Survey of single image super-resolution reconstruction

Image super-resolution reconstruction refers to a technique of recovering a high-resolution (HR) image (or multiple images) from a low-resolution (LR) degraded image (or multiple images). Due to the breakthrough progress in deep learning in other computer vision tasks, people try to introduce deep n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 14; číslo 11; s. 2273 - 2290
Hlavní autoři: Li, Kai, Yang, Shenghao, Dong, Runting, Wang, Xiaoying, Huang, Jianqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 18.09.2020
Wiley
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Image super-resolution reconstruction refers to a technique of recovering a high-resolution (HR) image (or multiple images) from a low-resolution (LR) degraded image (or multiple images). Due to the breakthrough progress in deep learning in other computer vision tasks, people try to introduce deep neural network and solve the problem of image super-resolution reconstruction by constructing a deep-level network for end-to-end training. The currently used deep learning models can divide the SISR model into four types: interpolation-based preprocessing-based model, original image processing based model, hierarchical feature-based model, and high-frequency detail-based model, or shared the network model. The current challenges for super-resolution reconstruction are mainly reflected in the actual application process, such as encountering an unknown scaling factor, losing paired LR–HR images, and so on.
ISSN:1751-9659
1751-9667
DOI:10.1049/iet-ipr.2019.1438