Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets
The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 23; H. 11; S. 5051 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
25.05.2023
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices. |
|---|---|
| AbstractList | The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices. The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices.The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography signals. However, the related literature shows high classification accuracy on only relatively small BCI datasets. The aim of this paper is to provide a study of the performance of a novel implementation of the Riemannian geometry decoding algorithm using large BCI datasets. In this study, we apply several Riemannian geometry decoding algorithms on a large offline dataset using four adaptation strategies: baseline, rebias, supervised, and unsupervised. Each of these adaptation strategies is applied in motor execution and motor imagery for both scenarios 64 electrodes and 29 electrodes. The dataset is composed of four-class bilateral and unilateral motor imagery and motor execution of 109 subjects. We run several classification experiments and the results show that the best classification accuracy is obtained for the scenario where the baseline minimum distance to Riemannian mean has been used. The mean accuracy values up to 81.5% for motor execution, and up to 76.4% for motor imagery. The accurate classification of EEG trials helps to realize successful BCI applications that allow effective control of devices. |
| Audience | Academic |
| Author | Belkacem, Abdelkader Nasreddine Lakas, Abderrahmane Shuqfa, Zaid |
| AuthorAffiliation | Connected Autonomous Intelligent Systems Laboratory, Department of Computer and Network Engineering, College of IT (CIT), United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; 199901472@uaeu.ac.ae (Z.S.); belkacem@uaeu.ac.ae (A.N.B.) |
| AuthorAffiliation_xml | – name: Connected Autonomous Intelligent Systems Laboratory, Department of Computer and Network Engineering, College of IT (CIT), United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; 199901472@uaeu.ac.ae (Z.S.); belkacem@uaeu.ac.ae (A.N.B.) |
| Author_xml | – sequence: 1 givenname: Zaid orcidid: 0000-0002-5339-5291 surname: Shuqfa fullname: Shuqfa, Zaid – sequence: 2 givenname: Abdelkader Nasreddine orcidid: 0000-0002-3024-4167 surname: Belkacem fullname: Belkacem, Abdelkader Nasreddine – sequence: 3 givenname: Abderrahmane orcidid: 0000-0003-4725-8634 surname: Lakas fullname: Lakas, Abderrahmane |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37299779$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1v0zAUhiM0xD7ggj-AInEDF938EcfOFaq6Uip1QkLbtXViO5lLYg_bBfbvcbdurAPlItHJcx7rtd7j4sB5Z4riLUanlDboLBKKMUMMvyiOcEWqiSAEHTz5PiyOY1wjRCil4lVxSDlpGs6bo-LXuVFeW9eXF5sh2clsgBjLC598KJcj9CbcluD0bjL_bdQmWe_KS4jfY3kVt5vfrBnBOQuuXBg_mpR3pkPvg03XYywzvYLQm3I-X5TnkCCaFF8XLzsYonmze58UV5_nl7Mvk9XXxXI2XU0UozxNGDdQ1wyLphYa0Q6qum0U56pBlFYKM2N0J1rTsZy1qwFXSjSM1ZoC51q39KRY3nu1h7W8CXaEcCs9WHk38KGXEJJVg5FYI6DItEQBrXBdiVYI0mqKBOKEqS67Pt27bjbtaLQyLgUY9qT7f5y9lr3_KTEijFUYZcOHnSH4HxsTkxxtVGYYwBm_iZIIUtUNYaLJ6Ptn6Npvgst3dUehimOC_lI95ATWdT4frLZSOeUsn9pkXaZO_0PlR5vRqtylzub53sK7p0kfIz70JgNn94AKPsZgOqlsgm0zstkOObHcNlM-NjNvfHy28SD9l_0D5pHgYQ |
| CitedBy_id | crossref_primary_10_2147_JMDH_S509747 crossref_primary_10_3389_fnins_2024_1271831 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_1177_15500594241234836 crossref_primary_10_3389_fnins_2023_1270785 crossref_primary_10_3390_s25113284 crossref_primary_10_1038_s41598_025_05423_0 crossref_primary_10_3390_s25175291 crossref_primary_10_1016_j_bspc_2025_107834 crossref_primary_10_7759_cureus_93011 crossref_primary_10_1016_j_dib_2024_110181 crossref_primary_10_1109_TNSRE_2024_3522168 |
| Cites_doi | 10.1109/ACCESS.2022.3171906 10.1016/j.jneumeth.2018.08.001 10.1201/9781351231954-31 10.1007/978-981-15-9689-6_27 10.1088/1741-2552/aba7cd 10.1109/TNSRE.2016.2627016 10.1161/01.CIR.101.23.e215 10.3390/s19061423 10.1016/j.neucom.2022.08.024 10.1016/S1388-2457(03)00123-8 10.1109/INISTA55318.2022.9894208 10.1109/ICSIP49896.2020.9339358 10.5334/jors.bi 10.1007/s11517-017-1611-4 10.1109/ACCESS.2021.3115263 10.1016/j.neucom.2020.09.017 10.1109/ACCESS.2020.3011969 10.1088/1741-2552/ab260c 10.1109/MSMC.2020.2968638 10.1109/TBME.2018.2889705 10.1109/TNSRE.2018.2794415 10.1109/TBME.2002.803536 10.1109/I2CACIS54679.2022.9815460 10.1109/EMBC.2017.8037537 10.1088/1741-2552/ab0ab5 10.1109/IWW-BCI.2019.8737349 10.1038/s41598-022-15813-3 10.1088/1741-2560/3/1/R02 10.1007/s11517-019-01989-w 10.3389/fnbot.2020.00025 10.1109/CCE53527.2021.9633055 10.1109/TNSRE.2018.2837003 10.1016/j.bspc.2021.103102 10.1109/ACCESS.2019.2909058 10.1155/2019/5627156 10.1016/j.tics.2021.04.003 10.1088/1741-2552/aab2f2 10.3390/s21144754 10.3390/s120201211 10.1016/j.array.2019.100003 10.1109/MEMB.2008.923958 10.1109/ICSIP55141.2022.9886815 10.1016/j.bspc.2020.102172 10.3389/fnins.2020.00692 10.1080/2326263X.2020.1782124 10.1109/TBME.2010.2082539 10.1080/2326263X.2017.1297192 10.1088/1741-2552/abf291 10.1109/DASA54658.2022.9765311 10.1109/TBME.2011.2172210 10.1007/s12152-019-09409-4 10.1007/s10827-009-0196-9 10.1109/EMBC44109.2020.9175344 10.1007/978-3-642-15995-4_78 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23115051 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_1d0a30eb2ca341648b882bd3080725cf PMC10255410 A752559692 37299779 10_3390_s23115051 |
| Genre | Journal Article |
| GeographicLocations | New Jersey |
| GeographicLocations_xml | – name: New Jersey |
| GrantInformation_xml | – fundername: Strategic Research Program - Emirates Center for Mobility Research grantid: 12R011 – fundername: Strategic Research Program—Emirates Center for Mobility Research grantid: 12R011 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c537t-57ea66518968d03fa46b9c77c90334c15eedf8bef5142f6a14c89556d3a77ddb3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003983300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:32:52 EST 2025 Tue Nov 04 02:06:52 EST 2025 Fri Sep 05 13:13:18 EDT 2025 Tue Oct 07 07:44:07 EDT 2025 Tue Nov 11 10:25:44 EST 2025 Tue Nov 04 17:19:15 EST 2025 Wed Feb 19 02:23:39 EST 2025 Sat Nov 29 07:15:30 EST 2025 Tue Nov 18 21:51:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | brain–computer interface (BCI) motor execution (ME) Riemannian geometry decoding algorithm (RGDA) multiclass classification motor imagery (MI) electroencephalography/electroencephalogram (EEG) |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-57ea66518968d03fa46b9c77c90334c15eedf8bef5142f6a14c89556d3a77ddb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4725-8634 0000-0002-3024-4167 0000-0002-5339-5291 |
| OpenAccessLink | https://www.proquest.com/docview/2824047120?pq-origsite=%requestingapplication% |
| PMID | 37299779 |
| PQID | 2824047120 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1d0a30eb2ca341648b882bd3080725cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255410 proquest_miscellaneous_2824692589 proquest_journals_2824047120 gale_infotracmisc_A752559692 gale_infotracacademiconefile_A752559692 pubmed_primary_37299779 crossref_citationtrail_10_3390_s23115051 crossref_primary_10_3390_s23115051 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-25 |
| PublicationDateYYYYMMDD | 2023-05-25 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Goldberger (ref_55) 2000; 101 Chen (ref_25) 2021; 8 ref_14 Dawwd (ref_17) 2021; 63 Xie (ref_30) 2018; 26 ref_56 ref_53 ref_52 ref_51 Yger (ref_12) 2016; 25 Roy (ref_15) 2019; 16 (ref_10) 2020; 13 Dong (ref_28) 2017; 55 Rashid (ref_4) 2020; 14 Wang (ref_9) 2008; 27 ref_23 Lotte (ref_40) 2018; 15 Gao (ref_3) 2021; 25 Kemp (ref_54) 2003; 114 (ref_6) 2012; 12 Congedo (ref_19) 2017; 4 ref_27 Rodrigues (ref_36) 2018; 66 Appriou (ref_58) 2020; 6 Jamil (ref_7) 2021; 9 Krol (ref_11) 2018; 309 Hwaidi (ref_50) 2022; 10 Shenoy (ref_46) 2006; 3 Barachant (ref_26) 2011; 59 Lotte (ref_42) 2010; 58 Belkacem (ref_43) 2018; 26 Chu (ref_31) 2020; 17 Chowdhury (ref_18) 2021; 14 Gao (ref_37) 2022; 507 ref_35 ref_34 Abenna (ref_48) 2022; 71 ref_33 Silva (ref_57) 2014; 2 Yang (ref_32) 2020; 8 Koyama (ref_44) 2010; 29 Craik (ref_8) 2019; 16 ref_39 ref_38 Aggarwal (ref_20) 2019; 1 Belkacem (ref_1) 2020; 14 Rodrigues (ref_41) 2019; 57 ref_47 Singh (ref_24) 2019; 7 ref_45 Cheng (ref_22) 2002; 49 Guan (ref_13) 2019; 2019 ref_2 ref_49 Wan (ref_16) 2021; 421 Larzabal (ref_29) 2021; 18 Salimpour (ref_21) 2022; 12 ref_5 |
| References_xml | – volume: 10 start-page: 48071 year: 2022 ident: ref_50 article-title: Classification of Motor Imagery EEG Signals Based on Deep Autoencoder and Convolutional Neural Network Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3171906 – volume: 309 start-page: 13 year: 2018 ident: ref_11 article-title: SEREEGA: Simulating event-related EEG activity publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.08.001 – ident: ref_45 doi: 10.1201/9781351231954-31 – ident: ref_33 doi: 10.1007/978-981-15-9689-6_27 – volume: 17 start-page: 046029 year: 2020 ident: ref_31 article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aba7cd – ident: ref_35 – volume: 25 start-page: 1753 year: 2016 ident: ref_12 article-title: Riemannian approaches in brain–computer interfaces: A review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627016 – volume: 101 start-page: e215 year: 2000 ident: ref_55 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref_27 doi: 10.3390/s19061423 – volume: 507 start-page: 180 year: 2022 ident: ref_37 article-title: Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.08.024 – volume: 114 start-page: 1755 year: 2003 ident: ref_54 article-title: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(03)00123-8 – ident: ref_39 doi: 10.1109/INISTA55318.2022.9894208 – ident: ref_5 doi: 10.1109/ICSIP49896.2020.9339358 – volume: 2 start-page: e27 year: 2014 ident: ref_57 article-title: An open-source toolbox for analysing and processing physionet databases in MATLAB and Octave publication-title: J. Open Res. Softw. doi: 10.5334/jors.bi – ident: ref_56 – volume: 55 start-page: 1809 year: 2017 ident: ref_28 article-title: Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1611-4 – volume: 9 start-page: 134122 year: 2021 ident: ref_7 article-title: Cognitive and affective brain–computer interfaces for improving learning strategies and enhancing student capabilities: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3115263 – volume: 421 start-page: 1 year: 2021 ident: ref_16 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – volume: 8 start-page: 139974 year: 2020 ident: ref_32 article-title: MLP with Riemannian covariance for motor imagery based EEG analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011969 – volume: 16 start-page: 051001 year: 2019 ident: ref_15 article-title: Deep learning-based electroencephalography analysis: A systematic review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – volume: 6 start-page: 29 year: 2020 ident: ref_58 article-title: Modern machine learning algorithms to classify cognitive and affective states from electroencephalography signals publication-title: IEEE Syst. Man Cybern. Mag. doi: 10.1109/MSMC.2020.2968638 – volume: 66 start-page: 2390 year: 2018 ident: ref_36 article-title: Riemannian procrustes analysis: Transfer learning for brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2889705 – volume: 26 start-page: 698 year: 2018 ident: ref_30 article-title: Bilinear regularized locality preserving learning on Riemannian graph for motor imagery BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2794415 – volume: 49 start-page: 1181 year: 2002 ident: ref_22 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.803536 – ident: ref_49 doi: 10.1109/I2CACIS54679.2022.9815460 – ident: ref_34 doi: 10.1109/EMBC.2017.8037537 – ident: ref_53 – volume: 16 start-page: 031001 year: 2019 ident: ref_8 article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – ident: ref_14 doi: 10.1109/IWW-BCI.2019.8737349 – volume: 12 start-page: 11773 year: 2022 ident: ref_21 article-title: Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals publication-title: Sci. Rep. doi: 10.1038/s41598-022-15813-3 – volume: 3 start-page: R13 year: 2006 ident: ref_46 article-title: Towards adaptive classification for BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/1/R02 – volume: 57 start-page: 1709 year: 2019 ident: ref_41 article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain–computer interfaces publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-01989-w – volume: 14 start-page: 25 year: 2020 ident: ref_4 article-title: Current status, challenges, and possible solutions of EEG-based brain–computer interface: A comprehensive review publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.00025 – ident: ref_52 doi: 10.1109/CCE53527.2021.9633055 – volume: 26 start-page: 1301 year: 2018 ident: ref_43 article-title: Neuromagnetic decoding of simultaneous bilateral hand movements for multidimensional brain–machine interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2837003 – volume: 71 start-page: 103102 year: 2022 ident: ref_48 article-title: Motor imagery based brain–computer interface: Improving the EEG classification using Delta rhythm and LightGBM algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103102 – volume: 7 start-page: 46858 year: 2019 ident: ref_24 article-title: Small sample motor imagery classification using regularized Riemannian features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909058 – volume: 2019 start-page: 5627156 year: 2019 ident: ref_13 article-title: Motor imagery EEG classification based on decision tree framework and Riemannian geometry publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/5627156 – volume: 25 start-page: 671 year: 2021 ident: ref_3 article-title: Interface, interaction, and intelligence in generalized brain–computer interfaces publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2021.04.003 – volume: 15 start-page: 031005 year: 2018 ident: ref_40 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – ident: ref_2 doi: 10.3390/s21144754 – volume: 12 start-page: 1211 year: 2012 ident: ref_6 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 1 start-page: 100003 year: 2019 ident: ref_20 article-title: Signal processing techniques for motor imagery brain computer interface: A review publication-title: Array doi: 10.1016/j.array.2019.100003 – volume: 27 start-page: 64 year: 2008 ident: ref_9 article-title: Brain–computer interfaces based on visual evoked potentials publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2008.923958 – ident: ref_38 doi: 10.1109/ICSIP55141.2022.9886815 – volume: 63 start-page: 102172 year: 2021 ident: ref_17 article-title: Deep learning for motor imagery EEG-based classification: A review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102172 – volume: 14 start-page: 1188 year: 2021 ident: ref_18 article-title: Logistic regression with tangent space based cross-subject learning for enhancing motor imagery classification publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 14 start-page: 692 year: 2020 ident: ref_1 article-title: Brain computer interfaces for improving the quality of life of older adults and elderly patients publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00692 – volume: 8 start-page: 117 year: 2021 ident: ref_25 article-title: Neural activities classification of left and right finger gestures during motor execution and motor imagery publication-title: Brain–Comput. Interfaces doi: 10.1080/2326263X.2020.1782124 – volume: 58 start-page: 355 year: 2010 ident: ref_42 article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 4 start-page: 155 year: 2017 ident: ref_19 article-title: Riemannian geometry for EEG-based brain–computer interfaces; a primer and a review publication-title: Brain–Comput. Interfaces doi: 10.1080/2326263X.2017.1297192 – volume: 18 start-page: 056014 year: 2021 ident: ref_29 article-title: The Riemannian spatial pattern method: Mapping and clustering movement imagery using Riemannian geometry publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abf291 – ident: ref_51 doi: 10.1109/DASA54658.2022.9765311 – volume: 59 start-page: 920 year: 2011 ident: ref_26 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – volume: 13 start-page: 163 year: 2020 ident: ref_10 article-title: The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome publication-title: Neuroethics doi: 10.1007/s12152-019-09409-4 – volume: 29 start-page: 73 year: 2010 ident: ref_44 article-title: Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0196-9 – ident: ref_47 doi: 10.1109/EMBC44109.2020.9175344 – ident: ref_23 doi: 10.1007/978-3-642-15995-4_78 |
| SSID | ssj0023338 |
| Score | 2.4716797 |
| Snippet | The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is... The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain-computer interfaces (BCIs) trials is... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5051 |
| SubjectTerms | Algorithms Brain research brain–computer interface (BCI) Classification Datasets Electrodes Electroencephalography electroencephalography/electroencephalogram (EEG) Geometry motor execution (ME) motor imagery (MI) multiclass classification Riemannian geometry decoding algorithm (RGDA) Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDeBggxCgktUJ45j-7jQbUGCCqEi9Wb5lXZFN0GblMe_ZybJRhuBxIVrPJb8mPHMF4-_IeQl5yFzNurUKfxb5R2YlFU2VcFHZSFkd8z1xSbkyYk6O9Ofdkp9YU7YQA88LNxBFpjlDPCft3DgloVyEBO6wCHSkbnwFZ6-TOotmBqhFgfkNfAIcQD1B22OpDJMZDPv05P0_3kU7_iieZ7kjuM5uk1ujREjXQwjvUOuxfouubnDI3iP_DgEEIlOiPbvadO-0iX92ACepu_XyFLxi9o6jF-WP6Pv1Y2e2vZrS_usAfp5FddYv8jW9Dg269hBn8XlebNZdRfrloL0B0wap8vlMT20HTi_rr1PvhwtT9--S8eKCqkXXHapkNGWpciULlVgvLJF6bSX0mvGeeEzAR6zUi5WEEblVWmzwistRBm4lTIExx-Qvbqp4yNCS6vwFjcUgYuish5gn-OycIF5ncsoE_J6u9LGj3TjWPXi0gDswE0x06Yk5MUk-m3g2Pib0BvcrkkAabH7D6AsZlQW8y9lScgr3GyDxguD8XZ8gwBTQhoss5ACIVap84TszyTB6Py8easuZjT61gB6LRg4-5wl5PnUjD0xka2OzdUgA_2F0gl5OGjXNCW8QYVwHFrUTO9mc5631KuLnhI8Q2hYZOzx_1ilJ-RGDiaEORK52Cd73eYqPiXX_fdu1W6e9Yb2GzvrLYI priority: 102 providerName: Directory of Open Access Journals |
| Title | Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37299779 https://www.proquest.com/docview/2824047120 https://www.proquest.com/docview/2824692589 https://pubmed.ncbi.nlm.nih.gov/PMC10255410 https://doaj.org/article/1d0a30eb2ca341648b882bd3080725cf |
| Volume | 23 |
| WOSCitedRecordID | wos001003983300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oVAWRmEBJeoSRzHzgltaVoqsatVVaTlFPmVdkU3KZuUx4Xfzkw2u90IxIVLDvZYsuV5-LMn3xDymjEbauVSX0u8rTIaTEpJ5UtrnFRwZNeBbotNiPFYTqfppLtwq7u0ypVPbB21rQzeke8BNIgD8KRR8O7yq49Vo_B1tSuhcZNsY9ls1HMxvQZcDPDXkk2IAbTfqyOklgl42ItBLVX_nw55IyL1syU3ws_hvf-d-H1ytzt40uFSUx6QG658SO5s0BE-It8PAItiLKPtb7l-WzCTjiqA5fR4jmQXP6kqbdeS_XCm1Vp6quovNW2TD-jJzM2xDJIq6ZGr5q6BMcOLM5hQcz6vKUh_xNxzmmVH9EA1EEOb-jH5dJidvv_gd4UZfMOZaHwunEoSHso0kTZghYoTnRohTBowFpuQQ-AtpHYFnMaiIlFhbGTKeWKZEsJazXbIVlmV7imhiZL4GGxjy3hcKAPoUTMRaxuYNBJOeOTtaqty07GWY_GMixzQC-5qvt5Vj7xai14uqTr-JrSP-70WQHbttqFanOWdseahDRQLnI6MgiCfxFIDDtGWwelaRNwUHnmD2pKjD4DJGNX9ygBLQjatfCg4IrUkjTyy25ME2zX97pXO5J3vqPNrhfHIy3U3jsR8uNJVV0sZGM9l6pEnS_VcLwkfYuFUDz2yp7i9Nfd7ytl5yyweIsKMw-DZv-f1nNyOwLowiSLiu2SrWVy5F-SW-dbM6sWgtcH2Kwdkez8bT04G7VUHfEe_MmibHI8mn38DVHVCKQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQceD8MBRYEgotV22t71weEAknbqGmEUCvlZvblNqKxS-xS-qf4jczYThoLxK0Hrt5Zy2vPNzOfd3aGkNeMGV9Jm7hK4N8qrQBSUkhXGG2FhJBdeapuNsHHYzGZJJ_XyK_FWRhMq1zYxNpQm0LjP_JNoAahB5Y08D6cfHexaxTuri5aaDRqsWvPz4Cyle-Hffi-b4Jga7D_acdtuwq4OmK8ciNuZRxHvkhiYTyWyTBWieZcJx5jofYj8BqZUDaDUCLIYumHWiRRFBsmOTdGMbjvFXIV7DhHsscnFwSPAd9rqhcxlnibZYClbLzI7_i8ujXAnw5gxQN2szNX3N3W7f_tRd0ht9rAmvYaJNwlaza_R26ulFu8T876wLXRV9P62LFbNwSle0VVzOlwhsU8zqnMTXtl8NPqGpV0X5bfSlonV9AvUzvDNk8yp9u2mNkK5vSOD-EFVEezkoL0CHPr6WCwTfuyghihKh-Qg0tZ-UOynhe5fUxoLAVudpvQsCjMpAZ2rBgPlfF0EnDLHfJuoRqpbquyY3OQ4xTYGWpRutQih7xaip40pUj-JvQR9WspgNXD6wvF_DBtjVHqG08yz6pASwhi4lAo4FnKMGAPPIh05pC3qJ0p2jh4GC3boxqwJKwWlvZ4hEw0TgKHbHQkwTbp7vBCR9PWNpbphYI65OVyGGdivl9ui9NGBuZHInHIowYOyyXhRjNgD0ZEByidNXdH8ulRXTndRwYd-t6Tfz_XC3J9Z39vlI6G492n5EYAyMaEkSDaIOvV_NQ-I9f0j2pazp_X-Kfk62Xj6DfxApjO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8cL8EBhgEgpeoiR0nzgNChbaj2lZVaEjjKfiWrWJNRpMx9tf4dRwnaWgE4m0PvMbHUZyc2xcffwehF5RqXwoTu5Lbv1VKgkkJLlyuleECUnbpyarZRDSd8oODeLaBfq7OwtiyypVPrBy1zpX9R94HaBB44EmJ10-bsojZcPz25JtrO0jZndZVO41aRXbM-RnAt-LNZAjf-iUh49H--w9u02HAVYxGpcsiI8KQ-TwOufZoKoJQxiqKVOxRGiifQQRJuTQppBUkDYUfKB4zFmoqokhrSeG-l9AmpOQB6aHN2WRv9rmFexTQX81lRGns9QtiiW085nciYNUo4M9wsBYPu7Waa8FvfON_fm030fUm5caD2kZuoQ2T3UbX1ogY76CzIaBwG8VxdSDZrVqF4r28zJd4srA0H-dYZLq5MvphVGWveF8UXwtclV3gj3OzsA2gRIa3Tb4wJcwZHB_CCyiPFgUG6V1bdY9Ho208FCVkD2VxF326kJXfQ70sz8wDhEPB7Ta4DjRlQSoU4GZJo0BqT8UkMpGDXq_UJFENX7ttG3KcAG6zGpW0GuWg563oSU1S8jehd1bXWgHLK15dyJeHSeOmEl97gnpGEiUgvQkDLgGBSU0BV0SEqdRBr6ymJtb7wcMo0RzigCVZHrFkEDGLUcOYOGirIwleS3WHV_qaNF6zSH4rq4OetcN2pq0EzEx-WsvAfMZjB92vTaNdkt2CBjwDI7xjNJ01d0ey-VHFqe5bbB343sN_P9dTdAXMJ9mdTHceoasEjNxWkhC2hXrl8tQ8RpfV93JeLJ80zgCjLxdtSL8AbcejHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Multi-Class+Motor+Imagery+and+Motor+Execution+Tasks+Using+Riemannian+Geometry+Algorithms+on+Large+EEG+Datasets&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shuqfa%2C+Zaid&rft.au=Belkacem%2C+Abdelkader+Nasreddine&rft.au=Lakas%2C+Abderrahmane&rft.date=2023-05-25&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft_id=info:doi/10.3390%2Fs23115051&rft.externalDocID=A752559692 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |