Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets

The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 11; s. 5051
Hlavní autoři: Shuqfa, Zaid, Belkacem, Abdelkader Nasreddine, Lakas, Abderrahmane
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 25.05.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices.
AbstractList The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices.
The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices.The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices.
Audience Academic
Author Belkacem, Abdelkader Nasreddine
Lakas, Abderrahmane
Shuqfa, Zaid
AuthorAffiliation Connected Autonomous Intelligent Systems Laboratory, Department of Computer and Network Engineering, College of IT (CIT), United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; 199901472@uaeu.ac.ae (Z.S.); belkacem@uaeu.ac.ae (A.N.B.)
AuthorAffiliation_xml – name: Connected Autonomous Intelligent Systems Laboratory, Department of Computer and Network Engineering, College of IT (CIT), United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; 199901472@uaeu.ac.ae (Z.S.); belkacem@uaeu.ac.ae (A.N.B.)
Author_xml – sequence: 1
  givenname: Zaid
  orcidid: 0000-0002-5339-5291
  surname: Shuqfa
  fullname: Shuqfa, Zaid
– sequence: 2
  givenname: Abdelkader Nasreddine
  orcidid: 0000-0002-3024-4167
  surname: Belkacem
  fullname: Belkacem, Abdelkader Nasreddine
– sequence: 3
  givenname: Abderrahmane
  orcidid: 0000-0003-4725-8634
  surname: Lakas
  fullname: Lakas, Abderrahmane
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37299779$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAUhiM0xD7ggj-AInEDF938EcfOFaq6Uip1QkLbtXViO5lLYg_bBfbvcbdurAPlItHJcx7rtd7j4sB5Z4riLUanlDboLBKKMUMMvyiOcEWqiSAEHTz5PiyOY1wjRCil4lVxSDlpGs6bo-LXuVFeW9eXF5sh2clsgBjLC598KJcj9CbcluD0bjL_bdQmWe_KS4jfY3kVt5vfrBnBOQuuXBg_mpR3pkPvg03XYywzvYLQm3I-X5TnkCCaFF8XLzsYonmze58UV5_nl7Mvk9XXxXI2XU0UozxNGDdQ1wyLphYa0Q6qum0U56pBlFYKM2N0J1rTsZy1qwFXSjSM1ZoC51q39KRY3nu1h7W8CXaEcCs9WHk38KGXEJJVg5FYI6DItEQBrXBdiVYI0mqKBOKEqS67Pt27bjbtaLQyLgUY9qT7f5y9lr3_KTEijFUYZcOHnSH4HxsTkxxtVGYYwBm_iZIIUtUNYaLJ6Ptn6Npvgst3dUehimOC_lI95ATWdT4frLZSOeUsn9pkXaZO_0PlR5vRqtylzub53sK7p0kfIz70JgNn94AKPsZgOqlsgm0zstkOObHcNlM-NjNvfHy28SD9l_0D5pHgYQ
CitedBy_id crossref_primary_10_2147_JMDH_S509747
crossref_primary_10_3389_fnins_2024_1271831
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_1177_15500594241234836
crossref_primary_10_3389_fnins_2023_1270785
crossref_primary_10_3390_s25113284
crossref_primary_10_1038_s41598_025_05423_0
crossref_primary_10_3390_s25175291
crossref_primary_10_1016_j_bspc_2025_107834
crossref_primary_10_7759_cureus_93011
crossref_primary_10_1016_j_dib_2024_110181
crossref_primary_10_1109_TNSRE_2024_3522168
Cites_doi 10.1109/ACCESS.2022.3171906
10.1016/j.jneumeth.2018.08.001
10.1201/9781351231954-31
10.1007/978-981-15-9689-6_27
10.1088/1741-2552/aba7cd
10.1109/TNSRE.2016.2627016
10.1161/01.CIR.101.23.e215
10.3390/s19061423
10.1016/j.neucom.2022.08.024
10.1016/S1388-2457(03)00123-8
10.1109/INISTA55318.2022.9894208
10.1109/ICSIP49896.2020.9339358
10.5334/jors.bi
10.1007/s11517-017-1611-4
10.1109/ACCESS.2021.3115263
10.1016/j.neucom.2020.09.017
10.1109/ACCESS.2020.3011969
10.1088/1741-2552/ab260c
10.1109/MSMC.2020.2968638
10.1109/TBME.2018.2889705
10.1109/TNSRE.2018.2794415
10.1109/TBME.2002.803536
10.1109/I2CACIS54679.2022.9815460
10.1109/EMBC.2017.8037537
10.1088/1741-2552/ab0ab5
10.1109/IWW-BCI.2019.8737349
10.1038/s41598-022-15813-3
10.1088/1741-2560/3/1/R02
10.1007/s11517-019-01989-w
10.3389/fnbot.2020.00025
10.1109/CCE53527.2021.9633055
10.1109/TNSRE.2018.2837003
10.1016/j.bspc.2021.103102
10.1109/ACCESS.2019.2909058
10.1155/2019/5627156
10.1016/j.tics.2021.04.003
10.1088/1741-2552/aab2f2
10.3390/s21144754
10.3390/s120201211
10.1016/j.array.2019.100003
10.1109/MEMB.2008.923958
10.1109/ICSIP55141.2022.9886815
10.1016/j.bspc.2020.102172
10.3389/fnins.2020.00692
10.1080/2326263X.2020.1782124
10.1109/TBME.2010.2082539
10.1080/2326263X.2017.1297192
10.1088/1741-2552/abf291
10.1109/DASA54658.2022.9765311
10.1109/TBME.2011.2172210
10.1007/s12152-019-09409-4
10.1007/s10827-009-0196-9
10.1109/EMBC44109.2020.9175344
10.1007/978-3-642-15995-4_78
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23115051
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1d0a30eb2ca341648b882bd3080725cf
PMC10255410
A752559692
37299779
10_3390_s23115051
Genre Journal Article
GeographicLocations New Jersey
GeographicLocations_xml – name: New Jersey
GrantInformation_xml – fundername: Strategic Research Program - Emirates Center for Mobility Research
  grantid: 12R011
– fundername: Strategic Research Program—Emirates Center for Mobility Research
  grantid: 12R011
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c537t-57ea66518968d03fa46b9c77c90334c15eedf8bef5142f6a14c89556d3a77ddb3
IEDL.DBID 7X7
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003983300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:32:52 EST 2025
Tue Nov 04 02:06:52 EST 2025
Fri Sep 05 13:13:18 EDT 2025
Tue Oct 07 07:44:07 EDT 2025
Tue Nov 11 10:25:44 EST 2025
Tue Nov 04 17:19:15 EST 2025
Wed Feb 19 02:23:39 EST 2025
Sat Nov 29 07:15:30 EST 2025
Tue Nov 18 21:51:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords brain–computer interface (BCI)
motor execution (ME)
Riemannian geometry decoding algorithm (RGDA)
multiclass classification
motor imagery (MI)
electroencephalography/electroencephalogram (EEG)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-57ea66518968d03fa46b9c77c90334c15eedf8bef5142f6a14c89556d3a77ddb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4725-8634
0000-0002-3024-4167
0000-0002-5339-5291
OpenAccessLink https://www.proquest.com/docview/2824047120?pq-origsite=%requestingapplication%
PMID 37299779
PQID 2824047120
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1d0a30eb2ca341648b882bd3080725cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255410
proquest_miscellaneous_2824692589
proquest_journals_2824047120
gale_infotracmisc_A752559692
gale_infotracacademiconefile_A752559692
pubmed_primary_37299779
crossref_citationtrail_10_3390_s23115051
crossref_primary_10_3390_s23115051
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Goldberger (ref_55) 2000; 101
Chen (ref_25) 2021; 8
ref_14
Dawwd (ref_17) 2021; 63
Xie (ref_30) 2018; 26
ref_56
ref_53
ref_52
ref_51
Yger (ref_12) 2016; 25
Roy (ref_15) 2019; 16
(ref_10) 2020; 13
Dong (ref_28) 2017; 55
Rashid (ref_4) 2020; 14
Wang (ref_9) 2008; 27
ref_23
Lotte (ref_40) 2018; 15
Gao (ref_3) 2021; 25
Kemp (ref_54) 2003; 114
(ref_6) 2012; 12
Congedo (ref_19) 2017; 4
ref_27
Rodrigues (ref_36) 2018; 66
Appriou (ref_58) 2020; 6
Jamil (ref_7) 2021; 9
Krol (ref_11) 2018; 309
Hwaidi (ref_50) 2022; 10
Shenoy (ref_46) 2006; 3
Barachant (ref_26) 2011; 59
Lotte (ref_42) 2010; 58
Belkacem (ref_43) 2018; 26
Chu (ref_31) 2020; 17
Chowdhury (ref_18) 2021; 14
Gao (ref_37) 2022; 507
ref_35
ref_34
Abenna (ref_48) 2022; 71
ref_33
Silva (ref_57) 2014; 2
Yang (ref_32) 2020; 8
Koyama (ref_44) 2010; 29
Craik (ref_8) 2019; 16
ref_39
ref_38
Aggarwal (ref_20) 2019; 1
Belkacem (ref_1) 2020; 14
Rodrigues (ref_41) 2019; 57
ref_47
Singh (ref_24) 2019; 7
ref_45
Cheng (ref_22) 2002; 49
Guan (ref_13) 2019; 2019
ref_2
ref_49
Wan (ref_16) 2021; 421
Larzabal (ref_29) 2021; 18
Salimpour (ref_21) 2022; 12
ref_5
References_xml – volume: 10
  start-page: 48071
  year: 2022
  ident: ref_50
  article-title: Classification of Motor Imagery EEG Signals Based on Deep Autoencoder and Convolutional Neural Network Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3171906
– volume: 309
  start-page: 13
  year: 2018
  ident: ref_11
  article-title: SEREEGA: Simulating event-related EEG activity
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.08.001
– ident: ref_45
  doi: 10.1201/9781351231954-31
– ident: ref_33
  doi: 10.1007/978-981-15-9689-6_27
– volume: 17
  start-page: 046029
  year: 2020
  ident: ref_31
  article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba7cd
– ident: ref_35
– volume: 25
  start-page: 1753
  year: 2016
  ident: ref_12
  article-title: Riemannian approaches in brain–computer interfaces: A review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627016
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_55
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_27
  doi: 10.3390/s19061423
– volume: 507
  start-page: 180
  year: 2022
  ident: ref_37
  article-title: Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.08.024
– volume: 114
  start-page: 1755
  year: 2003
  ident: ref_54
  article-title: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00123-8
– ident: ref_39
  doi: 10.1109/INISTA55318.2022.9894208
– ident: ref_5
  doi: 10.1109/ICSIP49896.2020.9339358
– volume: 2
  start-page: e27
  year: 2014
  ident: ref_57
  article-title: An open-source toolbox for analysing and processing physionet databases in MATLAB and Octave
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.bi
– ident: ref_56
– volume: 55
  start-page: 1809
  year: 2017
  ident: ref_28
  article-title: Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1611-4
– volume: 9
  start-page: 134122
  year: 2021
  ident: ref_7
  article-title: Cognitive and affective brain–computer interfaces for improving learning strategies and enhancing student capabilities: A systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3115263
– volume: 421
  start-page: 1
  year: 2021
  ident: ref_16
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– volume: 8
  start-page: 139974
  year: 2020
  ident: ref_32
  article-title: MLP with Riemannian covariance for motor imagery based EEG analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011969
– volume: 16
  start-page: 051001
  year: 2019
  ident: ref_15
  article-title: Deep learning-based electroencephalography analysis: A systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– volume: 6
  start-page: 29
  year: 2020
  ident: ref_58
  article-title: Modern machine learning algorithms to classify cognitive and affective states from electroencephalography signals
  publication-title: IEEE Syst. Man Cybern. Mag.
  doi: 10.1109/MSMC.2020.2968638
– volume: 66
  start-page: 2390
  year: 2018
  ident: ref_36
  article-title: Riemannian procrustes analysis: Transfer learning for brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2889705
– volume: 26
  start-page: 698
  year: 2018
  ident: ref_30
  article-title: Bilinear regularized locality preserving learning on Riemannian graph for motor imagery BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2794415
– volume: 49
  start-page: 1181
  year: 2002
  ident: ref_22
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.803536
– ident: ref_49
  doi: 10.1109/I2CACIS54679.2022.9815460
– ident: ref_34
  doi: 10.1109/EMBC.2017.8037537
– ident: ref_53
– volume: 16
  start-page: 031001
  year: 2019
  ident: ref_8
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref_14
  doi: 10.1109/IWW-BCI.2019.8737349
– volume: 12
  start-page: 11773
  year: 2022
  ident: ref_21
  article-title: Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15813-3
– volume: 3
  start-page: R13
  year: 2006
  ident: ref_46
  article-title: Towards adaptive classification for BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/1/R02
– volume: 57
  start-page: 1709
  year: 2019
  ident: ref_41
  article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain–computer interfaces
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-01989-w
– volume: 14
  start-page: 25
  year: 2020
  ident: ref_4
  article-title: Current status, challenges, and possible solutions of EEG-based brain–computer interface: A comprehensive review
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.00025
– ident: ref_52
  doi: 10.1109/CCE53527.2021.9633055
– volume: 26
  start-page: 1301
  year: 2018
  ident: ref_43
  article-title: Neuromagnetic decoding of simultaneous bilateral hand movements for multidimensional brain–machine interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2837003
– volume: 71
  start-page: 103102
  year: 2022
  ident: ref_48
  article-title: Motor imagery based brain–computer interface: Improving the EEG classification using Delta rhythm and LightGBM algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103102
– volume: 7
  start-page: 46858
  year: 2019
  ident: ref_24
  article-title: Small sample motor imagery classification using regularized Riemannian features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909058
– volume: 2019
  start-page: 5627156
  year: 2019
  ident: ref_13
  article-title: Motor imagery EEG classification based on decision tree framework and Riemannian geometry
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/5627156
– volume: 25
  start-page: 671
  year: 2021
  ident: ref_3
  article-title: Interface, interaction, and intelligence in generalized brain–computer interfaces
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2021.04.003
– volume: 15
  start-page: 031005
  year: 2018
  ident: ref_40
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– ident: ref_2
  doi: 10.3390/s21144754
– volume: 12
  start-page: 1211
  year: 2012
  ident: ref_6
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 1
  start-page: 100003
  year: 2019
  ident: ref_20
  article-title: Signal processing techniques for motor imagery brain computer interface: A review
  publication-title: Array
  doi: 10.1016/j.array.2019.100003
– volume: 27
  start-page: 64
  year: 2008
  ident: ref_9
  article-title: Brain–computer interfaces based on visual evoked potentials
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2008.923958
– ident: ref_38
  doi: 10.1109/ICSIP55141.2022.9886815
– volume: 63
  start-page: 102172
  year: 2021
  ident: ref_17
  article-title: Deep learning for motor imagery EEG-based classification: A review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102172
– volume: 14
  start-page: 1188
  year: 2021
  ident: ref_18
  article-title: Logistic regression with tangent space based cross-subject learning for enhancing motor imagery classification
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 14
  start-page: 692
  year: 2020
  ident: ref_1
  article-title: Brain computer interfaces for improving the quality of life of older adults and elderly patients
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00692
– volume: 8
  start-page: 117
  year: 2021
  ident: ref_25
  article-title: Neural activities classification of left and right finger gestures during motor execution and motor imagery
  publication-title: Brain–Comput. Interfaces
  doi: 10.1080/2326263X.2020.1782124
– volume: 58
  start-page: 355
  year: 2010
  ident: ref_42
  article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 4
  start-page: 155
  year: 2017
  ident: ref_19
  article-title: Riemannian geometry for EEG-based brain–computer interfaces; a primer and a review
  publication-title: Brain–Comput. Interfaces
  doi: 10.1080/2326263X.2017.1297192
– volume: 18
  start-page: 056014
  year: 2021
  ident: ref_29
  article-title: The Riemannian spatial pattern method: Mapping and clustering movement imagery using Riemannian geometry
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abf291
– ident: ref_51
  doi: 10.1109/DASA54658.2022.9765311
– volume: 59
  start-page: 920
  year: 2011
  ident: ref_26
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– volume: 13
  start-page: 163
  year: 2020
  ident: ref_10
  article-title: The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome
  publication-title: Neuroethics
  doi: 10.1007/s12152-019-09409-4
– volume: 29
  start-page: 73
  year: 2010
  ident: ref_44
  article-title: Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-009-0196-9
– ident: ref_47
  doi: 10.1109/EMBC44109.2020.9175344
– ident: ref_23
  doi: 10.1007/978-3-642-15995-4_78
SSID ssj0023338
Score 2.4717565
Snippet The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is...
The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5051
SubjectTerms Algorithms
Brain research
brain–computer interface (BCI)
Classification
Datasets
Electrodes
Electroencephalography
electroencephalography/electroencephalogram (EEG)
Geometry
motor execution (ME)
motor imagery (MI)
multiclass classification
Riemannian geometry decoding algorithm (RGDA)
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDeBggxCgktUvx0fF7otSFAhVKTeIsdx2hXdBG1SHv-emSQbbQQSF672OPJjxjOfMv6GkJeYW8xY0KnSQaRKWJ16xbJUmcpBBFw4K0NfbMKenGRnZ-7TTqkvzAkb6IGHjTvgJfOSAf4LHi5co7ICYsKilBDpWKFDhbcvs24LpkaoJQF5DTxCEkD9QSuQVIZpPvM-PUn_n1fxji-a50nuOJ6j2-TWGDHSxTDTO-RarO-Smzs8gvfIj0MAkeiEaP-eNu0rXdKPDeBp-n6NLBW_qK_LsWX5M4Ze3eipb7-2tM8aoJ9XcY31i3xNj2Ozjh2MWVyeN5tVd7FuKUh_wKRxulwe00PfgfPr2vvky9Hy9O27dKyokAYtbZdqG70xmmfOZCWTlVemcMHa4JiUKnANHrPKilhBGCUq47kKmdPalNJbW5aFfED26qaOjwiFuIdn8IloIKKSwhWKi9JGHZnwheE-Ia-3O52HkW4cq15c5gA78FDy6VAS8mIS_TZwbPxN6A0e1ySAtNh9AyhLPipL_i9lScgrPOwcjRcmE_z4BgGWhDRY-cJqhFjGiYTszyTB6MK8e6su-Wj0bQ7oVTFw9oIl5PnUjSMxka2OzdUgA-N15hLycNCuaUn4BxXCcejJZno3W_O8p15d9JTgHKGh4uzx_9ilJ-SGABPCHAmh98let7mKT8n18L1btZtnvaH9BttpK18
  priority: 102
  providerName: Directory of Open Access Journals
Title Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets
URI https://www.ncbi.nlm.nih.gov/pubmed/37299779
https://www.proquest.com/docview/2824047120
https://www.proquest.com/docview/2824692589
https://pubmed.ncbi.nlm.nih.gov/PMC10255410
https://doaj.org/article/1d0a30eb2ca341648b882bd3080725cf
Volume 23
WOSCitedRecordID wos001003983300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oVAWRmEBJeojh3HyQltaVoqsatVVaTlFDmO067oJmWT8rjw25nxZrcbgbhwycEeR7Y8npnPmXxDyGvMLWbMSD-UhvshV9LXIYv9MCoTiIDzRAnjik2o8TieTpNJd-HWdGmVK5voDHVRG7wj3wNoEDKwpJy9u_zqY9Uo_LraldC4SbaxbDbquZpeAy4B-GvJJiQA2u81HKllmAx6PshR9f9pkDc8Uj9bcsP9HN7734nfJ3e7wJMOl5rygNyw1UNyZ4OO8BH5fgBYFH0Zdb_l-q5gJh3VAMvp8RzJLn5SXRVdS_rDGqe19FQ3Xxrqkg_oyczOsQySruiRree2hTHDizOYUHs-byhIf8Tcc5qmR_RAt-BD2-Yx-XSYnr7_4HeFGXwjhWp9qayOIhnESRQXTJQ6jPLEKGUSJkRoAgmOt4xzW0I0xstIB6GJEymjQmiliiIXO2Srqiv7lFAIn4IYXmEjCMwET_Iw4IWy0jKu8yjQHnm72qrMdKzlWDzjIgP0gruarXfVI6_WopdLqo6_Ce3jfq8FkF3bNdSLs6w7rFlQMC2YzbnR4OSjMM4Bh-SFgOhacWlKj7xBbcnQBsBkjO5-ZYAlIZtWNlQSkVqUcI_s9iTh7Jp-90pnss52NNm1wnjk5bobR2I-XGXrq6UMjJdx4pEnS_VcLwk_xEJUDz1xT3F7a-73VLNzxyweIMIMA_bs3_N6Tm5zOF2YRMHlLtlqF1f2BbllvrWzZjFwZ9A94wHZ3k_Hk5OBu-qA5-hXCm2T49Hk82-Dk0AG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvB-BAgaB4BLVseM4OSC0sNt21e0KoVbaW3Acp13RTcompfRP8RuZSbLbjUDceuAaj6PYmdeXjL8h5DXWFjNmpOtLw12fK-lqn4WuH2QRZMBJpISpm02o8TicTKLPa-TX4iwMllUufGLtqNPC4DfyTYAGPgNPytmHk-8udo3Cv6uLFhqNWuza8zOAbOX7YR_e7xvOtwb7n3bctquAa6RQlSuV1UEgvTAKwpSJTPtBEhmlTMSE8I0nIWpkYWIzSCV4FmjPN2EkZZAKrVSaJgLue4VcBT-uEOypyQXAE4D3GvYiISK2WXKksmHS68S8ujXAnwFgJQJ2qzNXwt3W7f9to-6QW21iTXuNJdwlaza_R26u0C3eJ2d9wNoYq2l97NitG4LSvaIq5nQ4QzKPc6rztL0y-GlNbZV0X5ffSloXV9AvUzvDNk86p9u2mNkK5vSOD2EDqqNZSUF6hLX1dDDYpn1dQY5QlQ_IwaWs_CFZz4vcPiYU0kMvhFvYABJPwaPE93iqrLSM6yTwtEPeLVQjNi0rOzYHOY4BnaEWxUstcsirpehJQ0XyN6GPqF9LAWQPry8U88O4dUaxlzItmE240ZDEBH6YAM5KUgHoQXFpMoe8Re2M0cfBwxjdHtWAJSFbWNxTEpFoEHGHbHQkwTeZ7vBCR-PWN5bxhYI65OVyGGdivV9ui9NGBubLMHLIo8YclkvCH81gezASdgyls-buSD49qpnTPUTQvsee_Pu5XpDrO_t7o3g0HO8-JTc4WDYWjHC5Qdar-al9Rq6ZH9W0nD-v7Z-Sr5dtR78B_fuWqw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8cL8EBhgEgpeoji9x8oBQoe2otlUVGtJ4Co7jbBVrMpqMsb_Gr-M4SUMjEG974DU-jmLn3L7k-DsIvbC1xYRo4XKhqcupFK7iJHC5n4aQAcehZLpqNiGn0-DgIJxtoJ-rszC2rHLlEytHneTafiPvAzTgBDwpJf20KYuYDcdvT765toOU_dO6aqdRq8iOOT8D-Fa8mQzhXb-kdDzaf__BbToMuFowWbpCGuX7wgtCP0gISxX341BLqUPCGNeegAiSBrFJIa2gqa88roNQCD9hSsokiRnc9xLahJSc0x7anE32Zp9buMcA_dVcRoyFpF9QS2xDhNeJgFWjgD_DwVo87NZqrgW_8Y3_edtuoutNyo0HtY3cQhsmu42urREx3kFnQ0DhNorj6kCyW7UKxXt5mS_xZGFpPs6xypLmyuiH0ZW94n1VfC1wVXaBP87NwjaAUhneNvnClDBncHwIG1AeLQoM0ru26h6PRtt4qErIHsriLvp0ISu_h3pZnpkHCEPi6AVwC-NDSspoGHOPJtIIQ6iKfU856PVKTSLd8LXbtiHHEeA2q1FRq1EOet6KntQkJX8Temd1rRWwvOLVhXx5GDVuKvISohgxMdUK0hufBzEgsDhhgCskFTp10CurqZH1fvAwWjWHOGBJlkcsGkhhMaofUgdtdSTBa-nu8Epfo8ZrFtFvZXXQs3bYzrSVgJnJT2sZmC-C0EH3a9Nol2R_QQOegZGgYzSdNXdHsvlRxanuWWzNPfLw38_1FF0B84l2J9OdR-gqBSO3lSRUbKFeuTw1j9Fl_b2cF8snjTPA6MtFG9IvTFWg-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Multi-Class+Motor+Imagery+and+Motor+Execution+Tasks+Using+Riemannian+Geometry+Algorithms+on+Large+EEG+Datasets&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shuqfa%2C+Zaid&rft.au=Belkacem%2C+Abdelkader+Nasreddine&rft.au=Lakas%2C+Abderrahmane&rft.date=2023-05-25&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft_id=info:doi/10.3390%2Fs23115051&rft_id=info%3Apmid%2F37299779&rft.externalDocID=37299779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon