46
  article-title: Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes potential role of AGER1 and SIRT1
  publication-title: Diabetes Care
  doi: 10.2337/dc11-0091
– volume: 22
  start-page: 41
  year: 2008
  ident: 10.1016/j.redox.2017.04.029_bib8
  article-title: A novel function of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products
  publication-title: FASEB J.
  doi: 10.1096/fj.07-9041com
– volume: 26
  start-page: 1238
  year: 1978
  ident: 10.1016/j.redox.2017.04.029_bib38
  article-title: Invertase (Beta-Fructofuranosidase) Activity in 3 Date Cultivars
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60219a025
– volume: 49
  start-page: 896
  year: 2015
  ident: 10.1016/j.redox.2017.04.029_bib14
  article-title: Aldehyde adducts generated during lipid peroxidation modification of proteins
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2015.1036052
– volume: 36
  start-page: 169
  year: 1994
  ident: 10.1016/j.redox.2017.04.029_bib42
  article-title: Oxidative processes in meat and meat-products - quality implications
  publication-title: Meat Sci.
  doi: 10.1016/0309-1740(94)90040-X
– volume: 237
  start-page: 314
  year: 1985
  ident: 10.1016/j.redox.2017.04.029_bib36
  article-title: Initiation of membranal lipid-peroxidation by activated metmyoglobin and methemoglobin
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(85)90282-6
– volume: 53
  start-page: 3397
  year: 2005
  ident: 10.1016/j.redox.2017.04.029_bib37
  article-title: Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf040401o
– volume: 19
  start-page: 836
  year: 1984
  ident: 10.1016/j.redox.2017.04.029_bib5
  article-title: Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues
  publication-title: Lipids
  doi: 10.1007/BF02534512
– volume: 60
  start-page: 8790
  year: 2012
  ident: 10.1016/j.redox.2017.04.029_bib4
  article-title: Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf300193g
– volume: 24
  start-page: 639
  year: 2014
  ident: 10.1016/j.redox.2017.04.029_bib31
  article-title: Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study
  publication-title: Nutr. Metab. Cardiovasc. Dis.
  doi: 10.1016/j.numecd.2013.12.014
– volume: 63
  start-page: 7016
  year: 2015
  ident: 10.1016/j.redox.2017.04.029_bib34
  article-title: Lipid peroxidation in a stomach medium is affected by dietary oils (olive/fish) and antioxidants: the Mediterranean versus Western Diet
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b02149
– volume: 38
  start-page: 698
  year: 2005
  ident: 10.1016/j.redox.2017.04.029_bib19
  article-title: Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning?
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.09.017
– volume: 73
  start-page: 341
  year: 2007
  ident: 10.1016/j.redox.2017.04.029_bib25
  article-title: Dietary polyphenols: good, bad, or indifferent for your health?
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2006.10.004
– reference: 26178030 - Adv Nutr. 2015 Jul 15;6(4):461-73
– reference: 23320544 - Diabet Med. 2013 May;30(5):590-5
– reference: 2648148 - N Engl J Med. 1989 Apr 6;320(14):915-24
– reference: 26165509 - J Agric Food Chem. 2015 Aug 12;63(31):7016-23
– reference: 26311460 - J Am Soc Nephrol. 2016 Feb;27(2):354-70
– reference: 22061459 - Meat Sci. 1994;36(1-2):169-89
– reference: 6521608 - Lipids. 1984 Nov;19(11):836-43
– reference: 26820564 - Redox Biol. 2016 Aug;8:205-15
– reference: 24552647 - Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):639-47
– reference: 17141749 - Cardiovasc Res. 2007 Jan 15;73(2):341-7
– reference: 22420826 - Br J Clin Pharmacol. 2013 Mar;75(3):637-44
– reference: 15853376 - J Agric Food Chem. 2005 May 4;53(9):3383-90
– reference: 26880302 - Rev Endocr Metab Disord. 2016 Mar;17 (1):111-6
– reference: 3304843 - Crit Rev Food Sci Nutr. 1987;25(4):317-64
– reference: 17712060 - FASEB J. 2008 Jan;22(1):41-6
– reference: 15853377 - J Agric Food Chem. 2005 May 4;53(9):3391-6
– reference: 15721980 - Free Radic Biol Med. 2005 Mar 15;38(6):698-710
– reference: 3977316 - Arch Biochem Biophys. 1985 Mar;237(2):314-21
– reference: 17854006 - Mol Nutr Food Res. 2007 Sep;51(9):1094-101
– reference: 26783961 - Oncotarget. 2016 Mar 8;7(10 ):11018-32
– reference: 25682029 - Atherosclerosis. 2015 Apr;239(2):311-7
– reference: 25968945 - Free Radic Res. 2015;49(7):905-17
– reference: 21709297 - Diabetes Care. 2011 Jul;34(7):1610-6
– reference: 15367526 - Heart. 2004 Oct;90(10):1211-3
– reference: 25968950 - Free Radic Res. 2015;49(7):896-904
– reference: 22530973 - J Agric Food Chem. 2012 Sep 12;60(36):8790-6
– reference: 20854840 - Mol Aspects Med. 2010 Dec;31(6):435-45
– reference: 22488968 - Biofactors. 2012 Jul-Aug;38(4):266-74
– reference: 11728810 - Free Radic Biol Med. 2001 Dec 1;31(11):1388-95
– reference: 544662 - J Agric Food Chem. 1979 Nov-Dec;27(6):1316-8
– reference: 27095227 - Arch Biochem Biophys. 2016 Apr 1;595:120-4
– reference: 18540628 - J Agric Food Chem. 2008 Jul 9;56(13):5002-7
– reference: 16094852 - Lipids. 2005 May;40(5):437-44
– reference: 9177242 - Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6474-9
– reference: 25029433 - Food Funct. 2014 Sep;5(9):2166-74
– reference: 24886552 - BMC Med. 2014 May 13;12:77
– reference: 28243359 - Oxid Med Cell Longev. 2017;2017:8361493
– reference: 21593864 - Nature. 2011 May 19;473(7347):317-25
– reference: 8626637 - J Biol Chem. 1996 Apr 26;271(17):9982-6
– reference: 25666945 - Biochem Biophys Res Commun. 2015 Mar 6;458(2):221-6
– reference: 9502761 - J Clin Invest. 1998 Mar 15;101(6):1210-8
– reference: 23322503 - Mol Nutr Food Res. 2013 May;57(5):916-9
– reference: 15853378 - J Agric Food Chem. 2005 May 4;53(9):3397-402
– reference: 21451125 - J Nutr. 2011 May;141(5):989S-1009S
– reference: 8094487 - Lancet. 1993 Feb 20;341(8843):454-7
SSID ssj0000884210
Score 2.3476503
Snippet Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 929
SubjectTerms Diet, Western
Food
Homeostasis - drug effects
Humans
In Vitro Techniques
Lipid Peroxidation - drug effects
Malondialdehyde - metabolism
Oxidation-Reduction - drug effects
Oxidative Stress - drug effects
Polyphenols - pharmacology
Postprandial Period
Red Meat - analysis
Research Paper
Stomach - drug effects
Stomach - metabolism
Title Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health
URI https://www.ncbi.nlm.nih.gov/pubmed/28478382
https://www.proquest.com/docview/1896420740
https://pubmed.ncbi.nlm.nih.gov/PMC5426031
https://doaj.org/article/32089c322a7d4725a468b98551fea6c7
Volume 12
WOSCitedRecordID wos000403328700092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-2317
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884210
  issn: 2213-2317
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-2317
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884210
  issn: 2213-2317
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgAokL4ptQqAaJA0hEJI4T29wAtaIH2oqCtDfLdmxtKjapNrtVe-HG_2bsbJZdhODCJYfETpyZZ89YnnlDyAtBfebQ8qSslFXKpGCpMSxPPeo7q6gta2FisQl-dCQmE3myUeorxIQN9MCD4N4UNBPSIuw0rxmnpWaVMFKgofdOVzbmkWdcbmym4hosBKORioDSvEjRieEj5VAM7gpknJchsItHotPoYP4yS5G9_08u5--Rkxum6OAOub3yIeHdMPa75Jpr75GbQ1XJq_vkx-fwWZh2M9eh79c3PTQtoJM303YK4TB9OQNzBb7r6v4tIFAglOw9n4cMF3zv8WVTRzpwOI2JJHAYGBXh5cnx6eEr7DUHE-IhLRo9aEcyf8DOEAv-wZBa-YB8Pdj_8uFjuqq2kNqy4ItUFt5Q72umc8O4NxV3Gp1DWlJmjPdaG1FSFL3UsrS4CeTOVQLtn_HC55mXxUOy03ate0yAsYJ7yuuC1ZZxXDUky3TOaoRFnvvKJISOwlZ2RUUeKmJ8U2PM2ZmKGlJBQypjCjWUkNfrTucDE8ffm78PWlw3DTTa8QaCS63Apf4FroQ8HzGgcNqFsxTdum7ZK_wn3Lmh_5Ul5NGAifWngsUXhaAJ4Vto2RrL9pO2mUZq7zIUDCjyJ_9j8LvkVpDHEK34lOws5kv3jNywF4umn--R63wi9uKsweun7_s_Ac-hG1M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox+homeostasis+in+stomach+medium+by+foods%3A+The+Postprandial+Oxidative+Stress+Index+%28POSI%29+for+balancing+nutrition+and+human+health&rft.jtitle=Redox+biology&rft.au=Kanner%2C+Joseph&rft.au=Selhub%2C+Jacob&rft.au=Shpaizer%2C+Adi&rft.au=Rabkin%2C+Boris&rft.date=2017-08-01&rft.eissn=2213-2317&rft.volume=12&rft.spage=929&rft_id=info:doi/10.1016%2Fj.redox.2017.04.029&rft_id=info%3Apmid%2F28478382&rft.externalDocID=28478382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon