Enhanced Conditional GAN for High-Quality Synthetic Tabular Data Generation in Mobile-Based Cardiovascular Healthcare
The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) archi...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 24; H. 23; S. 7673 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.12.2024
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov–Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems. |
|---|---|
| AbstractList | The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov–Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems. The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov-Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems.The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov-Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems. |
| Audience | Academic |
| Author | Yang, Po Alqulaity, Malak |
| AuthorAffiliation | Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK; po.yang@sheffield.ac.uk |
| AuthorAffiliation_xml | – name: Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK; po.yang@sheffield.ac.uk |
| Author_xml | – sequence: 1 givenname: Malak surname: Alqulaity fullname: Alqulaity, Malak – sequence: 2 givenname: Po surname: Yang fullname: Yang, Po |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39686209$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktvEzEURkeoiD5gwR9AI7Ghi2ntsTO2VyiEklQqIERZW3f8SBw5dvHMVMq_r5O0VVKQF7bsc491db_T4ijEYIriPUYXhAh02dW0Jqxh5FVxgmlNK17X6GjvfFycdt0SoZoQwt8Ux0Q0vKmROCmGq7CAoIwuJzFo17sYwJfT8Y_SxlTO3HxR_RrAu35d_l6HfmF6p8pbaAcPqfwKPZRTE0yCTWHpQvk9ts6b6gt0GyUk7eI9dGqLzwz4fqEgmbfFawu-M-8e97Piz7er28msuvk5vZ6Mbyo1IqyvqADCCbeUoBpbpLVlLWAOnBFmmW1oy0ZMjSg2zAqswLRMEcNxyzjSyhJyVlzvvDrCUt4lt4K0lhGc3F7ENJeQckfeSK60UKC5tkpR0TSipZQIayzCmNSIZdfnnetuaFdGKxP6BP5AevgS3ELO473EuKFUkI3h06Mhxb-D6Xq5cp0y3kMwcegkwbQRmJCaZvTjC3QZh5RHs6UoZqime9Qccgcu2Jg_VhupHHMsxKjhW9fFf6i8tFk5lZNk88QOCz7sd_rc4lNqMnC5A1SKXZeMlcr12whks_MSI7nJpXzOZa44f1HxJP2XfQAja-CG |
| CitedBy_id | crossref_primary_10_1002_slct_202502448 crossref_primary_10_1007_s41060_025_00816_w crossref_primary_10_1002_phar_70064 crossref_primary_10_1177_00368504251366850 crossref_primary_10_1080_24725579_2025_2510966 |
| Cites_doi | 10.1109/JBHI.2020.2980262 10.1016/j.neucom.2022.04.053 10.1016/j.neucom.2019.12.136 10.14778/3231751.3231757 10.21428/594757db.4c0ffb71 10.1007/978-3-031-54605-1_34 10.1001/jamainternmed.2018.3763 10.1109/AIKE.2019.00057 10.1093/jamia/ocz161 10.1080/01621459.1951.10500769 10.1109/IEMCON.2019.8936168 10.1093/jamia/ocy142 10.1016/j.cosrev.2023.100546 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24237673 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_8cd9cad8dfcc49669b4439fef0113207 PMC11644937 A819956824 39686209 10_3390_s24237673 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: government of Saudi Arabia |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c537t-49a3838f43021f0ddf7ba18a8737f7f64b757c541e7f91caeb7c3e81b780dcf33 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377811800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:03:06 EDT 2025 Tue Nov 04 02:05:00 EST 2025 Thu Oct 02 11:50:42 EDT 2025 Tue Oct 07 07:28:36 EDT 2025 Tue Nov 11 10:45:49 EST 2025 Tue Nov 04 18:09:23 EST 2025 Sun Mar 30 02:11:06 EDT 2025 Sat Nov 29 07:09:37 EST 2025 Tue Nov 18 22:11:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | generative adversarial networks cardiovascular disease machine learning in healthcare medical informatics synthetic data generation tabular data |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-49a3838f43021f0ddf7ba18a8737f7f64b757c541e7f91caeb7c3e81b780dcf33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3144170244?pq-origsite=%requestingapplication% |
| PMID | 39686209 |
| PQID | 3144170244 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8cd9cad8dfcc49669b4439fef0113207 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11644937 proquest_miscellaneous_3146913324 proquest_journals_3144170244 gale_infotracmisc_A819956824 gale_infotracacademiconefile_A819956824 pubmed_primary_39686209 crossref_citationtrail_10_3390_s24237673 crossref_primary_10_3390_s24237673 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 ref_13 ref_33 ref_10 ref_31 ref_30 Massey (ref_32) 1951; 46 ref_19 ref_18 ref_17 Murtaza (ref_5) 2023; 48 ref_16 Zhang (ref_22) 2020; 27 Yale (ref_12) 2020; 416 Yoon (ref_23) 2020; 24 Arvanitis (ref_11) 2020; 272 Gianfrancesco (ref_1) 2018; 178 ref_25 ref_24 ref_21 ref_20 Baowaly (ref_9) 2019; 26 ref_3 Park (ref_15) 2018; 11 ref_29 ref_28 Hernandez (ref_2) 2022; 493 ref_27 ref_26 ref_8 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_30 – volume: 24 start-page: 2378 year: 2020 ident: ref_23 article-title: Anonymization through data synthesis using generative adversarial networks (ads-gan) publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2980262 – volume: 493 start-page: 28 year: 2022 ident: ref_2 article-title: Synthetic data generation for tabular health records: A systematic review publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.053 – ident: ref_3 – ident: ref_24 – ident: ref_26 – ident: ref_16 – volume: 416 start-page: 244 year: 2020 ident: ref_12 article-title: Generation and evaluation of privacy preserving synthetic health data publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.136 – ident: ref_14 – volume: 11 start-page: 1071 year: 2018 ident: ref_15 article-title: Data Synthesis Based on Generative Adversarial Networks publication-title: Proc. VLDB Endow. doi: 10.14778/3231751.3231757 – ident: ref_18 – ident: ref_21 – ident: ref_19 doi: 10.21428/594757db.4c0ffb71 – ident: ref_20 doi: 10.1007/978-3-031-54605-1_34 – volume: 178 start-page: 1544 year: 2018 ident: ref_1 article-title: Potential biases in machine learning algorithms using electronic health record data publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2018.3763 – ident: ref_8 doi: 10.1109/AIKE.2019.00057 – ident: ref_25 – ident: ref_4 – ident: ref_31 – ident: ref_29 – ident: ref_33 – ident: ref_27 – ident: ref_10 – volume: 27 start-page: 99 year: 2020 ident: ref_22 article-title: Ensuring electronic medical record simulation through better training, modeling, and evaluation publication-title: J. Am. Med Inform. Assoc. doi: 10.1093/jamia/ocz161 – volume: 46 start-page: 68 year: 1951 ident: ref_32 article-title: The Kolmogorov-Smirnov Test for Goodness of Fit publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1951.10500769 – ident: ref_6 doi: 10.1109/IEMCON.2019.8936168 – ident: ref_13 – volume: 26 start-page: 228 year: 2019 ident: ref_9 article-title: Synthesizing Electronic Health Records Using Improved Generative Adversarial Networks publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy142 – ident: ref_17 – volume: 48 start-page: 100546 year: 2023 ident: ref_5 article-title: Synthetic Data Generation: State of the Art in Health Care Domain publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100546 – volume: 272 start-page: 322 year: 2020 ident: ref_11 article-title: Generation of Realistic Synthetic Validation Healthcare Datasets Using Generative Adversarial Networks publication-title: Stud. Health Technol. Inform. |
| SSID | ssj0023338 |
| Score | 2.4691958 |
| Snippet | The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 7673 |
| SubjectTerms | Algorithms Artificial intelligence Cardiovascular disease Cardiovascular Diseases Cardiovascular research Comparative analysis Datasets Delivery of Health Care Electronic data processing Electronic health records generative adversarial networks Health informatics Humans Machine learning machine learning in healthcare medical informatics Medical research Methods Neural networks Neural Networks, Computer synthetic data generation tabular data Technology application Telemedicine |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYl9NAeSvp2mha1FNqLiHelXUlH59VcagpNITehJzGUdYntQP59ZqT14qWBXnpdjYQeI83M6tM3hHy2YFYC6AETdS2ZCJVitq0V88qBgUu1rqzNySbkfK6urvSPnVRfiAkr9MBl4o6UD9rboELyXoBvrp0AG5pimmKO9PKOHLyebTDVh1ocIq_CI8QhqD9a1Rn9IfnI-mSS_r-P4h1bNMZJ7hie833yrPcY6az09Dl5FLsX5OkOj-BLsjnrrvNNPj1Z4hV0_r1Hv83mFFxSilAOVrgy7ujPuw5cPmiKXlqHEFR6ateWFvZprEgXHf2-dHBYsGOwcNDkCLFKLwbA2Cvy6_zs8uSC9fkUmG-4XDOhLcSjKgkOhj1NQ0jS2UpZJblMMrXCyUb6RlRRJl15G530PIJfK9U0-MT5a7LXLbv4ltDGQVUtWh_BIZPBW-TFt1K0jZTeOjEhX7fzbHxPNo45L34bCDpwScywJBPyaRD9Uxg2HhI6xsUaBJAUO38AVTG9qph_qcqEfMGlNrh1oTPe9i8QYEhIgmVmCt-rt6qG7h-OJGHL-XHxVllMv-VXhmNoKsHlgeKPQzHWRBhbF5ebLNPqinNs4k3RrWFIXONjnameEDXSutGYxyXd4joTglcQ8wrwMw_-xyy9I09qGEWB7BySvfXNJr4nj_3terG6-ZC32T0TEi26 priority: 102 providerName: Directory of Open Access Journals |
| Title | Enhanced Conditional GAN for High-Quality Synthetic Tabular Data Generation in Mobile-Based Cardiovascular Healthcare |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39686209 https://www.proquest.com/docview/3144170244 https://www.proquest.com/docview/3146913324 https://pubmed.ncbi.nlm.nih.gov/PMC11644937 https://doaj.org/article/8cd9cad8dfcc49669b4439fef0113207 |
| Volume | 24 |
| WOSCitedRecordID | wos001377811800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYLgc48F4ILJVBSHCxtondjHNC7dJlObSqYJHKKXKcmK2EkqUPpL3w25lx0tAIxIVLIsVjy5bH83A-f2bslUG3kqMeCBVFIFQeamHiSAurM3RwLkpCY_xlEzCb6cUimTcbbusGVrmzid5Q55WlPfITSZE_oEdRb6--C7o1iv6uNldoHLBDYipTPXY4nszmH9uUS2IGVvMJSUzuT9aRR4GA7HghT9b_p0ne80ldvOSeAzq7-79dv8fuNKEnH9W6cp_dKMoH7PYeIeFDtp2Ulx4SwE8r-pft9wn5-9GMY2zLCRMiatKNa_7pusTYEZviFyYjLCt_ZzaG1zTWVJEvSz6tMrQ6YoyuEpvsQF_5eYs8e8Q-n00uTs9FczGDsEMJG6ESg4mtdkpihOAGee4gM6E2GiQ4cLHKYAh2qMICXBJaU2RgZYEBMuhBbp2UR6xXVmXxhPFhhlUTFdsCIzvIrSGCfQMqHgJYk6mAvdlNVGob1nK6PONbitkLzWnazmnAXraiVzVVx9-ExjTbrQCxa_sP1epr2izWVNs8sSbXubNWYT6YZArjNlc4NIYyGkDAXpOupGQDsDPWNEcZcEjEppWONB18j3WE3T_uSOLatd3incakje1Yp7_VJWAv2mKqSXi4sqi2XiZOQimpice1crZDkgmd-hkkAdMdte2MuVtSLi89s3iIybPCgPXpv_v1jN2K8F2jeo5Zb7PaFs_ZTftjs1yv-uwAFuCfut-sx77f6sDn9OcEv80_TOdffgGTrEIT |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tukjAgTdsYQGDQHCJtond2D4g1H3RardVJYq0nILjxLuVULL0Aeqf4jcyk6ShEYjbHrjGD9nJNzPfOOMZgFcGzUqCOPBEEEhPJL7yTBgoz6oYDZwLtG9MUWxCjkbq7EyPt-Dn-i4MhVWudWKhqJPc0hn5HifmL9GiiPeX3zyqGkV_V9clNEpYnKSrH-iyzd8NDvH7vg6C46PJQd-rqgp4tsvlwhPaoFemnOBo3lwnSZyMja-Mklw66UIRy660XeGn0mnfmjSWlqfI7qTqJNbRASiq_G2BYFct2B4PhuPPtYvH0eMr8xdxrjt786CIOpG8YfWK4gB_moANG9iMz9wweMe3_7dXdQduVdSa9UpZuAtbaXYPbm4kXLwPy6Psogh5YAc5_asvzkHZh96IIXdnFPPilUlFVuzjKkNujFOxiYkpVpcdmoVhZZpuGsimGRvmMWpVbx-pAE7ZCO1l_Tqy7gF8upJ9P4RWlmfpDrBujEO1CG2KzFUm1lABASNF2JXSmli04e0aGJGtsrJTcZCvEXpnhKGoxlAbXtZdL8tUJH_rtE_oqjtQ9vDiQT47jyplFCmbaGsSlThrBfq7OhbIS13qUNnzoCPb8IawGZGOw8VYU13VwC1RtrCop-hif6gCXP5uoyfqJttsXiM0qnTjPPoNzza8qJtpJMX7ZWm-LPqE2uecpnhUCkO9Ja7pVlNHt0E1xKSx52ZLNr0oMqf7PtJ_JOSP_72u53C9PxmeRqeD0ckTuBHgszKCaRdai9kyfQrX7PfFdD57Vsk_gy9XLUe_ABg1mgo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqFiE4sC-BAgaB4GJNEnti-4DQtNOho9LRSBSpPQXHielIKCmzgOav8et4LxsTgbj1wDVeZCdv-Z7z-T1CXhpwKynIARNhKJlIA8VMFCpmVQIOzoU6MKYsNiEnE3V6qqdb5GdzFwZplY1NLA11Wlg8I-9xRP4SPIrouZoWMR2O3l18Y1hBCv-0NuU0KhE5ytY_IHxbvB0P4Vu_CsPRwcn-IasrDDDb53LJhDYQoSknOLg656epk4kJlFGSSyddJBLZl7Yvgkw6HViTJdLyDJCeVH5qHR6GgvnfAUguQMd2puPj6Vkb7nGI_qpcRpxrv7cISwaK5B0PWBYK-NMdbPjDLldzw_mNbv7Pr-0WuVFDbjqodOQ22cryO-T6RiLGu2R1kJ-XVAi6X-A__PJ8lL4fTChgeopcGFYlG1nTj-scMDNMRU9MghxeOjRLQ6v03TiQznJ6XCRgbdkeQASYskP5pYct4-4e-XQp-75PtvMizx4S2k9gqBaRzQDRytQaLCxgpIj6UlqTCI-8aYQktnW2diwa8jWGqA3lKW7lySMv2q4XVYqSv3XaQ0lrO2BW8fJBMf8S10YqVjbV1qQqddYKiIN1IgCvusyBE-ChLz3yGuU0RtsHi7GmvsIBW8IsYvFA4YX_SIWw_N1OT7BZttvcSGtc28xF_FtUPfK8bcaRyAPMs2JV9ol0wDlO8aBSjHZLXONtJ197RHVUprPnbks-Oy8zqgcBhAUA1B_9e13PyFVQnvjDeHL0mFwL4VFFbNol28v5KntCrtjvy9li_rQ2BZR8vmw1-gUyyKLK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Conditional+GAN+for+High-Quality+Synthetic+Tabular+Data+Generation+in+Mobile-Based+Cardiovascular+Healthcare&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alqulaity%2C+Malak&rft.au=Yang%2C+Po&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=23&rft.spage=7673&rft_id=info:doi/10.3390%2Fs24237673&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |