Novel Robotic Arm Working-Area AI Protection System
From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional manual lathes and milling machines, sophisticated robotic arms, and computer numerical control (CNC) operations are quite dangerous. To ensur...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 5; p. 2765 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
01.03.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional manual lathes and milling machines, sophisticated robotic arms, and computer numerical control (CNC) operations are quite dangerous. To ensure the safety of workers in automated factories, a novel and efficient warning-range algorithm is proposed to determine whether a person is in the warning range, introducing YOLOv4 tiny-object detection algorithms to improve the accuracy of determining objects. The results are displayed on a stack light and sent through an M-JPEG streaming server so that the detected image can be displayed through the browser. According to the experimental results of this system installed on a robotic arm workstation, it is proved that it can ensure recognition reaches 97%. When a person enters the dangerous range of the working robotic arm, the arm can be stopped within about 50 ms, which will effectively improve the safety of its use. |
|---|---|
| AbstractList | From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional manual lathes and milling machines, sophisticated robotic arms, and computer numerical control (CNC) operations are quite dangerous. To ensure the safety of workers in automated factories, a novel and efficient warning-range algorithm is proposed to determine whether a person is in the warning range, introducing YOLOv4 tiny-object detection algorithms to improve the accuracy of determining objects. The results are displayed on a stack light and sent through an M-JPEG streaming server so that the detected image can be displayed through the browser. According to the experimental results of this system installed on a robotic arm workstation, it is proved that it can ensure recognition reaches 97%. When a person enters the dangerous range of the working robotic arm, the arm can be stopped within about 50 ms, which will effectively improve the safety of its use. From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional manual lathes and milling machines, sophisticated robotic arms, and computer numerical control (CNC) operations are quite dangerous. To ensure the safety of workers in automated factories, a novel and efficient warning-range algorithm is proposed to determine whether a person is in the warning range, introducing YOLOv4 tiny-object detection algorithms to improve the accuracy of determining objects. The results are displayed on a stack light and sent through an M-JPEG streaming server so that the detected image can be displayed through the browser. According to the experimental results of this system installed on a robotic arm workstation, it is proved that it can ensure recognition reaches 97%. When a person enters the dangerous range of the working robotic arm, the arm can be stopped within about 50 ms, which will effectively improve the safety of its use.From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional manual lathes and milling machines, sophisticated robotic arms, and computer numerical control (CNC) operations are quite dangerous. To ensure the safety of workers in automated factories, a novel and efficient warning-range algorithm is proposed to determine whether a person is in the warning range, introducing YOLOv4 tiny-object detection algorithms to improve the accuracy of determining objects. The results are displayed on a stack light and sent through an M-JPEG streaming server so that the detected image can be displayed through the browser. According to the experimental results of this system installed on a robotic arm workstation, it is proved that it can ensure recognition reaches 97%. When a person enters the dangerous range of the working robotic arm, the arm can be stopped within about 50 ms, which will effectively improve the safety of its use. |
| Audience | Academic |
| Author | Hung, Ying-Hsiu Chen, Hong-Ming Jheng, En-Shuo Kuo, Chia-Chen Lee, Jeng-Dao |
| AuthorAffiliation | 1 Department of Automation Engineering, National Formosa University, Yunlin County 632, Taiwan 2 Doctor’s Program of Smart Industry Technology Research and Design, National Formosa University, Yunlin County 632, Taiwan |
| AuthorAffiliation_xml | – name: 2 Doctor’s Program of Smart Industry Technology Research and Design, National Formosa University, Yunlin County 632, Taiwan – name: 1 Department of Automation Engineering, National Formosa University, Yunlin County 632, Taiwan |
| Author_xml | – sequence: 1 givenname: Jeng-Dao surname: Lee fullname: Lee, Jeng-Dao – sequence: 2 givenname: En-Shuo surname: Jheng fullname: Jheng, En-Shuo – sequence: 3 givenname: Chia-Chen surname: Kuo fullname: Kuo, Chia-Chen – sequence: 4 givenname: Hong-Ming surname: Chen fullname: Chen, Hong-Ming – sequence: 5 givenname: Ying-Hsiu surname: Hung fullname: Hung, Ying-Hsiu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36904969$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhi1URD_gwB9AkbjAIe3YY8fOCUUVlJUqQHyIo-V47cVLErdOtlL_fR22Ld2CfIg1eeZx3ngOyd4QB0fISwrHiDWcjAxBMFmJJ-SAcsZLxRjsPdjvk8NxXAMwRFTPyD5WNfC6qg8IfopXriu-xjZOwRZN6oufMf0Ow6pskjNFsyi-pDg5O4U4FN-ux8n1z8lTb7rRvbh9HpEfH95_P_1Ynn8-W5w256UVKKeSAq-oAO6Fg9par5RjHpgV4EWrhLRopaIc6rblxiqGjlacKwBqakRG8Ygstt5lNGt9kUJv0rWOJug_hZhW2qT81Z3TTliUSzBoheAGfW0M817Ieukll7bKrndb18Wm7d3SumFKptuR7r4Zwi-9ileaAoBEOhve3BpSvNy4cdJ9GK3rOjO4uBk1k6rKkVGIjL5-hK7jJg35X82UYMhZRf9SK5MThMHHfLCdpbqRnCqOFUCmjv9D5bV0fbB5DnzI9Z2GVw-T3ke8u_MMnGwBm-I4Jue1DZOZ7zebQ5cT63mq9P1U5Y63jzrupP-yN2Qrxpk |
| CitedBy_id | crossref_primary_10_1016_j_iot_2025_101600 |
| Cites_doi | 10.1109/ACCESS.2021.3077499 10.1109/ISSM.2018.8651174 10.1109/TITS.2022.3146271 10.1109/ACCESS.2022.3190867 10.1109/ACCESS.2021.3094201 10.1109/ICISS49785.2020.9316030 10.1109/CVPR46437.2021.01283 10.1113/jphysiol.1962.sp006837 10.1109/ACCESS.2021.3088075 10.1109/CVPR.2016.91 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23052765 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_e5c37d0a3c554a3f9aa2ff579df747c6 PMC10007316 A741843600 36904969 10_3390_s23052765 |
| Genre | Journal Article |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GrantInformation_xml | – fundername: National Science and Technology Council of Taiwan, R.O.C grantid: NSTC 111-2221-E-150-045 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST-111-2221-E-150-045 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c537t-10461504f5e09ccf88e2f02c50f5b857c3c781409bb4ac823e16448001a933213 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947390100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:33:17 EDT 2025 Tue Nov 04 02:07:33 EST 2025 Thu Oct 02 05:44:54 EDT 2025 Tue Oct 07 07:24:10 EDT 2025 Tue Nov 11 10:49:05 EST 2025 Tue Nov 04 18:13:27 EST 2025 Wed Feb 19 02:24:57 EST 2025 Tue Nov 18 20:52:05 EST 2025 Sat Nov 29 07:11:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | YOLO AI protection system object detection algorithms robotic arm working safety |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-10461504f5e09ccf88e2f02c50f5b857c3c781409bb4ac823e16448001a933213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2785234261?pq-origsite=%requestingapplication% |
| PMID | 36904969 |
| PQID | 2785234261 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e5c37d0a3c554a3f9aa2ff579df747c6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10007316 proquest_miscellaneous_2786104355 proquest_journals_2785234261 gale_infotracmisc_A741843600 gale_infotracacademiconefile_A741843600 pubmed_primary_36904969 crossref_citationtrail_10_3390_s23052765 crossref_primary_10_3390_s23052765 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Hubel (ref_6) 1961; 160 Zhao (ref_16) 2022; 10 Dewi (ref_12) 2021; 9 ref_11 ref_10 Qin (ref_15) 2022; 23 ref_21 Mamdou (ref_13) 2021; 9 ref_20 ref_1 ref_3 ref_2 Xu (ref_14) 2021; 9 ref_19 ref_18 ref_17 ref_9 ref_8 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_7 – volume: 9 start-page: 68482 year: 2021 ident: ref_14 article-title: A surveillance video real-time analysis system based on edge-cloud and FL-YOLO cooperation in coal mine publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077499 – ident: ref_8 doi: 10.1109/ISSM.2018.8651174 – ident: ref_4 – ident: ref_5 – ident: ref_3 – volume: 23 start-page: 15898 year: 2022 ident: ref_15 article-title: ID-YOLO: Real-time salient object detection based on the driver’s fixation region publication-title: IEEE Trans. Intell. Transp. doi: 10.1109/TITS.2022.3146271 – volume: 10 start-page: 81899 year: 2022 ident: ref_16 article-title: Characteristics based fire detection system under the effect of electric fields with improved Yolo-v4 and ViBe publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190867 – ident: ref_2 – volume: 9 start-page: 97228 year: 2021 ident: ref_12 article-title: Yolo V4 for advanced traffic sign recognition with synthetic training data generated by various GAN publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3094201 – ident: ref_11 – ident: ref_9 doi: 10.1109/ICISS49785.2020.9316030 – ident: ref_20 doi: 10.1109/CVPR46437.2021.01283 – ident: ref_17 – ident: ref_1 – volume: 160 start-page: 106 year: 1961 ident: ref_6 article-title: Receptive Fields, Binocular Interaction and Functional Architecture in The Cat’s Visual Cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – ident: ref_18 – ident: ref_19 – volume: 9 start-page: 84252 year: 2021 ident: ref_13 article-title: YOLO-based deep learning framework for olive fruit fly detection and counting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088075 – ident: ref_21 – ident: ref_10 doi: 10.1109/CVPR.2016.91 |
| SSID | ssj0023338 |
| Score | 2.4003916 |
| Snippet | From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2765 |
| SubjectTerms | Accuracy AI protection system Algorithms Artificial intelligence Automation Classification Collaboration Datasets Design and construction Industrial safety Innovations Manufacturing Neural networks object detection algorithms Occupational accidents Occupational health and safety Robot arms robotic arm Robotics Robots Surveillance Technology application working safety YOLO |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5k8UEfRNdb3QtVBH0p2yZNkzyeFRcFOSyism8hzQUX1lb2nN3fvzNNT2lR8MXXZlqauXTmayZfAN6GSnraEVl4EXxR-yAKbXlVWKl9Gyv0kmHf2o8vcr1WFxf6fHbUF_WEJXrgpLiTIByXvrTcYeKzPGprWYwCHxWxEnYD2XYp9Q5MjVCLI_JKPEIcQf3JBgttwSRlkFn2GUj6__wUz3LRsk9ylnjOHsOjsWLMV-lNn8C90O3DwxmP4FPg6_42XOVf-7ZHIRT9lY8_wYsVFoX56nN-nvgY0Ap5Iil_Bt_PPn778KkYT0MonOByW9BiLFZvdRSh1M5FpQKLJXOijKJVQjruEn1V29bWKcZDRdgL05DVnLOKP4e9ru_CS8iDtkJ521CuroNEOzbM1sxWzCulmc_g_U5Lxo1U4XRixZVByEAKNZNCM3gzif5O_Bh_EzolVU8CRGk9XEBDm9HQ5l-GzuAdGcpQ4OHLODvuH8ApEYWVWREPT82xgMvgcCGJAeOWwztTmzFgN4ZJhZCc8GQGr6dhupOa0LrQ3wwyWGxifYkTepE8Y5oSbzRirUZnoBY-s5jzcqS7_DnQeVfDcmnVvPofWjqABwzdP3XJHcLe9vomHMF9d7u93FwfD0FyB6kxFLo priority: 102 providerName: Directory of Open Access Journals |
| Title | Novel Robotic Arm Working-Area AI Protection System |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36904969 https://www.proquest.com/docview/2785234261 https://www.proquest.com/docview/2786104355 https://pubmed.ncbi.nlm.nih.gov/PMC10007316 https://doaj.org/article/e5c37d0a3c554a3f9aa2ff579df747c6 |
| Volume | 23 |
| WOSCitedRecordID | wos000947390100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvAuBsgoICS5RN3Yc2ye0RVtRia6iCtByiryOA5VKUna3PfLbmXG86UYgLlxyiCeSnZnxfOPHNwCvXSoruhGZVMJVSVY5kWjD08RIXS3qFK3E31v78lHOZmo-10VYcFuFY5WbOdFP1FVraY38gEmFORMB_ncXPxOqGkW7q6GExk3YpbLZZOdyfp1wccy_OjYhjqn9wQrhtmCS4shWDPJU_X9OyFsRaXhaciv8HN37347fh7sBeMaTzlIewA3XPIQ7W3SEj4DP2it3Hp-2ixaFUPRHHNbSkwliy3hyHBcdrQMqM-64zh_D56Ppp_cfklBUIbGCy3VCe7oIArNauLG2tlbKsXrMrBjXYqGEtNx2LFiLRWasYtyllMJhNDOac5byPdhp2sY9hdhpI1Rlcgr5mZNoDjkzGTMpq5TSrIrg7eY3lzYwjlPhi_MSMw_SSNlrJIJXvehFR7PxN6FD0lUvQMzY_kW7_FYGRyudsFxWY8MtAiXDa20Mq2uBpldj5mTzCN6QpkvyX-yMNeEaAg6JmLDKCdH5ZBxxYAT7A0n0Ozts3ui7DH6_Kq-VHcHLvpm-pLNsjWsvvQxiVoSpOKAnnWn1Q-K5xpQt1xGogdENxjxsac6-e1bw1O-6pvmzf_frOdxm6BndMbp92FkvL90LuGWv1mer5cj7j3-qEeweTmfF6cgvU-Dz5NcU3xXHJ8XX36m_KB0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58H4ECgQEgkvUxI7j-IDQ8qi66rKqUEF7C47tlEolKbvbIv4Uv5GZvLoRiFsPXNezK3vzzcw3sf0NwDMXSUs3IgMrnA1i60SgNI8CLZXNiwhRUt9b-zyR02k6m6m9NfjV3YWhY5VdTKwDta0MvSPfYjLFmokI_-vj7wF1jaLd1a6FRgOLXffzB5Zsi1fjd_h8nzO2_X7_7U7QdhUIjOByGdCmJrKguBAuVMYUaepYETIjwkLkqZCGm0YGKs9jbVLGXUQ1DIZzjcU_izj-7gW4iHFcUrEnZ2cFHsd6r1Ev4lyFWwuk94JJylsrOa9uDfBnAljJgMPTmSvpbvva__ZHXYerLbH2R40n3IA1V96EKytyi7eAT6tTd-R_rPIKjdD0m9_uFQQj5M7-aOzvNbIVCFa_0XK_DZ_OZdZ3YL2sSncPfKe0SK1OiNLETiLcE6ZjpiNm01Qx68HL7rFmplVUp8YeRxlWVoSArEeAB0970-NGRuRvRm8IG70BKX_XH1Tzg6wNJJkThksbam6QCGpeKK1ZUQh0rQIrQ5N48IKQlVF8wskY3V6zwCWR0lc2IrmimCPP9WBzYIlxxQyHO3xlbVxbZGfg8uBJP0zfpLN6patOahvk5EjDcUF3Gyj3S-KJwpI0UR6kA5AP1jwcKQ-_1qrnUb2rHCX3_z2vx3B5Z__DJJuMp7sPYIOhVzZHBjdhfTk_cQ_hkjldHi7mj2rf9eHLefvAbz-petI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLULlwHchUCAgEFyiTew4sQ8ILZQVq5ZVhACVk3EcGyqVpOxui_hr_DrG-WIjELceuK5nV_bmzfhNPH4D8MhEaeFuRAYFM0UQF4YFQtEoUKkochshSup7ax_20_mcHxyIbAN-dndhXFllFxPrQF1U2r0jH5OUY87kCP_YtmUR2e70-fG3wHWQcietXTuNBiJ75sd3TN-Wz2a7-KwfEzJ99e7l66DtMBBoRtNV4A44kRHFlplQaG05N8SGRLPQspyzVFPdSELleaw0J9RELp_B0K4EpSSi-LvnYBMpeUxGsJnN3mQf-3SPYvbXaBlRKsLxEsk-I6nbxdZ2wLpRwJ_bwdp-OKzVXNv8ppf_57_tClxqKbc_aXzkKmyY8hpcXBNivA50Xp2aI_9tlVdohKZf_fYUIZggq_YnMz9rBC0Qxn6j8n4D3p_JrLdhVFaluQW-EYrxQiWO7MQmRUdIiIqJikjBuSCFB0-7Ryx1q7XuWn4cScy5HBpkjwYPHvamx43AyN-MXjic9AZOE7z-oFp8lm2IkYZpmhahohopoqJWKEWsZeh0FgGqEw-eOJRJF7lwMlq1FzBwSU4DTE6ckFFMkQF7sDOwxIijh8Md1mQb8ZbyN9A8eNAPu2-6Kr7SVCe1DbJ1JOi4oJsNrPsl0URgspoID_gA8IM1D0fKwy-1HnpUnzdHye1_z-s-XEDoy_3ZfO8ObBF00KaWcAdGq8WJuQvn9enqcLm41zqyD5_O2gl-AeC8hSE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Robotic+Arm+Working-Area+AI+Protection+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Jeng-Dao&rft.au=Jheng%2C+En-Shuo&rft.au=Kuo%2C+Chia-Chen&rft.au=Chen%2C+Hong-Ming&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=5&rft_id=info:doi/10.3390%2Fs23052765&rft.externalDocID=A741843600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |