International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, ref...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in human neuroscience Ročník 14; s. 568051
Hlavní autoři: Farmer, Adam D., Strzelczyk, Adam, Finisguerra, Alessandra, Gourine, Alexander V., Gharabaghi, Alireza, Hasan, Alkomiet, Burger, Andreas M., Jaramillo, Andrés M., Mertens, Ann, Majid, Arshad, Verkuil, Bart, Badran, Bashar W., Ventura-Bort, Carlos, Gaul, Charly, Beste, Christian, Warren, Christopher M., Quintana, Daniel S., Hämmerer, Dorothea, Freri, Elena, Frangos, Eleni, Tobaldini, Eleonora, Kaniusas, Eugenijus, Rosenow, Felix, Capone, Fioravante, Panetsos, Fivos, Ackland, Gareth L., Kaithwas, Gaurav, O'Leary, Georgia H., Genheimer, Hannah, Jacobs, Heidi I. L., Van Diest, Ilse, Schoenen, Jean, Redgrave, Jessica, Fang, Jiliang, Deuchars, Jim, Széles, Jozsef C., Thayer, Julian F., More, Kaushik, Vonck, Kristl, Steenbergen, Laura, Vianna, Lauro C., McTeague, Lisa M., Ludwig, Mareike, Veldhuizen, Maria G., De Couck, Marijke, Casazza, Marina, Keute, Marius, Bikson, Marom, Andreatta, Marta, D'Agostini, Martina, Weymar, Mathias, Betts, Matthew, Prigge, Matthias, Kaess, Michael, Roden, Michael, Thai, Michelle, Schuster, Nathaniel M., Montano, Nicola, Hansen, Niels, Kroemer, Nils B., Rong, Peijing, Fischer, Rico, Howland, Robert H., Sclocco, Roberta, Sellaro, Roberta, Garcia, Ronald G., Bauer, Sebastian, Gancheva, Sofiya, Stavrakis, Stavros, Kampusch, Stefan, Deuchars, Susan A., Wehner, Sven, Laborde, Sylvain, Usichenko, Taras, Polak, Thomas, Zaehle, Tino, Borges, Uirassu, Teckentrup, Vanessa, Jandackova, Vera K., Napadow, Vitaly, Koenig, Julian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 23.03.2021
Frontiers Media S.A
Témata:
ISSN:1662-5161, 1662-5161
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
AbstractList Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarise ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Author Vianna, Lauro C.
Hansen, Niels
Rosenow, Felix
Roden, Michael
Ackland, Gareth L.
Finisguerra, Alessandra
Gharabaghi, Alireza
Bikson, Marom
Hasan, Alkomiet
Beste, Christian
Betts, Matthew
Sellaro, Roberta
Quintana, Daniel S.
D'Agostini, Martina
O'Leary, Georgia H.
Schoenen, Jean
Borges, Uirassu
Polak, Thomas
Jandackova, Vera K.
Thayer, Julian F.
Teckentrup, Vanessa
Laborde, Sylvain
Farmer, Adam D.
Gaul, Charly
Warren, Christopher M.
Kaniusas, Eugenijus
Keute, Marius
De Couck, Marijke
Capone, Fioravante
Deuchars, Jim
Jacobs, Heidi I. L.
Gourine, Alexander V.
Badran, Bashar W.
Ventura-Bort, Carlos
Freri, Elena
Schuster, Nathaniel M.
Burger, Andreas M.
Frangos, Eleni
Weymar, Mathias
Ludwig, Mareike
Panetsos, Fivos
Steenbergen, Laura
Stavrakis, Stavros
Gancheva, Sofiya
Kroemer, Nils B.
Van Diest, Ilse
Verkuil, Bart
Genheimer, Hannah
Strzelczyk, Adam
Mertens, Ann
Vonck, Kristl
Fischer, Rico
Usichenko, Taras
Redgrave, Jessica
McTeague, Lisa M.
Fang, Jiliang
Kaess, Michael
Hämmerer, Dorothea
Garcia, Ronald G.
Kaithwas, Gaurav
Andreatta, Marta
Tobaldini,
AuthorAffiliation 12 Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands
74 Department of Developmental Psychology and Socialisation, University of Padova , Padova , Italy
15 Migraine and Headache Clinic Koenigstein , Königstein im Taunus , Germany
81 Department of Anesthesiology, University Medicine Greifswald , Greifswald , Germany
18 NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital , Oslo , Norway
64 Department of Psychiatry and Psychotherapy, University of Göttingen , Göttingen , Germany
7 Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich , Munich , Germany
45 Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands
24 Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
63 Department of Anesthesiology, Center for Pain Medicine, University of California, San Die
AuthorAffiliation_xml – name: 59 Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf , Germany
– name: 54 Faculty of Health Sciences Brandenburg, University of Potsdam , Potsdam , Germany
– name: 13 Department of Psychiatry, Medical University of South Carolina , Charleston, SC , United States
– name: 25 Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, NIH , Bethesda, MD , United States
– name: 51 Department of Neurosurgery, University of Tübingen , Tübingen , Germany
– name: 42 Department of Psychological Science, University of California, Irvine , Irvine, CA , United States
– name: 67 Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing , China
– name: 87 Department of Human Movement Studies, Faculty of Education, University of Ostrava , Ostrava , Czechia
– name: 63 Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego Health System , La Jolla, CA , United States
– name: 88 Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg , Heidelberg , Germany
– name: 23 Center for Behavioral Brain Sciences Magdeburg (CBBS), Otto-von-Guericke University , Magdeburg , Germany
– name: 50 Division of Epileptology, Fondazione IRCCS Istituto Neurologico C. Besta , Milan , Italy
– name: 52 Department of Biomedical Engineering, City College of New York , New York, NY , United States
– name: 6 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg , Augsburg , Germany
– name: 24 Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
– name: 65 Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIPLab), University of Göttingen , Göttingen , Germany
– name: 15 Migraine and Headache Clinic Koenigstein , Königstein im Taunus , Germany
– name: 7 Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich , Munich , Germany
– name: 74 Department of Developmental Psychology and Socialisation, University of Padova , Padova , Italy
– name: 32 Translational Medicine and Therapeutics, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London , London , United Kingdom
– name: 36 Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University , Maastricht , Netherlands
– name: 56 Center for Behavioral Brain Sciences, Otto-von-Guericke University , Magdeburg , Germany
– name: 60 Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University , Düsseldorf , Germany
– name: 8 Laboratory for Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven , Leuven , Belgium
– name: 2 Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt , Frankfurt am Main , Germany
– name: 47 Department of Anatomy, Faculty of Medicine, Mersin University , Mersin , Turkey
– name: 14 Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam , Potsdam , Germany
– name: 3 Scientific Institute, IRCCS E. Medea , Pasian di Prato , Italy
– name: 4 Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London , London , United Kingdom
– name: 30 Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma , Rome , Italy
– name: 43 Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
– name: 38 Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège , Liège , Belgium
– name: 45 Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands
– name: 58 Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg , Heidelberg , Germany
– name: 21 Medical Faculty, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University , Magdeburg , Germany
– name: 44 Neuromodulatory Networks, Leibniz Institute for Neurobiology , Magdeburg , Germany
– name: 46 NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia , Brasilia , Brazil
– name: 55 Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Magdeburg , Germany
– name: 5 Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen , Tuebingen , Germany
– name: 79 Department of Surgery, University Hospital Bonn , Bonn , Germany
– name: 9 Leibniz Institute for Neurobiology , Magdeburg , Germany
– name: 40 School of Biomedical Science, Faculty of Biological Science, University of Leeds , Leeds , United Kingdom
– name: 16 Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden , Dresden , Germany
– name: 76 Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School , Boston, MA , United States
– name: 77 Heart Rhythm Institute, University of Oklahoma Health Sciences Center , Oklahoma City, OK , United States
– name: 72 Cognitive Psychology Unit, Institute of Psychology, Leiden University , Leiden , Netherlands
– name: 83 Laboratory of Functional Neurovascular Diagnostics, AG Early Diagnosis of Dementia, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Würzburg , Würzburg , Germany
– name: 1 Department of Gastroenterology, University Hospitals of North Midlands NHS Trust , Stoke on Trent , United Kingdom
– name: 62 Department of Psychology, College of Liberal Arts, University of Minnesota , Minneapolis, MN , United States
– name: 70 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Charlestown, MA , United States
– name: 28 Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien , Vienna , Austria
– name: 81 Department of Anesthesiology, University Medicine Greifswald , Greifswald , Germany
– name: 61 German Center for Diabetes Research , Munich , Germany
– name: 69 Department of Psychiatry, University of Pittsburgh School of Medicine, UPMC Western Psychiatric Hospital , Pittsburgh, PA , United States
– name: 31 Faculty of Biology and Faculty of Optics, Complutense University of Madrid and Institute for Health Research, San Carlos Clinical Hospital (IdISSC) , Madrid , Spain
– name: 27 Department of Clinical Sciences and Community Health, University of Milan , Milan , Italy
– name: 17 Utah State University , Logan, UT , United States
– name: 57 University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern , Bern , Switzerland
– name: 64 Department of Psychiatry and Psychotherapy, University of Göttingen , Göttingen , Germany
– name: 48 Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel , Brussels , Belgium
– name: 75 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown, MA , United States
– name: 53 Department of Psychology, Education and Child Studies, Erasmus University Rotterdam , Rotterdam , Netherlands
– name: 35 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , Boston, MA , United States
– name: 71 Department of Radiology, Logan University , Chesterfield, MO , United States
– name: 10 Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital , Gent , Belgium
– name: 39 Functional Imaging Lab, Department of Radiology, Guang An Men Hospital, China Academy of Chinese Medical Sciences , Beijing , China
– name: 82 Department of Anesthesia, McMaster University , Hamilton, ON , Canada
– name: 12 Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University , Leiden , Netherlands
– name: 84 Department of Neurology, Otto-von-Guericke University , Magdeburg , Germany
– name: 18 NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital , Oslo , Norway
– name: 78 Faculty of Biological Science, School of Biomedical Science, University of Leeds , Leeds , United Kingdom
– name: 86 Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava , Ostrava , Czechia
– name: 29 SzeleSTIM GmbH , Vienna , Austria
– name: 85 Department of Social and Health Psychology, Institute of Psychology, Deutsche Sporthochschule , Köln , Germany
– name: 66 Department of Psychiatry and Psychotherapy, University of Tübingen , Tübingen , Germany
– name: 68 Department of Psychology, University of Greifswald , Greifswald , Germany
– name: 20 KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo , Oslo , Norway
– name: 80 Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule , Köln , Germany
– name: 73 Leiden Institute for Brain and Cognition , Leiden , Netherlands
– name: 33 Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University) , Lucknow , India
– name: 22 Institute of Cognitive Neuroscience, University College London , London , United Kingdom
– name: 26 Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy
– name: 41 Division for Vascular Surgery, Department of Surgery, Medical University of Vienna , Vienna , Austria
– name: 19 Department of Psychology, University of Oslo , Oslo , Norway
– name: 49 Faculty of Health Care, University College Odisee , Aalst , Belgium
– name: 11 Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield , Sheffield , United Kingdom
– name: 37 Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven , Leuven , Belgium
– name: 34 Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg , Würzburg , Germany
Author_xml – sequence: 1
  givenname: Adam D.
  surname: Farmer
  fullname: Farmer, Adam D.
– sequence: 2
  givenname: Adam
  surname: Strzelczyk
  fullname: Strzelczyk, Adam
– sequence: 3
  givenname: Alessandra
  surname: Finisguerra
  fullname: Finisguerra, Alessandra
– sequence: 4
  givenname: Alexander V.
  surname: Gourine
  fullname: Gourine, Alexander V.
– sequence: 5
  givenname: Alireza
  surname: Gharabaghi
  fullname: Gharabaghi, Alireza
– sequence: 6
  givenname: Alkomiet
  surname: Hasan
  fullname: Hasan, Alkomiet
– sequence: 7
  givenname: Andreas M.
  surname: Burger
  fullname: Burger, Andreas M.
– sequence: 8
  givenname: Andrés M.
  surname: Jaramillo
  fullname: Jaramillo, Andrés M.
– sequence: 9
  givenname: Ann
  surname: Mertens
  fullname: Mertens, Ann
– sequence: 10
  givenname: Arshad
  surname: Majid
  fullname: Majid, Arshad
– sequence: 11
  givenname: Bart
  surname: Verkuil
  fullname: Verkuil, Bart
– sequence: 12
  givenname: Bashar W.
  surname: Badran
  fullname: Badran, Bashar W.
– sequence: 13
  givenname: Carlos
  surname: Ventura-Bort
  fullname: Ventura-Bort, Carlos
– sequence: 14
  givenname: Charly
  surname: Gaul
  fullname: Gaul, Charly
– sequence: 15
  givenname: Christian
  surname: Beste
  fullname: Beste, Christian
– sequence: 16
  givenname: Christopher M.
  surname: Warren
  fullname: Warren, Christopher M.
– sequence: 17
  givenname: Daniel S.
  surname: Quintana
  fullname: Quintana, Daniel S.
– sequence: 18
  givenname: Dorothea
  surname: Hämmerer
  fullname: Hämmerer, Dorothea
– sequence: 19
  givenname: Elena
  surname: Freri
  fullname: Freri, Elena
– sequence: 20
  givenname: Eleni
  surname: Frangos
  fullname: Frangos, Eleni
– sequence: 21
  givenname: Eleonora
  surname: Tobaldini
  fullname: Tobaldini, Eleonora
– sequence: 22
  givenname: Eugenijus
  surname: Kaniusas
  fullname: Kaniusas, Eugenijus
– sequence: 23
  givenname: Felix
  surname: Rosenow
  fullname: Rosenow, Felix
– sequence: 24
  givenname: Fioravante
  surname: Capone
  fullname: Capone, Fioravante
– sequence: 25
  givenname: Fivos
  surname: Panetsos
  fullname: Panetsos, Fivos
– sequence: 26
  givenname: Gareth L.
  surname: Ackland
  fullname: Ackland, Gareth L.
– sequence: 27
  givenname: Gaurav
  surname: Kaithwas
  fullname: Kaithwas, Gaurav
– sequence: 28
  givenname: Georgia H.
  surname: O'Leary
  fullname: O'Leary, Georgia H.
– sequence: 29
  givenname: Hannah
  surname: Genheimer
  fullname: Genheimer, Hannah
– sequence: 30
  givenname: Heidi I. L.
  surname: Jacobs
  fullname: Jacobs, Heidi I. L.
– sequence: 31
  givenname: Ilse
  surname: Van Diest
  fullname: Van Diest, Ilse
– sequence: 32
  givenname: Jean
  surname: Schoenen
  fullname: Schoenen, Jean
– sequence: 33
  givenname: Jessica
  surname: Redgrave
  fullname: Redgrave, Jessica
– sequence: 34
  givenname: Jiliang
  surname: Fang
  fullname: Fang, Jiliang
– sequence: 35
  givenname: Jim
  surname: Deuchars
  fullname: Deuchars, Jim
– sequence: 36
  givenname: Jozsef C.
  surname: Széles
  fullname: Széles, Jozsef C.
– sequence: 37
  givenname: Julian F.
  surname: Thayer
  fullname: Thayer, Julian F.
– sequence: 38
  givenname: Kaushik
  surname: More
  fullname: More, Kaushik
– sequence: 39
  givenname: Kristl
  surname: Vonck
  fullname: Vonck, Kristl
– sequence: 40
  givenname: Laura
  surname: Steenbergen
  fullname: Steenbergen, Laura
– sequence: 41
  givenname: Lauro C.
  surname: Vianna
  fullname: Vianna, Lauro C.
– sequence: 42
  givenname: Lisa M.
  surname: McTeague
  fullname: McTeague, Lisa M.
– sequence: 43
  givenname: Mareike
  surname: Ludwig
  fullname: Ludwig, Mareike
– sequence: 44
  givenname: Maria G.
  surname: Veldhuizen
  fullname: Veldhuizen, Maria G.
– sequence: 45
  givenname: Marijke
  surname: De Couck
  fullname: De Couck, Marijke
– sequence: 46
  givenname: Marina
  surname: Casazza
  fullname: Casazza, Marina
– sequence: 47
  givenname: Marius
  surname: Keute
  fullname: Keute, Marius
– sequence: 48
  givenname: Marom
  surname: Bikson
  fullname: Bikson, Marom
– sequence: 49
  givenname: Marta
  surname: Andreatta
  fullname: Andreatta, Marta
– sequence: 50
  givenname: Martina
  surname: D'Agostini
  fullname: D'Agostini, Martina
– sequence: 51
  givenname: Mathias
  surname: Weymar
  fullname: Weymar, Mathias
– sequence: 52
  givenname: Matthew
  surname: Betts
  fullname: Betts, Matthew
– sequence: 53
  givenname: Matthias
  surname: Prigge
  fullname: Prigge, Matthias
– sequence: 54
  givenname: Michael
  surname: Kaess
  fullname: Kaess, Michael
– sequence: 55
  givenname: Michael
  surname: Roden
  fullname: Roden, Michael
– sequence: 56
  givenname: Michelle
  surname: Thai
  fullname: Thai, Michelle
– sequence: 57
  givenname: Nathaniel M.
  surname: Schuster
  fullname: Schuster, Nathaniel M.
– sequence: 58
  givenname: Nicola
  surname: Montano
  fullname: Montano, Nicola
– sequence: 59
  givenname: Niels
  surname: Hansen
  fullname: Hansen, Niels
– sequence: 60
  givenname: Nils B.
  surname: Kroemer
  fullname: Kroemer, Nils B.
– sequence: 61
  givenname: Peijing
  surname: Rong
  fullname: Rong, Peijing
– sequence: 62
  givenname: Rico
  surname: Fischer
  fullname: Fischer, Rico
– sequence: 63
  givenname: Robert H.
  surname: Howland
  fullname: Howland, Robert H.
– sequence: 64
  givenname: Roberta
  surname: Sclocco
  fullname: Sclocco, Roberta
– sequence: 65
  givenname: Roberta
  surname: Sellaro
  fullname: Sellaro, Roberta
– sequence: 66
  givenname: Ronald G.
  surname: Garcia
  fullname: Garcia, Ronald G.
– sequence: 67
  givenname: Sebastian
  surname: Bauer
  fullname: Bauer, Sebastian
– sequence: 68
  givenname: Sofiya
  surname: Gancheva
  fullname: Gancheva, Sofiya
– sequence: 69
  givenname: Stavros
  surname: Stavrakis
  fullname: Stavrakis, Stavros
– sequence: 70
  givenname: Stefan
  surname: Kampusch
  fullname: Kampusch, Stefan
– sequence: 71
  givenname: Susan A.
  surname: Deuchars
  fullname: Deuchars, Susan A.
– sequence: 72
  givenname: Sven
  surname: Wehner
  fullname: Wehner, Sven
– sequence: 73
  givenname: Sylvain
  surname: Laborde
  fullname: Laborde, Sylvain
– sequence: 74
  givenname: Taras
  surname: Usichenko
  fullname: Usichenko, Taras
– sequence: 75
  givenname: Thomas
  surname: Polak
  fullname: Polak, Thomas
– sequence: 76
  givenname: Tino
  surname: Zaehle
  fullname: Zaehle, Tino
– sequence: 77
  givenname: Uirassu
  surname: Borges
  fullname: Borges, Uirassu
– sequence: 78
  givenname: Vanessa
  surname: Teckentrup
  fullname: Teckentrup, Vanessa
– sequence: 79
  givenname: Vera K.
  surname: Jandackova
  fullname: Jandackova, Vera K.
– sequence: 80
  givenname: Vitaly
  surname: Napadow
  fullname: Napadow, Vitaly
– sequence: 81
  givenname: Julian
  surname: Koenig
  fullname: Koenig, Julian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33854421$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhiNURC_wAGyQJTZlMYMvsZNskGDEZaQCEpRuLcc5mfHIsQc7GdSH6bviJC1qK7FJjnz-_7N_-5xmR847yLKXBC8ZK6u3rdsO3ZJiipdclJiTJ9kJEYIuOBHk6F59nJ3GuMNYUMHJs-w4uXmeU3KS3axdD8Gp3ninLFp5F8HFIaIPKkKDfsDBwB-k3Fhq33XgmkkbUesD-mqc6YYu9fY-9MZt0M8-aVVoIjIuLUdQQW-Rd-gyKBf1kNrgE_5KbdL3G4QDJE-C2AmLzq8gxLEYU715nj1tlY3w4vZ_lv369PFy9WVx8f3zevX-YqE5K_oFLzjLuRC5wK2oa-AaSlFoXDS8EZATBtAWUJC8ringsmpKzAjHipTAG9JSdpatZ27j1U7ug-lUuJZeGTkt-LCRKuXTFiTnVS24rjEmdQ5MlIxhVXA-cquascR6N7P2Q91Bo8H1QdkH0IcdZ7Zy4w-yxDmuiiIB2AywBjaQNq-NPNDJONWDTafRsgZJqSglrQpGRHKd324b_O8BYi87EzVYO1-4pJwwmouSlEn6-pF054c0A3ZU4Zxgku4yqV7dz_EvwN3sJEExC3TwMQZopTb99IoplrGS4FFbyWlK5fiecp7S5CSPnHfw_3v-AlIh7Fg
CitedBy_id crossref_primary_10_3389_fnins_2024_1510658
crossref_primary_10_3389_fnhum_2022_862443
crossref_primary_10_1007_s12170_023_00718_1
crossref_primary_10_1016_j_ctim_2024_103036
crossref_primary_10_1016_j_bja_2021_08_037
crossref_primary_10_1371_journal_pone_0315606
crossref_primary_10_1111_psyp_70034
crossref_primary_10_1113_JP284741
crossref_primary_10_3389_fneur_2023_1341898
crossref_primary_10_1038_s41598_022_25864_1
crossref_primary_10_3390_biomedicines13030700
crossref_primary_10_1111_psyp_70037
crossref_primary_10_1016_j_autneu_2022_102972
crossref_primary_10_1111_adb_13343
crossref_primary_10_1111_apt_16550
crossref_primary_10_3390_brainsci11081084
crossref_primary_10_3390_brainsci12010095
crossref_primary_10_1016_j_brs_2022_09_009
crossref_primary_10_3390_jcm13247601
crossref_primary_10_1097_CRD_0000000000000953
crossref_primary_10_3389_fpsyg_2024_1476021
crossref_primary_10_1016_j_neubiorev_2022_104844
crossref_primary_10_1097_MD_0000000000033473
crossref_primary_10_3389_fneur_2023_1189034
crossref_primary_10_3389_fnins_2024_1287809
crossref_primary_10_3390_biomedicines12020407
crossref_primary_10_1016_j_brs_2021_09_001
crossref_primary_10_3389_fneur_2024_1418937
crossref_primary_10_1080_17474124_2023_2288156
crossref_primary_10_1111_psyp_13804
crossref_primary_10_1111_psyp_14739
crossref_primary_10_1007_s00482_022_00686_2
crossref_primary_10_1016_j_neurom_2025_04_007
crossref_primary_10_1177_13872877241289396
crossref_primary_10_3389_fnins_2023_1096865
crossref_primary_10_3390_brainsci14090875
crossref_primary_10_1111_psyp_13885
crossref_primary_10_1007_s00125_024_06129_0
crossref_primary_10_1111_joor_70039
crossref_primary_10_1016_j_autneu_2022_102956
crossref_primary_10_1111_epi_18047
crossref_primary_10_3389_fneur_2022_816031
crossref_primary_10_3389_fphys_2024_1495868
crossref_primary_10_1016_j_appet_2021_105813
crossref_primary_10_3389_fnins_2021_709436
crossref_primary_10_1002_agt2_70102
crossref_primary_10_1007_s12325_025_03237_0
crossref_primary_10_1111_psyp_70017
crossref_primary_10_3389_fped_2022_884539
crossref_primary_10_1038_s41380_023_02227_4
crossref_primary_10_3389_fnhum_2022_867563
crossref_primary_10_3389_fnins_2024_1406135
crossref_primary_10_3390_brainsci14070690
crossref_primary_10_1007_s10286_024_01074_9
crossref_primary_10_1038_s41598_022_14237_3
crossref_primary_10_1186_s42234_024_00153_6
crossref_primary_10_3390_cells11244103
crossref_primary_10_1111_psyp_13933
crossref_primary_10_1080_09638288_2024_2313123
crossref_primary_10_1111_psyp_14107
crossref_primary_10_3892_mi_2025_236
crossref_primary_10_3389_fnins_2021_664740
crossref_primary_10_14814_phy2_15253
crossref_primary_10_3389_fendo_2022_1000758
crossref_primary_10_1111_psyp_70011
crossref_primary_10_1177_20406223221148061
crossref_primary_10_1016_j_brs_2023_06_010
crossref_primary_10_1177_15459683231173357
crossref_primary_10_1186_s12984_025_01617_9
crossref_primary_10_3389_fneur_2025_1531127
crossref_primary_10_1111_adb_13202
crossref_primary_10_3390_jcm11041087
crossref_primary_10_1016_j_brainres_2025_149736
crossref_primary_10_3389_fphys_2023_1148819
crossref_primary_10_1186_s13063_024_08230_6
crossref_primary_10_1007_s00221_024_06876_x
crossref_primary_10_1080_17434440_2022_2020095
crossref_primary_10_3389_fnins_2024_1405310
crossref_primary_10_1111_ner_13346
crossref_primary_10_1002_brb3_70355
crossref_primary_10_1016_j_heliyon_2024_e39841
crossref_primary_10_1038_s41598_024_54026_8
crossref_primary_10_1044_2023_JSLHR_22_00596
crossref_primary_10_1136_bmjopen_2024_098506
crossref_primary_10_1016_j_ibneur_2023_01_010
crossref_primary_10_3389_fneur_2023_1216861
crossref_primary_10_1038_s41598_024_72139_y
crossref_primary_10_1111_psyp_14753
crossref_primary_10_2478_jtim_2022_0060
crossref_primary_10_1016_S2665_9913_23_00007_3
crossref_primary_10_3389_fnins_2025_1644961
crossref_primary_10_1016_j_nicl_2021_102654
crossref_primary_10_1016_j_autneu_2021_102840
crossref_primary_10_1080_17434440_2021_1969913
crossref_primary_10_1055_a_1660_5591
crossref_primary_10_3389_fnins_2022_820665
crossref_primary_10_3390_brainsci12050546
crossref_primary_10_1002_epd2_20068
crossref_primary_10_1088_1361_6579_ad5ef6
crossref_primary_10_3389_fvets_2022_878962
crossref_primary_10_1016_j_jnrt_2025_100209
crossref_primary_10_1007_s10072_024_07513_9
crossref_primary_10_3389_fneur_2024_1441128
crossref_primary_10_1183_13993003_01828_2024
crossref_primary_10_1016_j_neurom_2022_07_007
crossref_primary_10_1136_bmjopen_2023_072724
crossref_primary_10_1161_STROKEAHA_125_051470
crossref_primary_10_1523_JNEUROSCI_2004_22_2023
crossref_primary_10_3390_ijms24010679
crossref_primary_10_3390_jcm12031198
crossref_primary_10_3389_fmed_2022_855296
crossref_primary_10_1111_psyp_14484
crossref_primary_10_3389_fneur_2022_897124
crossref_primary_10_3389_fnins_2024_1346634
crossref_primary_10_1016_j_brs_2025_01_022
crossref_primary_10_3389_fnagi_2023_1145207
crossref_primary_10_3390_ijms22158208
crossref_primary_10_1176_appi_focus_20210023
crossref_primary_10_1093_ijnp_pyac013
crossref_primary_10_1111_ejn_16539
crossref_primary_10_1080_21641846_2023_2286029
crossref_primary_10_3389_fneur_2023_1286919
crossref_primary_10_3389_fpsyt_2021_765106
crossref_primary_10_1111_jnp_12425
crossref_primary_10_1186_s40814_023_01289_z
crossref_primary_10_1007_s13534_024_00361_8
crossref_primary_10_1371_journal_pone_0326793
crossref_primary_10_3389_fpsyg_2024_1343413
crossref_primary_10_1038_s41598_024_61958_8
crossref_primary_10_1111_psyp_70065
crossref_primary_10_3389_fnagi_2025_1600921
crossref_primary_10_3389_fnhum_2023_1149449
crossref_primary_10_1007_s13311_023_01353_9
crossref_primary_10_1016_j_psyneuen_2022_105719
crossref_primary_10_1109_TAP_2024_3434370
crossref_primary_10_1038_s41598_024_72179_4
crossref_primary_10_1007_s11571_025_10284_4
crossref_primary_10_1111_psyp_14250
crossref_primary_10_3389_fnins_2023_1184051
crossref_primary_10_3390_jcm14061866
crossref_primary_10_1371_journal_pone_0282861
crossref_primary_10_3389_fneur_2023_1228377
crossref_primary_10_1007_s11064_023_03871_6
crossref_primary_10_1016_j_autneu_2021_102908
crossref_primary_10_1177_23727322231196789
crossref_primary_10_7717_peerj_14447
crossref_primary_10_1016_j_neurom_2022_10_046
crossref_primary_10_1007_s10484_023_09584_4
crossref_primary_10_3389_fnins_2023_1213982
crossref_primary_10_1523_JNEUROSCI_0452_23_2023
crossref_primary_10_3390_life12101644
crossref_primary_10_1093_eurheartj_ehaf037
crossref_primary_10_1016_j_brs_2021_12_004
crossref_primary_10_1007_s10286_024_01053_0
crossref_primary_10_1016_j_autneu_2021_102901
crossref_primary_10_3389_fphys_2024_1452490
crossref_primary_10_1016_j_autneu_2022_103008
crossref_primary_10_3389_fneur_2024_1429506
crossref_primary_10_3389_fnins_2022_1038339
crossref_primary_10_1007_s40122_024_00657_8
crossref_primary_10_1016_j_autneu_2021_102875
crossref_primary_10_3389_fnins_2024_1499793
crossref_primary_10_1016_j_sleep_2025_106579
crossref_primary_10_3390_data8050087
crossref_primary_10_1002_hbm_26613
crossref_primary_10_58252_artukluhealth_1676099
crossref_primary_10_1016_j_neurom_2025_01_012
crossref_primary_10_3389_fnhum_2020_600995
crossref_primary_10_1111_psyp_70040
crossref_primary_10_1111_psyp_13984
crossref_primary_10_4103_1673_5374_389365
crossref_primary_10_1007_s10286_023_01002_3
crossref_primary_10_1016_j_neuroscience_2022_04_026
crossref_primary_10_1186_s42234_022_00094_y
crossref_primary_10_1093_gastro_goaf009
crossref_primary_10_1111_psyp_14670
crossref_primary_10_1016_j_autneu_2021_102886
crossref_primary_10_1038_s41598_023_29765_9
crossref_primary_10_3389_fnhum_2025_1569472
crossref_primary_10_1152_jn_00447_2022
crossref_primary_10_1109_RBME_2024_3508713
crossref_primary_10_3389_fnins_2023_1234033
Cites_doi 10.1016/j.neurobiolaging.2018.10.014
10.1016/j.brs.2019.07.010
10.1111/psyp.13571
10.3389/fnins.2019.00288
10.1016/j.yebeh.2013.02.001
10.1038/nature14600
10.1007/s12265-018-9853-6
10.2147/JPR.S133438
10.1016/j.brs.2015.11.008
10.1073/pnas.1317557111
10.4088/JCP.v63n1206
10.1097/YCT.0000000000000502
10.1016/j.brs.2014.07.031
10.1016/j.jpsychires.2017.12.018
10.1016/j.neuroscience.2018.01.020
10.1016/j.neuroimage.2017.07.045
10.1007/978-3-319-74917-4
10.3389/fphar.2019.00353
10.1073/pnas.1115628109
10.1016/s0920-1211(03)00122-0
10.1155/2015/495684
10.1113/jphysiol.1934.sp003176
10.1016/0006-8993(93)91343-Q
10.1111/j.1542-474X.1996.tb00275.x
10.1016/j.neurobiolaging.2015.02.023
10.1161/01.RES.54.4.436
10.1007/s13311-014-0272-3
10.1111/nmo.12999
10.1021/ac9022605
10.1016/j.brs.2015.11.003
10.1016/j.brs.2017.07.013
10.1016/j.neulet.2004.12.055
10.3389/fnins.2019.00772
10.1016/j.seizure.2018.06.016
10.1016/j.brs.2018.07.049
10.1113/eph8602146
10.1212/WNL.0000000000002918
10.1016/j.brs.2018.12.224
10.1016/j.brs.2018.01.006
10.3389/fnins.2016.00609
10.1097/01.wnr.0000227984.84927.a7
10.1515/BMT.2008.022
10.1016/j.brs.2012.04.006
10.1142/S0129065716500489
10.1016/j.brs.2018.03.018
10.1038/s41598-017-17750-y
10.1016/j.neuron.2015.11.028
10.1038/s41598-019-47961-4
10.1515/bmt-2013-4021
10.1016/j.ijcard.2015.04.087
10.1016/j.yebeh.2014.08.005
10.1111/joa.13122
10.3389/fpsyt.2018.00020
10.1016/j.neuroimage.2017.09.042
10.1111/j.1528-1157.1990.tb05848.x
10.1016/j.biopsych.2015.03.025
10.1155/2017/7876507
10.1113/jphysiol.2008.154567
10.1016/j.psyneuen.2017.01.029
10.1016/j.nicl.2019.101971
10.1007/s00221-017-5123-0
10.1006/ebeh.2001.0213
10.1111/head.12647
10.1073/pnas.1605635113
10.1038/sj.ijo.0803666
10.1371/journal.pone.0120786
10.1016/j.autneu.2014.07.008
10.1016/j.jneumeth.2004.10.020
10.1186/s10194-015-0542-4
10.1021/ac0491509
10.1038/s41598-017-18183-3
10.1111/j.1528-1157.1992.tb01751.x
10.1161/01.RES.52.6.642
10.1109/TBME.2019.2950777
10.15424/bioelectronmed.2014.00008
10.1101/789982
10.1109/EMBC.2017.8037520
10.1016/j.jacc.2014.12.026
10.1136/heartjnl-2016-309890.215
10.7874/jao.2015.19.3.159
10.1016/j.jad.2016.02.031
10.1371/journal.pone.0069424
10.1016/j.brainres.2011.03.060
10.1016/j.yebeh.2016.09.014
10.1016/j.biopsycho.2019.01.014
10.1021/cn200119u
10.1016/j.nlm.2019.04.006
10.1212/WNL.0000000000001394
10.1016/j.brs.2018.06.003
10.1111/head.12896
10.1016/j.jneumeth.2013.07.016
10.1016/j.brainres.2018.12.031
10.1007/s00406-015-0618-9
10.7554/eLife.29808.027
10.1080/17434440.2018.1507732
10.1093/brain/awz193
10.1016/j.cortex.2017.11.007
10.1016/j.brs.2018.10.005
10.17925/ENR.2011.06.04.254
10.1016/j.clinph.2018.05.026
10.1111/ejn.14128
10.1111/jnc.14284
10.3389/fnana.2015.00080
10.1001/jama.2014.10540
10.3389/fpsyg.2015.00102
10.1016/j.clinph.2005.06.023
10.3389/fpsyg.2020.01276
10.3389/fnhum.2018.00202
10.3791/58984
10.1007/s00702-012-0908-6
10.1016/j.clinph.2015.11.012
10.1038/s41598-020-58412-w
10.1042/CS20130518
10.1162/jocn_a_01603
10.1210/jc.2006-0461
10.3389/fnins.2019.00911
10.1111/j.1469-8986.2011.01226.x
10.1016/j.jneumeth.2010.05.007
10.1016/j.ijpsycho.2015.10.001
10.1016/j.brs.2014.11.018
10.1111/j.1471-4159.2011.07214.x
10.1007/s00384-018-3204-6
10.1016/j.neuroimage.2017.02.052
10.3390/jcm8040496
10.1016/S0920-1211(03)00107-4
10.1007/s00702-010-0407-6
10.1016/S0165-0327(00)00338-4
10.1016/j.jcin.2017.04.036
10.1212/WNL.58.3.452
10.1016/j.molmet.2017.10.002
10.1073/pnas.74.4.1761
10.1212/WNL.57.5.885
10.1017/S1461145712000387
10.3389/fneur.2017.00752
10.1016/j.nicl.2016.12.016
10.1111/j.1542-474X.2008.00231.x
10.1016/j.neuroimage.2019.06.049
10.1002/ana.21346
10.1007/s11906-015-0571-z
10.1093/eurheartj/ehq391
10.1080/00016489.2016.1269197
10.1111/anec.12349
10.1038/sj.npp.1301082
10.2147/JIR.S163248
10.5698/1535-7597-13.6.297
10.3389/fnins.2019.00854
10.3389/fphys.2017.00582
10.1186/s10194-015-0543-3
10.1007/s11682-015-9502-5
10.1007/s00702-014-1299-7
10.1038/s41598-018-29561-w
10.1007/s00702-009-0282-1
10.1016/j.brs.2019.12.018
10.1097/WCO.0000000000000534
10.1155/2012/679345
10.1016/j.nlm.2016.05.007
10.3109/08830185.2015.1127369
10.1371/journal.pone.0044813
10.3758/s13415-018-0596-2
10.1016/j.brs.2014.05.003
10.1212/WNL.59.3.463
10.1186/s10194-016-0633-x
10.1016/j.jad.2006.10.005
10.1073/pnas.1712268115
10.1016/j.cardfail.2014.08.009
10.1007/s00134-011-2150-3
10.1113/expphysiol.2003.002654
10.1002/cne.902110304
10.1111/ner.12398
10.1007/s13760-016-0616-3
10.1007/s10741-010-9216-0
10.1111/j.1526-4637.2012.01385.x
10.1016/j.brs.2018.08.010
10.3389/fpsyg.2018.01159
10.1016/j.autneu.2016.06.004
10.1371/journal.pone.0223848
10.1111/head.12650
10.1016/j.brs.2018.04.004
10.1016/j.brs.2016.07.004
10.1101/2019.12.28.890111
10.1016/j.appet.2010.06.008
10.3389/fneur.2019.00392
10.3389/fnhum.2020.00077
10.1016/j.ijcard.2015.03.351
10.4088/JCP.09m05888blu
10.1111/j.1540-8167.2005.40656.x
10.1016/j.brainres.2016.03.001
10.4103/2152-7806.103015
10.1109/TBCAS.2010.2040277
10.3389/fpsyg.2019.00064
10.1007/s00702-003-0087-6
10.1113/JP271538
10.1016/j.brs.2011.10.001
10.1016/j.tics.2008.09.004
10.1007/s40473-014-0010-5
10.1002/ca.1089
10.3389/fnhum.2019.00421
10.1016/j.jad.2016.08.003
10.1016/j.brs.2017.05.006
10.3389/fpsyg.2015.00499
10.1111/jnc.13931
10.1016/j.brainres.2007.08.045
10.1016/j.mehy.2009.06.033
10.1152/ajpheart.1999.277.6.H2233
10.1016/j.brs.2020.03.011
10.1016/j.neuropsychologia.2018.01.003
10.1016/j.brs.2019.10.006
10.1111/j.1528-1167.2012.03492.x
10.1016/j.brs.2013.01.011
10.1162/jocn_a_00851
10.1016/j.biopsycho.2020.107863
10.1007/s11916-015-0528-6
10.1109/NER.2013.6695922
10.1007/s00702-007-0755-z
10.3390/jcm7100371
10.1016/j.brat.2017.07.005
10.1111/ner.12706
10.3389/fmed.2017.00124
10.1111/j.1528-1157.1990.tb05852.x
10.3389/fnhum.2013.00623
10.1371/journal.pone.0207281
10.1016/j.neubiorev.2008.08.004
10.1111/jne.12643
10.1016/j.neuroscience.2019.05.059
10.1124/jpet.106.104166
10.1016/j.clinph.2013.08.020
10.3109/00016489.2012.750736
10.1186/1472-6882-14-203
10.1111/j.1440-1681.1994.tb02545.x
10.1037/0033-2909.131.4.510
10.1016/0006-8993(82)91177-5
10.1016/j.jacc.2018.12.064
10.3389/fnins.2020.00523
10.1001/jama.285.15.1987
10.3389/fnsys.2014.00025
10.1016/j.brainres.2006.08.048
10.1155/2013/245683
10.1097/j.pain.0000000000000930
10.1097/AUD.0000000000000123
10.1038/nrendo.2012.189
10.1016/j.jclinepi.2007.11.008
10.1006/ebeh.2000.0046
10.1016/j.brs.2016.03.011
10.3389/fnins.2019.00808
10.1111/ner.12541
10.18632/aging.102074
10.3389/fnins.2019.00227
10.1016/j.brainres.2007.06.104
10.1111/nmo.12076
10.1016/j.brs.2019.12.024
10.1113/expphysiol.1994.sp003761
10.1016/j.brat.2018.12.009
10.1097/01.CCM.0000288102.15975.BA
10.1016/j.ijpsycho.2004.09.007
10.3389/fnhum.2017.00338
10.1523/JNEUROSCI.1164-19.2019
10.1016/j.cortex.2017.03.017
10.1016/j.neubiorev.2016.03.007
10.1016/j.brs.2019.02.003
10.7554/eLife.42541
10.3389/fnins.2018.00955
10.1152/ajpregu.2000.279.1.R141
10.1038/micronano.2017.70
10.1111/nmo.12760
10.1016/j.brs.2017.12.009
10.1016/j.neuint.2016.02.009
10.1186/1471-2202-14-85
10.1213/ANE.0000000000002820
10.1089/acm.2018.29047.vtn
10.1016/j.autneu.2016.11.003
10.1007/s10286-019-00604-0
10.1213/01.ANE.0000107941.16173.F7
10.24015/JAPM.2017.0012
10.1111/j.1526-4637.2011.01203.x
10.1016/j.ijpsycho.2019.10.010
10.1016/j.expneurol.2016.12.005
10.3389/fpsyg.2020.00551
10.1016/j.ctcp.2018.08.005
10.1177/0333102417742347
10.1212/WNL.43.7.1338
10.1177/0333102415607070
10.1016/j.brs.2013.03.005
10.1016/j.neubiorev.2017.10.023
10.1016/j.jaac.2018.11.013
10.1016/j.brs.2016.10.008
10.1016/j.heares.2017.12.003
10.1016/S1388-2457(02)00171-2
10.3389/fpsyt.2012.00070
10.1152/ajpheart.00070.2017
10.1177/0333102414524494
10.1038/s41467-018-07764-z
10.1111/j.1471-4159.2005.03390.x
10.14814/phy2.12689
10.1016/0014-4886(87)90217-2
10.1016/j.ijcard.2015.03.430
10.1111/ner.12864
10.1101/2020.02.03.932087
10.1017/S0033291719003490
10.1161/01.RES.25.3.303
10.1016/j.euroneuro.2015.03.015
10.1111/ner.12127
10.1007/s00276-998-0253-5
ContentType Journal Article
Copyright Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig
Copyright_xml – notice: Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig. 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
JLOSS
Q33
5PM
DOA
DOI 10.3389/fnhum.2020.568051
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_559b65cb001b4e368330a755e0899b33
PMC8040977
oai_orbi_ulg_ac_be_2268_297316
33854421
10_3389_fnhum_2020_568051
Genre Journal Article
Review
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM109040
– fundername: NCCIH NIH HHS
  grantid: P01 AT009965
– fundername: British Heart Foundation
  grantid: RG/19/5/34463
– fundername: NIH HHS
  grantid: OT2 OD023867
– fundername: NICHD NIH HHS
  grantid: P2C HD086844
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
JLOSS
Q33
5PM
ID FETCH-LOGICAL-c537t-57534566460f6bbe5ce867c07d5d6e413eef7e714bb2e089d803150a18e5d1f23
IEDL.DBID M7P
ISICitedReferencesCount 240
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639299300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5161
IngestDate Mon Nov 10 04:34:24 EST 2025
Tue Nov 04 02:01:18 EST 2025
Sat Nov 29 01:29:00 EST 2025
Thu Oct 02 07:06:04 EDT 2025
Fri Jul 25 11:47:26 EDT 2025
Mon Jul 21 06:00:06 EDT 2025
Sat Nov 29 05:51:57 EST 2025
Tue Nov 18 22:29:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords minimum reporting standards
transcutaneous cervical vagus nerve stimulation
guidelines & recommendations
transcutaneous vagus nerve stimulation
transcutaneous auricular vagus nerve stimulation
Language English
License Copyright © 2021 Farmer, Strzelczyk, Finisguerra, Gourine, Gharabaghi, Hasan, Burger, Jaramillo, Mertens, Majid, Verkuil, Badran, Ventura-Bort, Gaul, Beste, Warren, Quintana, Hämmerer, Freri, Frangos, Tobaldini, Kaniusas, Rosenow, Capone, Panetsos, Ackland, Kaithwas, O'Leary, Genheimer, Jacobs, Van Diest, Schoenen, Redgrave, Fang, Deuchars, Széles, Thayer, More, Vonck, Steenbergen, Vianna, McTeague, Ludwig, Veldhuizen, De Couck, Casazza, Keute, Bikson, Andreatta, D'Agostini, Weymar, Betts, Prigge, Kaess, Roden, Thai, Schuster, Montano, Hansen, Kroemer, Rong, Fischer, Howland, Sclocco, Sellaro, Garcia, Bauer, Gancheva, Stavrakis, Kampusch, Deuchars, Wehner, Laborde, Usichenko, Polak, Zaehle, Borges, Teckentrup, Jandackova, Napadow and Koenig.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-57534566460f6bbe5ce867c07d5d6e413eef7e714bb2e089d803150a18e5d1f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
scopus-id:2-s2.0-85098472273
Edited by: Yusuf Ozgur Cakmak, University of Otago, New Zealand
This article was submitted to Brain Imaging and Stimulation, a section of the journal Frontiers in Human Neuroscience
Reviewed by: Chunhong Liu, Capital Medical University, China; Teresa Schuhmann, Maastricht University, Netherlands
ORCID 0000-0002-6506-6460
OpenAccessLink https://www.proquest.com/docview/2504101566?pq-origsite=%requestingapplication%
PMID 33854421
PQID 2504101566
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_559b65cb001b4e368330a755e0899b33
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040977
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_297316
proquest_miscellaneous_2513246818
proquest_journals_2504101566
pubmed_primary_33854421
crossref_citationtrail_10_3389_fnhum_2020_568051
crossref_primary_10_3389_fnhum_2020_568051
PublicationCentury 2000
PublicationDate 2021-03-23
PublicationDateYYYYMMDD 2021-03-23
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Val-Laillet (B274) 2010; 55
Hein (B106) 2013; 120
Huang (B115) 2010; 117
De Couck (B62) 2017; 203
Tu (B270) 2018; 11
Howland (B112) 2014; 1
Kuo (B159) 1999; 277
Peng (B213) 2018; 359
Nogier (B207) 1957; 6
Usichenko (B272); 11
Woods (B293) 2016; 127
Rong (B225) 2014
Cork (B60) 2018; 30
Yuan (B305); 56
Goadsby (B94) 2014; 34
Borges (B26) 2020; 14
Bikson (B23) 2019; 12
Janner (B125) 2018; 126
Sellaro (B242); 27
Wostyn (B294) 2017; 27
Cakmak (B48) 2017; 11
Gourine (B96) 2008; 586
Fang (B78) 2016; 79
Neuser (B203) 2019
He (B103); 28
Burger (B36); 57
Sclocco (B237) 2017
Rawat (B223) 2019; 10
Laqua (B164) 2014; 185
Yu (B304) 2017; 10
Zhang (B309) 2016
Brock (B32) 2017; 29
Pavlov (B212) 2012; 8
Brooks (B33) 1977; 74
Homma (B108) 1993; 629
Harden (B101) 2000; 1
Kraus (B155) 2013; 6
Silberstein (B246); 56
Antonino (B5) 2017; 10
Merrill (B183) 2005; 141
Badran (B11) 2020; 14
Keute (B144) 2018; 129
Burger (B37) 2018; 8
Bonaz (B24) 2013; 25
Vargas Luna (B279) 2013; 58
Lerman (B166) 2016; 19
Ye (B301) 2020
Ay (B8) 2011; 1392
Brázdil (B30) 2019; 10
Jalife (B124) 1983; 52
Jodoin (B128) 2018; 98
Koenig (B148) 2017; 8
Aihua (B2) 2014; 39
Kaniusas (B139); 13
Penry (B214) 1990; 31
Hou (B111) 2015; 2015
Mertens (B185) 2018; 15
Ellrich (B73) 2011; 6
De Icco (B64) 2018; 38
Du (B71) 1994; 21
Ikramuddin (B120) 2014; 312
Tomagra (B265) 2019; 13
Koenig (B147) 2019
Liugan (B175) 2018; 8
Borges (B27) 2019; 14
Kaczmarczyk (B134) 2017; 146
Cristancho (B61) 2011; 72
Giraudier (B93) 2020; 11
Wang (B287); 187
Yoo (B303) 2016; 4
de Lartigue (B65) 2016; 594
Butt (B47) 2020; 236
Napadow (B198) 2012; 13
Mertens (B184) 2020; 11
Tona (B266) 2020; 32
Liu (B174) 2017; 83
B222
Wang (B288) 2018; 102
Huang (B113) 2014; 14
Manta (B180) 2013; 16
Huston (B118) 2007; 35
Yakunina (B296) 2017; 20
Gaul (B88) 2016; 36
Jacquin (B123) 1982; 246
Manta (B179) 2009; 34
De Ferrari (B63) 2011; 16
Roosevelt (B227) 2006; 1119
Leutzow (B167) 2013; 6
Ehlert (B72) 2006; 91
Cha (B52) 2016; 9
Nesbitt (B201) 2015; 84
Sun (B256) 2013; 8
Badran (B13) 2019; 143
Jacobs (B122) 2015; 36
Burneo (B44) 2002; 59
Genheimer (B90) 2017; 7
Thayer (B262) 2000; 61
Jin (B127) 2016; 10
Colzato (B58) 2017; 92
Yang (B298) 2017
Kile (B146) 2012; 3
Kaniusas (B138); 13
Krause (B156) 2014; 8
Brown (B35) 1934; 82
B129
Stavrakis (B251) 2015; 65
Totah (B267) 2019; 1709
Levy (B169) 1969; 25
Sasaki (B231) 2006; 17
Rong (B226) 2016; 195
Szeska (B257) 2020; 10
Alexander (B3) 2017; 140
Noller (B208) 2019; 13
Frøkjaer (B85) 2016; 28
Bauer (B17) 2016; 9
Chandler (B54) 2019; 39
Clancy (B56) 2014; 7
Iseger (B121) 2020; 13
Zabara (B308) 1992; 33
Lewine (B170) 2019; 22
Colzato (B59); 236
Lehtimäki (B165) 2013; 133
Lanska (B163) 2002; 58
Redgrave (B224) 2018; 11
Boon (B25) 2018; 31
Burger (B43) 2016; 132
Badran (B9); 11
Hong (B109) 2019; 34
Wang (B285) 2016; 35
Silvanto (B247) 2008; 12
Steenbergen (B253) 2015; 25
Kreuzer (B157) 2012; 3
Priovoulos (B220) 2018; 168
B137
Sooksood (B249) 2009
Lange (B162) 2011; 12
Murphy (B194) 2011; 48
Hasan (B102) 2015; 265
Kemp (B141) 2014; 125
Barbella (B16) 2018; 60
Dorr (B70) 2006; 318
Pardo (B211) 2007; 31
Gancheva (B86) 2018; 7
Kraus (B154) 2007; 114
Banni (B14) 2012; 7
Nassi (B199) 2015; 9
Joshi (B132) 2016; 89
Rufener (B229) 2018; 48
Moodithaya (B189) 2012; 2012
Sclocco (B236) 2018; 168
Johnson (B130) 2018; 11
Teckentrup (B260) 2020; 13
Valsalva (B275) 1704
Hirschberg (B107) 2017; 6
Koenig (B149) 2016; 64
Goldberger (B95) 2019; 73
Cakmak (B49) 2019; 13
Neuhaus (B202) 2007; 100
Ziemann (B312) 2002; 113
De Ridder (B66) 2014; 17
Keute (B142); 13
Lamb (B161) 2017; 4
Shikora (B243) 2013; 2013
Steenbergen (B252) 2020; 148
Polak (B218) 2009; 116
Vázquez-Oliver (B280) 2020; 13
Falkenberg (B74) 2012; 109
Butson (B46) 2005; 116
He (B104); 14
Betts (B21) 2019; 142
Gee (B89) 2014; 111
Mridha (B193) 2019
Kreuzer (B158) 2014; 7
Schwarz (B235) 2015; 524
Fang (B77) 2017; 14
Beste (B19) 2016; 9
Busch (B45) 2013; 6
Uthman (B273) 1993; 43
Yavich (B300) 2005; 95
Liu (B173) 2019; 74
Burger (B41) 2018; 11
Frangos (B83) 2015; 8
Van Leusden (B277) 2015; 6
Bianca (B22) 2007; 1177
Malik (B178) 1996; 1
Peuker (B217) 2002; 15
Sclocco (B239) 2019; 12
Gidron (B91) 2018; 7
Schevernels (B233) 2016; 64
Usichenko (B271); 10
Zabara (B307) 1985; 28
Ventura-Bort (B281) 2018; 12
Capone (B51) 2017; 2017
van Kempen (B276) 2019; 8
Frangos (B84) 2017; 10
Brack (B29) 2004; 89
Groves (B97) 2005; 379
Kaniusas (B140) 2020; 67
Morris (B191) 2016; 17
Salman (B230) 2015; 17
Juel (B133) 2017; 10
Khadka (B145) 2018; 11
von Elm (B284) 2008; 61
Barbanti (B15) 2015; 16
Ferrari (B79) 2011; 32
Sellaro (B240) 2018; 99
Silberstein (B245); 87
Koopman (B151) 2016; 113
B292
Capone (B50) 2015; 122
Kuo (B160) 2005; 16
Nieuwenhuis (B205) 2005; 131
Straube (B255) 2015; 16
Nemeroff (B200) 2006; 31
Sclocco (B238) 2020; 13
Yakunina (B297) 2018; 13
Allchin (B4) 1994; 79
Liu (B172) 2016; 205
Garcia (B87) 2017; 158
Bretherton (B31) 2019; 11
Maffiuletti (B177) 2008; 63
Ng (B204) 2001; 86
(B188) 2001; 285
Beaumont (B18) 2017; 313
Premchand (B219) 2014; 20
Ylikoski (B302) 2017; 137
Raedt (B221) 2011; 117
Desbeaumes Jodoin (B68) 2018; 34
Kong (B150) 2018; 9
Betts (B20) 2017; 163
Fallgatter (B76) 2003; 110
Yuan (B306); 56
Fischer (B81) 2018; 18
Vanneste (B278) 2017; 7
Wang (B286); 190
Gil (B92) 2011; 62
Mourdoukoutas (B192) 2018; 21
Jongkees (B131) 2018; 9
McGough (B182) 2019; 58
Guleyupoglu (B98) 2013; 219
Murray (B195); 199
Marrosu (B181) 2003; 55
Peterchev (B216) 2012; 5
Verkuil (B282) 2019; 113
Zhang (B310) 2018; 4
Tekdemir (B261) 1998; 20
Morris (B190) 2013; 13
Sztajzel (B258) 2008; 13
Colzato (B57); 111
Warren (B290) 2017; 78
Badran (B12); 11
Sooksood (B250) 2010; 4
Stefan (B254) 2012; 53
Burger (B39); 142
Roslin (B228) 2001; 2
Panebianco (B210) 2016; 116
Aston-Jones (B6) 2016; 1645
Warren (B289) 2019; 12
Burger (B40); 161
Krahl (B152) 2012; 3
Hämmerer (B99) 2018; 115
Hulsey (B117) 2017; 289
Burger (B38); 152
Keute (B143); 9
Liporace (B171) 2001; 57
Finisguerra (B80) 2019; 412
Tran (B268) 2019; 12
Kampusch (B136) 2013
Takemura (B259) 1987; 96
Paleczny (B209) 2019
Schulz-Stübner (B234) 2011; 37
Sellaro (B241); 6
Lv (B176) 2019; 10
Badran (B10); 11
Jiang (B126) 2016; 97
Minhas (B186) 2010; 190
Trujillo (B269) 2019; 200
Levine (B168) 2014; 1
Follesa (B82) 2007; 1179
Weise (B291) 2015; 10
Tobaldini (B264) 2019; 8
Vieira (B283) 2018; 33
Kalia (B135) 1982; 211
Mirza (B187) 2019; 13
Hosoi (B110) 2000; 279
De Taeye (B67) 2014; 11
Ay (B7) 2016; 9
Krahl (B153) 2003; 56
Perkins (B215) 2002; 63
Hyvärinen (B119) 2015; 36
Hansen (B100) 2019; 12
Murray (B196); 30
Heien (B105) 2004; 76
Dietrich (B69) 2008; 53
Xiong (B295) 2009; 73
Chakravarthy (B53) 2015; 19
Burger (B42) 2017; 97
Chen (B55) 2015; 187
Yao (B299) 2018; 9
Huffman (B116) 2019; 12
Afanasiev (B1) 2016; 21
Zhang (B311) 2019; 24
Njagi (B206) 2010; 82
Sator-Katzenschlager (B232) 2004; 98
Shim (B244) 2015; 19
Brooks (B34) 2013; 7
Borodovitsyna (B28) 2018; 373
Thayer (B263) 2009; 33
Napadow (B197) 2019; 24
Fallgatter (B75) 2005; 56
Huang (B114) 1974
Slenter (B248) 1984; 54
References_xml – volume: 74
  start-page: 101
  year: 2019
  ident: B173
  article-title: In vivo visualization of age-related differences in the locus coeruleus
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2018.10.014
– volume: 12
  start-page: 1349
  year: 2019
  ident: B23
  article-title: Transcranial electrical stimulation nomenclature
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.07.010
– volume: 57
  start-page: e13571
  ident: B36
  article-title: Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13571
– volume: 13
  start-page: 288
  year: 2019
  ident: B265
  article-title: Quantal release of dopamine and action potential firing detected in midbrain neurons by multifunctional diamond-based microarrays
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00288
– volume: 28
  start-page: 343
  ident: B103
  article-title: Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2013.02.001
– volume: 524
  start-page: 88
  year: 2015
  ident: B235
  article-title: Viral-genetic tracing of the input–output organization of a central noradrenaline circuit
  publication-title: Nature
  doi: 10.1038/nature14600
– volume: 12
  start-page: 221
  year: 2019
  ident: B268
  article-title: Autonomic neuromodulation acutely ameliorates left ventricular strain in humans
  publication-title: J. Cardiovasc. Transl. Res.
  doi: 10.1007/s12265-018-9853-6
– volume: 10
  start-page: 1347
  year: 2017
  ident: B133
  article-title: Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis
  publication-title: J. Pain Res.
  doi: 10.2147/JPR.S133438
– volume: 9
  start-page: 166
  year: 2016
  ident: B7
  article-title: Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.11.008
– volume: 111
  start-page: E618
  year: 2014
  ident: B89
  article-title: Decision-related pupil dilation reflects upcoming choice and individual bias
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1317557111
– volume: 63
  start-page: 1121
  year: 2002
  ident: B215
  article-title: Predictors of noncompliance in patients with schizophrenia
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.v63n1206
– volume: 34
  start-page: 283
  year: 2018
  ident: B68
  article-title: Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression
  publication-title: J. ECT
  doi: 10.1097/YCT.0000000000000502
– volume: 7
  start-page: 871
  year: 2014
  ident: B56
  article-title: Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.07.031
– volume: 102
  start-page: 123
  year: 2018
  ident: B288
  article-title: Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder
  publication-title: J. Psychiatric Res.
  doi: 10.1016/j.jpsychires.2017.12.018
– volume: 373
  start-page: 7
  year: 2018
  ident: B28
  article-title: Acute stress persistently alters locus coeruleus function and anxiety-like behavior in adolescent rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.01.020
– volume: 62
  start-page: 637
  year: 2011
  ident: B92
  article-title: Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet
  publication-title: J. Physiol. Pharmacol.
– ident: B129
– volume: 168
  start-page: 427
  year: 2018
  ident: B220
  article-title: High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.045
– ident: B137
  doi: 10.1007/978-3-319-74917-4
– volume: 10
  start-page: 353
  year: 2019
  ident: B223
  article-title: Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00353
– volume: 109
  start-page: 5069
  year: 2012
  ident: B74
  article-title: Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control
  publication-title: Proc. Natl Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1115628109
– volume: 56
  start-page: 1
  year: 2003
  ident: B153
  article-title: Right-sided vagus nerve stimulation reduces generalized seizure severity in rats as effectively as left-sided
  publication-title: Epilepsy Res.
  doi: 10.1016/s0920-1211(03)00122-0
– start-page: 1922
  volume-title: Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
  year: 2016
  ident: B309
  article-title: “An implantable microelectrode array for dopamine and electrophysiological recordings in response to L-dopa therapy for Parkinson's disease,”
– volume: 2015
  start-page: 495684
  year: 2015
  ident: B111
  article-title: The history mechanism, and clinical application of auricular therapy in traditional Chinese medicine
  publication-title: Evid Based Complement. Alternat. Med
  doi: 10.1155/2015/495684
– volume: 82
  start-page: 211
  year: 1934
  ident: B35
  article-title: The action of a single vagal volley on the rhythm of the heart beat
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1934.sp003176
– volume: 629
  start-page: 342
  year: 1993
  ident: B108
  article-title: Blood pressure and heart rate relationships during cervical sympathetic and vagus nerve stimulation in streptozotocin diabetic rats
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(93)91343-Q
– volume: 1
  start-page: 151
  year: 1996
  ident: B178
  article-title: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology
  publication-title: Annals Noninv. Electrocardiol.
  doi: 10.1111/j.1542-474X.1996.tb00275.x
– volume: 36
  start-page: 1860
  year: 2015
  ident: B122
  article-title: Transcutaneous vagus nerve stimulation boosts associative memory in older individuals
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2015.02.023
– volume: 54
  start-page: 436
  year: 1984
  ident: B248
  article-title: Vagal control of pacemaker periodicity and intranodal conduction in the rabbit sinoatrial node
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.54.4.436
– volume: 11
  start-page: 612
  year: 2014
  ident: B67
  article-title: The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-014-0272-3
– volume: 29
  start-page: e12999
  year: 2017
  ident: B32
  article-title: Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha
  publication-title: Neurogastroenterol. Motil.
  doi: 10.1111/nmo.12999
– volume: 82
  start-page: 989
  year: 2010
  ident: B206
  article-title: Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor
  publication-title: Anal. Chem.
  doi: 10.1021/ac9022605
– volume: 9
  start-page: 356
  year: 2016
  ident: B17
  article-title: Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02)
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.11.003
– volume: 10
  start-page: 1042
  ident: B271
  article-title: Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.07.013
– volume: 379
  start-page: 174
  year: 2005
  ident: B97
  article-title: Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2004.12.055
– volume: 13
  start-page: 772
  ident: B138
  article-title: Current directions in the auricular vagus nerve stimulation II – an engineering perspective
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00772
– volume: 60
  start-page: 115
  year: 2018
  ident: B16
  article-title: Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy
  publication-title: Seizure
  doi: 10.1016/j.seizure.2018.06.016
– volume: 11
  start-page: 1044
  year: 2018
  ident: B145
  article-title: Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.07.049
– volume: 86
  start-page: 319
  year: 2001
  ident: B204
  article-title: Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated langendorff perfused rabbit heart with intact dual autonomic innervation
  publication-title: Exp. Physiol.
  doi: 10.1113/eph8602146
– volume: 87
  start-page: 529
  ident: B245
  article-title: Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the EVENT study
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002918
– volume: 12
  start-page: 635
  year: 2019
  ident: B289
  article-title: The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.12.224
– year: 1704
  ident: B275
  publication-title: De Aura Humana Tractatus and Trajecti ad Rhenum Urecht
– volume: 11
  start-page: 501
  year: 2018
  ident: B270
  article-title: A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.01.006
– volume: 10
  start-page: 609
  year: 2016
  ident: B127
  article-title: Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00609
– volume: 17
  start-page: 1215
  year: 2006
  ident: B231
  article-title: Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000227984.84927.a7
– volume: 53
  start-page: 104
  year: 2008
  ident: B69
  article-title: A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / funktionelle magnetresonanztomographie zeigt aktivierungen des hirnstamms und weiterer zerebraler strukturen unter transkutaner vagusnervstimulation
  publication-title: Biomed. Tech/Biomed. Eng.
  doi: 10.1515/BMT.2008.022
– volume: 6
  start-page: 202
  year: 2013
  ident: B45
  article-title: The effect of transcutaneous vagus nerve stimulation on pain perception – an experimental study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2012.04.006
– volume: 27
  start-page: 1650048
  year: 2017
  ident: B294
  article-title: EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500489
– volume: 11
  start-page: 945
  year: 2018
  ident: B41
  article-title: Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve?
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.03.018
– volume: 7
  start-page: 17345
  year: 2017
  ident: B278
  article-title: Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17750-y
– volume: 89
  start-page: 221
  year: 2016
  ident: B132
  article-title: Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.028
– volume: 9
  start-page: 11452
  ident: B143
  article-title: No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47961-4
– volume: 58
  start-page: 1
  year: 2013
  ident: B279
  article-title: Comparison of current and voltage control techniques for neuromuscular electrical stimulation in the anterior thigh
  publication-title: Biomed. Tech
  doi: 10.1515/bmt-2013-4021
– volume: 190
  start-page: 9
  ident: B286
  article-title: Unilateral low-level transcutaneous electrical vagus nerve stimulation: a novel noninvasive treatment for myocardial infarction
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.04.087
– volume: 39
  start-page: 105
  year: 2014
  ident: B2
  article-title: A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2014.08.005
– volume: 236
  start-page: 588
  year: 2020
  ident: B47
  article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation
  publication-title: J. Anat.
  doi: 10.1111/joa.13122
– volume: 9
  start-page: 20
  year: 2018
  ident: B150
  article-title: Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2018.00020
– volume: 163
  start-page: 150
  year: 2017
  ident: B20
  article-title: In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.042
– volume: 31
  start-page: S40
  year: 1990
  ident: B214
  article-title: Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1990.tb05848.x
– volume: 79
  start-page: 266
  year: 2016
  ident: B78
  article-title: Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.03.025
– volume: 2017
  start-page: 7876507
  year: 2017
  ident: B51
  article-title: Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke
  publication-title: Neural Plasticity
  doi: 10.1155/2017/7876507
– volume: 586
  start-page: 3963
  year: 2008
  ident: B96
  article-title: Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer–Hering) reflex pathway
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.154567
– volume: 78
  start-page: 233
  year: 2017
  ident: B290
  article-title: Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2017.01.029
– volume: 24
  start-page: 101971
  year: 2019
  ident: B311
  article-title: Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2019.101971
– volume: 236
  start-page: 253
  ident: B59
  article-title: Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-017-5123-0
– volume: 2
  start-page: S11
  year: 2001
  ident: B228
  article-title: The use of electrical stimulation of the vagus nerve to treat morbid obesity
  publication-title: Epilepsy Behav.
  doi: 10.1006/ebeh.2001.0213
– volume: 56
  start-page: 71
  ident: B305
  article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I
  publication-title: Headache
  doi: 10.1111/head.12647
– volume: 113
  start-page: 8284
  year: 2016
  ident: B151
  article-title: Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1605635113
– volume: 31
  start-page: 1756
  year: 2007
  ident: B211
  article-title: Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity
  publication-title: Int. J. Obesity
  doi: 10.1038/sj.ijo.0803666
– volume: 10
  start-page: e0120786
  year: 2015
  ident: B291
  article-title: Assessment of brainstem function with auricular branch of vagus nerve stimulation in Parkinson's disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0120786
– volume: 185
  start-page: 120
  year: 2014
  ident: B164
  article-title: Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation
  publication-title: Auton. Neurosci. Basic Clin.
  doi: 10.1016/j.autneu.2014.07.008
– volume: 141
  start-page: 171
  year: 2005
  ident: B183
  article-title: Electrical stimulation of excitable tissue: design of efficacious and safe protocols
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2004.10.020
– volume: 16
  start-page: 61
  year: 2015
  ident: B15
  article-title: Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study
  publication-title: J. Headache Pain
  doi: 10.1186/s10194-015-0542-4
– volume: 76
  start-page: 5697
  year: 2004
  ident: B105
  article-title: Resolving neurotransmitters detected by fast-scan cyclic voltammetry
  publication-title: Anal. Chem.
  doi: 10.1021/ac0491509
– volume: 7
  start-page: 17886
  year: 2017
  ident: B90
  article-title: Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18183-3
– volume: 33
  start-page: 1005
  year: 1992
  ident: B308
  article-title: Inhibition of experimental seizures in canines by repetitive vagal stimulation
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1992.tb01751.x
– volume: 52
  start-page: 642
  year: 1983
  ident: B124
  article-title: Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.52.6.642
– volume: 67
  start-page: 1921
  year: 2020
  ident: B140
  article-title: Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2950777
– volume: 1
  start-page: 34
  year: 2014
  ident: B168
  article-title: Neurostimulation of the cholinergic antiinflammatory pathway in rheumatoid arthritis and inflammatory bowel disease
  publication-title: Bioelectron. Med.
  doi: 10.15424/bioelectronmed.2014.00008
– year: 2019
  ident: B203
  article-title: Vagus nerve stimulation increases vigor to work for rewards
  publication-title: BioRxiv [Preprint].
  doi: 10.1101/789982
– start-page: 3130
  volume-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2017
  ident: B237
  article-title: “Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) effects on autonomic outflow in hypertension,”
  doi: 10.1109/EMBC.2017.8037520
– volume: 65
  start-page: 867
  year: 2015
  ident: B251
  article-title: Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.12.026
– volume: 30
  start-page: 754
  ident: B196
  article-title: Transcutaneous vagus nerve stimulation (tVNS) decreases sympathetic nerve activity in older healthy human subjects
  publication-title: FASEB J.
  doi: 10.1136/heartjnl-2016-309890.215
– volume: 19
  start-page: 159
  year: 2015
  ident: B244
  article-title: Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus
  publication-title: J. Audiol. Otol.
  doi: 10.7874/jao.2015.19.3.159
– volume: 195
  start-page: 172
  year: 2016
  ident: B226
  article-title: Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2016.02.031
– volume: 8
  start-page: e69424
  year: 2013
  ident: B256
  article-title: Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0069424
– volume: 1392
  start-page: 110
  year: 2011
  ident: B8
  article-title: Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2011.03.060
– volume: 64
  start-page: 171
  year: 2016
  ident: B233
  article-title: The effect of vagus nerve stimulation on response inhibition
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2016.09.014
– volume: 142
  start-page: 80
  ident: B39
  article-title: Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2019.01.014
– volume: 3
  start-page: 285
  year: 2012
  ident: B146
  article-title: Optimizing the temporal resolution of fast-scan cyclic voltammetry
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn200119u
– volume: 161
  start-page: 192
  ident: B40
  article-title: The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2019.04.006
– volume: 84
  start-page: 1249
  year: 2015
  ident: B201
  article-title: Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001394
– volume: 11
  start-page: 947
  ident: B9
  article-title: Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS)
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.06.003
– volume: 56
  start-page: 1317
  ident: B246
  article-title: Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study
  publication-title: Headache
  doi: 10.1111/head.12896
– volume: 219
  start-page: 297
  year: 2013
  ident: B98
  article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.07.016
– volume: 1709
  start-page: 50
  year: 2019
  ident: B267
  article-title: Noradrenergic ensemble-based modulation of cognition over multiple timescales
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2018.12.031
– volume: 265
  start-page: 589
  year: 2015
  ident: B102
  article-title: Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-015-0618-9
– volume: 6
  start-page: e29808
  year: 2017
  ident: B107
  article-title: Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats
  publication-title: ELife
  doi: 10.7554/eLife.29808.027
– volume: 15
  start-page: 527
  year: 2018
  ident: B185
  article-title: Recent advances in devices for vagus nerve stimulation
  publication-title: Expert Rev. Med. Devices
  doi: 10.1080/17434440.2018.1507732
– volume: 142
  start-page: 2558
  year: 2019
  ident: B21
  article-title: Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases
  publication-title: Brain
  doi: 10.1093/brain/awz193
– volume: 99
  start-page: 213
  year: 2018
  ident: B240
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies
  publication-title: Cortex
  doi: 10.1016/j.cortex.2017.11.007
– volume: 12
  start-page: 19
  year: 2019
  ident: B116
  article-title: Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.10.005
– volume: 6
  start-page: 254
  year: 2011
  ident: B73
  article-title: Transcutaneous vagus nerve stimulation
  publication-title: Eur. Neurol. Rev.
  doi: 10.17925/ENR.2011.06.04.254
– volume: 129
  start-page: 1789
  year: 2018
  ident: B144
  article-title: Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.05.026
– volume: 48
  start-page: 2301
  year: 2018
  ident: B229
  article-title: Modulating auditory selective attention by non-invasive brain stimulation: differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.14128
– volume: 146
  start-page: 76
  year: 2017
  ident: B134
  article-title: Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease
  publication-title: J. Neurochem
  doi: 10.1111/jnc.14284
– volume: 9
  start-page: 80
  year: 2015
  ident: B199
  article-title: Neuroanatomy goes viral!
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2015.00080
– volume: 312
  start-page: 915
  year: 2014
  ident: B120
  article-title: Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2014.10540
– volume: 6
  start-page: 102
  year: 2015
  ident: B277
  article-title: Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans?
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.00102
– volume: 116
  start-page: 2490
  year: 2005
  ident: B46
  article-title: Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.06.023
– volume: 11
  start-page: 1276
  year: 2020
  ident: B93
  article-title: Transcutaneous vagus nerve stimulation (tVNS) improves high confidence recognition memory but not emotional word processing
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.01276
– volume: 12
  start-page: 202
  year: 2018
  ident: B281
  article-title: Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00202
– volume: 143
  start-page: 984
  year: 2019
  ident: B13
  article-title: Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): technique, targeting, and considerations
  publication-title: J. Visual. Exp.
  doi: 10.3791/58984
– volume: 120
  start-page: 821
  year: 2013
  ident: B106
  article-title: Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-012-0908-6
– volume: 127
  start-page: 1031
  year: 2016
  ident: B293
  article-title: A technical guide to tDCS, and related non-invasive brain stimulation tools
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.11.012
– volume: 10
  start-page: 1529
  year: 2020
  ident: B257
  article-title: Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training
  publication-title: Sci. Rep
  doi: 10.1038/s41598-020-58412-w
– year: 2014
  ident: B225
  article-title: Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial
  publication-title: Clin. Sci.
  doi: 10.1042/CS20130518
– volume: 32
  start-page: 1881
  year: 2020
  ident: B266
  article-title: Noradrenergic regulation of cognitive flexibility: no effects of stress, transcutaneous vagus nerve stimulation, and atomoxetine on task-switching in humans
  publication-title: J. Cogn. Neurosci
  doi: 10.1162/jocn_a_01603
– volume: 91
  start-page: 5130
  year: 2006
  ident: B72
  article-title: Salivary alpha-amylase levels after yohimbine challenge in healthy men
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2006-0461
– volume: 13
  start-page: 911
  year: 2019
  ident: B208
  article-title: Vagus nerve stimulation in rodent models: an overview of technical considerations
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00911
– volume: 48
  start-page: 1532
  year: 2011
  ident: B194
  article-title: Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2011.01226.x
– volume: 190
  start-page: 188
  year: 2010
  ident: B186
  article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.05.007
– volume: 98
  start-page: 455
  year: 2018
  ident: B128
  article-title: Effects of vagus nerve stimulation on pupillary function
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2015.10.001
– volume: 8
  start-page: 624
  year: 2015
  ident: B83
  article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: FMRI evidence in humans
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.11.018
– volume: 117
  start-page: 461
  year: 2011
  ident: B221
  article-title: Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2011.07214.x
– volume: 34
  start-page: 417
  year: 2019
  ident: B109
  article-title: Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial
  publication-title: Int. J. Colorectal Dis.
  doi: 10.1007/s00384-018-3204-6
– volume: 168
  start-page: 412
  year: 2018
  ident: B236
  article-title: Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.052
– volume: 8
  start-page: 496
  year: 2019
  ident: B264
  article-title: Cardiac and peripheral autonomic responses to orthostatic stress during transcutaneous vagus nerve stimulation in healthy subjects
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm8040496
– volume: 55
  start-page: 59
  year: 2003
  ident: B181
  article-title: Correlation between GABAA receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy
  publication-title: Epilepsy Res.
  doi: 10.1016/S0920-1211(03)00107-4
– volume: 117
  start-page: 729
  year: 2010
  ident: B115
  article-title: The sympathetic-vagal balance against endotoxemia
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-010-0407-6
– ident: B222
– volume: 61
  start-page: 201
  year: 2000
  ident: B262
  article-title: A model of neurovisceral integration in emotion regulation and dysregulation
  publication-title: J. Affect. Disord.
  doi: 10.1016/S0165-0327(00)00338-4
– volume: 10
  start-page: 1511
  year: 2017
  ident: B304
  article-title: Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2017.04.036
– volume: 58
  start-page: 452
  year: 2002
  ident: B163
  article-title: Corning and vagal nerve stimulation for seizures in the 1880s
  publication-title: Neurology
  doi: 10.1212/WNL.58.3.452
– volume: 7
  start-page: 71
  year: 2018
  ident: B86
  article-title: Constant hepatic ATP concentrations during prolonged fasting and absence of effects of cerbomed nemos® on parasympathetic tone and hepatic energy metabolism
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2017.10.002
– volume: 74
  start-page: 1761
  year: 1977
  ident: B33
  article-title: Interaction of myogenic and neurogenic mechanisms that control heart rate
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.74.4.1761
– volume: 57
  start-page: 885
  year: 2001
  ident: B171
  article-title: Vagal nerve stimulation: adjustments to reduce painful side effects
  publication-title: Neurology
  doi: 10.1212/WNL.57.5.885
– volume: 16
  start-page: 459
  year: 2013
  ident: B180
  article-title: Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145712000387
– volume: 8
  start-page: 752
  year: 2018
  ident: B175
  article-title: Neuroprosthetics for auricular muscles: neural networks and clinical aspects
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00752
– volume: 14
  start-page: 105
  year: 2017
  ident: B77
  article-title: Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2016.12.016
– volume: 13
  start-page: 270
  year: 2008
  ident: B258
  article-title: Reproducibility and gender-related differences of heart rate variability during all-day activity in young men and women
  publication-title: Ann. Noninvasive Electrocardiol.
  doi: 10.1111/j.1542-474X.2008.00231.x
– volume: 200
  start-page: 191
  year: 2019
  ident: B269
  article-title: Quantitative magnetization transfer imaging of the human locus coeruleus
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.049
– volume: 63
  start-page: 507
  year: 2008
  ident: B177
  article-title: Differences in electrical stimulation thresholds between men and women
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21346
– volume: 17
  start-page: 59
  year: 2015
  ident: B230
  article-title: Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-015-0571-z
– volume: 32
  start-page: 847
  year: 2011
  ident: B79
  article-title: Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehq391
– volume: 137
  start-page: 426
  year: 2017
  ident: B302
  article-title: Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus
  publication-title: Acta Oto Laryngol.
  doi: 10.1080/00016489.2016.1269197
– volume: 21
  start-page: 548
  year: 2016
  ident: B1
  article-title: Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction
  publication-title: Ann. Noninvasive Electrocardiol.
  doi: 10.1111/anec.12349
– volume: 31
  start-page: 1345
  year: 2006
  ident: B200
  article-title: VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301082
– volume: 11
  start-page: 203
  year: 2018
  ident: B130
  article-title: A review of vagus nerve stimulation as a therapeutic intervention
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S163248
– volume: 13
  start-page: 297
  year: 2013
  ident: B190
  article-title: Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy
  publication-title: Epilepsy Curr.
  doi: 10.5698/1535-7597-13.6.297
– volume: 13
  start-page: 854
  ident: B139
  article-title: Current directions in the auricular vagus nerve stimulation I – a physiological perspective
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00854
– volume: 8
  start-page: 582
  year: 2017
  ident: B148
  article-title: A meta-analysis on sex differences in resting-state vagal activity in children and adolescents
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00582
– volume: 16
  start-page: 543
  year: 2015
  ident: B255
  article-title: Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): A randomized, monocentric clinical trial
  publication-title: J. Headache Pain
  doi: 10.1186/s10194-015-0543-3
– volume: 11
  start-page: 30
  ident: B272
  article-title: Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9502-5
– start-page: 5518
  volume-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
  year: 2009
  ident: B249
  article-title: “Recent advances in charge balancing for functional electrical stimulation,”
– volume: 122
  start-page: 679
  year: 2015
  ident: B50
  article-title: The effect of transcutaneous vagus nerve stimulation on cortical excitability
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-014-1299-7
– volume: 8
  start-page: 11471
  year: 2018
  ident: B37
  article-title: Transcutaneous vagus nerve stimulation and extinction of prepared fear: a conceptual non-replication
  publication-title: Sci. Rep
  doi: 10.1038/s41598-018-29561-w
– volume: 116
  start-page: 1237
  year: 2009
  ident: B218
  article-title: Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-009-0282-1
– volume: 13
  start-page: 470
  year: 2020
  ident: B260
  article-title: Non-invasive stimulation of vagal afferents reduces gastric frequency
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.12.018
– volume: 31
  start-page: 198
  year: 2018
  ident: B25
  article-title: Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000534
– volume: 2012
  start-page: 679345
  year: 2012
  ident: B189
  article-title: Gender differences in age-related changes in cardiac autonomic nervous function
  publication-title: J. Aging Res.
  doi: 10.1155/2012/679345
– volume: 132
  start-page: 49
  year: 2016
  ident: B43
  article-title: The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2016.05.007
– volume: 35
  start-page: 415
  year: 2016
  ident: B285
  article-title: Vagal modulation of the inflammatory response in sepsis
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830185.2015.1127369
– volume: 7
  start-page: e44813
  year: 2012
  ident: B14
  article-title: Vagus nerve stimulation reduces body weight and fat mass in rats
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0044813
– volume: 18
  start-page: 680
  year: 2018
  ident: B81
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-018-0596-2
– volume-title: Ear Acupuncture
  year: 1974
  ident: B114
– volume: 7
  start-page: 740
  year: 2014
  ident: B158
  article-title: Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.05.003
– volume: 59
  start-page: 463
  year: 2002
  ident: B44
  article-title: Weight loss associated with vagus nerve stimulation
  publication-title: Neurology
  doi: 10.1212/WNL.59.3.463
– volume: 17
  start-page: 43
  year: 2016
  ident: B191
  article-title: Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache
  publication-title: J. Headache Pain
  doi: 10.1186/s10194-016-0633-x
– volume: 100
  start-page: 123
  year: 2007
  ident: B202
  article-title: P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2006.10.005
– volume: 115
  start-page: 2228
  year: 2018
  ident: B99
  article-title: Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1712268115
– volume: 20
  start-page: 808
  year: 2014
  ident: B219
  article-title: Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial
  publication-title: J. Cardiac Failure
  doi: 10.1016/j.cardfail.2014.08.009
– volume: 37
  start-page: 1048
  year: 2011
  ident: B234
  article-title: Treatment of persistent hiccups with transcutaneous phrenic and vagal nerve stimulation
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-011-2150-3
– volume: 89
  start-page: 128
  year: 2004
  ident: B29
  article-title: Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2003.002654
– volume: 211
  start-page: 248
  year: 1982
  ident: B135
  article-title: Brainstem projections of sensory and motor components of the vagus nerve in the rat
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902110304
– volume: 19
  start-page: 283
  year: 2016
  ident: B166
  article-title: Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial: noninvasive vagus nerve stimulation modulates peripheral inflammation
  publication-title: Neuromodulation
  doi: 10.1111/ner.12398
– volume: 116
  start-page: 241
  year: 2016
  ident: B210
  article-title: Vagus nerve stimulation therapy in partial epilepsy: a review
  publication-title: Acta Neurol. Belgica
  doi: 10.1007/s13760-016-0616-3
– volume: 16
  start-page: 195
  year: 2011
  ident: B63
  article-title: Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-010-9216-0
– volume: 13
  start-page: 777
  year: 2012
  ident: B198
  article-title: Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation
  publication-title: Pain Med.
  doi: 10.1111/j.1526-4637.2012.01385.x
– volume: 11
  start-page: 1225
  year: 2018
  ident: B224
  article-title: Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.08.010
– volume: 9
  start-page: 1159
  year: 2018
  ident: B131
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01159
– volume: 199
  start-page: 48
  ident: B195
  article-title: The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control
  publication-title: Auton. Neurosci. Basic Clin.
  doi: 10.1016/j.autneu.2016.06.004
– volume: 14
  start-page: e0223848
  year: 2019
  ident: B27
  article-title: Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0223848
– volume: 56
  start-page: 259
  ident: B306
  article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II
  publication-title: Headache
  doi: 10.1111/head.12650
– volume: 11
  start-page: 699
  ident: B12
  article-title: Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.04.004
– volume: 9
  start-page: 811
  year: 2016
  ident: B19
  article-title: Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—a study using transcutaneous vagus nerve stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.07.004
– year: 2019
  ident: B193
  article-title: Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve
  publication-title: bioRxiv [Preprint]
  doi: 10.1101/2019.12.28.890111
– volume: 55
  start-page: 245
  year: 2010
  ident: B274
  article-title: Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs
  publication-title: Appetite
  doi: 10.1016/j.appet.2010.06.008
– volume: 10
  start-page: 392
  year: 2019
  ident: B30
  article-title: EEG Reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00392
– volume: 14
  start-page: 77
  year: 2020
  ident: B11
  article-title: Transcutaneous auricular vagus nerve stimulation-paired rehabilitation for oromotor feeding problems in newborns: an open-label pilot study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00077
– volume: 187
  start-page: 44
  year: 2015
  ident: B55
  article-title: The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence?
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.03.351
– volume: 72
  start-page: 1376
  year: 2011
  ident: B61
  article-title: Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.09m05888blu
– volume: 16
  start-page: 864
  year: 2005
  ident: B160
  article-title: Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.2005.40656.x
– volume: 1645
  start-page: 75
  year: 2016
  ident: B6
  article-title: Locus coeruleus: from global projection system to adaptive regulation of behavior
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.03.001
– volume: 3
  start-page: S255
  year: 2012
  ident: B152
  article-title: Vagus nerve stimulation for epilepsy: a review of central mechanisms
  publication-title: Surg. Neurol. Int.
  doi: 10.4103/2152-7806.103015
– volume: 4
  start-page: 162
  year: 2010
  ident: B250
  article-title: An active approach for charge balancing in functional electrical stimulation
  publication-title: IEEE Trans. Biomed. Circ. Syst.
  doi: 10.1109/TBCAS.2010.2040277
– volume: 10
  start-page: 64
  year: 2019
  ident: B176
  article-title: Vagus nerve stimulation for depression: a systematic review
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2019.00064
– volume: 110
  start-page: 1437
  year: 2003
  ident: B76
  article-title: Far field potentials from the brain stem after transcutaneous vagus nerve stimulation
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-003-0087-6
– volume: 594
  start-page: 5791
  year: 2016
  ident: B65
  article-title: Role of the vagus nerve in the development and treatment of diet-induced obesity
  publication-title: J. Physiol.
  doi: 10.1113/JP271538
– volume: 5
  start-page: 435
  year: 2012
  ident: B216
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.10.001
– volume: 12
  start-page: 447
  year: 2008
  ident: B247
  article-title: State-dependency in brain stimulation studies of perception and cognition
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2008.09.004
– volume: 1
  start-page: 64
  year: 2014
  ident: B112
  article-title: Vagus nerve stimulation
  publication-title: Curr. Behav. Neurosci. Rep.
  doi: 10.1007/s40473-014-0010-5
– volume: 15
  start-page: 35
  year: 2002
  ident: B217
  article-title: The nerve supply of the human auricle
  publication-title: Clin. Anat.
  doi: 10.1002/ca.1089
– volume: 28
  start-page: 604
  year: 1985
  ident: B307
  article-title: Time course of seizure control to brief, repetitive stimuli
  publication-title: Epilepsia
– volume: 13
  start-page: 421
  year: 2019
  ident: B49
  article-title: Concerning auricular vagal nerve stimulation: occult neural networks
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00421
– volume: 205
  start-page: 319
  year: 2016
  ident: B172
  article-title: Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2016.08.003
– volume: 10
  start-page: 875
  year: 2017
  ident: B5
  article-title: Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.05.006
– volume: 6
  start-page: 499
  ident: B241
  article-title: Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.00499
– volume: 140
  start-page: 629
  year: 2017
  ident: B3
  article-title: Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13931
– volume: 1179
  start-page: 28
  year: 2007
  ident: B82
  article-title: Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.08.045
– volume: 73
  start-page: 938
  year: 2009
  ident: B295
  article-title: Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients
  publication-title: Med. Hypoth.
  doi: 10.1016/j.mehy.2009.06.033
– volume: 277
  start-page: H2233
  year: 1999
  ident: B159
  article-title: Effect of aging on gender differences in neural control of heart rate
  publication-title: Am. J. Physiol
  doi: 10.1152/ajpheart.1999.277.6.H2233
– volume: 13
  start-page: 970
  year: 2020
  ident: B238
  article-title: Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2020.03.011
– volume: 111
  start-page: 72
  ident: B57
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2018.01.003
– volume: 13
  start-page: 1
  year: 2020
  ident: B121
  article-title: A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.10.006
– volume: 53
  start-page: e115
  year: 2012
  ident: B254
  article-title: Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03492.x
– volume: 6
  start-page: 798
  year: 2013
  ident: B155
  article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2013.01.011
– volume: 6
  start-page: 25
  year: 1957
  ident: B207
  article-title: Über die akupunktur der ohrmuschel
  publication-title: Dt Ztschr Akup
– volume: 27
  start-page: 2126
  ident: B242
  article-title: Transcutaneous vagus nerve stimulation enhances post-error slowing
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00851
– volume: 152
  start-page: 107863
  ident: B38
  article-title: From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: a report of three studies
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2020.107863
– volume: 19
  start-page: 54
  year: 2015
  ident: B53
  article-title: Review of the uses of vagal nerve stimulation in chronic pain management
  publication-title: Curr. Pain Headache Rep.
  doi: 10.1007/s11916-015-0528-6
– start-page: 263
  volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
  year: 2013
  ident: B136
  article-title: “New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve,”
  doi: 10.1109/NER.2013.6695922
– volume: 114
  start-page: 1485
  year: 2007
  ident: B154
  article-title: BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-007-0755-z
– volume: 7
  start-page: 371
  year: 2018
  ident: B91
  article-title: The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm7100371
– volume: 97
  start-page: 64
  year: 2017
  ident: B42
  article-title: Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear
  publication-title: Behav. Res. Ther.
  doi: 10.1016/j.brat.2017.07.005
– volume: 21
  start-page: 261
  year: 2018
  ident: B192
  article-title: High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation
  publication-title: Neuromodulation
  doi: 10.1111/ner.12706
– volume: 4
  start-page: 124
  year: 2017
  ident: B161
  article-title: Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence
  publication-title: Front. Med.
  doi: 10.3389/fmed.2017.00124
– start-page: S7
  ident: B292
  publication-title: Effects of vagal stimulation on experimentally induced seizures in rats
  doi: 10.1111/j.1528-1157.1990.tb05852.x
– volume: 7
  start-page: 623
  year: 2013
  ident: B34
  article-title: Physiological noise in brainstem fMRI
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00623
– volume: 13
  start-page: e0207281
  year: 2018
  ident: B297
  article-title: BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207281
– volume: 33
  start-page: 81
  year: 2009
  ident: B263
  article-title: Claude bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2008.08.004
– volume: 30
  start-page: e12643
  year: 2018
  ident: B60
  article-title: The role of the vagus nerve in appetite control: implications for the pathogenesis of obesity
  publication-title: J. Neuroendocrinol.
  doi: 10.1111/jne.12643
– volume: 412
  start-page: 144
  year: 2019
  ident: B80
  article-title: Transcutaneous vagus nerve stimulation affects implicit spiritual self-representations
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.05.059
– volume: 318
  start-page: 890
  year: 2006
  ident: B70
  article-title: Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.106.104166
– volume: 125
  start-page: 602
  year: 2014
  ident: B141
  article-title: Age-related decrease in sensitivity to electrical stimulation is unrelated to skin conductance: an evoked potentials study
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.08.020
– volume: 133
  start-page: 378
  year: 2013
  ident: B165
  article-title: Transcutaneous vagus nerve stimulation in tinnitus: a pilot study
  publication-title: Acta Oto Laryngol.
  doi: 10.3109/00016489.2012.750736
– volume: 14
  start-page: 203
  year: 2014
  ident: B113
  article-title: Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study
  publication-title: BMC Complement. Alternat. Med.
  doi: 10.1186/1472-6882-14-203
– volume: 21
  start-page: 485
  year: 1994
  ident: B71
  article-title: Sex differences in the parasympathetic nerve control of rat heart
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/j.1440-1681.1994.tb02545.x
– volume: 131
  start-page: 510
  year: 2005
  ident: B205
  article-title: Decision making, the P3, and the locus coeruleus-norepinephrine system
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.131.4.510
– volume: 246
  start-page: 285
  year: 1982
  ident: B123
  article-title: Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(82)91177-5
– volume: 73
  start-page: 64
  year: 2019
  ident: B95
  article-title: Autonomic nervous system dysfunction
  publication-title: J. Am. College Cardiol.
  doi: 10.1016/j.jacc.2018.12.064
– volume: 14
  start-page: 523
  year: 2020
  ident: B26
  article-title: Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00523
– volume: 285
  start-page: 1987
  year: 2001
  ident: B188
  article-title: The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials
  publication-title: JAMA
  doi: 10.1001/jama.285.15.1987
– volume: 8
  start-page: 25
  year: 2014
  ident: B156
  article-title: Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00025
– volume: 1119
  start-page: 124
  year: 2006
  ident: B227
  article-title: Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.08.048
– volume: 2013
  start-page: 245683
  year: 2013
  ident: B243
  article-title: Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus
  publication-title: J. Obes.
  doi: 10.1155/2013/245683
– volume: 158
  start-page: 1461
  year: 2017
  ident: B87
  article-title: Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000000930
– volume: 36
  start-page: e76
  year: 2015
  ident: B119
  article-title: Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0000000000000123
– volume: 8
  start-page: 743
  year: 2012
  ident: B212
  article-title: The vagus nerve and the inflammatory reflex–linking immunity and metabolism
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2012.189
– volume: 61
  start-page: 344
  year: 2008
  ident: B284
  article-title: The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2007.11.008
– volume: 1
  start-page: 93
  year: 2000
  ident: B101
  article-title: A pilot study of mood in epilepsy patients treated with vagus nerve stimulation
  publication-title: Epilepsy Behav.
  doi: 10.1006/ebeh.2000.0046
– volume: 9
  start-page: 469
  year: 2016
  ident: B52
  article-title: Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.03.011
– volume: 13
  start-page: 808
  year: 2019
  ident: B187
  article-title: Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00808
– volume: 20
  start-page: 290
  year: 2017
  ident: B296
  article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI
  publication-title: Neuromodulation
  doi: 10.1111/ner.12541
– volume: 11
  start-page: 4836
  year: 2019
  ident: B31
  article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation
  publication-title: Aging
  doi: 10.18632/aging.102074
– volume: 13
  start-page: 227
  ident: B142
  article-title: Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00227
– volume: 1177
  start-page: 29
  year: 2007
  ident: B22
  article-title: Pupil dilatation in response to vagal afferent electrical stimulation is mediated by inhibition of parasympathetic outflow in the rat
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.06.104
– volume: 25
  start-page: 208
  year: 2013
  ident: B24
  article-title: Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway
  publication-title: Neurogastroenterol. Motil.
  doi: 10.1111/nmo.12076
– volume: 13
  start-page: 494
  year: 2020
  ident: B280
  article-title: Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.12.024
– volume: 79
  start-page: 265
  year: 1994
  ident: B4
  article-title: Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.1994.sp003761
– volume: 113
  start-page: 25
  year: 2019
  ident: B282
  article-title: Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers
  publication-title: Behav. Res. Ther.
  doi: 10.1016/j.brat.2018.12.009
– volume: 35
  start-page: 2762
  year: 2007
  ident: B118
  article-title: Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis
  publication-title: Crit.Care Med.
  doi: 10.1097/01.CCM.0000288102.15975.BA
– volume: 56
  start-page: 37
  year: 2005
  ident: B75
  article-title: Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2004.09.007
– volume: 11
  start-page: 338
  year: 2017
  ident: B48
  article-title: Rapid alleviation of parkinson's disease symptoms via electrostimulation of intrinsic auricular muscle zones
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00338
– volume: 39
  start-page: 8239
  year: 2019
  ident: B54
  article-title: Redefining noradrenergic neuromodulation of behavior: impacts of a modular locus coeruleus architecture
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1164-19.2019
– volume: 34
  start-page: 272
  year: 2009
  ident: B179
  article-title: Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation
  publication-title: J. Psychiatry Neurosci.
– volume: 92
  start-page: 95
  year: 2017
  ident: B58
  article-title: Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions
  publication-title: Cortex
  doi: 10.1016/j.cortex.2017.03.017
– volume: 64
  start-page: 288
  year: 2016
  ident: B149
  article-title: Sex differences in healthy human heart rate variability: a meta-analysis
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2016.03.007
– volume: 12
  start-page: 911
  year: 2019
  ident: B239
  article-title: The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.02.003
– volume: 8
  start-page: e42541
  year: 2019
  ident: B276
  article-title: Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal
  publication-title: ELife
  doi: 10.7554/eLife.42541
– volume: 12
  start-page: 955
  year: 2019
  ident: B100
  article-title: Memory reinforcement and attenuation by activating the human locus coeruleus via transcutaneous vagus nerve stimulation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00955
– volume: 279
  start-page: R141
  year: 2000
  ident: B110
  article-title: Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.2000.279.1.R141
– volume: 4
  start-page: 1
  year: 2018
  ident: B310
  article-title: Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson's disease using nano-based microelectrode arrays
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2017.70
– volume: 28
  start-page: 592
  year: 2016
  ident: B85
  article-title: Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity
  publication-title: Neurogastroenterol. Motil.
  doi: 10.1111/nmo.12760
– volume: 11
  start-page: 492
  ident: B10
  article-title: Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.12.009
– volume: 97
  start-page: 73
  year: 2016
  ident: B126
  article-title: Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2016.02.009
– volume: 14
  start-page: 85
  ident: B104
  article-title: The auriculo-vagal afferent pathway and its role in seizure suppression in rats
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-14-85
– volume: 126
  start-page: 2085
  year: 2018
  ident: B125
  article-title: Effects of electrical transcutaneous vagus nerve stimulation on the perceived intensity of repetitive painful heat stimuli: a blinded placebo- and sham-controlled randomized crossover investigation
  publication-title: Anesthesia Analgesia
  doi: 10.1213/ANE.0000000000002820
– volume: 24
  start-page: 621
  year: 2019
  ident: B197
  article-title: When a white horse is a horse: embracing the overlap between acupuncture and neuromodulation
  publication-title: J. Altern. Complement. Med
  doi: 10.1089/acm.2018.29047.vtn
– volume: 203
  start-page: 88
  year: 2017
  ident: B62
  article-title: Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects
  publication-title: Auton. Neurosci.
  doi: 10.1016/j.autneu.2016.11.003
– year: 2019
  ident: B209
  article-title: Inspiratory- and expiratory-gated transcutaneous vagus nerve stimulation have different effects on heart rate in healthy subjects: preliminary results
  publication-title: Clin. Auton. Res
  doi: 10.1007/s10286-019-00604-0
– volume: 98
  start-page: 1359
  year: 2004
  ident: B232
  article-title: The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture
  publication-title: Anesthesia Analgesia
  doi: 10.1213/01.ANE.0000107941.16173.F7
– year: 2017
  ident: B298
  article-title: Vagal nerve stimulation: a potentially useful adjuvant to treatment of sepsis
  publication-title: J Anesth Perioper Med.
  doi: 10.24015/JAPM.2017.0012
– volume: 12
  start-page: 1406
  year: 2011
  ident: B162
  article-title: Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial
  publication-title: Pain Med.
  doi: 10.1111/j.1526-4637.2011.01203.x
– volume: 148
  start-page: 84
  year: 2020
  ident: B252
  article-title: Vagal signaling and the somatic marker hypothesis: the effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2019.10.010
– volume: 289
  start-page: 21
  year: 2017
  ident: B117
  article-title: Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2016.12.005
– volume: 11
  start-page: 551
  year: 2020
  ident: B184
  article-title: Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.00551
– volume: 33
  start-page: 61
  year: 2018
  ident: B283
  article-title: Does auriculotherapy have therapeutic effectiveness? an overview of systematic reviews
  publication-title: Complement. Ther. Clin. Pract
  doi: 10.1016/j.ctcp.2018.08.005
– volume: 38
  start-page: 1658
  year: 2018
  ident: B64
  article-title: Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: a randomized, cross-over, sham-controlled study
  publication-title: Cephalalgia
  doi: 10.1177/0333102417742347
– volume: 43
  start-page: 1338
  year: 1993
  ident: B273
  article-title: Treatment of epilepsy by stimulation of the vagus nerve
  publication-title: Neurology
  doi: 10.1212/WNL.43.7.1338
– volume: 36
  start-page: 534
  year: 2016
  ident: B88
  article-title: Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study
  publication-title: Cephalalgia
  doi: 10.1177/0333102415607070
– volume: 6
  start-page: 812
  year: 2013
  ident: B167
  article-title: Vagal sensory evoked potentials disappear under the neuromuscular block – an experimental study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2013.03.005
– volume: 83
  start-page: 325
  year: 2017
  ident: B174
  article-title: Magnetic resonance imaging of the human locus coeruleus: a systematic review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.10.023
– volume: 58
  start-page: 403
  year: 2019
  ident: B182
  article-title: Double-blind, sham-controlled, pilot study of trigeminal nerve stimulation for attention-deficit/hyperactivity disorder
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
  doi: 10.1016/j.jaac.2018.11.013
– volume: 10
  start-page: 19
  year: 2017
  ident: B84
  article-title: Access to vagal projections via cutaneous electrical stimulation of the neck: FMRI evidence in healthy humans
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.10.008
– volume: 359
  start-page: 1
  year: 2018
  ident: B213
  article-title: Transauricular vagus nerve stimulation at auricular acupoints kindey (CO10), yidan (CO11), liver (CO12) and shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2017.12.003
– volume: 113
  start-page: 1308
  year: 2002
  ident: B312
  article-title: Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00171-2
– volume: 3
  start-page: 70
  year: 2012
  ident: B157
  article-title: Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2012.00070
– volume: 313
  start-page: H354
  year: 2017
  ident: B18
  article-title: Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract
  publication-title: Am. J. Physiol Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00070.2017
– volume: 34
  start-page: 986
  year: 2014
  ident: B94
  article-title: Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study
  publication-title: Cephalalgia
  doi: 10.1177/0333102414524494
– volume: 9
  start-page: 5349
  year: 2018
  ident: B299
  article-title: Effective weight control via an implanted self-powered vagus nerve stimulation device
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07764-z
– volume: 95
  start-page: 641
  year: 2005
  ident: B300
  article-title: Noradrenaline overflow in mouse dentate gyrus following locus coeruleus and natural stimulation: real-time monitoring by in vivo voltammetry
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2005.03390.x
– volume: 4
  start-page: e12689
  year: 2016
  ident: B303
  article-title: Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.12689
– volume: 96
  start-page: 540
  year: 1987
  ident: B259
  article-title: Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(87)90217-2
– volume: 187
  start-page: 637
  ident: B287
  article-title: Noninvasive vagal nerve stimulation for heart failure: was it practical or just a stunt? Int
  publication-title: J. Cardiol.
  doi: 10.1016/j.ijcard.2015.03.430
– volume: 22
  start-page: 564
  year: 2019
  ident: B170
  article-title: Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials: impact of nVNS on brain electrophysiology
  publication-title: Neuromodulation
  doi: 10.1111/ner.12864
– start-page: 932087
  year: 2020
  ident: B301
  article-title: An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field
  publication-title: BioRxiv [Preprint]
  doi: 10.1101/2020.02.03.932087
– start-page: 1
  year: 2019
  ident: B147
  article-title: Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291719003490
– volume: 25
  start-page: 303
  year: 1969
  ident: B169
  article-title: Paradoxical effect of vagus nerve stimulation on heart rate in dogs
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.25.3.303
– volume: 25
  start-page: 773
  year: 2015
  ident: B253
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2015.03.015
– volume: 17
  start-page: 170
  year: 2014
  ident: B66
  article-title: Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series
  publication-title: Neuromodulation
  doi: 10.1111/ner.12127
– volume: 20
  start-page: 253
  year: 1998
  ident: B261
  article-title: A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex
  publication-title: Surg. Radiol. Anat.
  doi: 10.1007/s00276-998-0253-5
SSID ssj0062651
Score 2.6588984
SecondaryResourceType review_article
Snippet Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and...
SourceID doaj
pubmedcentral
liege
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 568051
SubjectTerms 19th century
Acupuncture
Anatomy & physiology
Behavioral Neuroscience
Biological Psychiatry
Brain research
Carotid arteries
Clinical trials
Epilepsy
FDA approval
guidelines & recommendations
Headaches
Human health sciences
Human Neuroscience
Mental depression
Migraine
minimum reporting standards
Neurologie
Neurology
Neuropsychology and Physiological Psychology
Pain
Physiology
Psychiatry and Mental Health
Reviews
Sciences de la santé humaine
transcutaneous auricular vagus nerve stimulation
transcutaneous cervical vagus nerve stimulation
transcutaneous vagus nerve stimulation
Vagus nerve
Veins & arteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUJCREAJEqPPwI8cWUXGAFRJQ9WbFj9BIu17UbCrxY_ivzNjZVYMQXLgkUfyQ7RlnvvFMZgh5xpRXTQcbCejr8rpqTW6s9XlTW1N0bdl1MWfk6Qe5WKizs-bTlVRf6BOWwgOnhTsExGsEj3nkTe0roUABbyXnHu1VpopxPgH1bJWp9A0GlM6LZMMEFaw57ML5iL-dl-wNF4rxYiaFYrB-AKdLNFP_CWn-7jB5RQKd3CI3J-hIj9KQb5NrPtwh-0cB1ObVD_qcRmfOeEq-T37OTvoopuXEnBYDPQap5WiyCNA24CPw3MpPuZUGCiCWfuxDvxpXNKFzEG7083TiMNA-0K23Hl0HGmWdHaHYr6H70_YbXBfoRgltoJPkakdfTOdyFFfn5V3y9eTdl7fv8ykTQ255JTc5YLoKkJaoBeuEMZ5br4S0TDruhAc56H0nvSxqY0okjFOYPIK1hfLcFV1Z3SN7YR38A0Ibx1rLmZfY0BhhGufg7oxtReN5nRG2pYy2U5hyzJax1KCuIDF1JKbG4epEzIy82jX5nmJ0_K3yMZJ7VxHDa8cXwHR6Yjr9L6bLyOvILNDI9PqyjL3E53EJvVhtvAZcq3TKDJaRgy1P6ekTMWiMHVfgj-xQ_HRXDJsbLTaJaFCnAMArAFRl5H5iwd3AYXq8rkuYkJwx52xm85LQn8cA4ophlDP58H8sxSNyo0Q3H1blZXVA9jYXo39MrtvLTT9cPIm78hevQz8V
  priority: 102
  providerName: Directory of Open Access Journals
Title International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)
URI https://www.ncbi.nlm.nih.gov/pubmed/33854421
https://www.proquest.com/docview/2504101566
https://www.proquest.com/docview/2513246818
https://orbi.uliege.be/handle/2268/297316
https://pubmed.ncbi.nlm.nih.gov/PMC8040977
https://doaj.org/article/559b65cb001b4e368330a755e0899b33
Volume 14
WOSCitedRecordID wos000639299300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M7P
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: BENPR
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: PIMPY
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M2P
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXQ5ceC2PwFIZCSFAZNeJY8c5oS3qCiRaRTxW5WTFjrMbqU2XPlbiwj_hvzLjpIUitBcubhQ_5KnHns8zkxlCnjHlVFbBRoL1LcOEFyY01rowS6yJqiKuKp8z8vRDOhqp8TjLO4XbonOrXJ-J_qAuZxZ15EcYaivC737lm4tvIWaNQutql0Jjh-xhlATuXffy9UkMWF1ErSUTLmLZUdWcr_Dj85gdCqmYiLZkkQ_ZDxB1gsbqf-HNv90m_5BDJ7f-l4Lb5GaHQOlxyzJ3yDXX3CX7xw3cvqff6XPqfUK9sn2f_NxSGFLM7ompMRa0D8KvpK1hgRYNPsIkpq5L0bSggIXpsG7q6WpKW5APMpJ-6hQXC1o3dO30R2cN9SLTrqDazWD40-IMyhF6Y0IfGKT12KMvOvUexb_35T3y5WTw-e27sEvoEFrB02UI0JADYJOJZJU0xgnrlEwtS0tRSgfi1LkqdWmUGBM7prJSYQ4KVkTKiTKqYn6f7Dazxj0kNCtZYQVzKXY0RpqsLOG3NLaQmRNJQNh6abXtop1j0o2JhlsPcoP23KBxurrlhoC82nS5aEN9XNW4j_yyaYhRuv2L2fxMd5tew23NSGERmJrEcak4Z0UqBNKWGc4D8tpzG3Qytb6M_Sj-eTWBUaw2TgM8VrpNMBaQgzVj6e6kWejfXBWQp5tqOCPQ8NMuGrSJADdLwGYBedDy8GbiQJ5IkhgISre4e4uy7ZqmPvdxyBXDYGnpo6un9ZjciNEPiPEw5gdkdzlfuSfkur1c1ot5j-ykY9Uje_3BKP_Y8xoRKIdx3vNbGcsfA6jP3w_zr78AS-1Vvg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXXuURKGAkQIAIdR52nANCLVC16nZVibbqzcSO00baTcpmt6g_hr_Ab2TGSRYWod564LIbxQ954vH4G894hpDnTFqZFrCQYH5zP44y7WtjrJ_GRgdFFhaFyxl5OEiGQ3l0lO4tkZ_9XRh0q-xlohPUeW3wjHwNQ20FeO9XfDj95mPWKLSu9ik0WrbYseffQWVr3m9_gvl9EYabn_c_bvldVgHf8CiZ-oBPIkANIhasEFpbbqwUiWFJznNhQaZbWyQ2CWKtQ8tkmktMhMCyQFqeBwUGOgCRfwVgRCidq-BeL_lBN-BBazkFxS9dK6qTGV52D9k7LiTjwcLe51IEACQeoXH8X_j2bzfNP_a9zZv_2xe7RW50CJuut0viNlmy1R2ysl5l03p8Tl9S5_PqjAkr5MfCgSjF7KWY-qOhG7C557Q1nNCswkcgemy7FFQNBaxPd8uqHM_GtFViAAPQL93BTEPLivZOjbSuqIMEZgbFtobuD7Nj-B2itym0gU5aj0T6qju-pDidr--Sg0v5UPfIclVX9gGhac4yw5lNsKHWQqd5Dv-5NplILY89wnpWUqaL5o5JRUYKtDrkPuW4T-FwVct9Hnkzb3LahjK5qPIG8ue8IkYhdy_qybHqhJoCbVQLbhB469hGQkYRyxLOkbZUR5FH3jruhka6VGeh68U9z0bQi1HaKoD_UrUJ1Dyy2jOy6iRpo35zsUeezYtBBqJhq500qBOAXiAAe3rkfrtm5gMH8ngch0BQsrCaFihbLKnKExdnXTIMBpc8vHhYT8m1rf3dgRpsD3cekesh-jyxyA-jVbI8nczsY3LVnE3LZvLECQtKvl72WvsFP2WqGA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAXXuURKGAkQIAI6zxsJweEWkpF1bJaCVr1ZmLHaSPtJmWzW9Qfwx_h1zHjJAuLUG89cNmN4tjyY2Y84xnPR8hTltgkLYCRYH1zP44y7WtjrJ_GRgdFFhaFw4w82JPDYXJ4mI5WyM_-LgyGVfYy0QnqvDZ4Rj7AVFsB3vsVg6ILixhtbb87-eYjghR6Wns4jZZEdu3ZdzDfmrc7W7DWz8Jw-8OX9x_9DmHANzySMx90lQg0CBELVgitLTc2EdIwmfNcWJDv1hbSyiDWOrQsSfMEQRFYFiSW50GBSQ9A_F-SmLTchQ2O-l0A7AQetF5UMALTQVEdz_Hie8jecJEwHiztgw4uANTjMTrK_6Xr_h2y-cceuH39f569G-Rap3nTjZZVbpIVW90iaxtVNqsnZ_Q5dbGwzsmwRn4sHZRSRDVFSJCGbsKmn9PWoUKzCh9hAia2g6ZqKNgA9FNZlZP5hLbGDegG9HN3YNPQsqJ9sCOtK-pUBTOHYltD8wfZEfwOMQoV6kAjbaQifdEda1Jc2pe3yf6FTNQdslrVlb1HaJqzzHBmJVbUWug0z-E_1yYTqeWxR1hPVsp0Wd4RbGSswNpDSlSOEhV2V7WU6JFXiyonbYqT8z7eRFpdfIjZyd2LenqkOmGnwErVghtUyHVsI5FEEcsk5zi2VEeRR147SodKulSnoWvFPc_H0IpR2iowCxLVAqt5ZL0natVJ2Eb9pmiPPFkUg2xEh1e7aPBNAPaCAJ3UI3db_ll0HIbH4ziEAcklzloa2XJJVR67_OsJwyRx8v753XpMrgCLqb2d4e4DcjXEUCgW-WG0TlZn07l9SC6b01nZTB85uUHJ14tmtV_Re7LV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=International+Consensus+Based+Review+and+Recommendations+for+Minimum+Reporting+Standards+in+Research+on+Transcutaneous+Vagus+Nerve+Stimulation+%28Version+2020%29&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Farmer%2C+Adam+D&rft.au=Strzelczyk%2C+Adam&rft.au=Finisguerra%2C+Alessandra&rft.au=Gourine%2C+Alexander+V&rft.date=2021-03-23&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft_id=info:doi/10.3389%2Ffnhum.2020.568051&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon