Enhanced Conditional GAN for High-Quality Synthetic Tabular Data Generation in Mobile-Based Cardiovascular Healthcare

The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) archi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 24; H. 23; S. 7673
Hauptverfasser: Alqulaity, Malak, Yang, Po
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.12.2024
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov–Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems.
AbstractList The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov–Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems.
The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov-Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems.The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the availability of real datasets for research and analysis. This paper presents an enhanced Conditional Generative Adversarial Network (GAN) architecture designed for generating high-quality synthetic tabular data, with a focus on cardiovascular disease datasets that encompass mixed data types and complex feature relationships. The proposed architecture employs specialized sub-networks to process continuous and categorical variables separately, leveraging metadata such as Gaussian Mixture Model (GMM) parameters for continuous attributes and embedding layers for categorical features. By integrating these specialized pathways, the generator produces synthetic samples that closely mimic the statistical properties of the real data. Comprehensive experiments were conducted to compare the proposed architecture with two established models: Conditional Tabular GAN (CTGAN) and Tabular Variational AutoEncoder (TVAE). The evaluation utilized metrics such as the Kolmogorov-Smirnov (KS) test for continuous variables, the Jaccard coefficient for categorical variables, and pairwise correlation analyses. Results indicate that the proposed approach attains a mean KS statistic of 0.3900, demonstrating strong overall performance that outperforms CTGAN (0.4803) and is comparable to TVAE (0.3858). Notably, our approach shows lowest KS statistics for key continuous features, such as total cholesterol (KS = 0.0779), weight (KS = 0.0861), and diastolic blood pressure (KS = 0.0957), indicating its effectiveness in closely replicating real data distributions. Additionally, it achieved a Jaccard coefficient of 1.00 for eight out of eleven categorical variables, effectively preserving categorical distributions. These findings indicate that the proposed architecture captures both distributions and dependencies, providing a robust solution in supporting mobile personalized cardiovascular disease prevention systems.
Audience Academic
Author Yang, Po
Alqulaity, Malak
AuthorAffiliation Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK; po.yang@sheffield.ac.uk
AuthorAffiliation_xml – name: Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK; po.yang@sheffield.ac.uk
Author_xml – sequence: 1
  givenname: Malak
  surname: Alqulaity
  fullname: Alqulaity, Malak
– sequence: 2
  givenname: Po
  surname: Yang
  fullname: Yang, Po
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39686209$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEURkeoiD5gwR9AI7Ghi2ntsTO2VyiEklQqIERZW3f8SBw5dvHMVMq_r5O0VVKQF7bsc491db_T4ijEYIriPUYXhAh02dW0Jqxh5FVxgmlNK17X6GjvfFycdt0SoZoQwt8Ux0Q0vKmROCmGq7CAoIwuJzFo17sYwJfT8Y_SxlTO3HxR_RrAu35d_l6HfmF6p8pbaAcPqfwKPZRTE0yCTWHpQvk9ts6b6gt0GyUk7eI9dGqLzwz4fqEgmbfFawu-M-8e97Piz7er28msuvk5vZ6Mbyo1IqyvqADCCbeUoBpbpLVlLWAOnBFmmW1oy0ZMjSg2zAqswLRMEcNxyzjSyhJyVlzvvDrCUt4lt4K0lhGc3F7ENJeQckfeSK60UKC5tkpR0TSipZQIayzCmNSIZdfnnetuaFdGKxP6BP5AevgS3ELO473EuKFUkI3h06Mhxb-D6Xq5cp0y3kMwcegkwbQRmJCaZvTjC3QZh5RHs6UoZqime9Qccgcu2Jg_VhupHHMsxKjhW9fFf6i8tFk5lZNk88QOCz7sd_rc4lNqMnC5A1SKXZeMlcr12whks_MSI7nJpXzOZa44f1HxJP2XfQAja-CG
CitedBy_id crossref_primary_10_1002_slct_202502448
crossref_primary_10_1007_s41060_025_00816_w
crossref_primary_10_1002_phar_70064
crossref_primary_10_1177_00368504251366850
crossref_primary_10_1080_24725579_2025_2510966
Cites_doi 10.1109/JBHI.2020.2980262
10.1016/j.neucom.2022.04.053
10.1016/j.neucom.2019.12.136
10.14778/3231751.3231757
10.21428/594757db.4c0ffb71
10.1007/978-3-031-54605-1_34
10.1001/jamainternmed.2018.3763
10.1109/AIKE.2019.00057
10.1093/jamia/ocz161
10.1080/01621459.1951.10500769
10.1109/IEMCON.2019.8936168
10.1093/jamia/ocy142
10.1016/j.cosrev.2023.100546
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24237673
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8cd9cad8dfcc49669b4439fef0113207
PMC11644937
A819956824
39686209
10_3390_s24237673
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: government of Saudi Arabia
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c537t-49a3838f43021f0ddf7ba18a8737f7f64b757c541e7f91caeb7c3e81b780dcf33
IEDL.DBID BENPR
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377811800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:03:06 EDT 2025
Tue Nov 04 02:05:00 EST 2025
Thu Oct 02 11:50:42 EDT 2025
Tue Oct 07 07:28:36 EDT 2025
Tue Nov 11 10:45:49 EST 2025
Tue Nov 04 18:09:23 EST 2025
Sun Mar 30 02:11:06 EDT 2025
Sat Nov 29 07:09:37 EST 2025
Tue Nov 18 22:11:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords generative adversarial networks
cardiovascular disease
machine learning in healthcare
medical informatics
synthetic data generation
tabular data
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-49a3838f43021f0ddf7ba18a8737f7f64b757c541e7f91caeb7c3e81b780dcf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3144170244?pq-origsite=%requestingapplication%
PMID 39686209
PQID 3144170244
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8cd9cad8dfcc49669b4439fef0113207
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11644937
proquest_miscellaneous_3146913324
proquest_journals_3144170244
gale_infotracmisc_A819956824
gale_infotracacademiconefile_A819956824
pubmed_primary_39686209
crossref_citationtrail_10_3390_s24237673
crossref_primary_10_3390_s24237673
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
ref_33
ref_10
ref_31
ref_30
Massey (ref_32) 1951; 46
ref_19
ref_18
ref_17
Murtaza (ref_5) 2023; 48
ref_16
Zhang (ref_22) 2020; 27
Yale (ref_12) 2020; 416
Yoon (ref_23) 2020; 24
Arvanitis (ref_11) 2020; 272
Gianfrancesco (ref_1) 2018; 178
ref_25
ref_24
ref_21
ref_20
Baowaly (ref_9) 2019; 26
ref_3
Park (ref_15) 2018; 11
ref_29
ref_28
Hernandez (ref_2) 2022; 493
ref_27
ref_26
ref_8
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_30
– volume: 24
  start-page: 2378
  year: 2020
  ident: ref_23
  article-title: Anonymization through data synthesis using generative adversarial networks (ads-gan)
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2980262
– volume: 493
  start-page: 28
  year: 2022
  ident: ref_2
  article-title: Synthetic data generation for tabular health records: A systematic review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.053
– ident: ref_3
– ident: ref_24
– ident: ref_26
– ident: ref_16
– volume: 416
  start-page: 244
  year: 2020
  ident: ref_12
  article-title: Generation and evaluation of privacy preserving synthetic health data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.136
– ident: ref_14
– volume: 11
  start-page: 1071
  year: 2018
  ident: ref_15
  article-title: Data Synthesis Based on Generative Adversarial Networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3231751.3231757
– ident: ref_18
– ident: ref_21
– ident: ref_19
  doi: 10.21428/594757db.4c0ffb71
– ident: ref_20
  doi: 10.1007/978-3-031-54605-1_34
– volume: 178
  start-page: 1544
  year: 2018
  ident: ref_1
  article-title: Potential biases in machine learning algorithms using electronic health record data
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2018.3763
– ident: ref_8
  doi: 10.1109/AIKE.2019.00057
– ident: ref_25
– ident: ref_4
– ident: ref_31
– ident: ref_29
– ident: ref_33
– ident: ref_27
– ident: ref_10
– volume: 27
  start-page: 99
  year: 2020
  ident: ref_22
  article-title: Ensuring electronic medical record simulation through better training, modeling, and evaluation
  publication-title: J. Am. Med Inform. Assoc.
  doi: 10.1093/jamia/ocz161
– volume: 46
  start-page: 68
  year: 1951
  ident: ref_32
  article-title: The Kolmogorov-Smirnov Test for Goodness of Fit
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1951.10500769
– ident: ref_6
  doi: 10.1109/IEMCON.2019.8936168
– ident: ref_13
– volume: 26
  start-page: 228
  year: 2019
  ident: ref_9
  article-title: Synthesizing Electronic Health Records Using Improved Generative Adversarial Networks
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy142
– ident: ref_17
– volume: 48
  start-page: 100546
  year: 2023
  ident: ref_5
  article-title: Synthetic Data Generation: State of the Art in Health Care Domain
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100546
– volume: 272
  start-page: 322
  year: 2020
  ident: ref_11
  article-title: Generation of Realistic Synthetic Validation Healthcare Datasets Using Generative Adversarial Networks
  publication-title: Stud. Health Technol. Inform.
SSID ssj0023338
Score 2.4691958
Snippet The generation of synthetic tabular data has emerged as a critical task in various fields, particularly in healthcare, where data privacy concerns limit the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7673
SubjectTerms Algorithms
Artificial intelligence
Cardiovascular disease
Cardiovascular Diseases
Cardiovascular research
Comparative analysis
Datasets
Delivery of Health Care
Electronic data processing
Electronic health records
generative adversarial networks
Health informatics
Humans
Machine learning
machine learning in healthcare
medical informatics
Medical research
Methods
Neural networks
Neural Networks, Computer
synthetic data generation
tabular data
Technology application
Telemedicine
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYl9NAeSvp2mha1FNqLiHelXUlH59VcagpNITehJzGUdYntQP59ZqT14qWBXnpdjYQeI83M6tM3hHy2YFYC6AETdS2ZCJVitq0V88qBgUu1rqzNySbkfK6urvSPnVRfiAkr9MBl4o6UD9rboELyXoBvrp0AG5pimmKO9PKOHLyebTDVh1ocIq_CI8QhqD9a1Rn9IfnI-mSS_r-P4h1bNMZJ7hie833yrPcY6az09Dl5FLsX5OkOj-BLsjnrrvNNPj1Z4hV0_r1Hv83mFFxSilAOVrgy7ujPuw5cPmiKXlqHEFR6ateWFvZprEgXHf2-dHBYsGOwcNDkCLFKLwbA2Cvy6_zs8uSC9fkUmG-4XDOhLcSjKgkOhj1NQ0jS2UpZJblMMrXCyUb6RlRRJl15G530PIJfK9U0-MT5a7LXLbv4ltDGQVUtWh_BIZPBW-TFt1K0jZTeOjEhX7fzbHxPNo45L34bCDpwScywJBPyaRD9Uxg2HhI6xsUaBJAUO38AVTG9qph_qcqEfMGlNrh1oTPe9i8QYEhIgmVmCt-rt6qG7h-OJGHL-XHxVllMv-VXhmNoKsHlgeKPQzHWRBhbF5ebLNPqinNs4k3RrWFIXONjnameEDXSutGYxyXd4joTglcQ8wrwMw_-xyy9I09qGEWB7BySvfXNJr4nj_3terG6-ZC32T0TEi26
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced Conditional GAN for High-Quality Synthetic Tabular Data Generation in Mobile-Based Cardiovascular Healthcare
URI https://www.ncbi.nlm.nih.gov/pubmed/39686209
https://www.proquest.com/docview/3144170244
https://www.proquest.com/docview/3146913324
https://pubmed.ncbi.nlm.nih.gov/PMC11644937
https://doaj.org/article/8cd9cad8dfcc49669b4439fef0113207
Volume 24
WOSCitedRecordID wos001377811800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYLgc48F4ILJVBSHCxtondjHNC7dJlObSqYJHKKXKcmK2EkqUPpL3w25lx0tAIxIVLIsVjy5bH83A-f2bslUG3kqMeCBVFIFQeamHiSAurM3RwLkpCY_xlEzCb6cUimTcbbusGVrmzid5Q55WlPfITSZE_oEdRb6--C7o1iv6uNldoHLBDYipTPXY4nszmH9uUS2IGVvMJSUzuT9aRR4GA7HghT9b_p0ne80ldvOSeAzq7-79dv8fuNKEnH9W6cp_dKMoH7PYeIeFDtp2Ulx4SwE8r-pft9wn5-9GMY2zLCRMiatKNa_7pusTYEZviFyYjLCt_ZzaG1zTWVJEvSz6tMrQ6YoyuEpvsQF_5eYs8e8Q-n00uTs9FczGDsEMJG6ESg4mtdkpihOAGee4gM6E2GiQ4cLHKYAh2qMICXBJaU2RgZYEBMuhBbp2UR6xXVmXxhPFhhlUTFdsCIzvIrSGCfQMqHgJYk6mAvdlNVGob1nK6PONbitkLzWnazmnAXraiVzVVx9-ExjTbrQCxa_sP1epr2izWVNs8sSbXubNWYT6YZArjNlc4NIYyGkDAXpOupGQDsDPWNEcZcEjEppWONB18j3WE3T_uSOLatd3incakje1Yp7_VJWAv2mKqSXi4sqi2XiZOQimpice1crZDkgmd-hkkAdMdte2MuVtSLi89s3iIybPCgPXpv_v1jN2K8F2jeo5Zb7PaFs_ZTftjs1yv-uwAFuCfut-sx77f6sDn9OcEv80_TOdffgGTrEIT
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tukjAgTdsYQGDQHCJtond2D4g1H3RardVJYq0nILjxLuVULL0Aeqf4jcyk6ShEYjbHrjGD9nJNzPfOOMZgFcGzUqCOPBEEEhPJL7yTBgoz6oYDZwLtG9MUWxCjkbq7EyPt-Dn-i4MhVWudWKhqJPc0hn5HifmL9GiiPeX3zyqGkV_V9clNEpYnKSrH-iyzd8NDvH7vg6C46PJQd-rqgp4tsvlwhPaoFemnOBo3lwnSZyMja-Mklw66UIRy660XeGn0mnfmjSWlqfI7qTqJNbRASiq_G2BYFct2B4PhuPPtYvH0eMr8xdxrjt786CIOpG8YfWK4gB_moANG9iMz9wweMe3_7dXdQduVdSa9UpZuAtbaXYPbm4kXLwPy6Psogh5YAc5_asvzkHZh96IIXdnFPPilUlFVuzjKkNujFOxiYkpVpcdmoVhZZpuGsimGRvmMWpVbx-pAE7ZCO1l_Tqy7gF8upJ9P4RWlmfpDrBujEO1CG2KzFUm1lABASNF2JXSmli04e0aGJGtsrJTcZCvEXpnhKGoxlAbXtZdL8tUJH_rtE_oqjtQ9vDiQT47jyplFCmbaGsSlThrBfq7OhbIS13qUNnzoCPb8IawGZGOw8VYU13VwC1RtrCop-hif6gCXP5uoyfqJttsXiM0qnTjPPoNzza8qJtpJMX7ZWm-LPqE2uecpnhUCkO9Ja7pVlNHt0E1xKSx52ZLNr0oMqf7PtJ_JOSP_72u53C9PxmeRqeD0ckTuBHgszKCaRdai9kyfQrX7PfFdD57Vsk_gy9XLUe_ABg1mgo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqFiE4sC-BAgaB4GJNEnti-4DQtNOho9LRSBSpPQXHielIKCmzgOav8et4LxsTgbj1wDVeZCdv-Z7z-T1CXhpwKynIARNhKJlIA8VMFCpmVQIOzoU6MKYsNiEnE3V6qqdb5GdzFwZplY1NLA11Wlg8I-9xRP4SPIrouZoWMR2O3l18Y1hBCv-0NuU0KhE5ytY_IHxbvB0P4Vu_CsPRwcn-IasrDDDb53LJhDYQoSknOLg656epk4kJlFGSSyddJBLZl7Yvgkw6HViTJdLyDJCeVH5qHR6GgvnfAUguQMd2puPj6Vkb7nGI_qpcRpxrv7cISwaK5B0PWBYK-NMdbPjDLldzw_mNbv7Pr-0WuVFDbjqodOQ22cryO-T6RiLGu2R1kJ-XVAi6X-A__PJ8lL4fTChgeopcGFYlG1nTj-scMDNMRU9MghxeOjRLQ6v03TiQznJ6XCRgbdkeQASYskP5pYct4-4e-XQp-75PtvMizx4S2k9gqBaRzQDRytQaLCxgpIj6UlqTCI-8aYQktnW2diwa8jWGqA3lKW7lySMv2q4XVYqSv3XaQ0lrO2BW8fJBMf8S10YqVjbV1qQqddYKiIN1IgCvusyBE-ChLz3yGuU0RtsHi7GmvsIBW8IsYvFA4YX_SIWw_N1OT7BZttvcSGtc28xF_FtUPfK8bcaRyAPMs2JV9ol0wDlO8aBSjHZLXONtJ197RHVUprPnbks-Oy8zqgcBhAUA1B_9e13PyFVQnvjDeHL0mFwL4VFFbNol28v5KntCrtjvy9li_rQ2BZR8vmw1-gUyyKLK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Conditional+GAN+for+High-Quality+Synthetic+Tabular+Data+Generation+in+Mobile-Based+Cardiovascular+Healthcare&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alqulaity%2C+Malak&rft.au=Yang%2C+Po&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=23&rft.spage=7673&rft_id=info:doi/10.3390%2Fs24237673&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon