International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, ref...
Uloženo v:
| Vydáno v: | Frontiers in human neuroscience Ročník 14; s. 568051 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Research Foundation
23.03.2021
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1662-5161, 1662-5161 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice. |
|---|---|
| AbstractList | Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice. Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarise ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice. Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice. |
| Author | Vianna, Lauro C. Hansen, Niels Rosenow, Felix Roden, Michael Ackland, Gareth L. Finisguerra, Alessandra Gharabaghi, Alireza Bikson, Marom Hasan, Alkomiet Beste, Christian Betts, Matthew Sellaro, Roberta Quintana, Daniel S. D'Agostini, Martina O'Leary, Georgia H. Schoenen, Jean Borges, Uirassu Polak, Thomas Jandackova, Vera K. Thayer, Julian F. Teckentrup, Vanessa Laborde, Sylvain Farmer, Adam D. Gaul, Charly Warren, Christopher M. Kaniusas, Eugenijus Keute, Marius De Couck, Marijke Capone, Fioravante Deuchars, Jim Jacobs, Heidi I. L. Gourine, Alexander V. Badran, Bashar W. Ventura-Bort, Carlos Freri, Elena Schuster, Nathaniel M. Burger, Andreas M. Frangos, Eleni Weymar, Mathias Ludwig, Mareike Panetsos, Fivos Steenbergen, Laura Stavrakis, Stavros Gancheva, Sofiya Kroemer, Nils B. Van Diest, Ilse Verkuil, Bart Genheimer, Hannah Strzelczyk, Adam Mertens, Ann Vonck, Kristl Fischer, Rico Usichenko, Taras Redgrave, Jessica McTeague, Lisa M. Fang, Jiliang Kaess, Michael Hämmerer, Dorothea Garcia, Ronald G. Kaithwas, Gaurav Andreatta, Marta Tobaldini, |
| AuthorAffiliation | 12 Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands 74 Department of Developmental Psychology and Socialisation, University of Padova , Padova , Italy 15 Migraine and Headache Clinic Koenigstein , Königstein im Taunus , Germany 81 Department of Anesthesiology, University Medicine Greifswald , Greifswald , Germany 18 NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital , Oslo , Norway 64 Department of Psychiatry and Psychotherapy, University of Göttingen , Göttingen , Germany 7 Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich , Munich , Germany 45 Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands 24 Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy 63 Department of Anesthesiology, Center for Pain Medicine, University of California, San Die |
| AuthorAffiliation_xml | – name: 59 Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany – name: 54 Faculty of Health Sciences Brandenburg, University of Potsdam , Potsdam , Germany – name: 13 Department of Psychiatry, Medical University of South Carolina , Charleston, SC , United States – name: 25 Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, NIH , Bethesda, MD , United States – name: 51 Department of Neurosurgery, University of Tübingen , Tübingen , Germany – name: 42 Department of Psychological Science, University of California, Irvine , Irvine, CA , United States – name: 67 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing , China – name: 87 Department of Human Movement Studies, Faculty of Education, University of Ostrava , Ostrava , Czechia – name: 63 Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego Health System , La Jolla, CA , United States – name: 88 Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg , Heidelberg , Germany – name: 23 Center for Behavioral Brain Sciences Magdeburg (CBBS), Otto-von-Guericke University , Magdeburg , Germany – name: 50 Division of Epileptology, Fondazione IRCCS Istituto Neurologico C. Besta , Milan , Italy – name: 52 Department of Biomedical Engineering, City College of New York , New York, NY , United States – name: 6 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg , Augsburg , Germany – name: 24 Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy – name: 65 Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIPLab), University of Göttingen , Göttingen , Germany – name: 15 Migraine and Headache Clinic Koenigstein , Königstein im Taunus , Germany – name: 7 Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich , Munich , Germany – name: 74 Department of Developmental Psychology and Socialisation, University of Padova , Padova , Italy – name: 32 Translational Medicine and Therapeutics, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London , London , United Kingdom – name: 36 Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University , Maastricht , Netherlands – name: 56 Center for Behavioral Brain Sciences, Otto-von-Guericke University , Magdeburg , Germany – name: 60 Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University , Düsseldorf , Germany – name: 8 Laboratory for Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven , Leuven , Belgium – name: 2 Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt , Frankfurt am Main , Germany – name: 47 Department of Anatomy, Faculty of Medicine, Mersin University , Mersin , Turkey – name: 14 Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam , Potsdam , Germany – name: 3 Scientific Institute, IRCCS E. Medea , Pasian di Prato , Italy – name: 4 Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London , London , United Kingdom – name: 30 Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma , Rome , Italy – name: 43 Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg , Magdeburg , Germany – name: 38 Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège , Liège , Belgium – name: 45 Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands – name: 58 Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg , Heidelberg , Germany – name: 21 Medical Faculty, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University , Magdeburg , Germany – name: 44 Neuromodulatory Networks, Leibniz Institute for Neurobiology , Magdeburg , Germany – name: 46 NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia , Brasilia , Brazil – name: 55 Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Magdeburg , Germany – name: 5 Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen , Tuebingen , Germany – name: 79 Department of Surgery, University Hospital Bonn , Bonn , Germany – name: 9 Leibniz Institute for Neurobiology , Magdeburg , Germany – name: 40 School of Biomedical Science, Faculty of Biological Science, University of Leeds , Leeds , United Kingdom – name: 16 Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden , Dresden , Germany – name: 76 Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School , Boston, MA , United States – name: 77 Heart Rhythm Institute, University of Oklahoma Health Sciences Center , Oklahoma City, OK , United States – name: 72 Cognitive Psychology Unit, Institute of Psychology, Leiden University , Leiden , Netherlands – name: 83 Laboratory of Functional Neurovascular Diagnostics, AG Early Diagnosis of Dementia, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Würzburg , Würzburg , Germany – name: 1 Department of Gastroenterology, University Hospitals of North Midlands NHS Trust , Stoke on Trent , United Kingdom – name: 62 Department of Psychology, College of Liberal Arts, University of Minnesota , Minneapolis, MN , United States – name: 70 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Charlestown, MA , United States – name: 28 Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien , Vienna , Austria – name: 81 Department of Anesthesiology, University Medicine Greifswald , Greifswald , Germany – name: 61 German Center for Diabetes Research , Munich , Germany – name: 69 Department of Psychiatry, University of Pittsburgh School of Medicine, UPMC Western Psychiatric Hospital , Pittsburgh, PA , United States – name: 31 Faculty of Biology and Faculty of Optics, Complutense University of Madrid and Institute for Health Research, San Carlos Clinical Hospital (IdISSC) , Madrid , Spain – name: 27 Department of Clinical Sciences and Community Health, University of Milan , Milan , Italy – name: 17 Utah State University , Logan, UT , United States – name: 57 University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern , Bern , Switzerland – name: 64 Department of Psychiatry and Psychotherapy, University of Göttingen , Göttingen , Germany – name: 48 Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel , Brussels , Belgium – name: 75 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown, MA , United States – name: 53 Department of Psychology, Education and Child Studies, Erasmus University Rotterdam , Rotterdam , Netherlands – name: 35 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Boston, MA , United States – name: 71 Department of Radiology, Logan University , Chesterfield, MO , United States – name: 10 Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital , Gent , Belgium – name: 39 Functional Imaging Lab, Department of Radiology, Guang An Men Hospital, China Academy of Chinese Medical Sciences , Beijing , China – name: 82 Department of Anesthesia, McMaster University , Hamilton, ON , Canada – name: 12 Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands – name: 84 Department of Neurology, Otto-von-Guericke University , Magdeburg , Germany – name: 18 NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital , Oslo , Norway – name: 78 Faculty of Biological Science, School of Biomedical Science, University of Leeds , Leeds , United Kingdom – name: 86 Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava , Ostrava , Czechia – name: 29 SzeleSTIM GmbH , Vienna , Austria – name: 85 Department of Social and Health Psychology, Institute of Psychology, Deutsche Sporthochschule , Köln , Germany – name: 66 Department of Psychiatry and Psychotherapy, University of Tübingen , Tübingen , Germany – name: 68 Department of Psychology, University of Greifswald , Greifswald , Germany – name: 20 KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo , Oslo , Norway – name: 80 Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule , Köln , Germany – name: 73 Leiden Institute for Brain and Cognition , Leiden , Netherlands – name: 33 Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University) , Lucknow , India – name: 22 Institute of Cognitive Neuroscience, University College London , London , United Kingdom – name: 26 Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy – name: 41 Division for Vascular Surgery, Department of Surgery, Medical University of Vienna , Vienna , Austria – name: 19 Department of Psychology, University of Oslo , Oslo , Norway – name: 49 Faculty of Health Care, University College Odisee , Aalst , Belgium – name: 11 Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield , Sheffield , United Kingdom – name: 37 Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven , Leuven , Belgium – name: 34 Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg , Würzburg , Germany |
| Author_xml | – sequence: 1 givenname: Adam D. surname: Farmer fullname: Farmer, Adam D. – sequence: 2 givenname: Adam surname: Strzelczyk fullname: Strzelczyk, Adam – sequence: 3 givenname: Alessandra surname: Finisguerra fullname: Finisguerra, Alessandra – sequence: 4 givenname: Alexander V. surname: Gourine fullname: Gourine, Alexander V. – sequence: 5 givenname: Alireza surname: Gharabaghi fullname: Gharabaghi, Alireza – sequence: 6 givenname: Alkomiet surname: Hasan fullname: Hasan, Alkomiet – sequence: 7 givenname: Andreas M. surname: Burger fullname: Burger, Andreas M. – sequence: 8 givenname: Andrés M. surname: Jaramillo fullname: Jaramillo, Andrés M. – sequence: 9 givenname: Ann surname: Mertens fullname: Mertens, Ann – sequence: 10 givenname: Arshad surname: Majid fullname: Majid, Arshad – sequence: 11 givenname: Bart surname: Verkuil fullname: Verkuil, Bart – sequence: 12 givenname: Bashar W. surname: Badran fullname: Badran, Bashar W. – sequence: 13 givenname: Carlos surname: Ventura-Bort fullname: Ventura-Bort, Carlos – sequence: 14 givenname: Charly surname: Gaul fullname: Gaul, Charly – sequence: 15 givenname: Christian surname: Beste fullname: Beste, Christian – sequence: 16 givenname: Christopher M. surname: Warren fullname: Warren, Christopher M. – sequence: 17 givenname: Daniel S. surname: Quintana fullname: Quintana, Daniel S. – sequence: 18 givenname: Dorothea surname: Hämmerer fullname: Hämmerer, Dorothea – sequence: 19 givenname: Elena surname: Freri fullname: Freri, Elena – sequence: 20 givenname: Eleni surname: Frangos fullname: Frangos, Eleni – sequence: 21 givenname: Eleonora surname: Tobaldini fullname: Tobaldini, Eleonora – sequence: 22 givenname: Eugenijus surname: Kaniusas fullname: Kaniusas, Eugenijus – sequence: 23 givenname: Felix surname: Rosenow fullname: Rosenow, Felix – sequence: 24 givenname: Fioravante surname: Capone fullname: Capone, Fioravante – sequence: 25 givenname: Fivos surname: Panetsos fullname: Panetsos, Fivos – sequence: 26 givenname: Gareth L. surname: Ackland fullname: Ackland, Gareth L. – sequence: 27 givenname: Gaurav surname: Kaithwas fullname: Kaithwas, Gaurav – sequence: 28 givenname: Georgia H. surname: O'Leary fullname: O'Leary, Georgia H. – sequence: 29 givenname: Hannah surname: Genheimer fullname: Genheimer, Hannah – sequence: 30 givenname: Heidi I. L. surname: Jacobs fullname: Jacobs, Heidi I. L. – sequence: 31 givenname: Ilse surname: Van Diest fullname: Van Diest, Ilse – sequence: 32 givenname: Jean surname: Schoenen fullname: Schoenen, Jean – sequence: 33 givenname: Jessica surname: Redgrave fullname: Redgrave, Jessica – sequence: 34 givenname: Jiliang surname: Fang fullname: Fang, Jiliang – sequence: 35 givenname: Jim surname: Deuchars fullname: Deuchars, Jim – sequence: 36 givenname: Jozsef C. surname: Széles fullname: Széles, Jozsef C. – sequence: 37 givenname: Julian F. surname: Thayer fullname: Thayer, Julian F. – sequence: 38 givenname: Kaushik surname: More fullname: More, Kaushik – sequence: 39 givenname: Kristl surname: Vonck fullname: Vonck, Kristl – sequence: 40 givenname: Laura surname: Steenbergen fullname: Steenbergen, Laura – sequence: 41 givenname: Lauro C. surname: Vianna fullname: Vianna, Lauro C. – sequence: 42 givenname: Lisa M. surname: McTeague fullname: McTeague, Lisa M. – sequence: 43 givenname: Mareike surname: Ludwig fullname: Ludwig, Mareike – sequence: 44 givenname: Maria G. surname: Veldhuizen fullname: Veldhuizen, Maria G. – sequence: 45 givenname: Marijke surname: De Couck fullname: De Couck, Marijke – sequence: 46 givenname: Marina surname: Casazza fullname: Casazza, Marina – sequence: 47 givenname: Marius surname: Keute fullname: Keute, Marius – sequence: 48 givenname: Marom surname: Bikson fullname: Bikson, Marom – sequence: 49 givenname: Marta surname: Andreatta fullname: Andreatta, Marta – sequence: 50 givenname: Martina surname: D'Agostini fullname: D'Agostini, Martina – sequence: 51 givenname: Mathias surname: Weymar fullname: Weymar, Mathias – sequence: 52 givenname: Matthew surname: Betts fullname: Betts, Matthew – sequence: 53 givenname: Matthias surname: Prigge fullname: Prigge, Matthias – sequence: 54 givenname: Michael surname: Kaess fullname: Kaess, Michael – sequence: 55 givenname: Michael surname: Roden fullname: Roden, Michael – sequence: 56 givenname: Michelle surname: Thai fullname: Thai, Michelle – sequence: 57 givenname: Nathaniel M. surname: Schuster fullname: Schuster, Nathaniel M. – sequence: 58 givenname: Nicola surname: Montano fullname: Montano, Nicola – sequence: 59 givenname: Niels surname: Hansen fullname: Hansen, Niels – sequence: 60 givenname: Nils B. surname: Kroemer fullname: Kroemer, Nils B. – sequence: 61 givenname: Peijing surname: Rong fullname: Rong, Peijing – sequence: 62 givenname: Rico surname: Fischer fullname: Fischer, Rico – sequence: 63 givenname: Robert H. surname: Howland fullname: Howland, Robert H. – sequence: 64 givenname: Roberta surname: Sclocco fullname: Sclocco, Roberta – sequence: 65 givenname: Roberta surname: Sellaro fullname: Sellaro, Roberta – sequence: 66 givenname: Ronald G. surname: Garcia fullname: Garcia, Ronald G. – sequence: 67 givenname: Sebastian surname: Bauer fullname: Bauer, Sebastian – sequence: 68 givenname: Sofiya surname: Gancheva fullname: Gancheva, Sofiya – sequence: 69 givenname: Stavros surname: Stavrakis fullname: Stavrakis, Stavros – sequence: 70 givenname: Stefan surname: Kampusch fullname: Kampusch, Stefan – sequence: 71 givenname: Susan A. surname: Deuchars fullname: Deuchars, Susan A. – sequence: 72 givenname: Sven surname: Wehner fullname: Wehner, Sven – sequence: 73 givenname: Sylvain surname: Laborde fullname: Laborde, Sylvain – sequence: 74 givenname: Taras surname: Usichenko fullname: Usichenko, Taras – sequence: 75 givenname: Thomas surname: Polak fullname: Polak, Thomas – sequence: 76 givenname: Tino surname: Zaehle fullname: Zaehle, Tino – sequence: 77 givenname: Uirassu surname: Borges fullname: Borges, Uirassu – sequence: 78 givenname: Vanessa surname: Teckentrup fullname: Teckentrup, Vanessa – sequence: 79 givenname: Vera K. surname: Jandackova fullname: Jandackova, Vera K. – sequence: 80 givenname: Vitaly surname: Napadow fullname: Napadow, Vitaly – sequence: 81 givenname: Julian surname: Koenig fullname: Koenig, Julian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33854421$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kstu1DAUhiNURC_wAGyQJTZlMYMvsZNskGDEZaQCEpRuLcc5mfHIsQc7GdSH6bviJC1qK7FJjnz-_7N_-5xmR847yLKXBC8ZK6u3rdsO3ZJiipdclJiTJ9kJEYIuOBHk6F59nJ3GuMNYUMHJs-w4uXmeU3KS3axdD8Gp3ninLFp5F8HFIaIPKkKDfsDBwB-k3Fhq33XgmkkbUesD-mqc6YYu9fY-9MZt0M8-aVVoIjIuLUdQQW-Rd-gyKBf1kNrgE_5KbdL3G4QDJE-C2AmLzq8gxLEYU715nj1tlY3w4vZ_lv369PFy9WVx8f3zevX-YqE5K_oFLzjLuRC5wK2oa-AaSlFoXDS8EZATBtAWUJC8ringsmpKzAjHipTAG9JSdpatZ27j1U7ug-lUuJZeGTkt-LCRKuXTFiTnVS24rjEmdQ5MlIxhVXA-cquascR6N7P2Q91Bo8H1QdkH0IcdZ7Zy4w-yxDmuiiIB2AywBjaQNq-NPNDJONWDTafRsgZJqSglrQpGRHKd324b_O8BYi87EzVYO1-4pJwwmouSlEn6-pF054c0A3ZU4Zxgku4yqV7dz_EvwN3sJEExC3TwMQZopTb99IoplrGS4FFbyWlK5fiecp7S5CSPnHfw_3v-AlIh7Fg |
| CitedBy_id | crossref_primary_10_3389_fnins_2024_1510658 crossref_primary_10_3389_fnhum_2022_862443 crossref_primary_10_1007_s12170_023_00718_1 crossref_primary_10_1016_j_ctim_2024_103036 crossref_primary_10_1016_j_bja_2021_08_037 crossref_primary_10_1371_journal_pone_0315606 crossref_primary_10_1111_psyp_70034 crossref_primary_10_1113_JP284741 crossref_primary_10_3389_fneur_2023_1341898 crossref_primary_10_1038_s41598_022_25864_1 crossref_primary_10_3390_biomedicines13030700 crossref_primary_10_1111_psyp_70037 crossref_primary_10_1016_j_autneu_2022_102972 crossref_primary_10_1111_adb_13343 crossref_primary_10_1111_apt_16550 crossref_primary_10_3390_brainsci11081084 crossref_primary_10_3390_brainsci12010095 crossref_primary_10_1016_j_brs_2022_09_009 crossref_primary_10_3390_jcm13247601 crossref_primary_10_1097_CRD_0000000000000953 crossref_primary_10_3389_fpsyg_2024_1476021 crossref_primary_10_1016_j_neubiorev_2022_104844 crossref_primary_10_1097_MD_0000000000033473 crossref_primary_10_3389_fneur_2023_1189034 crossref_primary_10_3389_fnins_2024_1287809 crossref_primary_10_3390_biomedicines12020407 crossref_primary_10_1016_j_brs_2021_09_001 crossref_primary_10_3389_fneur_2024_1418937 crossref_primary_10_1080_17474124_2023_2288156 crossref_primary_10_1111_psyp_13804 crossref_primary_10_1111_psyp_14739 crossref_primary_10_1007_s00482_022_00686_2 crossref_primary_10_1016_j_neurom_2025_04_007 crossref_primary_10_1177_13872877241289396 crossref_primary_10_3389_fnins_2023_1096865 crossref_primary_10_3390_brainsci14090875 crossref_primary_10_1111_psyp_13885 crossref_primary_10_1007_s00125_024_06129_0 crossref_primary_10_1111_joor_70039 crossref_primary_10_1016_j_autneu_2022_102956 crossref_primary_10_1111_epi_18047 crossref_primary_10_3389_fneur_2022_816031 crossref_primary_10_3389_fphys_2024_1495868 crossref_primary_10_1016_j_appet_2021_105813 crossref_primary_10_3389_fnins_2021_709436 crossref_primary_10_1002_agt2_70102 crossref_primary_10_1007_s12325_025_03237_0 crossref_primary_10_1111_psyp_70017 crossref_primary_10_3389_fped_2022_884539 crossref_primary_10_1038_s41380_023_02227_4 crossref_primary_10_3389_fnhum_2022_867563 crossref_primary_10_3389_fnins_2024_1406135 crossref_primary_10_3390_brainsci14070690 crossref_primary_10_1007_s10286_024_01074_9 crossref_primary_10_1038_s41598_022_14237_3 crossref_primary_10_1186_s42234_024_00153_6 crossref_primary_10_3390_cells11244103 crossref_primary_10_1111_psyp_13933 crossref_primary_10_1080_09638288_2024_2313123 crossref_primary_10_1111_psyp_14107 crossref_primary_10_3892_mi_2025_236 crossref_primary_10_3389_fnins_2021_664740 crossref_primary_10_14814_phy2_15253 crossref_primary_10_3389_fendo_2022_1000758 crossref_primary_10_1111_psyp_70011 crossref_primary_10_1177_20406223221148061 crossref_primary_10_1016_j_brs_2023_06_010 crossref_primary_10_1177_15459683231173357 crossref_primary_10_1186_s12984_025_01617_9 crossref_primary_10_3389_fneur_2025_1531127 crossref_primary_10_1111_adb_13202 crossref_primary_10_3390_jcm11041087 crossref_primary_10_1016_j_brainres_2025_149736 crossref_primary_10_3389_fphys_2023_1148819 crossref_primary_10_1186_s13063_024_08230_6 crossref_primary_10_1007_s00221_024_06876_x crossref_primary_10_1080_17434440_2022_2020095 crossref_primary_10_3389_fnins_2024_1405310 crossref_primary_10_1111_ner_13346 crossref_primary_10_1002_brb3_70355 crossref_primary_10_1016_j_heliyon_2024_e39841 crossref_primary_10_1038_s41598_024_54026_8 crossref_primary_10_1044_2023_JSLHR_22_00596 crossref_primary_10_1136_bmjopen_2024_098506 crossref_primary_10_1016_j_ibneur_2023_01_010 crossref_primary_10_3389_fneur_2023_1216861 crossref_primary_10_1038_s41598_024_72139_y crossref_primary_10_1111_psyp_14753 crossref_primary_10_2478_jtim_2022_0060 crossref_primary_10_1016_S2665_9913_23_00007_3 crossref_primary_10_3389_fnins_2025_1644961 crossref_primary_10_1016_j_nicl_2021_102654 crossref_primary_10_1016_j_autneu_2021_102840 crossref_primary_10_1080_17434440_2021_1969913 crossref_primary_10_1055_a_1660_5591 crossref_primary_10_3389_fnins_2022_820665 crossref_primary_10_3390_brainsci12050546 crossref_primary_10_1002_epd2_20068 crossref_primary_10_1088_1361_6579_ad5ef6 crossref_primary_10_3389_fvets_2022_878962 crossref_primary_10_1016_j_jnrt_2025_100209 crossref_primary_10_1007_s10072_024_07513_9 crossref_primary_10_3389_fneur_2024_1441128 crossref_primary_10_1183_13993003_01828_2024 crossref_primary_10_1016_j_neurom_2022_07_007 crossref_primary_10_1136_bmjopen_2023_072724 crossref_primary_10_1161_STROKEAHA_125_051470 crossref_primary_10_1523_JNEUROSCI_2004_22_2023 crossref_primary_10_3390_ijms24010679 crossref_primary_10_3390_jcm12031198 crossref_primary_10_3389_fmed_2022_855296 crossref_primary_10_1111_psyp_14484 crossref_primary_10_3389_fneur_2022_897124 crossref_primary_10_3389_fnins_2024_1346634 crossref_primary_10_1016_j_brs_2025_01_022 crossref_primary_10_3389_fnagi_2023_1145207 crossref_primary_10_3390_ijms22158208 crossref_primary_10_1176_appi_focus_20210023 crossref_primary_10_1093_ijnp_pyac013 crossref_primary_10_1111_ejn_16539 crossref_primary_10_1080_21641846_2023_2286029 crossref_primary_10_3389_fneur_2023_1286919 crossref_primary_10_3389_fpsyt_2021_765106 crossref_primary_10_1111_jnp_12425 crossref_primary_10_1186_s40814_023_01289_z crossref_primary_10_1007_s13534_024_00361_8 crossref_primary_10_1371_journal_pone_0326793 crossref_primary_10_3389_fpsyg_2024_1343413 crossref_primary_10_1038_s41598_024_61958_8 crossref_primary_10_1111_psyp_70065 crossref_primary_10_3389_fnagi_2025_1600921 crossref_primary_10_3389_fnhum_2023_1149449 crossref_primary_10_1007_s13311_023_01353_9 crossref_primary_10_1016_j_psyneuen_2022_105719 crossref_primary_10_1109_TAP_2024_3434370 crossref_primary_10_1038_s41598_024_72179_4 crossref_primary_10_1007_s11571_025_10284_4 crossref_primary_10_1111_psyp_14250 crossref_primary_10_3389_fnins_2023_1184051 crossref_primary_10_3390_jcm14061866 crossref_primary_10_1371_journal_pone_0282861 crossref_primary_10_3389_fneur_2023_1228377 crossref_primary_10_1007_s11064_023_03871_6 crossref_primary_10_1016_j_autneu_2021_102908 crossref_primary_10_1177_23727322231196789 crossref_primary_10_7717_peerj_14447 crossref_primary_10_1016_j_neurom_2022_10_046 crossref_primary_10_1007_s10484_023_09584_4 crossref_primary_10_3389_fnins_2023_1213982 crossref_primary_10_1523_JNEUROSCI_0452_23_2023 crossref_primary_10_3390_life12101644 crossref_primary_10_1093_eurheartj_ehaf037 crossref_primary_10_1016_j_brs_2021_12_004 crossref_primary_10_1007_s10286_024_01053_0 crossref_primary_10_1016_j_autneu_2021_102901 crossref_primary_10_3389_fphys_2024_1452490 crossref_primary_10_1016_j_autneu_2022_103008 crossref_primary_10_3389_fneur_2024_1429506 crossref_primary_10_3389_fnins_2022_1038339 crossref_primary_10_1007_s40122_024_00657_8 crossref_primary_10_1016_j_autneu_2021_102875 crossref_primary_10_3389_fnins_2024_1499793 crossref_primary_10_1016_j_sleep_2025_106579 crossref_primary_10_3390_data8050087 crossref_primary_10_1002_hbm_26613 crossref_primary_10_58252_artukluhealth_1676099 crossref_primary_10_1016_j_neurom_2025_01_012 crossref_primary_10_3389_fnhum_2020_600995 crossref_primary_10_1111_psyp_70040 crossref_primary_10_1111_psyp_13984 crossref_primary_10_4103_1673_5374_389365 crossref_primary_10_1007_s10286_023_01002_3 crossref_primary_10_1016_j_neuroscience_2022_04_026 crossref_primary_10_1186_s42234_022_00094_y crossref_primary_10_1093_gastro_goaf009 crossref_primary_10_1111_psyp_14670 crossref_primary_10_1016_j_autneu_2021_102886 crossref_primary_10_1038_s41598_023_29765_9 crossref_primary_10_3389_fnhum_2025_1569472 crossref_primary_10_1152_jn_00447_2022 crossref_primary_10_1109_RBME_2024_3508713 crossref_primary_10_3389_fnins_2023_1234033 |
| Cites_doi | 10.1016/j.neurobiolaging.2018.10.014 10.1016/j.brs.2019.07.010 10.1111/psyp.13571 10.3389/fnins.2019.00288 10.1016/j.yebeh.2013.02.001 10.1038/nature14600 10.1007/s12265-018-9853-6 10.2147/JPR.S133438 10.1016/j.brs.2015.11.008 10.1073/pnas.1317557111 10.4088/JCP.v63n1206 10.1097/YCT.0000000000000502 10.1016/j.brs.2014.07.031 10.1016/j.jpsychires.2017.12.018 10.1016/j.neuroscience.2018.01.020 10.1016/j.neuroimage.2017.07.045 10.1007/978-3-319-74917-4 10.3389/fphar.2019.00353 10.1073/pnas.1115628109 10.1016/s0920-1211(03)00122-0 10.1155/2015/495684 10.1113/jphysiol.1934.sp003176 10.1016/0006-8993(93)91343-Q 10.1111/j.1542-474X.1996.tb00275.x 10.1016/j.neurobiolaging.2015.02.023 10.1161/01.RES.54.4.436 10.1007/s13311-014-0272-3 10.1111/nmo.12999 10.1021/ac9022605 10.1016/j.brs.2015.11.003 10.1016/j.brs.2017.07.013 10.1016/j.neulet.2004.12.055 10.3389/fnins.2019.00772 10.1016/j.seizure.2018.06.016 10.1016/j.brs.2018.07.049 10.1113/eph8602146 10.1212/WNL.0000000000002918 10.1016/j.brs.2018.12.224 10.1016/j.brs.2018.01.006 10.3389/fnins.2016.00609 10.1097/01.wnr.0000227984.84927.a7 10.1515/BMT.2008.022 10.1016/j.brs.2012.04.006 10.1142/S0129065716500489 10.1016/j.brs.2018.03.018 10.1038/s41598-017-17750-y 10.1016/j.neuron.2015.11.028 10.1038/s41598-019-47961-4 10.1515/bmt-2013-4021 10.1016/j.ijcard.2015.04.087 10.1016/j.yebeh.2014.08.005 10.1111/joa.13122 10.3389/fpsyt.2018.00020 10.1016/j.neuroimage.2017.09.042 10.1111/j.1528-1157.1990.tb05848.x 10.1016/j.biopsych.2015.03.025 10.1155/2017/7876507 10.1113/jphysiol.2008.154567 10.1016/j.psyneuen.2017.01.029 10.1016/j.nicl.2019.101971 10.1007/s00221-017-5123-0 10.1006/ebeh.2001.0213 10.1111/head.12647 10.1073/pnas.1605635113 10.1038/sj.ijo.0803666 10.1371/journal.pone.0120786 10.1016/j.autneu.2014.07.008 10.1016/j.jneumeth.2004.10.020 10.1186/s10194-015-0542-4 10.1021/ac0491509 10.1038/s41598-017-18183-3 10.1111/j.1528-1157.1992.tb01751.x 10.1161/01.RES.52.6.642 10.1109/TBME.2019.2950777 10.15424/bioelectronmed.2014.00008 10.1101/789982 10.1109/EMBC.2017.8037520 10.1016/j.jacc.2014.12.026 10.1136/heartjnl-2016-309890.215 10.7874/jao.2015.19.3.159 10.1016/j.jad.2016.02.031 10.1371/journal.pone.0069424 10.1016/j.brainres.2011.03.060 10.1016/j.yebeh.2016.09.014 10.1016/j.biopsycho.2019.01.014 10.1021/cn200119u 10.1016/j.nlm.2019.04.006 10.1212/WNL.0000000000001394 10.1016/j.brs.2018.06.003 10.1111/head.12896 10.1016/j.jneumeth.2013.07.016 10.1016/j.brainres.2018.12.031 10.1007/s00406-015-0618-9 10.7554/eLife.29808.027 10.1080/17434440.2018.1507732 10.1093/brain/awz193 10.1016/j.cortex.2017.11.007 10.1016/j.brs.2018.10.005 10.17925/ENR.2011.06.04.254 10.1016/j.clinph.2018.05.026 10.1111/ejn.14128 10.1111/jnc.14284 10.3389/fnana.2015.00080 10.1001/jama.2014.10540 10.3389/fpsyg.2015.00102 10.1016/j.clinph.2005.06.023 10.3389/fpsyg.2020.01276 10.3389/fnhum.2018.00202 10.3791/58984 10.1007/s00702-012-0908-6 10.1016/j.clinph.2015.11.012 10.1038/s41598-020-58412-w 10.1042/CS20130518 10.1162/jocn_a_01603 10.1210/jc.2006-0461 10.3389/fnins.2019.00911 10.1111/j.1469-8986.2011.01226.x 10.1016/j.jneumeth.2010.05.007 10.1016/j.ijpsycho.2015.10.001 10.1016/j.brs.2014.11.018 10.1111/j.1471-4159.2011.07214.x 10.1007/s00384-018-3204-6 10.1016/j.neuroimage.2017.02.052 10.3390/jcm8040496 10.1016/S0920-1211(03)00107-4 10.1007/s00702-010-0407-6 10.1016/S0165-0327(00)00338-4 10.1016/j.jcin.2017.04.036 10.1212/WNL.58.3.452 10.1016/j.molmet.2017.10.002 10.1073/pnas.74.4.1761 10.1212/WNL.57.5.885 10.1017/S1461145712000387 10.3389/fneur.2017.00752 10.1016/j.nicl.2016.12.016 10.1111/j.1542-474X.2008.00231.x 10.1016/j.neuroimage.2019.06.049 10.1002/ana.21346 10.1007/s11906-015-0571-z 10.1093/eurheartj/ehq391 10.1080/00016489.2016.1269197 10.1111/anec.12349 10.1038/sj.npp.1301082 10.2147/JIR.S163248 10.5698/1535-7597-13.6.297 10.3389/fnins.2019.00854 10.3389/fphys.2017.00582 10.1186/s10194-015-0543-3 10.1007/s11682-015-9502-5 10.1007/s00702-014-1299-7 10.1038/s41598-018-29561-w 10.1007/s00702-009-0282-1 10.1016/j.brs.2019.12.018 10.1097/WCO.0000000000000534 10.1155/2012/679345 10.1016/j.nlm.2016.05.007 10.3109/08830185.2015.1127369 10.1371/journal.pone.0044813 10.3758/s13415-018-0596-2 10.1016/j.brs.2014.05.003 10.1212/WNL.59.3.463 10.1186/s10194-016-0633-x 10.1016/j.jad.2006.10.005 10.1073/pnas.1712268115 10.1016/j.cardfail.2014.08.009 10.1007/s00134-011-2150-3 10.1113/expphysiol.2003.002654 10.1002/cne.902110304 10.1111/ner.12398 10.1007/s13760-016-0616-3 10.1007/s10741-010-9216-0 10.1111/j.1526-4637.2012.01385.x 10.1016/j.brs.2018.08.010 10.3389/fpsyg.2018.01159 10.1016/j.autneu.2016.06.004 10.1371/journal.pone.0223848 10.1111/head.12650 10.1016/j.brs.2018.04.004 10.1016/j.brs.2016.07.004 10.1101/2019.12.28.890111 10.1016/j.appet.2010.06.008 10.3389/fneur.2019.00392 10.3389/fnhum.2020.00077 10.1016/j.ijcard.2015.03.351 10.4088/JCP.09m05888blu 10.1111/j.1540-8167.2005.40656.x 10.1016/j.brainres.2016.03.001 10.4103/2152-7806.103015 10.1109/TBCAS.2010.2040277 10.3389/fpsyg.2019.00064 10.1007/s00702-003-0087-6 10.1113/JP271538 10.1016/j.brs.2011.10.001 10.1016/j.tics.2008.09.004 10.1007/s40473-014-0010-5 10.1002/ca.1089 10.3389/fnhum.2019.00421 10.1016/j.jad.2016.08.003 10.1016/j.brs.2017.05.006 10.3389/fpsyg.2015.00499 10.1111/jnc.13931 10.1016/j.brainres.2007.08.045 10.1016/j.mehy.2009.06.033 10.1152/ajpheart.1999.277.6.H2233 10.1016/j.brs.2020.03.011 10.1016/j.neuropsychologia.2018.01.003 10.1016/j.brs.2019.10.006 10.1111/j.1528-1167.2012.03492.x 10.1016/j.brs.2013.01.011 10.1162/jocn_a_00851 10.1016/j.biopsycho.2020.107863 10.1007/s11916-015-0528-6 10.1109/NER.2013.6695922 10.1007/s00702-007-0755-z 10.3390/jcm7100371 10.1016/j.brat.2017.07.005 10.1111/ner.12706 10.3389/fmed.2017.00124 10.1111/j.1528-1157.1990.tb05852.x 10.3389/fnhum.2013.00623 10.1371/journal.pone.0207281 10.1016/j.neubiorev.2008.08.004 10.1111/jne.12643 10.1016/j.neuroscience.2019.05.059 10.1124/jpet.106.104166 10.1016/j.clinph.2013.08.020 10.3109/00016489.2012.750736 10.1186/1472-6882-14-203 10.1111/j.1440-1681.1994.tb02545.x 10.1037/0033-2909.131.4.510 10.1016/0006-8993(82)91177-5 10.1016/j.jacc.2018.12.064 10.3389/fnins.2020.00523 10.1001/jama.285.15.1987 10.3389/fnsys.2014.00025 10.1016/j.brainres.2006.08.048 10.1155/2013/245683 10.1097/j.pain.0000000000000930 10.1097/AUD.0000000000000123 10.1038/nrendo.2012.189 10.1016/j.jclinepi.2007.11.008 10.1006/ebeh.2000.0046 10.1016/j.brs.2016.03.011 10.3389/fnins.2019.00808 10.1111/ner.12541 10.18632/aging.102074 10.3389/fnins.2019.00227 10.1016/j.brainres.2007.06.104 10.1111/nmo.12076 10.1016/j.brs.2019.12.024 10.1113/expphysiol.1994.sp003761 10.1016/j.brat.2018.12.009 10.1097/01.CCM.0000288102.15975.BA 10.1016/j.ijpsycho.2004.09.007 10.3389/fnhum.2017.00338 10.1523/JNEUROSCI.1164-19.2019 10.1016/j.cortex.2017.03.017 10.1016/j.neubiorev.2016.03.007 10.1016/j.brs.2019.02.003 10.7554/eLife.42541 10.3389/fnins.2018.00955 10.1152/ajpregu.2000.279.1.R141 10.1038/micronano.2017.70 10.1111/nmo.12760 10.1016/j.brs.2017.12.009 10.1016/j.neuint.2016.02.009 10.1186/1471-2202-14-85 10.1213/ANE.0000000000002820 10.1089/acm.2018.29047.vtn 10.1016/j.autneu.2016.11.003 10.1007/s10286-019-00604-0 10.1213/01.ANE.0000107941.16173.F7 10.24015/JAPM.2017.0012 10.1111/j.1526-4637.2011.01203.x 10.1016/j.ijpsycho.2019.10.010 10.1016/j.expneurol.2016.12.005 10.3389/fpsyg.2020.00551 10.1016/j.ctcp.2018.08.005 10.1177/0333102417742347 10.1212/WNL.43.7.1338 10.1177/0333102415607070 10.1016/j.brs.2013.03.005 10.1016/j.neubiorev.2017.10.023 10.1016/j.jaac.2018.11.013 10.1016/j.brs.2016.10.008 10.1016/j.heares.2017.12.003 10.1016/S1388-2457(02)00171-2 10.3389/fpsyt.2012.00070 10.1152/ajpheart.00070.2017 10.1177/0333102414524494 10.1038/s41467-018-07764-z 10.1111/j.1471-4159.2005.03390.x 10.14814/phy2.12689 10.1016/0014-4886(87)90217-2 10.1016/j.ijcard.2015.03.430 10.1111/ner.12864 10.1101/2020.02.03.932087 10.1017/S0033291719003490 10.1161/01.RES.25.3.303 10.1016/j.euroneuro.2015.03.015 10.1111/ner.12127 10.1007/s00276-998-0253-5 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig |
| Copyright_xml | – notice: Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 JLOSS Q33 5PM DOA |
| DOI | 10.3389/fnhum.2020.568051 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5161 |
| ExternalDocumentID | oai_doaj_org_article_559b65cb001b4e368330a755e0899b33 PMC8040977 oai_orbi_ulg_ac_be_2268_297316 33854421 10_3389_fnhum_2020_568051 |
| Genre | Journal Article Review |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM109040 – fundername: NCCIH NIH HHS grantid: P01 AT009965 – fundername: British Heart Foundation grantid: RG/19/5/34463 – fundername: NIH HHS grantid: OT2 OD023867 – fundername: NICHD NIH HHS grantid: P2C HD086844 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO JLOSS Q33 5PM |
| ID | FETCH-LOGICAL-c537t-57534566460f6bbe5ce867c07d5d6e413eef7e714bb2e089d803150a18e5d1f23 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 240 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639299300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5161 |
| IngestDate | Mon Nov 10 04:34:24 EST 2025 Tue Nov 04 02:01:18 EST 2025 Sat Nov 29 01:29:00 EST 2025 Thu Oct 02 07:06:04 EDT 2025 Fri Jul 25 11:47:26 EDT 2025 Mon Jul 21 06:00:06 EDT 2025 Sat Nov 29 05:51:57 EST 2025 Tue Nov 18 22:29:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | minimum reporting standards transcutaneous cervical vagus nerve stimulation guidelines & recommendations transcutaneous vagus nerve stimulation transcutaneous auricular vagus nerve stimulation |
| Language | English |
| License | Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-57534566460f6bbe5ce867c07d5d6e413eef7e714bb2e089d803150a18e5d1f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 scopus-id:2-s2.0-85098472273 Edited by: Yusuf Ozgur Cakmak, University of Otago, New Zealand This article was submitted to Brain Imaging and Stimulation, a section of the journal Frontiers in Human Neuroscience Reviewed by: Chunhong Liu, Capital Medical University, China; Teresa Schuhmann, Maastricht University, Netherlands |
| ORCID | 0000-0002-6506-6460 |
| OpenAccessLink | https://www.proquest.com/docview/2504101566?pq-origsite=%requestingapplication% |
| PMID | 33854421 |
| PQID | 2504101566 |
| PQPubID | 4424408 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_559b65cb001b4e368330a755e0899b33 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040977 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_297316 proquest_miscellaneous_2513246818 proquest_journals_2504101566 pubmed_primary_33854421 crossref_citationtrail_10_3389_fnhum_2020_568051 crossref_primary_10_3389_fnhum_2020_568051 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-23 |
| PublicationDateYYYYMMDD | 2021-03-23 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in human neuroscience |
| PublicationTitleAlternate | Front Hum Neurosci |
| PublicationYear | 2021 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Val-Laillet (B274) 2010; 55 Hein (B106) 2013; 120 Huang (B115) 2010; 117 De Couck (B62) 2017; 203 Tu (B270) 2018; 11 Howland (B112) 2014; 1 Kuo (B159) 1999; 277 Peng (B213) 2018; 359 Nogier (B207) 1957; 6 Usichenko (B272); 11 Woods (B293) 2016; 127 Rong (B225) 2014 Cork (B60) 2018; 30 Yuan (B305); 56 Goadsby (B94) 2014; 34 Borges (B26) 2020; 14 Bikson (B23) 2019; 12 Janner (B125) 2018; 126 Sellaro (B242); 27 Wostyn (B294) 2017; 27 Cakmak (B48) 2017; 11 Gourine (B96) 2008; 586 Fang (B78) 2016; 79 Neuser (B203) 2019 He (B103); 28 Burger (B36); 57 Sclocco (B237) 2017 Rawat (B223) 2019; 10 Laqua (B164) 2014; 185 Yu (B304) 2017; 10 Zhang (B309) 2016 Brock (B32) 2017; 29 Pavlov (B212) 2012; 8 Brooks (B33) 1977; 74 Homma (B108) 1993; 629 Harden (B101) 2000; 1 Kraus (B155) 2013; 6 Silberstein (B246); 56 Antonino (B5) 2017; 10 Merrill (B183) 2005; 141 Badran (B11) 2020; 14 Keute (B144) 2018; 129 Burger (B37) 2018; 8 Bonaz (B24) 2013; 25 Vargas Luna (B279) 2013; 58 Lerman (B166) 2016; 19 Ye (B301) 2020 Ay (B8) 2011; 1392 Brázdil (B30) 2019; 10 Jalife (B124) 1983; 52 Jodoin (B128) 2018; 98 Koenig (B148) 2017; 8 Aihua (B2) 2014; 39 Kaniusas (B139); 13 Penry (B214) 1990; 31 Hou (B111) 2015; 2015 Mertens (B185) 2018; 15 Ellrich (B73) 2011; 6 De Icco (B64) 2018; 38 Du (B71) 1994; 21 Ikramuddin (B120) 2014; 312 Tomagra (B265) 2019; 13 Koenig (B147) 2019 Liugan (B175) 2018; 8 Borges (B27) 2019; 14 Kaczmarczyk (B134) 2017; 146 Cristancho (B61) 2011; 72 Giraudier (B93) 2020; 11 Wang (B287); 187 Yoo (B303) 2016; 4 de Lartigue (B65) 2016; 594 Butt (B47) 2020; 236 Napadow (B198) 2012; 13 Mertens (B184) 2020; 11 Tona (B266) 2020; 32 Liu (B174) 2017; 83 B222 Wang (B288) 2018; 102 Huang (B113) 2014; 14 Manta (B180) 2013; 16 Huston (B118) 2007; 35 Yakunina (B296) 2017; 20 Gaul (B88) 2016; 36 Jacquin (B123) 1982; 246 Manta (B179) 2009; 34 De Ferrari (B63) 2011; 16 Roosevelt (B227) 2006; 1119 Leutzow (B167) 2013; 6 Ehlert (B72) 2006; 91 Cha (B52) 2016; 9 Nesbitt (B201) 2015; 84 Sun (B256) 2013; 8 Badran (B13) 2019; 143 Jacobs (B122) 2015; 36 Burneo (B44) 2002; 59 Genheimer (B90) 2017; 7 Thayer (B262) 2000; 61 Jin (B127) 2016; 10 Colzato (B58) 2017; 92 Yang (B298) 2017 Kile (B146) 2012; 3 Kaniusas (B138); 13 Krause (B156) 2014; 8 Brown (B35) 1934; 82 B129 Stavrakis (B251) 2015; 65 Totah (B267) 2019; 1709 Levy (B169) 1969; 25 Sasaki (B231) 2006; 17 Rong (B226) 2016; 195 Szeska (B257) 2020; 10 Alexander (B3) 2017; 140 Noller (B208) 2019; 13 Frøkjaer (B85) 2016; 28 Bauer (B17) 2016; 9 Chandler (B54) 2019; 39 Clancy (B56) 2014; 7 Iseger (B121) 2020; 13 Zabara (B308) 1992; 33 Lewine (B170) 2019; 22 Colzato (B59); 236 Lehtimäki (B165) 2013; 133 Lanska (B163) 2002; 58 Redgrave (B224) 2018; 11 Boon (B25) 2018; 31 Burger (B43) 2016; 132 Badran (B9); 11 Hong (B109) 2019; 34 Wang (B285) 2016; 35 Silvanto (B247) 2008; 12 Steenbergen (B253) 2015; 25 Kreuzer (B157) 2012; 3 Priovoulos (B220) 2018; 168 B137 Sooksood (B249) 2009 Lange (B162) 2011; 12 Murphy (B194) 2011; 48 Hasan (B102) 2015; 265 Kemp (B141) 2014; 125 Barbella (B16) 2018; 60 Dorr (B70) 2006; 318 Pardo (B211) 2007; 31 Gancheva (B86) 2018; 7 Kraus (B154) 2007; 114 Banni (B14) 2012; 7 Nassi (B199) 2015; 9 Joshi (B132) 2016; 89 Rufener (B229) 2018; 48 Moodithaya (B189) 2012; 2012 Sclocco (B236) 2018; 168 Johnson (B130) 2018; 11 Teckentrup (B260) 2020; 13 Valsalva (B275) 1704 Hirschberg (B107) 2017; 6 Koenig (B149) 2016; 64 Goldberger (B95) 2019; 73 Cakmak (B49) 2019; 13 Neuhaus (B202) 2007; 100 Ziemann (B312) 2002; 113 De Ridder (B66) 2014; 17 Keute (B142); 13 Lamb (B161) 2017; 4 Shikora (B243) 2013; 2013 Steenbergen (B252) 2020; 148 Polak (B218) 2009; 116 Vázquez-Oliver (B280) 2020; 13 Falkenberg (B74) 2012; 109 Butson (B46) 2005; 116 He (B104); 14 Betts (B21) 2019; 142 Gee (B89) 2014; 111 Mridha (B193) 2019 Kreuzer (B158) 2014; 7 Schwarz (B235) 2015; 524 Fang (B77) 2017; 14 Beste (B19) 2016; 9 Busch (B45) 2013; 6 Uthman (B273) 1993; 43 Yavich (B300) 2005; 95 Liu (B173) 2019; 74 Burger (B41) 2018; 11 Frangos (B83) 2015; 8 Van Leusden (B277) 2015; 6 Bianca (B22) 2007; 1177 Malik (B178) 1996; 1 Peuker (B217) 2002; 15 Sclocco (B239) 2019; 12 Gidron (B91) 2018; 7 Schevernels (B233) 2016; 64 Usichenko (B271); 10 Zabara (B307) 1985; 28 Ventura-Bort (B281) 2018; 12 Capone (B51) 2017; 2017 van Kempen (B276) 2019; 8 Frangos (B84) 2017; 10 Brack (B29) 2004; 89 Groves (B97) 2005; 379 Kaniusas (B140) 2020; 67 Morris (B191) 2016; 17 Salman (B230) 2015; 17 Juel (B133) 2017; 10 Khadka (B145) 2018; 11 von Elm (B284) 2008; 61 Barbanti (B15) 2015; 16 Ferrari (B79) 2011; 32 Sellaro (B240) 2018; 99 Silberstein (B245); 87 Koopman (B151) 2016; 113 B292 Capone (B50) 2015; 122 Kuo (B160) 2005; 16 Nieuwenhuis (B205) 2005; 131 Straube (B255) 2015; 16 Nemeroff (B200) 2006; 31 Sclocco (B238) 2020; 13 Yakunina (B297) 2018; 13 Allchin (B4) 1994; 79 Liu (B172) 2016; 205 Garcia (B87) 2017; 158 Bretherton (B31) 2019; 11 Maffiuletti (B177) 2008; 63 Ng (B204) 2001; 86 (B188) 2001; 285 Beaumont (B18) 2017; 313 Premchand (B219) 2014; 20 Ylikoski (B302) 2017; 137 Raedt (B221) 2011; 117 Desbeaumes Jodoin (B68) 2018; 34 Kong (B150) 2018; 9 Betts (B20) 2017; 163 Fallgatter (B76) 2003; 110 Yuan (B306); 56 Fischer (B81) 2018; 18 Vanneste (B278) 2017; 7 Wang (B286); 190 Gil (B92) 2011; 62 Mourdoukoutas (B192) 2018; 21 Jongkees (B131) 2018; 9 McGough (B182) 2019; 58 Guleyupoglu (B98) 2013; 219 Murray (B195); 199 Marrosu (B181) 2003; 55 Peterchev (B216) 2012; 5 Verkuil (B282) 2019; 113 Zhang (B310) 2018; 4 Tekdemir (B261) 1998; 20 Morris (B190) 2013; 13 Sztajzel (B258) 2008; 13 Colzato (B57); 111 Warren (B290) 2017; 78 Badran (B12); 11 Sooksood (B250) 2010; 4 Stefan (B254) 2012; 53 Burger (B39); 142 Roslin (B228) 2001; 2 Panebianco (B210) 2016; 116 Aston-Jones (B6) 2016; 1645 Warren (B289) 2019; 12 Burger (B40); 161 Krahl (B152) 2012; 3 Hämmerer (B99) 2018; 115 Hulsey (B117) 2017; 289 Burger (B38); 152 Keute (B143); 9 Liporace (B171) 2001; 57 Finisguerra (B80) 2019; 412 Tran (B268) 2019; 12 Kampusch (B136) 2013 Takemura (B259) 1987; 96 Paleczny (B209) 2019 Schulz-Stübner (B234) 2011; 37 Sellaro (B241); 6 Lv (B176) 2019; 10 Badran (B10); 11 Jiang (B126) 2016; 97 Minhas (B186) 2010; 190 Trujillo (B269) 2019; 200 Levine (B168) 2014; 1 Follesa (B82) 2007; 1179 Weise (B291) 2015; 10 Tobaldini (B264) 2019; 8 Vieira (B283) 2018; 33 Kalia (B135) 1982; 211 Mirza (B187) 2019; 13 Hosoi (B110) 2000; 279 De Taeye (B67) 2014; 11 Ay (B7) 2016; 9 Krahl (B153) 2003; 56 Perkins (B215) 2002; 63 Hyvärinen (B119) 2015; 36 Hansen (B100) 2019; 12 Murray (B196); 30 Heien (B105) 2004; 76 Dietrich (B69) 2008; 53 Xiong (B295) 2009; 73 Chakravarthy (B53) 2015; 19 Burger (B42) 2017; 97 Chen (B55) 2015; 187 Yao (B299) 2018; 9 Huffman (B116) 2019; 12 Afanasiev (B1) 2016; 21 Zhang (B311) 2019; 24 Njagi (B206) 2010; 82 Sator-Katzenschlager (B232) 2004; 98 Shim (B244) 2015; 19 Brooks (B34) 2013; 7 Borodovitsyna (B28) 2018; 373 Thayer (B263) 2009; 33 Napadow (B197) 2019; 24 Fallgatter (B75) 2005; 56 Huang (B114) 1974 Slenter (B248) 1984; 54 |
| References_xml | – volume: 74 start-page: 101 year: 2019 ident: B173 article-title: In vivo visualization of age-related differences in the locus coeruleus publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2018.10.014 – volume: 12 start-page: 1349 year: 2019 ident: B23 article-title: Transcranial electrical stimulation nomenclature publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.07.010 – volume: 57 start-page: e13571 ident: B36 article-title: Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation publication-title: Psychophysiology doi: 10.1111/psyp.13571 – volume: 13 start-page: 288 year: 2019 ident: B265 article-title: Quantal release of dopamine and action potential firing detected in midbrain neurons by multifunctional diamond-based microarrays publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00288 – volume: 28 start-page: 343 ident: B103 article-title: Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2013.02.001 – volume: 524 start-page: 88 year: 2015 ident: B235 article-title: Viral-genetic tracing of the input–output organization of a central noradrenaline circuit publication-title: Nature doi: 10.1038/nature14600 – volume: 12 start-page: 221 year: 2019 ident: B268 article-title: Autonomic neuromodulation acutely ameliorates left ventricular strain in humans publication-title: J. Cardiovasc. Transl. Res. doi: 10.1007/s12265-018-9853-6 – volume: 10 start-page: 1347 year: 2017 ident: B133 article-title: Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis publication-title: J. Pain Res. doi: 10.2147/JPR.S133438 – volume: 9 start-page: 166 year: 2016 ident: B7 article-title: Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.11.008 – volume: 111 start-page: E618 year: 2014 ident: B89 article-title: Decision-related pupil dilation reflects upcoming choice and individual bias publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1317557111 – volume: 63 start-page: 1121 year: 2002 ident: B215 article-title: Predictors of noncompliance in patients with schizophrenia publication-title: J. Clin. Psychiatry doi: 10.4088/JCP.v63n1206 – volume: 34 start-page: 283 year: 2018 ident: B68 article-title: Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression publication-title: J. ECT doi: 10.1097/YCT.0000000000000502 – volume: 7 start-page: 871 year: 2014 ident: B56 article-title: Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.07.031 – volume: 102 start-page: 123 year: 2018 ident: B288 article-title: Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder publication-title: J. Psychiatric Res. doi: 10.1016/j.jpsychires.2017.12.018 – volume: 373 start-page: 7 year: 2018 ident: B28 article-title: Acute stress persistently alters locus coeruleus function and anxiety-like behavior in adolescent rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.01.020 – volume: 62 start-page: 637 year: 2011 ident: B92 article-title: Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet publication-title: J. Physiol. Pharmacol. – ident: B129 – volume: 168 start-page: 427 year: 2018 ident: B220 article-title: High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.045 – ident: B137 doi: 10.1007/978-3-319-74917-4 – volume: 10 start-page: 353 year: 2019 ident: B223 article-title: Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00353 – volume: 109 start-page: 5069 year: 2012 ident: B74 article-title: Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control publication-title: Proc. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.1115628109 – volume: 56 start-page: 1 year: 2003 ident: B153 article-title: Right-sided vagus nerve stimulation reduces generalized seizure severity in rats as effectively as left-sided publication-title: Epilepsy Res. doi: 10.1016/s0920-1211(03)00122-0 – start-page: 1922 volume-title: Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference year: 2016 ident: B309 article-title: “An implantable microelectrode array for dopamine and electrophysiological recordings in response to L-dopa therapy for Parkinson's disease,” – volume: 2015 start-page: 495684 year: 2015 ident: B111 article-title: The history mechanism, and clinical application of auricular therapy in traditional Chinese medicine publication-title: Evid Based Complement. Alternat. Med doi: 10.1155/2015/495684 – volume: 82 start-page: 211 year: 1934 ident: B35 article-title: The action of a single vagal volley on the rhythm of the heart beat publication-title: J. Physiol. doi: 10.1113/jphysiol.1934.sp003176 – volume: 629 start-page: 342 year: 1993 ident: B108 article-title: Blood pressure and heart rate relationships during cervical sympathetic and vagus nerve stimulation in streptozotocin diabetic rats publication-title: Brain Res. doi: 10.1016/0006-8993(93)91343-Q – volume: 1 start-page: 151 year: 1996 ident: B178 article-title: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology publication-title: Annals Noninv. Electrocardiol. doi: 10.1111/j.1542-474X.1996.tb00275.x – volume: 36 start-page: 1860 year: 2015 ident: B122 article-title: Transcutaneous vagus nerve stimulation boosts associative memory in older individuals publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.02.023 – volume: 54 start-page: 436 year: 1984 ident: B248 article-title: Vagal control of pacemaker periodicity and intranodal conduction in the rabbit sinoatrial node publication-title: Circ. Res. doi: 10.1161/01.RES.54.4.436 – volume: 11 start-page: 612 year: 2014 ident: B67 article-title: The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy publication-title: Neurotherapeutics doi: 10.1007/s13311-014-0272-3 – volume: 29 start-page: e12999 year: 2017 ident: B32 article-title: Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha publication-title: Neurogastroenterol. Motil. doi: 10.1111/nmo.12999 – volume: 82 start-page: 989 year: 2010 ident: B206 article-title: Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor publication-title: Anal. Chem. doi: 10.1021/ac9022605 – volume: 9 start-page: 356 year: 2016 ident: B17 article-title: Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02) publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.11.003 – volume: 10 start-page: 1042 ident: B271 article-title: Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.07.013 – volume: 379 start-page: 174 year: 2005 ident: B97 article-title: Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2004.12.055 – volume: 13 start-page: 772 ident: B138 article-title: Current directions in the auricular vagus nerve stimulation II – an engineering perspective publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00772 – volume: 60 start-page: 115 year: 2018 ident: B16 article-title: Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy publication-title: Seizure doi: 10.1016/j.seizure.2018.06.016 – volume: 11 start-page: 1044 year: 2018 ident: B145 article-title: Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.07.049 – volume: 86 start-page: 319 year: 2001 ident: B204 article-title: Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated langendorff perfused rabbit heart with intact dual autonomic innervation publication-title: Exp. Physiol. doi: 10.1113/eph8602146 – volume: 87 start-page: 529 ident: B245 article-title: Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the EVENT study publication-title: Neurology doi: 10.1212/WNL.0000000000002918 – volume: 12 start-page: 635 year: 2019 ident: B289 article-title: The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.12.224 – year: 1704 ident: B275 publication-title: De Aura Humana Tractatus and Trajecti ad Rhenum Urecht – volume: 11 start-page: 501 year: 2018 ident: B270 article-title: A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.01.006 – volume: 10 start-page: 609 year: 2016 ident: B127 article-title: Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00609 – volume: 17 start-page: 1215 year: 2006 ident: B231 article-title: Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease publication-title: Neuroreport doi: 10.1097/01.wnr.0000227984.84927.a7 – volume: 53 start-page: 104 year: 2008 ident: B69 article-title: A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / funktionelle magnetresonanztomographie zeigt aktivierungen des hirnstamms und weiterer zerebraler strukturen unter transkutaner vagusnervstimulation publication-title: Biomed. Tech/Biomed. Eng. doi: 10.1515/BMT.2008.022 – volume: 6 start-page: 202 year: 2013 ident: B45 article-title: The effect of transcutaneous vagus nerve stimulation on pain perception – an experimental study publication-title: Brain Stimul. doi: 10.1016/j.brs.2012.04.006 – volume: 27 start-page: 1650048 year: 2017 ident: B294 article-title: EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500489 – volume: 11 start-page: 945 year: 2018 ident: B41 article-title: Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.03.018 – volume: 7 start-page: 17345 year: 2017 ident: B278 article-title: Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study publication-title: Sci. Rep. doi: 10.1038/s41598-017-17750-y – volume: 89 start-page: 221 year: 2016 ident: B132 article-title: Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex publication-title: Neuron doi: 10.1016/j.neuron.2015.11.028 – volume: 9 start-page: 11452 ident: B143 article-title: No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS) publication-title: Sci. Rep. doi: 10.1038/s41598-019-47961-4 – volume: 58 start-page: 1 year: 2013 ident: B279 article-title: Comparison of current and voltage control techniques for neuromuscular electrical stimulation in the anterior thigh publication-title: Biomed. Tech doi: 10.1515/bmt-2013-4021 – volume: 190 start-page: 9 ident: B286 article-title: Unilateral low-level transcutaneous electrical vagus nerve stimulation: a novel noninvasive treatment for myocardial infarction publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.04.087 – volume: 39 start-page: 105 year: 2014 ident: B2 article-title: A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2014.08.005 – volume: 236 start-page: 588 year: 2020 ident: B47 article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation publication-title: J. Anat. doi: 10.1111/joa.13122 – volume: 9 start-page: 20 year: 2018 ident: B150 article-title: Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2018.00020 – volume: 163 start-page: 150 year: 2017 ident: B20 article-title: In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.042 – volume: 31 start-page: S40 year: 1990 ident: B214 article-title: Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results publication-title: Epilepsia doi: 10.1111/j.1528-1157.1990.tb05848.x – volume: 79 start-page: 266 year: 2016 ident: B78 article-title: Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.03.025 – volume: 2017 start-page: 7876507 year: 2017 ident: B51 article-title: Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke publication-title: Neural Plasticity doi: 10.1155/2017/7876507 – volume: 586 start-page: 3963 year: 2008 ident: B96 article-title: Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer–Hering) reflex pathway publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.154567 – volume: 78 start-page: 233 year: 2017 ident: B290 article-title: Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2017.01.029 – volume: 24 start-page: 101971 year: 2019 ident: B311 article-title: Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101971 – volume: 236 start-page: 253 ident: B59 article-title: Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience publication-title: Exp. Brain Res. doi: 10.1007/s00221-017-5123-0 – volume: 2 start-page: S11 year: 2001 ident: B228 article-title: The use of electrical stimulation of the vagus nerve to treat morbid obesity publication-title: Epilepsy Behav. doi: 10.1006/ebeh.2001.0213 – volume: 56 start-page: 71 ident: B305 article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I publication-title: Headache doi: 10.1111/head.12647 – volume: 113 start-page: 8284 year: 2016 ident: B151 article-title: Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1605635113 – volume: 31 start-page: 1756 year: 2007 ident: B211 article-title: Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity publication-title: Int. J. Obesity doi: 10.1038/sj.ijo.0803666 – volume: 10 start-page: e0120786 year: 2015 ident: B291 article-title: Assessment of brainstem function with auricular branch of vagus nerve stimulation in Parkinson's disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0120786 – volume: 185 start-page: 120 year: 2014 ident: B164 article-title: Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation publication-title: Auton. Neurosci. Basic Clin. doi: 10.1016/j.autneu.2014.07.008 – volume: 141 start-page: 171 year: 2005 ident: B183 article-title: Electrical stimulation of excitable tissue: design of efficacious and safe protocols publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2004.10.020 – volume: 16 start-page: 61 year: 2015 ident: B15 article-title: Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study publication-title: J. Headache Pain doi: 10.1186/s10194-015-0542-4 – volume: 76 start-page: 5697 year: 2004 ident: B105 article-title: Resolving neurotransmitters detected by fast-scan cyclic voltammetry publication-title: Anal. Chem. doi: 10.1021/ac0491509 – volume: 7 start-page: 17886 year: 2017 ident: B90 article-title: Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans publication-title: Sci. Rep. doi: 10.1038/s41598-017-18183-3 – volume: 33 start-page: 1005 year: 1992 ident: B308 article-title: Inhibition of experimental seizures in canines by repetitive vagal stimulation publication-title: Epilepsia doi: 10.1111/j.1528-1157.1992.tb01751.x – volume: 52 start-page: 642 year: 1983 ident: B124 article-title: Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node publication-title: Circ. Res. doi: 10.1161/01.RES.52.6.642 – volume: 67 start-page: 1921 year: 2020 ident: B140 article-title: Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2950777 – volume: 1 start-page: 34 year: 2014 ident: B168 article-title: Neurostimulation of the cholinergic antiinflammatory pathway in rheumatoid arthritis and inflammatory bowel disease publication-title: Bioelectron. Med. doi: 10.15424/bioelectronmed.2014.00008 – year: 2019 ident: B203 article-title: Vagus nerve stimulation increases vigor to work for rewards publication-title: BioRxiv [Preprint]. doi: 10.1101/789982 – start-page: 3130 volume-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2017 ident: B237 article-title: “Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) effects on autonomic outflow in hypertension,” doi: 10.1109/EMBC.2017.8037520 – volume: 65 start-page: 867 year: 2015 ident: B251 article-title: Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.12.026 – volume: 30 start-page: 754 ident: B196 article-title: Transcutaneous vagus nerve stimulation (tVNS) decreases sympathetic nerve activity in older healthy human subjects publication-title: FASEB J. doi: 10.1136/heartjnl-2016-309890.215 – volume: 19 start-page: 159 year: 2015 ident: B244 article-title: Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus publication-title: J. Audiol. Otol. doi: 10.7874/jao.2015.19.3.159 – volume: 195 start-page: 172 year: 2016 ident: B226 article-title: Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2016.02.031 – volume: 8 start-page: e69424 year: 2013 ident: B256 article-title: Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation publication-title: PLoS ONE doi: 10.1371/journal.pone.0069424 – volume: 1392 start-page: 110 year: 2011 ident: B8 article-title: Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow publication-title: Brain Res. doi: 10.1016/j.brainres.2011.03.060 – volume: 64 start-page: 171 year: 2016 ident: B233 article-title: The effect of vagus nerve stimulation on response inhibition publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2016.09.014 – volume: 142 start-page: 80 ident: B39 article-title: Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2019.01.014 – volume: 3 start-page: 285 year: 2012 ident: B146 article-title: Optimizing the temporal resolution of fast-scan cyclic voltammetry publication-title: ACS Chem. Neurosci. doi: 10.1021/cn200119u – volume: 161 start-page: 192 ident: B40 article-title: The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2019.04.006 – volume: 84 start-page: 1249 year: 2015 ident: B201 article-title: Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment publication-title: Neurology doi: 10.1212/WNL.0000000000001394 – volume: 11 start-page: 947 ident: B9 article-title: Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS) publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.06.003 – volume: 56 start-page: 1317 ident: B246 article-title: Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study publication-title: Headache doi: 10.1111/head.12896 – volume: 219 start-page: 297 year: 2013 ident: B98 article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.07.016 – volume: 1709 start-page: 50 year: 2019 ident: B267 article-title: Noradrenergic ensemble-based modulation of cognition over multiple timescales publication-title: Brain Res. doi: 10.1016/j.brainres.2018.12.031 – volume: 265 start-page: 589 year: 2015 ident: B102 article-title: Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-015-0618-9 – volume: 6 start-page: e29808 year: 2017 ident: B107 article-title: Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats publication-title: ELife doi: 10.7554/eLife.29808.027 – volume: 15 start-page: 527 year: 2018 ident: B185 article-title: Recent advances in devices for vagus nerve stimulation publication-title: Expert Rev. Med. Devices doi: 10.1080/17434440.2018.1507732 – volume: 142 start-page: 2558 year: 2019 ident: B21 article-title: Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases publication-title: Brain doi: 10.1093/brain/awz193 – volume: 99 start-page: 213 year: 2018 ident: B240 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies publication-title: Cortex doi: 10.1016/j.cortex.2017.11.007 – volume: 12 start-page: 19 year: 2019 ident: B116 article-title: Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.10.005 – volume: 6 start-page: 254 year: 2011 ident: B73 article-title: Transcutaneous vagus nerve stimulation publication-title: Eur. Neurol. Rev. doi: 10.17925/ENR.2011.06.04.254 – volume: 129 start-page: 1789 year: 2018 ident: B144 article-title: Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.05.026 – volume: 48 start-page: 2301 year: 2018 ident: B229 article-title: Modulating auditory selective attention by non-invasive brain stimulation: differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14128 – volume: 146 start-page: 76 year: 2017 ident: B134 article-title: Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease publication-title: J. Neurochem doi: 10.1111/jnc.14284 – volume: 9 start-page: 80 year: 2015 ident: B199 article-title: Neuroanatomy goes viral! publication-title: Front. Neuroanat. doi: 10.3389/fnana.2015.00080 – volume: 312 start-page: 915 year: 2014 ident: B120 article-title: Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2014.10540 – volume: 6 start-page: 102 year: 2015 ident: B277 article-title: Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? publication-title: Front. Psychol. doi: 10.3389/fpsyg.2015.00102 – volume: 116 start-page: 2490 year: 2005 ident: B46 article-title: Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.06.023 – volume: 11 start-page: 1276 year: 2020 ident: B93 article-title: Transcutaneous vagus nerve stimulation (tVNS) improves high confidence recognition memory but not emotional word processing publication-title: Front. Psychol. doi: 10.3389/fpsyg.2020.01276 – volume: 12 start-page: 202 year: 2018 ident: B281 article-title: Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00202 – volume: 143 start-page: 984 year: 2019 ident: B13 article-title: Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): technique, targeting, and considerations publication-title: J. Visual. Exp. doi: 10.3791/58984 – volume: 120 start-page: 821 year: 2013 ident: B106 article-title: Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study publication-title: J. Neural Transm. doi: 10.1007/s00702-012-0908-6 – volume: 127 start-page: 1031 year: 2016 ident: B293 article-title: A technical guide to tDCS, and related non-invasive brain stimulation tools publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.11.012 – volume: 10 start-page: 1529 year: 2020 ident: B257 article-title: Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training publication-title: Sci. Rep doi: 10.1038/s41598-020-58412-w – year: 2014 ident: B225 article-title: Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial publication-title: Clin. Sci. doi: 10.1042/CS20130518 – volume: 32 start-page: 1881 year: 2020 ident: B266 article-title: Noradrenergic regulation of cognitive flexibility: no effects of stress, transcutaneous vagus nerve stimulation, and atomoxetine on task-switching in humans publication-title: J. Cogn. Neurosci doi: 10.1162/jocn_a_01603 – volume: 91 start-page: 5130 year: 2006 ident: B72 article-title: Salivary alpha-amylase levels after yohimbine challenge in healthy men publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2006-0461 – volume: 13 start-page: 911 year: 2019 ident: B208 article-title: Vagus nerve stimulation in rodent models: an overview of technical considerations publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00911 – volume: 48 start-page: 1532 year: 2011 ident: B194 article-title: Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2011.01226.x – volume: 190 start-page: 188 year: 2010 ident: B186 article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.05.007 – volume: 98 start-page: 455 year: 2018 ident: B128 article-title: Effects of vagus nerve stimulation on pupillary function publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2015.10.001 – volume: 8 start-page: 624 year: 2015 ident: B83 article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: FMRI evidence in humans publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.11.018 – volume: 117 start-page: 461 year: 2011 ident: B221 article-title: Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07214.x – volume: 34 start-page: 417 year: 2019 ident: B109 article-title: Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial publication-title: Int. J. Colorectal Dis. doi: 10.1007/s00384-018-3204-6 – volume: 168 start-page: 412 year: 2018 ident: B236 article-title: Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.052 – volume: 8 start-page: 496 year: 2019 ident: B264 article-title: Cardiac and peripheral autonomic responses to orthostatic stress during transcutaneous vagus nerve stimulation in healthy subjects publication-title: J. Clin. Med. doi: 10.3390/jcm8040496 – volume: 55 start-page: 59 year: 2003 ident: B181 article-title: Correlation between GABAA receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy publication-title: Epilepsy Res. doi: 10.1016/S0920-1211(03)00107-4 – volume: 117 start-page: 729 year: 2010 ident: B115 article-title: The sympathetic-vagal balance against endotoxemia publication-title: J. Neural Transm. doi: 10.1007/s00702-010-0407-6 – ident: B222 – volume: 61 start-page: 201 year: 2000 ident: B262 article-title: A model of neurovisceral integration in emotion regulation and dysregulation publication-title: J. Affect. Disord. doi: 10.1016/S0165-0327(00)00338-4 – volume: 10 start-page: 1511 year: 2017 ident: B304 article-title: Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2017.04.036 – volume: 58 start-page: 452 year: 2002 ident: B163 article-title: Corning and vagal nerve stimulation for seizures in the 1880s publication-title: Neurology doi: 10.1212/WNL.58.3.452 – volume: 7 start-page: 71 year: 2018 ident: B86 article-title: Constant hepatic ATP concentrations during prolonged fasting and absence of effects of cerbomed nemos® on parasympathetic tone and hepatic energy metabolism publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.10.002 – volume: 74 start-page: 1761 year: 1977 ident: B33 article-title: Interaction of myogenic and neurogenic mechanisms that control heart rate publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.74.4.1761 – volume: 57 start-page: 885 year: 2001 ident: B171 article-title: Vagal nerve stimulation: adjustments to reduce painful side effects publication-title: Neurology doi: 10.1212/WNL.57.5.885 – volume: 16 start-page: 459 year: 2013 ident: B180 article-title: Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145712000387 – volume: 8 start-page: 752 year: 2018 ident: B175 article-title: Neuroprosthetics for auricular muscles: neural networks and clinical aspects publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00752 – volume: 14 start-page: 105 year: 2017 ident: B77 article-title: Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2016.12.016 – volume: 13 start-page: 270 year: 2008 ident: B258 article-title: Reproducibility and gender-related differences of heart rate variability during all-day activity in young men and women publication-title: Ann. Noninvasive Electrocardiol. doi: 10.1111/j.1542-474X.2008.00231.x – volume: 200 start-page: 191 year: 2019 ident: B269 article-title: Quantitative magnetization transfer imaging of the human locus coeruleus publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.049 – volume: 63 start-page: 507 year: 2008 ident: B177 article-title: Differences in electrical stimulation thresholds between men and women publication-title: Ann. Neurol. doi: 10.1002/ana.21346 – volume: 17 start-page: 59 year: 2015 ident: B230 article-title: Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-015-0571-z – volume: 32 start-page: 847 year: 2011 ident: B79 article-title: Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehq391 – volume: 137 start-page: 426 year: 2017 ident: B302 article-title: Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus publication-title: Acta Oto Laryngol. doi: 10.1080/00016489.2016.1269197 – volume: 21 start-page: 548 year: 2016 ident: B1 article-title: Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction publication-title: Ann. Noninvasive Electrocardiol. doi: 10.1111/anec.12349 – volume: 31 start-page: 1345 year: 2006 ident: B200 article-title: VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301082 – volume: 11 start-page: 203 year: 2018 ident: B130 article-title: A review of vagus nerve stimulation as a therapeutic intervention publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S163248 – volume: 13 start-page: 297 year: 2013 ident: B190 article-title: Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy publication-title: Epilepsy Curr. doi: 10.5698/1535-7597-13.6.297 – volume: 13 start-page: 854 ident: B139 article-title: Current directions in the auricular vagus nerve stimulation I – a physiological perspective publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00854 – volume: 8 start-page: 582 year: 2017 ident: B148 article-title: A meta-analysis on sex differences in resting-state vagal activity in children and adolescents publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00582 – volume: 16 start-page: 543 year: 2015 ident: B255 article-title: Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): A randomized, monocentric clinical trial publication-title: J. Headache Pain doi: 10.1186/s10194-015-0543-3 – volume: 11 start-page: 30 ident: B272 article-title: Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9502-5 – start-page: 5518 volume-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference year: 2009 ident: B249 article-title: “Recent advances in charge balancing for functional electrical stimulation,” – volume: 122 start-page: 679 year: 2015 ident: B50 article-title: The effect of transcutaneous vagus nerve stimulation on cortical excitability publication-title: J. Neural Transm. doi: 10.1007/s00702-014-1299-7 – volume: 8 start-page: 11471 year: 2018 ident: B37 article-title: Transcutaneous vagus nerve stimulation and extinction of prepared fear: a conceptual non-replication publication-title: Sci. Rep doi: 10.1038/s41598-018-29561-w – volume: 116 start-page: 1237 year: 2009 ident: B218 article-title: Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters publication-title: J. Neural Transm. doi: 10.1007/s00702-009-0282-1 – volume: 13 start-page: 470 year: 2020 ident: B260 article-title: Non-invasive stimulation of vagal afferents reduces gastric frequency publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.12.018 – volume: 31 start-page: 198 year: 2018 ident: B25 article-title: Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000534 – volume: 2012 start-page: 679345 year: 2012 ident: B189 article-title: Gender differences in age-related changes in cardiac autonomic nervous function publication-title: J. Aging Res. doi: 10.1155/2012/679345 – volume: 132 start-page: 49 year: 2016 ident: B43 article-title: The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2016.05.007 – volume: 35 start-page: 415 year: 2016 ident: B285 article-title: Vagal modulation of the inflammatory response in sepsis publication-title: Int. Rev. Immunol. doi: 10.3109/08830185.2015.1127369 – volume: 7 start-page: e44813 year: 2012 ident: B14 article-title: Vagus nerve stimulation reduces body weight and fat mass in rats publication-title: PLoS ONE. doi: 10.1371/journal.pone.0044813 – volume: 18 start-page: 680 year: 2018 ident: B81 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-018-0596-2 – volume-title: Ear Acupuncture year: 1974 ident: B114 – volume: 7 start-page: 740 year: 2014 ident: B158 article-title: Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.05.003 – volume: 59 start-page: 463 year: 2002 ident: B44 article-title: Weight loss associated with vagus nerve stimulation publication-title: Neurology doi: 10.1212/WNL.59.3.463 – volume: 17 start-page: 43 year: 2016 ident: B191 article-title: Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache publication-title: J. Headache Pain doi: 10.1186/s10194-016-0633-x – volume: 100 start-page: 123 year: 2007 ident: B202 article-title: P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2006.10.005 – volume: 115 start-page: 2228 year: 2018 ident: B99 article-title: Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1712268115 – volume: 20 start-page: 808 year: 2014 ident: B219 article-title: Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial publication-title: J. Cardiac Failure doi: 10.1016/j.cardfail.2014.08.009 – volume: 37 start-page: 1048 year: 2011 ident: B234 article-title: Treatment of persistent hiccups with transcutaneous phrenic and vagal nerve stimulation publication-title: Intensive Care Med. doi: 10.1007/s00134-011-2150-3 – volume: 89 start-page: 128 year: 2004 ident: B29 article-title: Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2003.002654 – volume: 211 start-page: 248 year: 1982 ident: B135 article-title: Brainstem projections of sensory and motor components of the vagus nerve in the rat publication-title: J. Comp. Neurol. doi: 10.1002/cne.902110304 – volume: 19 start-page: 283 year: 2016 ident: B166 article-title: Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial: noninvasive vagus nerve stimulation modulates peripheral inflammation publication-title: Neuromodulation doi: 10.1111/ner.12398 – volume: 116 start-page: 241 year: 2016 ident: B210 article-title: Vagus nerve stimulation therapy in partial epilepsy: a review publication-title: Acta Neurol. Belgica doi: 10.1007/s13760-016-0616-3 – volume: 16 start-page: 195 year: 2011 ident: B63 article-title: Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions publication-title: Heart Fail. Rev. doi: 10.1007/s10741-010-9216-0 – volume: 13 start-page: 777 year: 2012 ident: B198 article-title: Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation publication-title: Pain Med. doi: 10.1111/j.1526-4637.2012.01385.x – volume: 11 start-page: 1225 year: 2018 ident: B224 article-title: Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.08.010 – volume: 9 start-page: 1159 year: 2018 ident: B131 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01159 – volume: 199 start-page: 48 ident: B195 article-title: The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control publication-title: Auton. Neurosci. Basic Clin. doi: 10.1016/j.autneu.2016.06.004 – volume: 14 start-page: e0223848 year: 2019 ident: B27 article-title: Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity publication-title: PLoS ONE doi: 10.1371/journal.pone.0223848 – volume: 56 start-page: 259 ident: B306 article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II publication-title: Headache doi: 10.1111/head.12650 – volume: 11 start-page: 699 ident: B12 article-title: Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.04.004 – volume: 9 start-page: 811 year: 2016 ident: B19 article-title: Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—a study using transcutaneous vagus nerve stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.07.004 – year: 2019 ident: B193 article-title: Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve publication-title: bioRxiv [Preprint] doi: 10.1101/2019.12.28.890111 – volume: 55 start-page: 245 year: 2010 ident: B274 article-title: Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs publication-title: Appetite doi: 10.1016/j.appet.2010.06.008 – volume: 10 start-page: 392 year: 2019 ident: B30 article-title: EEG Reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00392 – volume: 14 start-page: 77 year: 2020 ident: B11 article-title: Transcutaneous auricular vagus nerve stimulation-paired rehabilitation for oromotor feeding problems in newborns: an open-label pilot study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.00077 – volume: 187 start-page: 44 year: 2015 ident: B55 article-title: The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.03.351 – volume: 72 start-page: 1376 year: 2011 ident: B61 article-title: Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year publication-title: J. Clin. Psychiatry doi: 10.4088/JCP.09m05888blu – volume: 16 start-page: 864 year: 2005 ident: B160 article-title: Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.2005.40656.x – volume: 1645 start-page: 75 year: 2016 ident: B6 article-title: Locus coeruleus: from global projection system to adaptive regulation of behavior publication-title: Brain Res. doi: 10.1016/j.brainres.2016.03.001 – volume: 3 start-page: S255 year: 2012 ident: B152 article-title: Vagus nerve stimulation for epilepsy: a review of central mechanisms publication-title: Surg. Neurol. Int. doi: 10.4103/2152-7806.103015 – volume: 4 start-page: 162 year: 2010 ident: B250 article-title: An active approach for charge balancing in functional electrical stimulation publication-title: IEEE Trans. Biomed. Circ. Syst. doi: 10.1109/TBCAS.2010.2040277 – volume: 10 start-page: 64 year: 2019 ident: B176 article-title: Vagus nerve stimulation for depression: a systematic review publication-title: Front. Psychol. doi: 10.3389/fpsyg.2019.00064 – volume: 110 start-page: 1437 year: 2003 ident: B76 article-title: Far field potentials from the brain stem after transcutaneous vagus nerve stimulation publication-title: J. Neural Transm. doi: 10.1007/s00702-003-0087-6 – volume: 594 start-page: 5791 year: 2016 ident: B65 article-title: Role of the vagus nerve in the development and treatment of diet-induced obesity publication-title: J. Physiol. doi: 10.1113/JP271538 – volume: 5 start-page: 435 year: 2012 ident: B216 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.10.001 – volume: 12 start-page: 447 year: 2008 ident: B247 article-title: State-dependency in brain stimulation studies of perception and cognition publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2008.09.004 – volume: 1 start-page: 64 year: 2014 ident: B112 article-title: Vagus nerve stimulation publication-title: Curr. Behav. Neurosci. Rep. doi: 10.1007/s40473-014-0010-5 – volume: 15 start-page: 35 year: 2002 ident: B217 article-title: The nerve supply of the human auricle publication-title: Clin. Anat. doi: 10.1002/ca.1089 – volume: 28 start-page: 604 year: 1985 ident: B307 article-title: Time course of seizure control to brief, repetitive stimuli publication-title: Epilepsia – volume: 13 start-page: 421 year: 2019 ident: B49 article-title: Concerning auricular vagal nerve stimulation: occult neural networks publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00421 – volume: 205 start-page: 319 year: 2016 ident: B172 article-title: Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2016.08.003 – volume: 10 start-page: 875 year: 2017 ident: B5 article-title: Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.05.006 – volume: 6 start-page: 499 ident: B241 article-title: Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball publication-title: Front. Psychol. doi: 10.3389/fpsyg.2015.00499 – volume: 140 start-page: 629 year: 2017 ident: B3 article-title: Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex publication-title: J. Neurochem. doi: 10.1111/jnc.13931 – volume: 1179 start-page: 28 year: 2007 ident: B82 article-title: Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain publication-title: Brain Res. doi: 10.1016/j.brainres.2007.08.045 – volume: 73 start-page: 938 year: 2009 ident: B295 article-title: Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients publication-title: Med. Hypoth. doi: 10.1016/j.mehy.2009.06.033 – volume: 277 start-page: H2233 year: 1999 ident: B159 article-title: Effect of aging on gender differences in neural control of heart rate publication-title: Am. J. Physiol doi: 10.1152/ajpheart.1999.277.6.H2233 – volume: 13 start-page: 970 year: 2020 ident: B238 article-title: Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2020.03.011 – volume: 111 start-page: 72 ident: B57 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2018.01.003 – volume: 13 start-page: 1 year: 2020 ident: B121 article-title: A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.10.006 – volume: 53 start-page: e115 year: 2012 ident: B254 article-title: Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03492.x – volume: 6 start-page: 798 year: 2013 ident: B155 article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study publication-title: Brain Stimul. doi: 10.1016/j.brs.2013.01.011 – volume: 6 start-page: 25 year: 1957 ident: B207 article-title: Über die akupunktur der ohrmuschel publication-title: Dt Ztschr Akup – volume: 27 start-page: 2126 ident: B242 article-title: Transcutaneous vagus nerve stimulation enhances post-error slowing publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00851 – volume: 152 start-page: 107863 ident: B38 article-title: From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: a report of three studies publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2020.107863 – volume: 19 start-page: 54 year: 2015 ident: B53 article-title: Review of the uses of vagal nerve stimulation in chronic pain management publication-title: Curr. Pain Headache Rep. doi: 10.1007/s11916-015-0528-6 – start-page: 263 volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) year: 2013 ident: B136 article-title: “New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve,” doi: 10.1109/NER.2013.6695922 – volume: 114 start-page: 1485 year: 2007 ident: B154 article-title: BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation publication-title: J. Neural Transm. doi: 10.1007/s00702-007-0755-z – volume: 7 start-page: 371 year: 2018 ident: B91 article-title: The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health publication-title: J. Clin. Med. doi: 10.3390/jcm7100371 – volume: 97 start-page: 64 year: 2017 ident: B42 article-title: Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear publication-title: Behav. Res. Ther. doi: 10.1016/j.brat.2017.07.005 – volume: 21 start-page: 261 year: 2018 ident: B192 article-title: High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation publication-title: Neuromodulation doi: 10.1111/ner.12706 – volume: 4 start-page: 124 year: 2017 ident: B161 article-title: Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence publication-title: Front. Med. doi: 10.3389/fmed.2017.00124 – start-page: S7 ident: B292 publication-title: Effects of vagal stimulation on experimentally induced seizures in rats doi: 10.1111/j.1528-1157.1990.tb05852.x – volume: 7 start-page: 623 year: 2013 ident: B34 article-title: Physiological noise in brainstem fMRI publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00623 – volume: 13 start-page: e0207281 year: 2018 ident: B297 article-title: BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus publication-title: PLoS ONE doi: 10.1371/journal.pone.0207281 – volume: 33 start-page: 81 year: 2009 ident: B263 article-title: Claude bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2008.08.004 – volume: 30 start-page: e12643 year: 2018 ident: B60 article-title: The role of the vagus nerve in appetite control: implications for the pathogenesis of obesity publication-title: J. Neuroendocrinol. doi: 10.1111/jne.12643 – volume: 412 start-page: 144 year: 2019 ident: B80 article-title: Transcutaneous vagus nerve stimulation affects implicit spiritual self-representations publication-title: Neuroscience doi: 10.1016/j.neuroscience.2019.05.059 – volume: 318 start-page: 890 year: 2006 ident: B70 article-title: Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.106.104166 – volume: 125 start-page: 602 year: 2014 ident: B141 article-title: Age-related decrease in sensitivity to electrical stimulation is unrelated to skin conductance: an evoked potentials study publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.08.020 – volume: 133 start-page: 378 year: 2013 ident: B165 article-title: Transcutaneous vagus nerve stimulation in tinnitus: a pilot study publication-title: Acta Oto Laryngol. doi: 10.3109/00016489.2012.750736 – volume: 14 start-page: 203 year: 2014 ident: B113 article-title: Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study publication-title: BMC Complement. Alternat. Med. doi: 10.1186/1472-6882-14-203 – volume: 21 start-page: 485 year: 1994 ident: B71 article-title: Sex differences in the parasympathetic nerve control of rat heart publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.1994.tb02545.x – volume: 131 start-page: 510 year: 2005 ident: B205 article-title: Decision making, the P3, and the locus coeruleus-norepinephrine system publication-title: Psychol. Bull. doi: 10.1037/0033-2909.131.4.510 – volume: 246 start-page: 285 year: 1982 ident: B123 article-title: Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei publication-title: Brain Res. doi: 10.1016/0006-8993(82)91177-5 – volume: 73 start-page: 64 year: 2019 ident: B95 article-title: Autonomic nervous system dysfunction publication-title: J. Am. College Cardiol. doi: 10.1016/j.jacc.2018.12.064 – volume: 14 start-page: 523 year: 2020 ident: B26 article-title: Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00523 – volume: 285 start-page: 1987 year: 2001 ident: B188 article-title: The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials publication-title: JAMA doi: 10.1001/jama.285.15.1987 – volume: 8 start-page: 25 year: 2014 ident: B156 article-title: Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00025 – volume: 1119 start-page: 124 year: 2006 ident: B227 article-title: Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat publication-title: Brain Res. doi: 10.1016/j.brainres.2006.08.048 – volume: 2013 start-page: 245683 year: 2013 ident: B243 article-title: Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus publication-title: J. Obes. doi: 10.1155/2013/245683 – volume: 158 start-page: 1461 year: 2017 ident: B87 article-title: Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients publication-title: Pain doi: 10.1097/j.pain.0000000000000930 – volume: 36 start-page: e76 year: 2015 ident: B119 article-title: Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity publication-title: Ear Hear. doi: 10.1097/AUD.0000000000000123 – volume: 8 start-page: 743 year: 2012 ident: B212 article-title: The vagus nerve and the inflammatory reflex–linking immunity and metabolism publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2012.189 – volume: 61 start-page: 344 year: 2008 ident: B284 article-title: The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2007.11.008 – volume: 1 start-page: 93 year: 2000 ident: B101 article-title: A pilot study of mood in epilepsy patients treated with vagus nerve stimulation publication-title: Epilepsy Behav. doi: 10.1006/ebeh.2000.0046 – volume: 9 start-page: 469 year: 2016 ident: B52 article-title: Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.03.011 – volume: 13 start-page: 808 year: 2019 ident: B187 article-title: Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00808 – volume: 20 start-page: 290 year: 2017 ident: B296 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation doi: 10.1111/ner.12541 – volume: 11 start-page: 4836 year: 2019 ident: B31 article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation publication-title: Aging doi: 10.18632/aging.102074 – volume: 13 start-page: 227 ident: B142 article-title: Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00227 – volume: 1177 start-page: 29 year: 2007 ident: B22 article-title: Pupil dilatation in response to vagal afferent electrical stimulation is mediated by inhibition of parasympathetic outflow in the rat publication-title: Brain Res. doi: 10.1016/j.brainres.2007.06.104 – volume: 25 start-page: 208 year: 2013 ident: B24 article-title: Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway publication-title: Neurogastroenterol. Motil. doi: 10.1111/nmo.12076 – volume: 13 start-page: 494 year: 2020 ident: B280 article-title: Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.12.024 – volume: 79 start-page: 265 year: 1994 ident: B4 article-title: Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis publication-title: Exp. Physiol. doi: 10.1113/expphysiol.1994.sp003761 – volume: 113 start-page: 25 year: 2019 ident: B282 article-title: Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers publication-title: Behav. Res. Ther. doi: 10.1016/j.brat.2018.12.009 – volume: 35 start-page: 2762 year: 2007 ident: B118 article-title: Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis publication-title: Crit.Care Med. doi: 10.1097/01.CCM.0000288102.15975.BA – volume: 56 start-page: 37 year: 2005 ident: B75 article-title: Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2004.09.007 – volume: 11 start-page: 338 year: 2017 ident: B48 article-title: Rapid alleviation of parkinson's disease symptoms via electrostimulation of intrinsic auricular muscle zones publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00338 – volume: 39 start-page: 8239 year: 2019 ident: B54 article-title: Redefining noradrenergic neuromodulation of behavior: impacts of a modular locus coeruleus architecture publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1164-19.2019 – volume: 34 start-page: 272 year: 2009 ident: B179 article-title: Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation publication-title: J. Psychiatry Neurosci. – volume: 92 start-page: 95 year: 2017 ident: B58 article-title: Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions publication-title: Cortex doi: 10.1016/j.cortex.2017.03.017 – volume: 64 start-page: 288 year: 2016 ident: B149 article-title: Sex differences in healthy human heart rate variability: a meta-analysis publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2016.03.007 – volume: 12 start-page: 911 year: 2019 ident: B239 article-title: The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.02.003 – volume: 8 start-page: e42541 year: 2019 ident: B276 article-title: Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal publication-title: ELife doi: 10.7554/eLife.42541 – volume: 12 start-page: 955 year: 2019 ident: B100 article-title: Memory reinforcement and attenuation by activating the human locus coeruleus via transcutaneous vagus nerve stimulation publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00955 – volume: 279 start-page: R141 year: 2000 ident: B110 article-title: Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.2000.279.1.R141 – volume: 4 start-page: 1 year: 2018 ident: B310 article-title: Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson's disease using nano-based microelectrode arrays publication-title: Microsyst. Nanoeng. doi: 10.1038/micronano.2017.70 – volume: 28 start-page: 592 year: 2016 ident: B85 article-title: Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity publication-title: Neurogastroenterol. Motil. doi: 10.1111/nmo.12760 – volume: 11 start-page: 492 ident: B10 article-title: Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.12.009 – volume: 97 start-page: 73 year: 2016 ident: B126 article-title: Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2016.02.009 – volume: 14 start-page: 85 ident: B104 article-title: The auriculo-vagal afferent pathway and its role in seizure suppression in rats publication-title: BMC Neurosci. doi: 10.1186/1471-2202-14-85 – volume: 126 start-page: 2085 year: 2018 ident: B125 article-title: Effects of electrical transcutaneous vagus nerve stimulation on the perceived intensity of repetitive painful heat stimuli: a blinded placebo- and sham-controlled randomized crossover investigation publication-title: Anesthesia Analgesia doi: 10.1213/ANE.0000000000002820 – volume: 24 start-page: 621 year: 2019 ident: B197 article-title: When a white horse is a horse: embracing the overlap between acupuncture and neuromodulation publication-title: J. Altern. Complement. Med doi: 10.1089/acm.2018.29047.vtn – volume: 203 start-page: 88 year: 2017 ident: B62 article-title: Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects publication-title: Auton. Neurosci. doi: 10.1016/j.autneu.2016.11.003 – year: 2019 ident: B209 article-title: Inspiratory- and expiratory-gated transcutaneous vagus nerve stimulation have different effects on heart rate in healthy subjects: preliminary results publication-title: Clin. Auton. Res doi: 10.1007/s10286-019-00604-0 – volume: 98 start-page: 1359 year: 2004 ident: B232 article-title: The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture publication-title: Anesthesia Analgesia doi: 10.1213/01.ANE.0000107941.16173.F7 – year: 2017 ident: B298 article-title: Vagal nerve stimulation: a potentially useful adjuvant to treatment of sepsis publication-title: J Anesth Perioper Med. doi: 10.24015/JAPM.2017.0012 – volume: 12 start-page: 1406 year: 2011 ident: B162 article-title: Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial publication-title: Pain Med. doi: 10.1111/j.1526-4637.2011.01203.x – volume: 148 start-page: 84 year: 2020 ident: B252 article-title: Vagal signaling and the somatic marker hypothesis: the effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2019.10.010 – volume: 289 start-page: 21 year: 2017 ident: B117 article-title: Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2016.12.005 – volume: 11 start-page: 551 year: 2020 ident: B184 article-title: Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers publication-title: Front. Psychol. doi: 10.3389/fpsyg.2020.00551 – volume: 33 start-page: 61 year: 2018 ident: B283 article-title: Does auriculotherapy have therapeutic effectiveness? an overview of systematic reviews publication-title: Complement. Ther. Clin. Pract doi: 10.1016/j.ctcp.2018.08.005 – volume: 38 start-page: 1658 year: 2018 ident: B64 article-title: Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: a randomized, cross-over, sham-controlled study publication-title: Cephalalgia doi: 10.1177/0333102417742347 – volume: 43 start-page: 1338 year: 1993 ident: B273 article-title: Treatment of epilepsy by stimulation of the vagus nerve publication-title: Neurology doi: 10.1212/WNL.43.7.1338 – volume: 36 start-page: 534 year: 2016 ident: B88 article-title: Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study publication-title: Cephalalgia doi: 10.1177/0333102415607070 – volume: 6 start-page: 812 year: 2013 ident: B167 article-title: Vagal sensory evoked potentials disappear under the neuromuscular block – an experimental study publication-title: Brain Stimul. doi: 10.1016/j.brs.2013.03.005 – volume: 83 start-page: 325 year: 2017 ident: B174 article-title: Magnetic resonance imaging of the human locus coeruleus: a systematic review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.10.023 – volume: 58 start-page: 403 year: 2019 ident: B182 article-title: Double-blind, sham-controlled, pilot study of trigeminal nerve stimulation for attention-deficit/hyperactivity disorder publication-title: J. Am. Acad. Child Adolesc. Psychiatry doi: 10.1016/j.jaac.2018.11.013 – volume: 10 start-page: 19 year: 2017 ident: B84 article-title: Access to vagal projections via cutaneous electrical stimulation of the neck: FMRI evidence in healthy humans publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.10.008 – volume: 359 start-page: 1 year: 2018 ident: B213 article-title: Transauricular vagus nerve stimulation at auricular acupoints kindey (CO10), yidan (CO11), liver (CO12) and shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI publication-title: Hear. Res. doi: 10.1016/j.heares.2017.12.003 – volume: 113 start-page: 1308 year: 2002 ident: B312 article-title: Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00171-2 – volume: 3 start-page: 70 year: 2012 ident: B157 article-title: Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2012.00070 – volume: 313 start-page: H354 year: 2017 ident: B18 article-title: Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract publication-title: Am. J. Physiol Heart Circ. Physiol. doi: 10.1152/ajpheart.00070.2017 – volume: 34 start-page: 986 year: 2014 ident: B94 article-title: Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study publication-title: Cephalalgia doi: 10.1177/0333102414524494 – volume: 9 start-page: 5349 year: 2018 ident: B299 article-title: Effective weight control via an implanted self-powered vagus nerve stimulation device publication-title: Nat. Commun. doi: 10.1038/s41467-018-07764-z – volume: 95 start-page: 641 year: 2005 ident: B300 article-title: Noradrenaline overflow in mouse dentate gyrus following locus coeruleus and natural stimulation: real-time monitoring by in vivo voltammetry publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03390.x – volume: 4 start-page: e12689 year: 2016 ident: B303 article-title: Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog publication-title: Physiol. Rep. doi: 10.14814/phy2.12689 – volume: 96 start-page: 540 year: 1987 ident: B259 article-title: Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve publication-title: Exp. Neurol. doi: 10.1016/0014-4886(87)90217-2 – volume: 187 start-page: 637 ident: B287 article-title: Noninvasive vagal nerve stimulation for heart failure: was it practical or just a stunt? Int publication-title: J. Cardiol. doi: 10.1016/j.ijcard.2015.03.430 – volume: 22 start-page: 564 year: 2019 ident: B170 article-title: Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials: impact of nVNS on brain electrophysiology publication-title: Neuromodulation doi: 10.1111/ner.12864 – start-page: 932087 year: 2020 ident: B301 article-title: An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field publication-title: BioRxiv [Preprint] doi: 10.1101/2020.02.03.932087 – start-page: 1 year: 2019 ident: B147 article-title: Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression publication-title: Psychol. Med. doi: 10.1017/S0033291719003490 – volume: 25 start-page: 303 year: 1969 ident: B169 article-title: Paradoxical effect of vagus nerve stimulation on heart rate in dogs publication-title: Circ. Res. doi: 10.1161/01.RES.25.3.303 – volume: 25 start-page: 773 year: 2015 ident: B253 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2015.03.015 – volume: 17 start-page: 170 year: 2014 ident: B66 article-title: Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series publication-title: Neuromodulation doi: 10.1111/ner.12127 – volume: 20 start-page: 253 year: 1998 ident: B261 article-title: A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex publication-title: Surg. Radiol. Anat. doi: 10.1007/s00276-998-0253-5 |
| SSID | ssj0062651 |
| Score | 2.6588984 |
| SecondaryResourceType | review_article |
| Snippet | Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and... |
| SourceID | doaj pubmedcentral liege proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 568051 |
| SubjectTerms | 19th century Acupuncture Anatomy & physiology Behavioral Neuroscience Biological Psychiatry Brain research Carotid arteries Clinical trials Epilepsy FDA approval guidelines & recommendations Headaches Human health sciences Human Neuroscience Mental depression Migraine minimum reporting standards Neurologie Neurology Neuropsychology and Physiological Psychology Pain Physiology Psychiatry and Mental Health Reviews Sciences de la santé humaine transcutaneous auricular vagus nerve stimulation transcutaneous cervical vagus nerve stimulation transcutaneous vagus nerve stimulation Vagus nerve Veins & arteries |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUJCREAJEqPPwI8cWUXGAFRJQ9WbFj9BIu17UbCrxY_ivzNjZVYMQXLgkUfyQ7RlnvvFMZgh5xpRXTQcbCejr8rpqTW6s9XlTW1N0bdl1MWfk6Qe5WKizs-bTlVRf6BOWwgOnhTsExGsEj3nkTe0roUABbyXnHu1VpopxPgH1bJWp9A0GlM6LZMMEFaw57ML5iL-dl-wNF4rxYiaFYrB-AKdLNFP_CWn-7jB5RQKd3CI3J-hIj9KQb5NrPtwh-0cB1ObVD_qcRmfOeEq-T37OTvoopuXEnBYDPQap5WiyCNA24CPw3MpPuZUGCiCWfuxDvxpXNKFzEG7083TiMNA-0K23Hl0HGmWdHaHYr6H70_YbXBfoRgltoJPkakdfTOdyFFfn5V3y9eTdl7fv8ykTQ255JTc5YLoKkJaoBeuEMZ5br4S0TDruhAc56H0nvSxqY0okjFOYPIK1hfLcFV1Z3SN7YR38A0Ibx1rLmZfY0BhhGufg7oxtReN5nRG2pYy2U5hyzJax1KCuIDF1JKbG4epEzIy82jX5nmJ0_K3yMZJ7VxHDa8cXwHR6Yjr9L6bLyOvILNDI9PqyjL3E53EJvVhtvAZcq3TKDJaRgy1P6ekTMWiMHVfgj-xQ_HRXDJsbLTaJaFCnAMArAFRl5H5iwd3AYXq8rkuYkJwx52xm85LQn8cA4ophlDP58H8sxSNyo0Q3H1blZXVA9jYXo39MrtvLTT9cPIm78hevQz8V priority: 102 providerName: Directory of Open Access Journals |
| Title | International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020) |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33854421 https://www.proquest.com/docview/2504101566 https://www.proquest.com/docview/2513246818 https://orbi.uliege.be/handle/2268/297316 https://pubmed.ncbi.nlm.nih.gov/PMC8040977 https://doaj.org/article/559b65cb001b4e368330a755e0899b33 |
| Volume | 14 |
| WOSCitedRecordID | wos000639299300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M7P dateStart: 20080328 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: BENPR dateStart: 20080328 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: PIMPY dateStart: 20080328 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M2P dateStart: 20080328 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXQ5ceC2PwFIZCSFAZNeJY8c5oS3qCiRaRTxW5WTFjrMbqU2XPlbiwj_hvzLjpIUitBcubhQ_5KnHns8zkxlCnjHlVFbBRoL1LcOEFyY01rowS6yJqiKuKp8z8vRDOhqp8TjLO4XbonOrXJ-J_qAuZxZ15EcYaivC737lm4tvIWaNQutql0Jjh-xhlATuXffy9UkMWF1ErSUTLmLZUdWcr_Dj85gdCqmYiLZkkQ_ZDxB1gsbqf-HNv90m_5BDJ7f-l4Lb5GaHQOlxyzJ3yDXX3CX7xw3cvqff6XPqfUK9sn2f_NxSGFLM7ompMRa0D8KvpK1hgRYNPsIkpq5L0bSggIXpsG7q6WpKW5APMpJ-6hQXC1o3dO30R2cN9SLTrqDazWD40-IMyhF6Y0IfGKT12KMvOvUexb_35T3y5WTw-e27sEvoEFrB02UI0JADYJOJZJU0xgnrlEwtS0tRSgfi1LkqdWmUGBM7prJSYQ4KVkTKiTKqYn6f7Dazxj0kNCtZYQVzKXY0RpqsLOG3NLaQmRNJQNh6abXtop1j0o2JhlsPcoP23KBxurrlhoC82nS5aEN9XNW4j_yyaYhRuv2L2fxMd5tew23NSGERmJrEcak4Z0UqBNKWGc4D8tpzG3Qytb6M_Sj-eTWBUaw2TgM8VrpNMBaQgzVj6e6kWejfXBWQp5tqOCPQ8NMuGrSJADdLwGYBedDy8GbiQJ5IkhgISre4e4uy7ZqmPvdxyBXDYGnpo6un9ZjciNEPiPEw5gdkdzlfuSfkur1c1ot5j-ykY9Uje_3BKP_Y8xoRKIdx3vNbGcsfA6jP3w_zr78AS-1Vvg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXXuURKGAkQIAIdR52nANCLVC16nZVibbqzcSO00baTcpmt6g_hr_Ab2TGSRYWod564LIbxQ954vH4G894hpDnTFqZFrCQYH5zP44y7WtjrJ_GRgdFFhaFyxl5OEiGQ3l0lO4tkZ_9XRh0q-xlohPUeW3wjHwNQ20FeO9XfDj95mPWKLSu9ik0WrbYseffQWVr3m9_gvl9EYabn_c_bvldVgHf8CiZ-oBPIkANIhasEFpbbqwUiWFJznNhQaZbWyQ2CWKtQ8tkmktMhMCyQFqeBwUGOgCRfwVgRCidq-BeL_lBN-BBazkFxS9dK6qTGV52D9k7LiTjwcLe51IEACQeoXH8X_j2bzfNP_a9zZv_2xe7RW50CJuut0viNlmy1R2ysl5l03p8Tl9S5_PqjAkr5MfCgSjF7KWY-qOhG7C557Q1nNCswkcgemy7FFQNBaxPd8uqHM_GtFViAAPQL93BTEPLivZOjbSuqIMEZgbFtobuD7Nj-B2itym0gU5aj0T6qju-pDidr--Sg0v5UPfIclVX9gGhac4yw5lNsKHWQqd5Dv-5NplILY89wnpWUqaL5o5JRUYKtDrkPuW4T-FwVct9Hnkzb3LahjK5qPIG8ue8IkYhdy_qybHqhJoCbVQLbhB469hGQkYRyxLOkbZUR5FH3jruhka6VGeh68U9z0bQi1HaKoD_UrUJ1Dyy2jOy6iRpo35zsUeezYtBBqJhq500qBOAXiAAe3rkfrtm5gMH8ngch0BQsrCaFihbLKnKExdnXTIMBpc8vHhYT8m1rf3dgRpsD3cekesh-jyxyA-jVbI8nczsY3LVnE3LZvLECQtKvl72WvsFP2WqGA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAXXuURKGAkQIAI6zxsJweEWkpF1bJaCVr1ZmLHaSPtJmWzW9Qfwx_h1zHjJAuLUG89cNmN4tjyY2Y84xnPR8hTltgkLYCRYH1zP44y7WtjrJ_GRgdFFhaFw4w82JPDYXJ4mI5WyM_-LgyGVfYy0QnqvDZ4Rj7AVFsB3vsVg6ILixhtbb87-eYjghR6Wns4jZZEdu3ZdzDfmrc7W7DWz8Jw-8OX9x_9DmHANzySMx90lQg0CBELVgitLTc2EdIwmfNcWJDv1hbSyiDWOrQsSfMEQRFYFiSW50GBSQ9A_F-SmLTchQ2O-l0A7AQetF5UMALTQVEdz_Hie8jecJEwHiztgw4uANTjMTrK_6Xr_h2y-cceuH39f569G-Rap3nTjZZVbpIVW90iaxtVNqsnZ_Q5dbGwzsmwRn4sHZRSRDVFSJCGbsKmn9PWoUKzCh9hAia2g6ZqKNgA9FNZlZP5hLbGDegG9HN3YNPQsqJ9sCOtK-pUBTOHYltD8wfZEfwOMQoV6kAjbaQifdEda1Jc2pe3yf6FTNQdslrVlb1HaJqzzHBmJVbUWug0z-E_1yYTqeWxR1hPVsp0Wd4RbGSswNpDSlSOEhV2V7WU6JFXiyonbYqT8z7eRFpdfIjZyd2LenqkOmGnwErVghtUyHVsI5FEEcsk5zi2VEeRR147SodKulSnoWvFPc_H0IpR2iowCxLVAqt5ZL0natVJ2Eb9pmiPPFkUg2xEh1e7aPBNAPaCAJ3UI3db_ll0HIbH4ziEAcklzloa2XJJVR67_OsJwyRx8v753XpMrgCLqb2d4e4DcjXEUCgW-WG0TlZn07l9SC6b01nZTB85uUHJ14tmtV_Re7LV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=International+Consensus+Based+Review+and+Recommendations+for+Minimum+Reporting+Standards+in+Research+on+Transcutaneous+Vagus+Nerve+Stimulation+%28Version+2020%29&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Farmer%2C+Adam+D&rft.au=Strzelczyk%2C+Adam&rft.au=Finisguerra%2C+Alessandra&rft.au=Gourine%2C+Alexander+V&rft.date=2021-03-23&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft_id=info:doi/10.3389%2Ffnhum.2020.568051&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |