On the Maximum Quadratic Assignment Problem

Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n x n symmetric nonnegative m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics of operations research Ročník 34; číslo 4; s. 859 - 868
Hlavní autori: Nagarajan, Viswanath, Sviridenko, Maxim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Linthicum INFORMS 01.11.2009
Institute for Operations Research and the Management Sciences
Predmet:
ISSN:0364-765X, 1526-5471
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n x n symmetric nonnegative matrices and . Given matrices W, D , and a permutation , the objective function is . In this paper, we study the maximum quadratic assignment problem , where the goal is to find a permutation that maximizes . We give an -approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k -subgraph problem. Algorithmica 29 (3) 410–421]). When one of the matrices W, D satisfies triangle inequality , we obtain a -approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13–16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. P., T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16 43–77]). It can also be shown that this linear program (LP) has an integrality gap of for general maximum quadratic assignment.
AbstractList Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n x n symmetric normegative matrices W = ([w.sub.i, j) and D = ([d.sub.i,j]). Given matrices W, D, and a permutation [pi]: [n] [right arrow] [n], the objective function is [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. In this paper, we study the maximum quadratic assignment problem, where the goal is to find a permutation [pi] that maximizes Q(pi). We give an o([square root of ([square root of (n)])-approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is [approximately equal to][n.sup.1/3] (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k-subgraph problem. Algorithmica 29(3) 410-421]). When one of the matrices W, D satisfies triangle inequality, we obtain a 2e/(e-1) [approximately equal to] 3.16-approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13-16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. R, T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Set Discrete Math. Theoret. Comput. Sci. 16 43-77]). It can also be shown that this linear program (LP) has an integrality gap of [??]([square root of (n)]) for general maximum quadratic assignment. Key words: approximation algorithms; linear programming relaxation MSC2000 subject classification: Primary: 90C27, 90C59, 68W25; secondary: 68W40, 68W20 OR/MS subject classification: Primary: Analysis of algorithms--suboptimal algorithms; secondary: networks/graphs--heuristics History: Received November 8, 2008; revised July 15, 2009. Published online in Articles in Advance October 20, 2009. DOI 10.1287/moor.1090.0418
Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n x n symmetric nonnegative matrices and . Given matrices W, D , and a permutation , the objective function is . In this paper, we study the maximum quadratic assignment problem , where the goal is to find a permutation that maximizes . We give an -approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k -subgraph problem. Algorithmica 29 (3) 410–421]). When one of the matrices W, D satisfies triangle inequality , we obtain a -approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13–16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. P., T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16 43–77]). It can also be shown that this linear program (LP) has an integrality gap of for general maximum quadratic assignment.
Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n × n symmetric nonnegative matrices [Formula: see text] and [Formula: see text]. Given matrices W, D, and a permutation [Formula: see text], the objective function is [Formula: see text]. In this paper, we study the maximum quadratic assignment problem, where the goal is to find a permutation π that maximizes [Formula: see text]. We give an [Formula: see text]-approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is [Formula: see text] (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k-subgraph problem. Algorithmica 29(3) 410–421]). When one of the matrices W, D satisfies triangle inequality, we obtain a [Formula: see text]-approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13–16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. P., T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16 43–77]). It can also be shown that this linear program (LP) has an integrality gap of [Formula: see text] for general maximum quadratic assignment.
Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n x n symmetric normegative matrices W = ([w.sub.i, j) and D = ([d.sub.i,j]). Given matrices W, D, and a permutation [pi]: [n] [right arrow] [n], the objective function is [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. In this paper, we study the maximum quadratic assignment problem, where the goal is to find a permutation [pi] that maximizes Q(pi). We give an o([square root of ([square root of (n)])-approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is [approximately equal to][n.sup.1/3] (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k-subgraph problem. Algorithmica 29(3) 410-421]).
Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n x n symmetric nonnegative matrices $W = (w_{i,j} )\,and\,D = (d_{i,j} )$ . Given matrices W, D, and a permutation π: [n] → [n], the objective function is $Q(\pi ): = \Sigma _{i,j[n],i\# j} w_{i,j} .d_{\pi (i),\pi (j)} $ . In this paper, we study the maximum quadratic assignment problem, where the goal is to find a permutation π that maximizes Q(π). We give an Õ $(\sqrt n )$ -approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense subgraph problem, for which the best-known approximation ratio is ≈n⅓ (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k-subgraph problem. Algorithmica 29(3) 410-421]). When one of the matrices W, D satisfies triangle inequality, we obtain a 2e/(e— 1) ≈3.16-approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13-16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. P., T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16 43-77]). It can also be shown that this linear program (LP) has an integrality gap of ${\rm{\Omega (}}\sqrt n {\rm{)}}$ for general maximum quadratic assignment.
Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n × n symmetric nonnegative matrices W = (w^sub i, j^) and D = (d^sub i, j^). Given matrices W, D, and a permutation π : [n] [arrow right] [n], the objective function is Q(π) := Σ^sub i, j∈[n], i≠j^ w^sub i, j^ * d^sub π(i),π(j)^. In this paper, we study the maximum quadratic assignment problem, where the goal is to find a permutation π that maximizes Q(π). We give e an ...-approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is [asymptotically =]n^sup 1/3^ (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k-subgraph problem. Algorithmica 29(3) 410 421]). When one of the matrices W, D satisfies triangle inequality, we obtain a 2e/(e-1) [asymptotically =] 3.16-approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13-16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. P., T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16 43-77]). It can also be shown that this linear program (LP) has an integrality gap of ... for general maximum quadratic assignment. [PUBLICATION ABSTRACT]
Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement, dense k subgraph, and clustering with given sizes. The input to the quadratic assignment problem consists of two n × n symmetric nonnegative matrices \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $W=(w_{i, j})$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $D=(d_{i, j})$ \end{document} . Given matrices W, D , and a permutation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\pi: [n] \rightarrow [n]$ \end{document} , the objective function is \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $Q(\pi):= \sum_{i, j \in [n],\, i \ne j} w_{i, j} \cdot d_{\pi(i), \pi(j)}$ \end{document} . In this paper, we study the maximum quadratic assignment problem , where the goal is to find a permutation π that maximizes \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $Q(\pi)$ \end{document} . We give an \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\tilde{O}(\sqrt{n})$ \end{document} -approximation algorithm, which is the first nontrivial approximation guarantee for this problem. The above guarantee also holds when the matrices W, D are asymmetric. An indication of the hardness of maximum quadratic assignment is that it contains as a special case the dense k subgraph problem, for which the best-known approximation ratio is \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\approx n^{1/3}$ \end{document} (Feige et al. [Feige, U., G. Kortsarz, D. Peleg. 2001. The dense k -subgraph problem. Algorithmica 29 (3) 410-421]). When one of the matrices W, D satisfies triangle inequality , we obtain a \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $2e/(e-1) \approx 3.16$ \end{document} -approximation algorithm. This improves over the previously best-known approximation guarantee of four (Arkin et al. [Arkin, E. M., R. Hassin, M. Sviridenko. 2001. Approximating the maximum quadratic assignment problem. Inform. Processing Lett. 77 13-16]) for this special case of maximum quadratic assignment. The performance guarantee for maximum quadratic assignment with triangle inequality can be proved relative to an optimal solution of a natural linear programming relaxation that has been used earlier in branch-and-bound approaches (see, eg., Adams and Johnson [Adams, W. P., T. A. Johnson. 1994. Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 16 43-77]). It can also be shown that this linear program (LP) has an integrality gap of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\tilde{\Omega}(\sqrt{n})$ \end{document} for general maximum quadratic assignment.
Audience Academic
Author Nagarajan, Viswanath
Sviridenko, Maxim
Author_xml – sequence: 1
  fullname: Nagarajan, Viswanath
– sequence: 2
  fullname: Sviridenko, Maxim
BookMark eNqFkd1r1TAYh4NM8Gx6651QdiNDe8xnk14ehh-DyfwE70Kavj0nhzbdkhTnf29KFZ2cIb0INM-TvPn9jtGRHz0g9JTgNaFKvhrGMawJrvEac6IeoBURtCoFl-QIrTCreCkr8e0ROo5xjzERkvAVenHli7SD4r25dcM0FB8n0waTnC02MbqtH8Cn4kMYmx6Gx-hhZ_oIT36tJ-jrm9dfzt-Vl1dvL843l6UVTKZSYtq2xnDKweKmbSVvKKuEEo2srFGdwkxZ2rSAO2GhxtJ0VoHooGa2bRhhJ-h0Ofc6jDcTxKT34xR8vlJTQivKMJEZKhdoa3rQzndjCsZuwUMwfQ6mc_n3hhJW1SS_O_PrA3z-WhicPSic3REyk-A2bc0Uo774_Oku-_Ivtpmi85Dj8znBXYqLcmgWG8YYA3T6OrjBhB-aYD13qecu9dylnrvMAv9HsC7llvJIwbj-fu3Zou1jyhu_L-FYMMUx-5PhHEcY4v_HeL7wu_yu7y4sOc7iYNIuo4xrrpWo2U9-jsm3
CODEN MOREDQ
CitedBy_id crossref_primary_10_1080_17509653_2010_10671106
crossref_primary_10_1145_3147137
crossref_primary_10_4018_IJAMC_298651
crossref_primary_10_1142_S0217595923400031
crossref_primary_10_1016_j_tcs_2021_06_018
crossref_primary_10_1109_TSMC_2024_3510588
crossref_primary_10_1287_moor_1110_0509
crossref_primary_10_1007_s10858_014_9835_1
crossref_primary_10_1137_110845239
crossref_primary_10_1145_2629672
crossref_primary_10_1016_j_jfranklin_2020_02_057
Cites_doi 10.1145/1644015.1644033
10.1007/s004530010050
10.1007/s101070100271
10.1137/S0097539705447037
10.1007/s00453-004-1087-0
10.1090/dimacs/016/02
10.1007/978-1-4613-0303-9_27
10.1016/S0020-0190(00)00151-4
10.1016/j.ejor.2005.09.032
10.1002/net.3230200205
10.1016/0167-6377(86)90007-6
10.1006/jagm.2001.1183
10.1007/BF01202286
10.1017/CBO9780511721335.010
10.1016/S0166-218X(98)00052-3
10.1007/978-1-4757-2787-6
10.1023/B:JOCO.0000038913.96607.c2
10.1016/j.ipl.2005.12.002
10.1016/S0167-6377(97)00034-5
10.1016/S0166-218X(98)00100-0
10.1137/S0895480198332156
10.1145/321958.321975
10.1145/509984.509985
ContentType Journal Article
Copyright Copyright 2009 Institute for Operations Research and the Management Sciences
COPYRIGHT 2009 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Nov 2009
Copyright_xml – notice: Copyright 2009 Institute for Operations Research and the Management Sciences
– notice: COPYRIGHT 2009 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Nov 2009
DBID AAYXX
CITATION
N95
ISR
3V.
7WY
7WZ
7XB
87Z
8AL
8AO
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1287/moor.1090.0418
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef



ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Mathematics
EISSN 1526-5471
EndPage 868
ExternalDocumentID 1908608531
A213691765
10_1287_moor_1090_0418
40538403
moor.1090.0418
mathor_34_4_859
Genre Research Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
29M
3V.
4.4
4S
5GY
7WY
85S
8AL
8AO
8FE
8FG
8FL
8G5
8VB
AAKYL
AAPBV
ABBHK
ABEFU
ABFLS
ABJCF
ABPPZ
ABUWG
ACIWK
ACNCT
ADCOW
ADGDI
ADMHP
ADODI
AEILP
AENEX
AEUPB
AFKRA
AFXKK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BDTQF
BENPR
BEZIV
BGLVJ
BHOJU
BKOMP
BPHCQ
CBXGM
CHNMF
CS3
CWXUR
CZBKB
DQDLB
DSRWC
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECEWR
ECR
ECS
EDO
EFSUC
EJD
EMK
EPL
FEDTE
FRNLG
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HECYW
HQ6
H~9
IAO
ICW
IEA
IGG
IOF
ISR
ITC
JAA
JBU
JMS
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
M0C
M0N
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PADUT
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
QWB
RPU
RXW
SA0
TAE
TH9
TN5
TUS
U5U
WH7
X
XHC
XI7
ZL0
ZY4
1AW
1OL
8H
ACYGS
AELPN
BES
F20
HGD
HVGLF
P-O
RNS
XFK
Y99
-~X
.DC
18M
2AX
AAOAC
AAWIL
AAWTO
ABAWQ
ABDNZ
ABFAN
ABKVW
ABQDR
ABXSQ
ABYRZ
ABYWD
ABYYQ
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ACUHF
ACVFL
ACXJH
ADULT
AEGXH
AELLO
AEMOZ
AFVYC
AGLNM
AHAJD
AHQJS
AIAGR
AIHAF
AKBRZ
ALRMG
AMVHM
APTMU
ASMEE
BAAKF
CCPQU
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
8H~
AADHG
AAYXX
AFFHD
CITATION
PQGLB
WHG
XOL
7XB
8FK
JQ2
L.-
PKEHL
Q9U
ID FETCH-LOGICAL-c537t-702ddaa424ec0bdd74b236585b76ca8f8038c2bde0f5ce907afc8e5fe93cdb313
IEDL.DBID M7S
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271911100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-765X
IngestDate Sat Aug 23 12:45:01 EDT 2025
Sat Nov 29 12:47:40 EST 2025
Tue Nov 04 18:49:32 EST 2025
Thu Nov 13 14:56:12 EST 2025
Sat Nov 29 08:56:52 EST 2025
Tue Nov 18 22:36:10 EST 2025
Sat Nov 29 03:29:23 EST 2025
Thu Jun 19 15:26:15 EDT 2025
Wed Jan 06 02:47:58 EST 2021
Fri Jan 15 03:35:57 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-702ddaa424ec0bdd74b236585b76ca8f8038c2bde0f5ce907afc8e5fe93cdb313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 212623017
PQPubID 37790
PageCount 10
ParticipantIDs jstor_primary_40538403
gale_infotracacademiconefile_A213691765
gale_incontextgauss_ISR_A213691765
gale_infotracgeneralonefile_A213691765
crossref_primary_10_1287_moor_1090_0418
proquest_journals_212623017
informs_primary_10_1287_moor_1090_0418
highwire_informs_mathor_34_4_859
gale_businessinsightsgauss_A213691765
crossref_citationtrail_10_1287_moor_1090_0418
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Mathematics of operations research
PublicationYear 2009
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Pardalos P. (B20) 1994; 16
Vazirani V. (B24) 2002
References_xml – ident: B12
– ident: B9
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B7
– ident: B5
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B8
– ident: B11
– ident: B13
– ident: B2
– ident: B4
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B15
– ident: B19
– ident: B16
  doi: 10.1145/1644015.1644033
– ident: B10
  doi: 10.1007/s004530010050
– ident: B5
  doi: 10.1007/s101070100271
– ident: B18
  doi: 10.1137/S0097539705447037
– ident: B4
  doi: 10.1007/s00453-004-1087-0
– ident: B1
  doi: 10.1090/dimacs/016/02
– ident: B6
  doi: 10.1007/978-1-4613-0303-9_27
– ident: B3
  doi: 10.1016/S0020-0190(00)00151-4
– ident: B19
  doi: 10.1016/j.ejor.2005.09.032
– ident: B11
  doi: 10.1002/net.3230200205
– ident: B22
  doi: 10.1016/0167-6377(86)90007-6
– ident: B9
  doi: 10.1006/jagm.2001.1183
– ident: B21
  doi: 10.1007/BF01202286
– ident: B25
  doi: 10.1017/CBO9780511721335.010
– ident: B12
  doi: 10.1016/S0166-218X(98)00052-3
– volume: 16
  volume-title: Proc. DIMACS Workshop Quadratic Assignment Problems. DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
  year: 1994
  ident: B20
– ident: B7
  doi: 10.1007/978-1-4757-2787-6
– volume-title: Approximation Algorithms
  year: 2002
  ident: B24
– ident: B2
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– ident: B15
  doi: 10.1016/j.ipl.2005.12.002
– ident: B17
  doi: 10.1016/S0167-6377(97)00034-5
– ident: B13
  doi: 10.1016/S0166-218X(98)00100-0
– ident: B14
  doi: 10.1137/S0895480198332156
– ident: B23
  doi: 10.1145/321958.321975
– ident: B8
  doi: 10.1145/509984.509985
SSID ssj0015714
Score 1.9321167
Snippet Quadratic assignment is a basic problem in combinatorial optimization that generalizes several other problems such as traveling salesman, linear arrangement,...
SourceID proquest
gale
crossref
jstor
informs
highwire
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 859
SubjectTerms Algorithms
Analysis
Approximation
Approximation algorithms
Approximation theory
Approximations
Branch & bound algorithms
Combinatorial optimization
Integrality
Linear programming
linear programming relaxation
Mathematical permutation
Mathematics
Maximum value
Objective functions
Quadratic programming
Studies
Triangle inequalities
Vertices
Title On the Maximum Quadratic Assignment Problem
URI http://mor.journal.informs.org/cgi/content/abstract/34/4/859
https://www.jstor.org/stable/40538403
https://www.proquest.com/docview/212623017
Volume 34
WOSCitedRecordID wos000271911100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: 7WY
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: M0C
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: P5Z
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: K7-
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: M7S
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: BENPR
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: M2O
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFiE4UAhUhEJkIaAHZGp7ba99QqVqBYKmoQURuKz2YYdIxC5xgvj5zKzXUSNeBy4rWf5keT3j2Zmd2W8AHkuueGCywFeZKjBAyZSf0zaHihgLI61LWVrK_Ld8OMzG43zkanMaV1bZ2URrqE2taY98H00srtSoPy8uvvnUNIqSq66DxgZsEUlCaCv3zldJhISHjj0q9nmajB1nI8YI-7O6nhOTUvA8iKnfx6U1qbPMHV2wPeZEDmTTlSz-YrbtWnS8_Z-zuAU3nRPqHbRacxuuFFUPrnU18D3Y7no9eO7X78GNS8SFd-DZaeWh5-idyB_T2XLmvVtKQ6qkPRT3dGIrDLxR26vmLnw4Pnp_-Mp3bRd8nTC-8HkQGSNlHMWFDpQxPEbBoaOSKJ5qmZVZwDIdKVMEZaILDK5lqbOCitaYNoqFbAc2q7oq7oFHOb88ouQjZ3GhktwkMk5NIdHCqpjpPvjdhxfacZJTa4yvgmITFJQgQVGWPBAkqD7srfAXLRvHH5FPSI7CtfLEoaHNjmYil00jDqKQpRiopkkfHlkcUWFUVGvTAl6fn62B9hyorPH1tHRHF3CSxJ61hny6hpy03OG_A3qdggmnXgJDlC84BxaLWGRJjs_q7vxrrjtWL1cwdMIZBu6sD7udFgpnmhqxUsH7f727C9dt4sweu3wAm4v5sngIV_X3xbSZD2CDf_w0gK2XR8PRGV694T6OJ8EhjdHpwP6IOI6Szz8BUIw0dg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgngcKAQqQnlYiNIDMnW86-z6gFAFVI2ShkKLlNuyL4dIJClxwuNH8R-ZsXejRrxOPXDxxZ8sr_3Nzs7O7DeEPFZc88SKJNZCOwhQhI5z3ObQKaWt1JhCFZVkfo_3-2IwyI_WyI9wFgbLKsOcWE3Udmpwj3wXpljw1MCfF6efY2wahcnV0EGjZkXXff8KEVv5vPMKfu92mu6_Pnl5EPumArHJKJ_HPEmtVYqlzJlEW8sZvBa44UzztlGiEAkVJtXWJUVmHISOqjDCYUkWNVbTFoXnXiAXGRUczarL42XSIuMtr1bFYt7OBl4jEmKS3fF0OkPlpuRZwrC_yBkfGDxBkCeujlXhgrUMJZK_uInK9-1v_Gdf7Qa57hfZ0V5tFTfJmps0yOVQ498gG6GXReSntga5dkaY8RZ5-mYSwco4OlTfRuPFOHq7UBZNxURA59GwqqCIjupePLfJ-3MZyyZZn0wn7g6JMKeZp5hc5ZQ5neU2U6xtnQIPohk1TRKHHy2N11zH1h-fJMZeQAyJxMAqgEQiMZpkZ4k_rdVG_ojcRt5I36oULiVu5pRDtShLuZe2aBsC8XbWJI8qHEp9TLCWqAZ0jt-tgHY8qJjC6xnlj2bAIFEdbAX5ZAU5rLXRfweMAqGlp7OEEOwjjIEyyaTIcnhWuPOvsW5WdrCEQZBBBUtok2wF1ks_9ZZySfm7f737kFw5ODnsyV6n390iV6skYXXE9B5Zn88W7j65ZL7MR-XsQWXkEflw3vbxE3NejeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+maximum+quadratic+assignment+problem&rft.jtitle=Mathematics+of+operations+research&rft.au=Nagarajan%2C+Viswanath&rft.au=Sviridenko%2C+Maxim&rft.date=2009-11-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=34&rft.issue=4&rft.spage=859&rft_id=info:doi/10.1287%2Fmoor.1090.0418&rft.externalDBID=ISR&rft.externalDocID=A213691765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon