Online Scheduling Optimization for DAG-Based Requests Through Reinforcement Learning in Collaboration Edge Networks
The wide-adoption of edge computing promotes the scheduling of tasks in complex requests upon smart devices on the network edge, whereas tasks are necessary to be offloaded to the cloud when they are intensive in computational and energy resources. Traditional techniques explore mostly the schedulin...
Uložené v:
| Vydané v: | IEEE Access Ročník 8; s. 72985 - 72996 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2020
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The wide-adoption of edge computing promotes the scheduling of tasks in complex requests upon smart devices on the network edge, whereas tasks are necessary to be offloaded to the cloud when they are intensive in computational and energy resources. Traditional techniques explore mostly the scheduling of atomic tasks, whereas complex requests scheduling on edge servers is the challenge unexplored extensively. To address this challenge, this paper proposes an online task scheduling optimization for DAG-based requests at the network edge, where this scheduling procedure is modeled as Markov decision process, in which system state, request and decision space are formally specified. A temporal-difference learning based mechanism is adopted to learn an optimal tasks allocation strategy at each decision stage. Extensive experiments are conducted, and evaluation results demonstrate that our technique can effectively reduce the system's long-term average delay and energy consumption in comparison with the state-of-art's counterparts. |
|---|---|
| AbstractList | The wide-adoption of edge computing promotes the scheduling of tasks in complex requests upon smart devices on the network edge, whereas tasks are necessary to be offloaded to the cloud when they are intensive in computational and energy resources. Traditional techniques explore mostly the scheduling of atomic tasks, whereas complex requests scheduling on edge servers is the challenge unexplored extensively. To address this challenge, this paper proposes an online task scheduling optimization for DAG-based requests at the network edge, where this scheduling procedure is modeled as Markov decision process, in which system state, request and decision space are formally specified. A temporal-difference learning based mechanism is adopted to learn an optimal tasks allocation strategy at each decision stage. Extensive experiments are conducted, and evaluation results demonstrate that our technique can effectively reduce the system's long-term average delay and energy consumption in comparison with the state-of-art's counterparts. |
| Author | Zhou, Zhangbing Meng, Lin Zhang, Yaqiang Zhang, Zhenjiang Shi, Zhensheng |
| Author_xml | – sequence: 1 givenname: Yaqiang orcidid: 0000-0001-9935-0606 surname: Zhang fullname: Zhang, Yaqiang organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing, China – sequence: 2 givenname: Zhangbing orcidid: 0000-0002-3195-2253 surname: Zhou fullname: Zhou, Zhangbing email: zbzhou@cugb.edu.cn organization: School of Information Engineering, China University of Geosciences (Beijing), Beijing, China – sequence: 3 givenname: Zhensheng surname: Shi fullname: Shi, Zhensheng organization: PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China – sequence: 4 givenname: Lin orcidid: 0000-0003-4351-6923 surname: Meng fullname: Meng, Lin organization: College of Science and Engineering, Ritsumeikan University, Shiga, Japan – sequence: 5 givenname: Zhenjiang orcidid: 0000-0003-0217-3012 surname: Zhang fullname: Zhang, Zhenjiang organization: School of Software Engineering, Beijing Jiaotong University, Beijing, China |
| BackLink | https://cir.nii.ac.jp/crid/1874242817526896512$$DView record in CiNii https://hal.science/hal-03123213$$DView record in HAL |
| BookMark | eNp9UU2P0zAQjdAisZT9BXuJBBcOKf6MnWMJ3Q-pohJdztYkmbQuqV2cFMT-epxmQcABH8ajp_eePfNeJhfOO0ySa0rmlJLi3aIsl5vNnBFG5qzQSirxLLlkNC8yLnl-8Uf_Irnq-z2JR0dIqsukX7vOOkw39Q6bU2y36fo42IN9hMF6l7Y-pB8Wt9l76LFJP-HXE_ZDnz7sgj9tdxGwLlJqPKAb0hVCcKOFdWnpuw4qHyabZbPF9CMO33340r9KnrfQ9Xj1dM-SzzfLh_IuW61v78vFKqslV0OmW4S6bWqhCeicQwRbWemGQKysbYBxFEQgAVERwnmlCGKTQ87blnJW8VlyP_k2HvbmGOwBwg_jwZoz4MPWQBhs3aGpC8UBIRrIRhBKddFWCqpCa1HlpIbo9Xby2kH3l9XdYmVGjHDKOKP8G43c1xP3GPx5X2bvT8HFUQ0TUpCC5VJFVjGx6uD7PmBrajuctzUEsJ2hxIzxmileM8ZrnuKNWv6P9teX_q96M6mctfGxsVKtBBNMUyVZrotcxiFmyfVEs4j427gguVBK8p9Fcr2l |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_simpat_2023_102885 crossref_primary_10_32604_cmc_2022_026370 crossref_primary_10_3390_a18080530 crossref_primary_10_3390_electronics13040763 crossref_primary_10_1109_TPDS_2024_3360448 crossref_primary_10_3390_fi15080254 crossref_primary_10_1016_j_future_2024_04_003 crossref_primary_10_3390_jsan14040079 crossref_primary_10_1109_JIOT_2023_3257291 crossref_primary_10_1016_j_future_2022_06_012 crossref_primary_10_1109_TII_2021_3074513 crossref_primary_10_1109_TSC_2024_3349408 |
| Cites_doi | 10.1109/TNET.2019.2907243 10.1109/COMST.2017.2745201 10.1016/j.future.2019.05.070 10.1109/WCNC.2018.8377343 10.1109/TNN.1998.712192 10.1109/TMC.2019.2928811 10.1109/JIOT.2016.2565516 10.1109/ICC.2019.8761143 10.1109/ACCESS.2019.2924032 10.1016/j.jpdc.2019.02.003 10.1109/ACCESS.2019.2902846 10.1109/COMST.2018.2849509 10.1109/TVT.2018.2868013 10.1109/TPDS.2019.2961905 10.1109/TII.2018.2846549 10.1109/TMC.2018.2831230 10.1109/PERCOMW.2018.8480262 10.1109/MobileCloud.2017.11 10.1109/MCOM.2017.1600863 10.1109/INFOCOM.2019.8737409 10.1109/INFCOMW.2014.6849257 10.1109/TII.2018.2872579 10.1109/MCOM.001.1900094 10.1109/TNET.2018.2880874 10.1109/TSC.2016.2638083 10.1109/TII.2018.2843169 10.1109/WiMOB.2015.7348012 10.1109/TII.2019.2925023 10.1109/JIOT.2019.2900550 10.1109/JIOT.2016.2579198 10.1109/TCC.2015.2511727 10.1109/JIOT.2018.2876279 10.1109/JIOT.2019.2933587 10.1109/TNET.2015.2487344 10.1109/TMC.2019.2891736 |
| ContentType | Journal Article |
| Contributor | Ritsumeikan University PetroChina Research Institute of Petroleum Exploration and Development (PetroChina Research) Beijing Jiaotong University (BJTU) Département Informatique (TSP - INF) ; Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP) Institut Polytechnique de Paris (IP Paris) China University of Geosciences [Beijing] Département Informatique (INF) ; Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP) |
| Contributor_xml | – sequence: 1 fullname: China University of Geosciences [Beijing] – sequence: 2 fullname: Institut Polytechnique de Paris (IP Paris) – sequence: 3 fullname: Département Informatique (TSP - INF) ; Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP) – sequence: 4 fullname: PetroChina Research Institute of Petroleum Exploration and Development (PetroChina Research) – sequence: 5 fullname: Ritsumeikan University – sequence: 6 fullname: Beijing Jiaotong University (BJTU) – sequence: 7 fullname: Département Informatique (INF) ; Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP) |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Attribution |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Attribution |
| DBID | 97E ESBDL RIA RIE RYH AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 1XC DOA |
| DOI | 10.1109/ACCESS.2020.2987574 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2169-3536 |
| EndPage | 72996 |
| ExternalDocumentID | oai_doaj_org_article_c973aea0ee5d401189fb7ab9884b60ca oai:HAL:hal-03123213v1 10_1109_ACCESS_2020_2987574 9064775 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772479; 61662021 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS RYH AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c537t-8feacfdc480a863a537f5b8d0a5b82fda23e404e0a4b0033b70eed6a63ff132b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530828600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:50 EDT 2025 Tue Oct 14 20:56:17 EDT 2025 Mon Jun 30 04:44:51 EDT 2025 Tue Nov 18 22:06:01 EST 2025 Sat Nov 29 02:42:15 EST 2025 Fri Jun 27 01:32:11 EDT 2025 Wed Aug 27 02:43:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Temporal-difference learning Online DAG-based request optimization Internet of Things Edge computing |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-8feacfdc480a863a537f5b8d0a5b82fda23e404e0a4b0033b70eed6a63ff132b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0217-3012 0000-0001-9935-0606 0000-0003-4351-6923 0000-0002-3195-2253 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9064775 |
| PQID | 2454092657 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_2987574 ieee_primary_9064775 doaj_primary_oai_doaj_org_article_c973aea0ee5d401189fb7ab9884b60ca proquest_journals_2454092657 nii_cinii_1874242817526896512 crossref_primary_10_1109_ACCESS_2020_2987574 hal_primary_oai_HAL_hal_03123213v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE Access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref32 doi: 10.1109/TNET.2019.2907243 – ident: ref18 doi: 10.1109/COMST.2017.2745201 – ident: ref11 doi: 10.1016/j.future.2019.05.070 – ident: ref25 doi: 10.1109/WCNC.2018.8377343 – ident: ref34 doi: 10.1109/TNN.1998.712192 – ident: ref26 doi: 10.1109/TMC.2019.2928811 – ident: ref5 doi: 10.1109/JIOT.2016.2565516 – ident: ref14 doi: 10.1109/ICC.2019.8761143 – ident: ref7 doi: 10.1109/ACCESS.2019.2924032 – ident: ref27 doi: 10.1016/j.jpdc.2019.02.003 – ident: ref30 doi: 10.1109/ACCESS.2019.2902846 – ident: ref3 doi: 10.1109/COMST.2018.2849509 – ident: ref9 doi: 10.1109/TVT.2018.2868013 – ident: ref17 doi: 10.1109/TPDS.2019.2961905 – ident: ref24 doi: 10.1109/TII.2018.2846549 – ident: ref23 doi: 10.1109/TMC.2018.2831230 – ident: ref19 doi: 10.1109/PERCOMW.2018.8480262 – ident: ref22 doi: 10.1109/MobileCloud.2017.11 – ident: ref2 doi: 10.1109/MCOM.2017.1600863 – ident: ref35 doi: 10.1109/INFOCOM.2019.8737409 – ident: ref21 doi: 10.1109/INFCOMW.2014.6849257 – ident: ref15 doi: 10.1109/TII.2018.2872579 – ident: ref33 doi: 10.1109/MCOM.001.1900094 – ident: ref10 doi: 10.1109/TNET.2018.2880874 – ident: ref12 doi: 10.1109/TSC.2016.2638083 – ident: ref8 doi: 10.1109/TII.2018.2843169 – ident: ref20 doi: 10.1109/WiMOB.2015.7348012 – ident: ref4 doi: 10.1109/TII.2019.2925023 – ident: ref29 doi: 10.1109/JIOT.2019.2900550 – ident: ref1 doi: 10.1109/JIOT.2016.2579198 – ident: ref13 doi: 10.1109/TCC.2015.2511727 – ident: ref28 doi: 10.1109/JIOT.2018.2876279 – ident: ref31 doi: 10.1109/JIOT.2019.2933587 – ident: ref6 doi: 10.1109/TNET.2015.2487344 – ident: ref16 doi: 10.1109/TMC.2019.2891736 |
| SSID | ssj0000816957 |
| Score | 2.2766275 |
| Snippet | The wide-adoption of edge computing promotes the scheduling of tasks in complex requests upon smart devices on the network edge, whereas tasks are necessary to... |
| SourceID | doaj hal proquest crossref nii ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 72985 |
| SubjectTerms | [SCCO.COMP]Cognitive science/Computer science Cloud computing Cognitive science Collaboration Computer science Edge computing Electrical engineering. Electronics. Nuclear engineering Electronic devices Energy consumption Energy sources Internet of Things Learning Markov processes Mobile handsets Online DAG-based request optimization Optimization Processor scheduling Quality of experience Scheduling Servers Task analysis Task complexity Task scheduling temporal-difference learning TK1-9971 |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFH9I8aAHUas42koQj47NJpl8HLdraw-yilboLWTysS7UUTpr_35fMumyRdCLl8CEzEyS9_VLSH4P4HVUnHNGu1aiVbfCeY8mpVjrWMB4R5VTIZRkE2q51BcX5tNOqq98JmyiB54m7sgbxV10NMYuiHxN0qReud5oLXpJfYFGiHp2FlPFB-uZNJ2qNEMzao7miwWOCBeEjL5lJtO4i1uhqDD2Y4D5ls9DlkQr-DCs13_46BJ4Th_Cg4oYyXzq6SO4E4fHcH-HR3AfxokwlHxBCYR8tHxFPqIr-F7vWBIEpuTd_H17jCErkM-x_Gck51OOHqwo9Km-7BSSyri6IuuBLHa1hJyEVSTL6dz4-AS-np6cL87amk2h9R1Xm1YnlEYKXmjqtOQOK1PX60AdliwFx3gUVETqRDZ13iuc8yCd5CnhkrXnT2Fv-DHEZ0Ci6IRE44-IvURQRicuo4xJiuCVSK4BdjOx1leq8Zzx4tKWJQc1dpKGzdKwVRoNvNm-9HNi2vh78-MssW3TTJNdKlB5bFUe-y_laeAVyvvWN87mH2yuQ2eHYHPGr2cN7Gd12LYy-X6u6ho4RPXA8eUyZzZEsKMRjDGpjUQY1cDBjeLY6hdGyzLhoWGyU8__R_9fwL08J9OW0AHsba5-xUO466836_HqZTGJ3_mcCyU priority: 102 providerName: Directory of Open Access Journals |
| Title | Online Scheduling Optimization for DAG-Based Requests Through Reinforcement Learning in Collaboration Edge Networks |
| URI | https://ieeexplore.ieee.org/document/9064775 https://cir.nii.ac.jp/crid/1874242817526896512 https://www.proquest.com/docview/2454092657 https://hal.science/hal-03123213 https://doaj.org/article/c973aea0ee5d401189fb7ab9884b60ca |
| Volume | 8 |
| WOSCitedRecordID | wos000530828600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcyqMgAm1lIY5N67UdP47bZUsPsCAoUm-W48eyEqRVs-2R387YcaNWICQuVjJyLFsznhlPPN8g9DZIxhglTS1gV9fcOgdbStLaUg_2jkgrvc_FJuRioc7P9ecNdDDmwoQQ8uWzcJge8798f-GuU6jsSKfMSNlsok0p5ZCrNcZTUgEJ3cgCLDQh-mg6m8Ea4AhIySHVCbid3zM-GaMfTMr3dAMyl1aBl261-kMrZ1Nz8vj_JvkEbReXEk8HGXiKNkL3DD26AzS4g_oBURR_BRb5dPd8iT-BrvhZkjAxeK743fR9fQw2zeMvIU-rx2dDER8gZHxVl0OJuECyLvGqw7O7YoTnfhnwYrhY3j9H307mZ7PTupRbqF3D5LpWEdgVveOKWCWYBWJsWuWJhZZGbykLnPBALE-6gLWSgIEVVrAY4Uzbshdoq7vowkuEA2-4AO0QwDnjXmoVmQgiRMG9kzzaCtFbPhhXsMhTSYwfJp9JiDYD80xininMq9DB-NHlAMXx7-7HicFj14SjnQnALVO2pXFaMhssLKTxPCXh6thK22qleCuIg4m-AfG4N8bp9INJNNCG4I1O2M2kQjtJDMZeRQIqtAfSBOtLbSp9CN6QAm-NCqUF-FkV2r2VM1MUR29oQkTUVDTy1d9HfY0eplUOUaBdtLW-ug576IG7Wa_6q_0cUoD246_5ft4fvwFXbQmi |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKQaIceLWIQAsW4ti0Xtvx47hdWhaxLAgWqTfL8WNZqaSo2fb3M3bSqBUIiYuVWI7l0Yxnxs7MNwi9DZIxRklVCtjVJbfOwZaStLTUg70j0krvc7EJOZ-r01P9ZQPtD7kwIYQcfBYO0mP-l-_P3WW6KjvUKTNSVnfQ3YpzOuqytYYblVRCQleyhxYaEX04nkyACjgEUnJAdYJu57fMT0bpB6PyI8VA5uIq8NKsVn_o5WxsTh793zIfo4e9U4nHnRQ8QRuheYoe3IAa3EZthymKvwGTfIo-X-LPoC1-9mmYGHxX_G78vjwCq-bx15CX1eJFV8YHOjLCqsuXibgHZV3iVYMnNwUJH_tlwPMutLzdQd9PjheTadkXXChdxeS6VBEYFr3jilglmIXOWNXKEwstjd5SFjjhgVietAGrJQETK6xgMcKptmbP0GZz3oTnCAdecQH6IYB7xr3UKjIRRIiCeyd5tAWi13wwrkcjT0Uxzkw-lRBtOuaZxDzTM69A-8NHvzowjn8PP0oMHoYmJO3cAdwy_cY0TktmgwVCKs9TGq6OtbS1VorXgjhY6BsQj1tzTMczk_pAH4I_OmJXowJtJzEYRvUSUKA9kCagL7Wp-CH4Qwr8NSqUFuBpFWj3Ws5MrzpaQxMmoqaiki_-PutrdH-6-DQzsw_zjy_RVqK4uxPaRZvri8uwh-65q_WqvXiV98dvxGkKww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Scheduling+Optimization+for+DAG-Based+Requests+Through+Reinforcement+Learning+in+Collaboration+Edge+Networks&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Yaqiang&rft.au=Zhou%2C+Zhangbing&rft.au=Shi%2C+Zhensheng&rft.au=Meng%2C+Lin&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=72985&rft.epage=72996&rft_id=info:doi/10.1109%2FACCESS.2020.2987574&rft.externalDocID=9064775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |