Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies
Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for...
Uloženo v:
| Vydáno v: | Targeted oncology Ročník 12; číslo 5; s. 571 - 597 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.10.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 1776-2596, 1776-260X, 1776-260X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance. |
|---|---|
| AbstractList | Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance. Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.[Figure not available: see fulltext.] Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance. |
| Author | Macaulay, Valentine M. Petnga, Wilfride Weyer-Czernilofsky, Ulrike Simpson, Aaron Bogenrieder, Thomas |
| Author_xml | – sequence: 1 givenname: Aaron surname: Simpson fullname: Simpson, Aaron organization: Department of Oncology, University of Oxford – sequence: 2 givenname: Wilfride surname: Petnga fullname: Petnga, Wilfride organization: Department of Oncology, University of Oxford – sequence: 3 givenname: Valentine M. surname: Macaulay fullname: Macaulay, Valentine M. organization: Department of Oncology, University of Oxford – sequence: 4 givenname: Ulrike surname: Weyer-Czernilofsky fullname: Weyer-Czernilofsky, Ulrike organization: Boehringer Ingelheim RCV – sequence: 5 givenname: Thomas surname: Bogenrieder fullname: Bogenrieder, Thomas email: thomas.bogenrieder@boehringer-ingelheim.com organization: Boehringer Ingelheim RCV, Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28815409$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl9rFDEUxYNU7B_9AL5IwJf6MJpMJsmMD0JZ3HVhoaIVfAuZmZvd1Nlkm2Rs-9wvbtbtSi3oUwL3dw7nJucYHTjvAKGXlLylhMh3kVJesoJQWRBOq4I_QUdUSlGUgnw_2N95Iw7RcYyXhFSy5OQZOizrmvKKNEfobu7iOFhXLOwPwLPgr9MKT3WXfMCn89n0Df6s0-pa3-ILHZaQrFti6_BEuw7Ce_zFD4C9wWkFONP47MZGrF2PzzcbH9LobLIQsclu0zGNAfDEr1vrdLLe4a9p7PP4OXpq9BDhxf15gr5NP15MPhWL89l8crYoOs5EKkzNDG_yAoLRvH5bt1JTIyXrDUjgpa6brmeVobIlwkjNpSmho4ywhvZVVbET9GHnuxnbNfQduBT0oDbBrnW4VV5b9ffE2ZVa-p-KC0qEaLLB6b1B8FcjxKTWNnYwDNqBH6OiDSNVLQgXGX39CL30Y3B5vUxVtG4kbbbUq4eJ_kTZ_08G5A7ogo8xgFGdTb8fLwe0g6JEbZugdk1QuQlq2wTFs5I-Uu7N_6cpd5qYWbeE8CD0P0W_AM9FxL8 |
| CitedBy_id | crossref_primary_10_1158_0008_5472_CAN_20_2860 crossref_primary_10_1038_s41416_019_0677_1 crossref_primary_10_1038_s41416_020_0774_1 crossref_primary_10_3389_fonc_2020_612385 crossref_primary_10_3390_cancers16183175 crossref_primary_10_3390_ijms20174267 crossref_primary_10_3389_fendo_2023_1291812 crossref_primary_10_2174_1874467215666220103111009 crossref_primary_10_3390_ijms26115204 crossref_primary_10_1038_s41388_019_0694_9 crossref_primary_10_3390_ijms22095019 crossref_primary_10_1080_13543784_2019_1694660 crossref_primary_10_1002_bco2_187 crossref_primary_10_1038_s41416_021_01393_y crossref_primary_10_1007_s12672_018_0352_7 crossref_primary_10_3389_fendo_2020_620013 crossref_primary_10_3390_jpm14030255 crossref_primary_10_3389_fgene_2021_670240 crossref_primary_10_1002_jcb_28111 crossref_primary_10_3389_fendo_2023_1081831 crossref_primary_10_37349_emed_2025_1001342 crossref_primary_10_1038_s41388_021_01907_1 crossref_primary_10_3389_fendo_2024_1396192 crossref_primary_10_3390_ijms25168854 crossref_primary_10_1016_j_ghir_2020_101343 crossref_primary_10_1016_j_anai_2020_12_005 crossref_primary_10_1007_s00381_020_04692_6 crossref_primary_10_1016_j_jtocrr_2021_100206 crossref_primary_10_3389_fcell_2021_630503 crossref_primary_10_3390_cells10082075 crossref_primary_10_1038_s41467_020_18442_4 crossref_primary_10_3390_medsci9030048 crossref_primary_10_1016_j_pharmthera_2020_107502 crossref_primary_10_1111_cas_15231 crossref_primary_10_1186_s13046_023_02623_2 crossref_primary_10_4093_dmj_2021_0077 crossref_primary_10_1002_jcp_27742 crossref_primary_10_1002_ppul_26780 crossref_primary_10_1007_s10911_022_09511_z crossref_primary_10_3390_cells8091017 crossref_primary_10_1016_j_bbcan_2021_188598 crossref_primary_10_3390_ijms21114030 crossref_primary_10_33549_physiolres_934631 crossref_primary_10_3389_fonc_2022_1055589 crossref_primary_10_3390_cells8080895 crossref_primary_10_1007_s00292_020_00763_2 crossref_primary_10_3390_ijms20123027 crossref_primary_10_3390_ijms20184440 crossref_primary_10_1038_s41467_022_34391_6 crossref_primary_10_1186_s13058_020_01382_8 crossref_primary_10_1177_03009858231207021 crossref_primary_10_3390_cells8111318 crossref_primary_10_3390_ijms20194915 crossref_primary_10_1158_1078_0432_CCR_21_1096 crossref_primary_10_3390_ijms22041831 crossref_primary_10_3390_ijms231810382 crossref_primary_10_1097_MD_0000000000022890 crossref_primary_10_3389_fendo_2020_00435 crossref_primary_10_1186_s13058_023_01649_w crossref_primary_10_1111_andr_12658 crossref_primary_10_1016_j_critrevonc_2025_104764 crossref_primary_10_1002_bmm2_12069 crossref_primary_10_1093_jnci_djaf140 crossref_primary_10_1038_s41388_021_01868_5 crossref_primary_10_1016_j_critrevonc_2025_104809 crossref_primary_10_1158_1078_0432_CCR_18_2697 crossref_primary_10_3390_ijms21196995 crossref_primary_10_1038_s41416_024_02713_8 crossref_primary_10_3390_ijms25179302 crossref_primary_10_3389_fimmu_2022_998244 crossref_primary_10_4158_EP_2019_0353 crossref_primary_10_3390_cancers11040517 crossref_primary_10_3390_cells8121499 crossref_primary_10_1016_j_apsb_2019_12_010 crossref_primary_10_1111_pin_13080 crossref_primary_10_1080_13880209_2020_1839511 crossref_primary_10_1017_S1460396919000955 crossref_primary_10_3390_cancers12123568 crossref_primary_10_1016_j_omtn_2019_02_008 crossref_primary_10_1158_1541_7786_MCR_21_0961 crossref_primary_10_3389_fonc_2023_1140133 crossref_primary_10_3390_cancers13102478 crossref_primary_10_3892_etm_2018_5783 crossref_primary_10_3390_ijms241914882 crossref_primary_10_1242_jcs_260014 crossref_primary_10_1371_journal_pone_0204173 crossref_primary_10_1007_s12070_025_06008_z crossref_primary_10_1158_0008_5472_CAN_22_0363 crossref_primary_10_3390_ani15030444 crossref_primary_10_3390_cancers14153591 crossref_primary_10_3390_cancers11081185 crossref_primary_10_1016_j_mayocp_2020_03_037 crossref_primary_10_3389_fendo_2021_701246 crossref_primary_10_1016_j_crmeth_2022_100338 crossref_primary_10_30621_jbachs_854439 crossref_primary_10_3389_fonc_2025_1540426 crossref_primary_10_3389_fimmu_2020_01986 crossref_primary_10_3390_cancers13081781 crossref_primary_10_1158_1541_7786_MCR_21_0038 crossref_primary_10_1007_s12672_021_00407_8 crossref_primary_10_3390_ijms22063280 crossref_primary_10_46879_ukroj_3_2022_79_92 crossref_primary_10_1371_journal_pcbi_1009125 crossref_primary_10_3390_ijerph19031116 crossref_primary_10_1039_D1FO03283F crossref_primary_10_3389_fonc_2021_626577 crossref_primary_10_3390_biom11020217 crossref_primary_10_3390_ijms20133258 |
| Cites_doi | 10.1038/nature08768 10.1016/j.gendis.2014.10.004 10.1158/1535-7163.MCT-12-0618 10.3389/fendo.2014.00010 10.1093/annonc/mdq349 10.1200/jco.2014.32.15_suppl.2617 10.1002/(SICI)1096-9098(199809)69:1<21::AID-JSO5>3.0.CO;2-M 10.1038/nm.3667 10.1634/theoncologist.2016-0220 10.15252/emmm.201303376 10.1158/1078-0432.CCR-12-1840 10.1007/s11523-012-0248-3 10.1002/cncr.28728 10.1038/onc.2016.248 10.1111/cei.12374 10.1016/j.ccell.2014.11.008 10.1002/jcp.24217 10.1158/1535-7163.MCT-13-0442-T 10.1158/1078-0432.CCR-14-0940 10.1056/NEJMoa1501824 10.1038/onc.2015.488 10.1073/pnas.92.26.12146 10.1126/science.aad3018 10.1038/bjc.2015.242 10.1172/JCI41824 10.1038/srep06855 10.1016/j.beem.2008.08.004 10.1186/1471-2407-13-41 10.1158/1535-7163.MCT-05-0048 10.1530/ERC-15-0002 10.1101/gad.7.3.331 10.1002/pbc.25334 10.1158/1078-0432.CCR-15-1677 10.1016/j.radonc.2012.03.009 10.1158/0008-5472.CAN-05-3126 10.1038/nrc3215 10.1200/JCO.2011.37.4355 10.1002/stem.1328 10.1158/0008-5472.CAN-13-2923 10.1002/cncr.27459 10.1053/j.gastro.2016.09.001 10.1007/s00018-013-1514-y 10.1200/JCO.2011.37.2359 10.1016/j.cllc.2016.07.007 10.1158/1535-7163.MCT-08-1171 10.1093/jnci/djv258 10.1126/science.8418502 10.1158/1078-0432.CCR-07-4879 10.1200/jco.2010.28.15_suppl.3104 10.1126/scisignal.2000628 10.1158/2159-8290.CD-14-0477 10.1038/sj.cgt.7700775 10.18632/oncotarget.5631 10.1016/j.ejca.2012.05.009 10.1158/1078-0432.CCR-15-0588 10.1200/JCO.2013.54.4932 10.1016/j.ccell.2014.11.013 10.1158/1535-7163.MCT-09-0499 10.1093/annonc/mdv027 10.1016/j.yexcr.2015.05.015 10.1016/j.devcel.2007.03.020 10.3390/vaccines3030519 10.1038/nature08822 10.1158/1535-7163.MCT-09-0381 10.1158/1078-0432.CCR-11-2381 10.1158/1078-0432.CCR-10-2621 10.1038/onc.2012.538 10.3389/fphar.2013.00030 10.1186/s12885-016-2847-3 10.1016/j.jhep.2013.09.008 10.1210/en.2012-2165 10.1371/journal.pone.0051189 10.1007/s10637-011-9715-4 10.1200/jco.2016.34.4_suppl.tps481 10.3892/ijo.2016.3401 10.1200/jco.2005.23.16_suppl.3112 10.1158/2159-8290.CD-12-0446 10.1155/2012/804801 10.1186/s12885-015-1803-y 10.1038/srep31072 10.1002/ijc.28737 10.1158/1078-0432.CCR-14-0114 10.1158/1538-7445.am2015-ct237 10.1158/0008-5472.CAN-14-3358 10.1158/1535-7163.MCT-10-0318 10.18632/oncotarget.9837 10.1111/cas.12906 10.1200/JCO.2010.33.0670 10.1038/onc.2013.460 10.1016/j.ejca.2007.03.009 10.1093/annonc/mdv222 10.1200/jco.2013.31.15_suppl.5515 10.1158/1078-0432.CCR-10-3336 10.1093/jnci/djw182 10.1200/jco.2011.29.15_suppl.7584 10.1200/jco.2010.28.15_suppl.3026 10.1158/0008-5472.CAN-10-2274 10.1155/2015/538019 10.1126/scitranslmed.3010445 10.1002/gcc.10157 10.1158/1078-0432.CCR-14-0265 10.1097/JTO.0b013e31823c5b11 10.1200/JCO.2016.34.15_suppl.530 10.1158/1535-7163.MCT-12-0447 10.1158/0008-5472.CAN-10-0052 10.1158/0008-5472.CAN-16-1201 10.1038/35060032 10.1007/s10911-008-9104-6 10.4081/oncol.2013.e3 10.1158/0008-5472.sabcs-09-402 10.1016/j.bbrc.2010.12.038 10.18632/oncotarget.9100 10.1126/science.1235122 10.1189/jlb.0404248 10.1158/1078-0432.CCR-13-0145 10.1210/jc.2012-3856 10.1158/1535-7163.MCT-06-0080 10.1007/s10637-014-0177-3 10.1038/nm759 10.1530/ERC-13-0231 10.1186/s40169-015-0048-3 10.2337/db11-1776 10.1128/MCB.14.6.3604 10.1002/j.1460-2075.1986.tb04528.x 10.3389/fendo.2012.00021 10.1056/NEJMc1509660 10.1530/EJE-10-0859 10.1158/0008-5472.CAN-04-1837 10.1200/JCO.2009.23.6745 10.1056/NEJMoa1507643 10.1038/sj.onc.1210715 10.1158/1535-7163.MCT-13-0255 10.1038/364308a0 10.1016/S0140-6736(15)01281-7 10.1158/1078-0432.CCR-10-2979 10.18632/oncotarget.8484 10.1200/JCO.2013.54.8404 10.1158/0008-5472.CAN-12-2066 10.1007/s00280-009-1083-9 10.1242/dmm.015362 10.1038/nrc3720 10.1172/JCI34588 10.1007/s10637-014-0170-x 10.1056/NEJMoa1003466 10.1016/j.jhep.2014.11.011 10.1200/JCO.2014.59.0018 10.1158/1535-7163.MCT-14-0144 10.1371/journal.pone.0135844 10.1200/JCO.2009.24.6611 10.1158/1538-7445.AM2015-420 10.1002/mc.22342 10.2174/13816128113199990596 10.1158/1078-0432.CCR-07-1118 10.1016/S1535-6108(04)00051-0 10.1158/1535-7163.MCT-12-1067 10.1158/1078-0432.CCR-07-0648 10.1016/j.ctrv.2014.07.004 10.1158/1078-0432.CCR-13-2752 10.1677/erc.1.01280 10.1080/15384101.2016.1160982 10.1158/1078-0432.CCR-15-2218 10.1158/0008-5472.sabcs13-p2-16-04 10.4161/onci.20925 10.1038/nature11249 10.1002/ijc.24623 10.1186/1471-2407-13-170 10.1158/1535-7163.MCT-13-0598 10.1186/1476-4598-13-71 10.18632/oncotarget.8013 10.1038/onc.2015.229 10.1158/1535-7163.MCT-11-0205 10.1200/JCO.2010.34.0000 10.1002/pbc.26087 10.1016/S1470-2045(15)00083-2 10.1016/j.ejca.2013.06.010 10.4155/fmc.09.89 10.2174/1574362409666140206221931 10.1158/1078-0432.CCR-09-3220 10.1158/0008-5472.CAN-14-0970 10.1200/jco.2015.33.3_suppl.384 10.1126/scisignal.2004014 10.1021/jm9002395 10.1038/onc.2015.326 10.1038/370527a0 10.1158/1535-7163.MCT-16-0313 10.3389/fendo.2015.00077 10.3390/cancers2020233 10.1016/j.ccr.2010.10.031 10.1158/1078-0432.CCR-08-1401 10.1126/scitranslmed.3001845 10.3389/fendo.2015.00092 10.1172/JCI57909 10.1126/scisignal.2003184 10.1200/jco.2013.31.15_suppl.6030 10.1200/jco.2014.32.15_suppl.2622 10.1002/jcb.24080 10.1016/S1470-2045(13)70026-3 10.1158/0008-5472.CAN-06-1712 10.1093/annonc/mdr574 10.1016/S1470-2045(13)70019-6 10.1016/0092-8674(91)90557-F 10.18632/oncotarget.10862 10.1016/j.cell.2011.02.013 10.1007/s00280-014-2391-2 10.1158/1078-0432.CCR-09-2719 10.1038/378785a0 10.1007/BF02736791 10.1016/j.neo.2015.03.001 10.1016/S1470-2045(09)70354-7 10.18632/oncotarget.3425 10.1038/bjc.2014.497 10.1200/jco.2001.19.8.2189 10.1186/s12943-015-0392-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 Targeted Oncology is a copyright of Springer, 2017. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: Targeted Oncology is a copyright of Springer, 2017. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU FYUFA GHDGH K9- K9. KB0 M0R M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s11523-017-0514-5 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Consumer Health Database ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1776-260X |
| EndPage | 597 |
| ExternalDocumentID | PMC5610669 28815409 10_1007_s11523_017_0514_5 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Boehringer Ingelheim funderid: http://dx.doi.org/10.13039/100008349 – fundername: Cancer Research UK – fundername: ; |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 123 1N0 29Q 2J2 2JN 2JY 2KG 2KM 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAIAL AAIKX AAJKR AANXM AANZL AARHV AARTL AASML AATNV AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABFTV ABHLI ABJNI ABJOX ABKCH ABKTR ABMNI ABNWP ABPLI ABQBU ABQSL ABTKH ABTMW ABUWG ABXPI ACAOD ACCOQ ACDTI ACGFS ACHVE ACHXU ACIHN ACKNC ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADFZG ADHHG ADHIR ADINQ ADRFC ADURQ ADYOE AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFALF AFBBN AFKRA AFLOW AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AJBLW AJRNO ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH ARMRJ ASPBG AVWKF AWSVR AXYYD AZFZN AZQEC B-. BA0 BENPR BGNMA BKEYQ BKNYI BMSDO BPHCQ BVXVI C6C CAG CCPQU COF CS3 DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIHBH EIOEI EJD EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FLLZZ FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K9- KDC KOV KPH LGEZI LLZTM LOTEE M0R M1P M4Y MA- N2Q NADUK NAPCQ NQJWS NU0 NXXTH O9- O93 O9I OAM P9S PF0 PQQKQ PROAC PSQYO QOR QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPKJE SRMVM SSLCW SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UTJUX UZXMN VC2 VDBLX VFIZW W23 W48 WJK WK8 WOW Z45 Z7U Z82 Z87 ZMTXR ~A9 ~JE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c536t-f83f59250631100b8b7a1f773dfe7e52a89cd34f17b06f7a57f2ec130391d4443 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411741500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1776-2596 1776-260X |
| IngestDate | Tue Nov 04 01:48:42 EST 2025 Fri Sep 05 13:50:36 EDT 2025 Fri Nov 07 23:29:06 EST 2025 Mon Jul 21 06:05:42 EDT 2025 Sat Nov 29 03:34:08 EST 2025 Tue Nov 18 22:46:24 EST 2025 Fri Feb 21 02:31:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-f83f59250631100b8b7a1f773dfe7e52a89cd34f17b06f7a57f2ec130391d4443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s11523-017-0514-5 |
| PMID | 28815409 |
| PQID | 1941897196 |
| PQPubID | 1486337 |
| PageCount | 27 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5610669 proquest_miscellaneous_1930486056 proquest_journals_1941897196 pubmed_primary_28815409 crossref_citationtrail_10_1007_s11523_017_0514_5 crossref_primary_10_1007_s11523_017_0514_5 springer_journals_10_1007_s11523_017_0514_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: France – name: Paris |
| PublicationTitle | Targeted oncology |
| PublicationTitleAbbrev | Targ Oncol |
| PublicationTitleAlternate | Target Oncol |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Van Cutsem E, Eng C, Nowara E, Swieboda-Sadlej A, Tebbutt NC, Mitchell E, et al. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res. 2014;20(16):4240–50. doi:10.1158/1078-0432.CCR-13-2752. Chiappori AA, Otterson GA, Dowlati A, Traynor AM, Horn L, Owonikoko TK, et al. A randomized phase II study of Linsitinib (OSI-906) versus Topotecan in patients with relapsed small-cell lung cancer. Oncologist. 2016;21(10):1163–4. doi:10.1634/theoncologist.2016-0220. Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C, et al. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther. 2014;13(2):399–409. doi:10.1158/1535-7163.MCT-13-0598. Craddock BP, Miller WT. Effects of somatic mutations in the C-terminus of insulin-like growth factor 1 receptor on activity and signaling. J Signal Transduct. 2012;2012:804801. doi:10.1155/2012/804801. Pappo AS, Patel SR, Crowley J, Reinke DK, Kuenkele KP, Chawla SP, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II sarcoma alliance for research through collaboration study. J Clin Oncol. 2011;29(34):4541–7. doi:10.1200/JCO.2010.34.0000. Zinn RL, Gardner EE, Marchionni L, Murphy SC, Dobromilskaya I, Hann CL, et al. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer. Mol Cancer Ther. 2013;12(6):1131–9. doi:10.1158/1535-7163.MCT-12-0618. Vidal SJ, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27(2):223–39. doi:10.1016/j.ccell.2014.11.013. Ferte C, Loriot Y, Clemenson C, Commo F, Gombos A, Bibault JE, et al. IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy. Mol Cancer Ther. 2013;12(7):1213–22. doi:10.1158/1535-7163.MCT-12-1067. Suda K, Mizuuchi H, Sato K, Takemoto T, Iwasaki T, Mitsudomi T. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int J Cancer. 2014;135(4):1002–6. doi:10.1002/ijc.28737. Rochester MA, Riedemann J, Hellawell GO, Brewster SF, Macaulay VM. Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther. 2005;12(1):90–100. doi:10.1038/sj.cgt.7700775. van de Luijtgaarden AC, Versleijen-Jonkers YM, Roeffen MH, Schreuder HW, Flucke UE, van der Graaf WT. Prognostic and therapeutic relevance of the IGF pathway in Ewing’s sarcoma patients. Target Oncol. 2013;8(4):253–60. doi:10.1007/s11523-012-0248-3. Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem. 2009;1(6):1153–71. doi:10.4155/fmc.09.89. Becker MA, Hou X, Tienchaianada P, Haines BB, Harrington SC, Weroha SJ, et al. Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer. BMC Cancer. 2016;16(1):814. doi:10.1186/s12885-016-2847-3. Werner H, Roberts CT Jr. The IGFI receptor gene: a molecular target for disrupted transcription factors. Genes Chromosom Cancer. 2003;36(2):113–20. doi:10.1002/gcc.10157. Baselga J, Morales S, Awada A, Blum J, Tan A, Ewertz M, et al. A phase 2 study of ridaforolimus (RIDA) and dalotuzumab (DALO) in estrogen receptor positive (ER+) breast cancer. Cancer Res. 2013;73(24 suppl)abstr: P2-16-04. doi:10.1158/0008-5472.sabcs13-p2-16-04. Min HY, Yun HJ, Lee JS, Lee HJ, Cho J, Jang HJ, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113. doi:10.1186/s12943-015-0392-3. Di Cosimo S, Seoane J, Guzman M, Rojo F, Jimenez J, Anido J et al. Combination of the mammalian target of rapamycin (mTOR) inhibitor everolimus (E) with the insulin like growth factor-1-receptor (IGF-1-R) inhibitor NVP-AEW-541: A mechanistic based anti-tumor strategy. J Clin Oncol. 2005;23(16 suppl):abstr 3112. ResnicoffMSellCRubiniMCoppolaDAmbroseDBasergaRRat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumorsCancer Res1994548221822221:CAS:528:DyaK2cXis1ahsro%3D8174129 Deng H, Lin Y, Badin M, Vasilcanu D, Stromberg T, Jernberg-Wiklund H, et al. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun. 2011;404(2):667–71. doi:10.1016/j.bbrc.2010.12.038. Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal. 2012;5(255):ra92. doi:10.1126/scisignal.2003184. Somasundaram R, Zhang G, Wagner SN, Fukunaga-Kalabis M, Herlyn M. The role of tumor microenvironment in therapy resistance and melanoma progression. Cancer Res. 2015;75 (15 suppl):abstr 420. Zha J, O’Brien C, Savage H, Huw LY, Zhong F, Berry L, et al. Molecular predictors of response to a humanized anti-insulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol Cancer Ther. 2009;8(8):2110–21. doi:10.1158/1535-7163.MCT-09-0381. Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11(2):129–35. doi:10.1016/S1470-2045(09)70354-7. Malaguarnera R, Belfiore A. The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne). 2014;5:10. doi:10.3389/fendo.2014.00010. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8(10):1145–52. doi:10.1038/nm759. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463(7283):893–8. doi:10.1038/nature08768. Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 2008;14(20):6364–70. doi:10.1158/1078-0432.CCR-07-4879. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced Nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. doi:10.1056/NEJMoa1507643. Anguela XM, Tafuro S, Roca C, Callejas D, Agudo J, Obach M, et al. Nonviral-mediated hepatic expression of IGF-I increases Treg levels and suppresses autoimmune diabetes in mice. Diabetes. 2013;62(2):551–60. doi:10.2337/db11-1776. Turney BW, Kerr M, Chitnis MM, Lodhia K, Wang Y, Riedemann J, et al. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks. Radiother Oncol. 2012;103(3):402–9. doi:10.1016/j.radonc.2012.03.009. Wilson S, Chia SK. IGF-1R inhibition: right direction, wrong pathway? Lancet Oncol. 2013;14(3):182–3. doi:10.1016/S1470-2045(13)70019-6. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6. doi:10.1186/s40169-015-0048-3. Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med. 2014;6(11):1423–35. doi:10.15252/emmm.201303376. Beltran PJ, Mitchell P, Chung YA, Cajulis E, Lu J, Belmontes B, et al. AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Mol Cancer Ther. 2009;8(5):1095–1105. doi:10.1158/1535-7163.MCT-08-1171. Pavlicek A, Lira ME, Lee NV, Ching KA, Ye J, Cao J, et al. Molecular predictors of sensitivity to the insulin-like growth factor 1 receptor inhibitor Figitumumab (CP-751,871). Mol Cancer Ther. 2013;12(12):2929–39. doi:10.1158/1535-7163.MCT-13-0442-T. Molina-Arcas M, Hancock DC, Sheridan C, Kumar MS, Downward J. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Cancer Discov. 2013;3(5):548–63. doi:10.1158/2159-8290.CD-12-0446. Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol. 2011;164(4):485–9. doi:10.1530/EJE-10-0859. Simone BA, Dan T, Palagani A, Jin L, Han SY, Wright C, et al. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle. 2016;15(17):2265–74. doi:10.1080/15384101.2016.1160982. Calvo E, Ma W, Tolcher AW, Hidalgo M, Soria J, Bahleda R et al. Phase (P) I study of PF-00299804 (PF) combined with figitumumab (FI; CP-751871) in patients (pts) with advanced solid tumors (ASTs). J Clin Oncol. 2010;28(15 suppl): abstr 3026. Langer CJ, Novello S, Park K, Krzakowski M, Karp DD, Mok T, et al. Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2014;32(19):2059–66. doi:10.1200/JCO.2013.54.4932. Rota LM, Wood TL. Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Front Endocrinol (Lausanne). 514_CR203 514_CR202 514_CR201 514_CR200 514_CR33 514_CR34 514_CR31 514_CR32 514_CR30 514_CR39 514_CR38 514_CR44 514_CR45 514_CR42 514_CR43 514_CR40 514_CR41 514_CR48 514_CR46 514_CR47 514_CR11 514_CR7 514_CR12 514_CR8 K Ohtani (514_CR37) 1995; 92 514_CR9 514_CR10 514_CR17 514_CR18 514_CR15 514_CR14 M Resnicoff (514_CR212) 1994; 54 514_CR22 514_CR23 514_CR21 514_CR28 514_CR29 514_CR26 514_CR27 514_CR24 514_CR25 C Liu (514_CR49) 2014; 20 514_CR199 514_CR198 514_CR197 514_CR196 T Doi (514_CR79) 2016; 27 F Matsumoto (514_CR142) 2012; 32 514_CR191 514_CR190 514_CR195 514_CR194 514_CR193 514_CR192 A Ullrich (514_CR6) 1986; 5 J Kato (514_CR36) 1993; 7 514_CR188 514_CR187 H Werner (514_CR16) 1996; 7 514_CR186 514_CR185 S Burrow (514_CR19) 1998; 69 514_CR189 514_CR180 514_CR184 514_CR183 514_CR182 514_CR181 514_CR177 514_CR176 514_CR175 514_CR174 514_CR179 514_CR178 514_CR173 514_CR172 514_CR171 514_CR170 514_CR166 514_CR165 514_CR164 514_CR163 514_CR169 514_CR168 514_CR167 514_CR162 514_CR161 514_CR160 514_CR155 514_CR154 K Habben (514_CR125) 2011; 29 514_CR153 514_CR152 514_CR159 514_CR158 514_CR157 514_CR156 514_CR151 514_CR150 514_CR149 514_CR144 514_CR143 514_CR141 514_CR148 514_CR147 514_CR146 CC Lin (514_CR78) 2014; 32 514_CR91 514_CR92 514_CR90 514_CR140 514_CR99 514_CR97 514_CR98 514_CR95 514_CR96 514_CR139 514_CR138 C Sell (514_CR13) 1994; 14 J Trojan (514_CR213) 1993; 259 C Garcia-Echeverria (514_CR64) 2004; 5 514_CR133 514_CR132 514_CR131 514_CR130 514_CR137 514_CR136 514_CR135 514_CR134 J Desai (514_CR94) 2010; 28 514_CR129 514_CR128 514_CR127 SP Chellappan (514_CR35) 1991; 65 514_CR122 514_CR120 514_CR126 A Chakravarti (514_CR145) 2002; 62 514_CR124 514_CR123 514_CR70 514_CR77 514_CR75 514_CR76 514_CR73 514_CR74 514_CR71 514_CR72 514_CR119 514_CR118 514_CR117 514_CR116 514_CR111 514_CR110 514_CR115 514_CR114 514_CR113 I Ray-Coquard (514_CR93) 2013; 31 514_CR112 514_CR80 514_CR81 514_CR1 514_CR2 514_CR3 514_CR4 514_CR5 514_CR88 514_CR89 514_CR86 514_CR87 514_CR84 514_CR85 514_CR82 514_CR83 MA Steller (514_CR20) 1996; 56 514_CR108 514_CR107 514_CR106 514_CR105 514_CR109 514_CR100 514_CR221 514_CR220 514_CR104 514_CR103 514_CR102 514_CR101 MM Jalve (514_CR121) 2012; 30 514_CR222 514_CR55 514_CR56 514_CR53 514_CR54 514_CR51 514_CR52 514_CR50 514_CR218 514_CR217 514_CR216 514_CR215 514_CR59 514_CR57 514_CR58 514_CR219 514_CR210 514_CR214 514_CR211 514_CR66 514_CR67 514_CR65 514_CR62 514_CR63 514_CR60 514_CR61 514_CR207 514_CR206 514_CR205 514_CR204 514_CR68 514_CR209 514_CR69 514_CR208 |
| References_xml | – reference: Vidal SJ, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27(2):223–39. doi:10.1016/j.ccell.2014.11.013. – reference: Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 2008;14(20):6364–70. doi:10.1158/1078-0432.CCR-07-4879. – reference: Ramcharan R, Aleksic T, Kamdoum WP, Gao S, Pfister SX, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6(37):39877–90. doi:10.18632/oncotarget.5631. – reference: Zeng X, Sachdev D, Zhang H, Gaillard-Kelly M, Yee D. Sequencing of type I insulin-like growth factor receptor inhibition affects chemotherapy response in vitro and in vivo. Clin Cancer Res. 2009;15(8):2840–9. doi:10.1158/1078-0432.CCR-08-1401. – reference: Parker C, Gillessen S, Heidenreich A, Horwich A. Cancer of the prostate: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(suppl 5):v69–77. doi:10.1093/annonc/mdv222. – reference: Hoyo C, Schildkraut JM, Murphy SK, Chow WH, Vaughan TL, Risch H, et al. IGF2R polymorphisms and risk of esophageal and gastric adenocarcinomas. Int J Cancer. 2009;125(11):2673–8. doi:10.1002/ijc.24623. – reference: Zinn RL, Gardner EE, Marchionni L, Murphy SC, Dobromilskaya I, Hann CL, et al. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer. Mol Cancer Ther. 2013;12(6):1131–9. doi:10.1158/1535-7163.MCT-12-0618. – reference: ChellappanSPHiebertSMudryjMHorowitzJMNevinsJRThe E2F transcription factor is a cellular target for the RB proteinCell1991656105310611:CAS:528:DyaK3MXks12nsrg%3D10.1016/0092-8674(91)90557-F1828392 – reference: Arcaro A. Targeting the insulin-like growth factor-1 receptor in human cancer. Front Pharmacol. 2013;4:30. doi:10.3389/fphar.2013.00030. – reference: Jin M, Buck E, Mulvihill MJ. Modulation of insulin-like growth factor-1 receptor and its signaling network for the treatment of cancer: current status and future perspectives. Oncol Rev. 2013;7(1):e3. doi:10.4081/oncol.2013.e3. – reference: DesaiJSolomonBJDavisIDLiptonLRHicksRScottAMPhase I dose-escalation study of daily BMS-754807, an oral, dual IGF-1R/insulin receptor (IR) inhibitor in subjects with solid tumorsJ Clin Oncol201028suppl 15abstr 310410.1200/jco.2010.28.15_suppl.3104 – reference: Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6(1):1–12. doi:10.1158/1535-7163.MCT-06-0080. – reference: DoiTShitaraKNaitoYKubokiYKojimaTHosonoAPhase I dose escalation trial of weekly intravenous xentuzumab (BI 836845) in Japanese patients with advanced solid tumorsAnn Oncol201627supplabstr 2790 – reference: Lin MZ, Marzec KA, Martin JL, Baxter RC. The role of insulin-like growth factor binding protein-3 in the breast cancer cell response to DNA-damaging agents. Oncogene. 2014;33(1):85–96. doi:10.1038/onc.2012.538. – reference: Werner H, Roberts CT Jr. The IGFI receptor gene: a molecular target for disrupted transcription factors. Genes Chromosom Cancer. 2003;36(2):113–20. doi:10.1002/gcc.10157. – reference: Kurzrock R, Patnaik A, Aisner J, Warren T, Leong S, Benjamin R, et al. A phase I study of weekly R1507, a human monoclonal antibody insulin-like growth factor-I receptor antagonist, in patients with advanced solid tumors. Clin Cancer Res. 2010;16(8):2458–65. doi:10.1158/1078-0432.CCR-09-3220. – reference: Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463(7283):893–8. doi:10.1038/nature08768. – reference: Haluska P, Worden F, Olmos D, Yin D, Schteingart D, Batzel GN, et al. Safety, tolerability, and pharmacokinetics of the anti-IGF-1R monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma. Cancer Chemother Pharmacol. 2010;65(4):765–73. doi:10.1007/s00280-009-1083-9. – reference: Han J, Zhao F, Zhang J, Zhu H, Ma H, Li X, et al. miR-223 reverses the resistance of EGFR-TKIs through IGF1R/PI3K/Akt signaling pathway. Int J Oncol. 2016;48(5):1855–67. doi:10.3892/ijo.2016.3401. – reference: Deng H, Lin Y, Badin M, Vasilcanu D, Stromberg T, Jernberg-Wiklund H, et al. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun. 2011;404(2):667–71. doi:10.1016/j.bbrc.2010.12.038. – reference: Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19(1):58–71. doi:10.1016/j.ccr.2010.10.031. – reference: De Meyts P, Palsgaard J, Sajid W, Theede AM, Aladdin H. Structural biology of insulin and IGF-1 receptors. Novartis Found Symp. 2004;262:160–71. discussion 71-6, 265-8. – reference: Asmane I, Watkin E, Alberti L, Duc A, Marec-Berard P, Ray-Coquard I, et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (ab) therapy in sarcomas. Eur J Cancer. 2012;48(16):3027–35. doi:10.1016/j.ejca.2012.05.009. – reference: Di Cosimo S, Seoane J, Guzman M, Rojo F, Jimenez J, Anido J et al. Combination of the mammalian target of rapamycin (mTOR) inhibitor everolimus (E) with the insulin like growth factor-1-receptor (IGF-1-R) inhibitor NVP-AEW-541: A mechanistic based anti-tumor strategy. J Clin Oncol. 2005;23(16 suppl):abstr 3112. – reference: Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M, Merli G, et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol. 2001;19(8):2189–200. doi:10.1200/jco.2001.19.8.2189. – reference: Flanigan SA, Pitts TM, Newton TP, Kulikowski GN, Tan AC, McManus MC, et al. Overcoming IGF1R/IR resistance through inhibition of MEK signaling in colorectal cancer models. Clin Cancer Res. 2013;19(22):6219–29. doi:10.1158/1078-0432.CCR-13-0145. – reference: Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PC, Chugh R, et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a sarcoma alliance for research through collaboration study. Cancer. 2014;120(16):2448–56. doi:10.1002/cncr.28728. – reference: Pappo AS, Patel SR, Crowley J, Reinke DK, Kuenkele KP, Chawla SP, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II sarcoma alliance for research through collaboration study. J Clin Oncol. 2011;29(34):4541–7. doi:10.1200/JCO.2010.34.0000. – reference: Johannesson B, Sattler S, Semenova E, Pastore S, Kennedy-Lydon TM, Sampson RD, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice. Dis Model Mech. 2014;7(8):977–85. doi:10.1242/dmm.015362. – reference: Mancarella C, Casanova-Salas I, Calatrava A, Ventura S, Garofalo C, Rubio-Briones J, et al. ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents. Oncotarget. 2015;6(18):16611–22. doi:10.18632/oncotarget.3425. – reference: Cortot AB, Repellin CE, Shimamura T, Capelletti M, Zejnullahu K, Ercan D, et al. Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 2013;73(2):834–43. doi:10.1158/0008-5472.CAN-12-2066. – reference: Bowers LW, Rossi EL, O’Flanagan CH, de Graffenried LA, Hursting SD. The role of the insulin/IGF system in cancer: lessons learned from clinical trials and the energy balance-cancer link. Front Endocrinol (Lausanne). 2015;6:77. doi:10.3389/fendo.2015.00077. – reference: Leighl NB, Rizvi NA, de Lima LG Jr, Arpornwirat W, Rudin CM, Chiappori AA, et al. Phase 2 study of Erlotinib in combination with Linsitinib (OSI-906) or placebo in chemotherapy-naive patients with non-small-cell lung cancer and activating epidermal growth factor receptor mutations. Clin Lung Cancer. 2017;18(1):34–42.e2. doi:10.1016/j.cllc.2016.07.007. – reference: Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature. 1993;364(6435):308–13. doi:10.1038/364308a0. – reference: Pavlicek A, Lira ME, Lee NV, Ching KA, Ye J, Cao J, et al. Molecular predictors of sensitivity to the insulin-like growth factor 1 receptor inhibitor Figitumumab (CP-751,871). Mol Cancer Ther. 2013;12(12):2929–39. doi:10.1158/1535-7163.MCT-13-0442-T. – reference: Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int. 2015;2015:538019. doi:10.1155/2015/538019. – reference: Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced Nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. doi:10.1056/NEJMoa1507643. – reference: Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11(2):129–35. doi:10.1016/S1470-2045(09)70354-7. – reference: Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015;2(1):13–25. doi:10.1016/j.gendis.2014.10.004. – reference: Rota LM, Wood TL. Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Front Endocrinol (Lausanne). 2015;6:92. doi:10.3389/fendo.2015.00092. – reference: von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B. Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther. 2013;8(3):193–202. doi:10.2174/1574362409666140206221931. – reference: JalveMMShroffRTVaradhacharyGRWolffRAFogelmanDRBhosalePTumor IGF-1 expression as a predictive biomarker for IGF1R-directed therapy in advanced pancreatic cancer (APC)J Clin Oncol201230supplabstr 4054 – reference: Park K, Cho KH, Lee KH, Su W, Kim S, Lin C et al. Phase Ib trial of afatinib and xentuzumab (BI 836845) in advanced NSCLC: dose-escalation and safety results. J Thorac Oncol. 2017;12(1, suppl):S1187–S1188. – reference: Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013. – reference: Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18. doi:10.1016/S1470-2045(15)00083-2. – reference: MatsumotoFValdecanasDNMasonKAMilasLAngKKRajuUThe impact of timing of EGFR and IGF-1R inhibition for sensitizing head and neck cancer to radiationAnticancer Res2012328302930351:CAS:528:DC%2BC38Xht1KmurbM22843870 – reference: Calvo E, Ma W, Tolcher AW, Hidalgo M, Soria J, Bahleda R et al. Phase (P) I study of PF-00299804 (PF) combined with figitumumab (FI; CP-751871) in patients (pts) with advanced solid tumors (ASTs). J Clin Oncol. 2010;28(15 suppl): abstr 3026. – reference: Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer. 2014;14(5):329–41. doi:10.1038/nrc3720. – reference: Zha J, O’Brien C, Savage H, Huw LY, Zhong F, Berry L, et al. Molecular predictors of response to a humanized anti-insulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol Cancer Ther. 2009;8(8):2110–21. doi:10.1158/1535-7163.MCT-09-0381. – reference: Bendell JC, Jones SF, Hart L, Spigel DR, Lane CM, Earwood C, et al. A phase Ib study of linsitinib (OSI-906), a dual inhibitor of IGF-1R and IR tyrosine kinase, in combination with everolimus as treatment for patients with refractory metastatic colorectal cancer. Investig New Drugs. 2015;33(1):187–93. doi:10.1007/s10637-014-0177-3. – reference: Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785–9. doi:10.1038/378785a0. – reference: Larkin J, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. doi:10.1056/NEJMc1509660. – reference: Cortes J, Martinez Janez N, Sablin MP, Perez-Fidalgo JA, Neven P, Hedayati E et al. Phase 1b/2 trial of BI 836845, an insulin-like growth factor (IGF) ligand-neutralizing antibody, combined with exemestane (Ex) and everolimus (Ev) in hormone receptor-positive (HR+) locally advanced or metastatic breast cancer (BC): primary phase 1b results. J Clin Oncol. 2016;34(suppl):abstr 530. – reference: Sciacca L, Le MR, Vigneri R. Insulin analogs and cancer. Front Endocrinol (Lausanne). 2012;3:21. doi:10.3389/fendo.2012.00021. – reference: Abou-Alfa GK, Capanu M, O’Reilly EM, Ma J, Chou JF, Gansukh B, et al. A phase II study of cixutumumab (IMC-A12, NSC742460) in advanced hepatocellular carcinoma. J Hepatol. 2014;60(2):319–24. doi:10.1016/j.jhep.2013.09.008. – reference: Van Cutsem E, Eng C, Nowara E, Swieboda-Sadlej A, Tebbutt NC, Mitchell E, et al. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res. 2014;20(16):4240–50. doi:10.1158/1078-0432.CCR-13-2752. – reference: Girnita L, Worrall C, Takahashi S, Seregard S, Girnita A. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci. 2014;71(13):2403–27. doi:10.1007/s00018-013-1514-y. – reference: Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12(3):159–69. doi:10.1038/nrc3215. – reference: Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Smith LS, et al. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res. 2012;18(8):2316–25. doi:10.1158/1078-0432.CCR-11-2381. – reference: Browne BC, Crown J, Venkatesan N, Duffy MJ, Clynes M, Slamon D, et al. Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Ann Oncol. 2011;22(1):68–73. doi:10.1093/annonc/mdq349. – reference: Herkert B, Kauffmann A, Molle S, Schnell C, Ferrat T, Voshol H, et al. Maximizing the efficacy of MAPK-targeted treatment in PTENLOF/BRAFMUT melanoma through PI3K and IGF1R inhibition. Cancer Res. 2016;76(2):390–402. doi:10.1158/0008-5472.CAN-14-3358. – reference: USA Department of Health and Human Services Food and Drug Administration. Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics. 2010. http://www.fda.gov/downloads/Drugs/.../Guidances/ucm201790.pdf – reference: Fuchs CS, Azevedo S, Okusaka T, Van Laethem JL, Lipton LR, Riess H, et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: the GAMMA trial. Ann Oncol. 2015;26(5):921–7. doi:10.1093/annonc/mdv027. – reference: Malaguarnera R, Belfiore A. The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne). 2014;5:10. doi:10.3389/fendo.2014.00010. – reference: Garcia-EcheverriaCPearsonMAMartiAMeyerTMestanJZimmermannJIn vivo antitumor activity of NVP-AEW541-a novel, potent, and selective inhibitor of the IGF-IR kinaseCancer Cell2004532312391:CAS:528:DC%2BD2cXjtVartbk%3D10.1016/S1535-6108(04)00051-015050915 – reference: Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, et al. Metformin enhances the therapy effects of Anti-IGF-1R mAb Figitumumab to NSCLC. Sci Rep. 2016;6:31072. doi:10.1038/srep31072. – reference: Atzori F, Tabernero J, Cervantes A, Prudkin L, Andreu J, Rodriguez-Braun E, et al. A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 2011;17(19):6304–12. doi:10.1158/1078-0432.CCR-10-3336. – reference: Wilson S, Chia SK. IGF-1R inhibition: right direction, wrong pathway? Lancet Oncol. 2013;14(3):182–3. doi:10.1016/S1470-2045(13)70019-6. – reference: Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):527–32. doi:10.1038/370527a0. – reference: Miller ML, Molinelli EJ, Nair JS, Sheikh T, Samy R, Jing X, et al. Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets. Sci Signal. 2013;6(294):ra85. doi:10.1126/scisignal.2004014. – reference: Bielen A, Perryman L, Box GM, Valenti M, de Haven BA, Martins V, et al. Enhanced efficacy of IGF1R inhibition in pediatric glioblastoma by combinatorial targeting of PDGFRalpha/beta. Mol Cancer Ther. 2011;10(8):1407–18. doi:10.1158/1535-7163.MCT-11-0205. – reference: Simone BA, Dan T, Palagani A, Jin L, Han SY, Wright C, et al. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle. 2016;15(17):2265–74. doi:10.1080/15384101.2016.1160982. – reference: Pandini G, Mineo R, Frasca F, Roberts CT Jr, Marcelli M, Vigneri R, et al. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Res. 2005;65(5):1849–57. doi:10.1158/0008-5472.CAN-04-1837. – reference: Dasari A, Phan A, Gupta S, Rashid A, Yeung SC, Hess K, et al. Phase I study of the anti-IGF1R antibody cixutumumab with everolimus and octreotide in advanced well-differentiated neuroendocrine tumors. Endocr Relat Cancer. 2015;22(3):431–41. doi:10.1530/ERC-15-0002. – reference: Fitzgerald JB, Johnson BW, Baum J, Adams S, Iadevaia S, Tang J, et al. MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther. 2014;13(2):410–25. doi:10.1158/1535-7163.MCT-13-0255. – reference: Yamaoka T, Ohmori T, Ohba M, Arata S, Kishino Y, Murata Y, et al. Acquired resistance mechanisms to combination met-TKI/EGFR-TKI exposure in met-amplified EGFR-TKI resistant lung adenocarcinoma harboring an activating EGFR mutation. Mol Cancer Ther. 2016;15(12):3040–54. doi:10.1158/1535-7163.MCT-16-0313. – reference: Barrett JP, Minogue AM, Falvey A, Lynch MA. Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Exp Cell Res. 2015;335(2):258–68. doi:10.1016/j.yexcr.2015.05.015. – reference: Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28. doi:10.1056/NEJMoa1501824. – reference: King H, Aleksic T, Haluska P, Macaulay VM. Can we unlock the potential of IGF-1R inhibition in cancer therapy? Cancer Treat Rev. 2014;40(9):1096–105. doi:10.1016/j.ctrv.2014.07.004. – reference: Turney BW, Kerr M, Chitnis MM, Lodhia K, Wang Y, Riedemann J, et al. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks. Radiother Oncol. 2012;103(3):402–9. doi:10.1016/j.radonc.2012.03.009. – reference: Plymate SR, Haugk K, Coleman I, Woodke L, Vessella R, Nelson P, et al. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res. 2007;13(21):6429–39. doi:10.1158/1078-0432.CCR-07-0648. – reference: Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 2008;118(7):2609–19. doi:10.1172/JCI34588. – reference: Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E, et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest. 2011;121(11):4311–21. doi:10.1172/JCI57909. – reference: Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest. 2010;120(8):2715–30. doi:10.1172/JCI41824. – reference: Weroha SJ, Haluska P. IGF-1 receptor inhibitors in clinical trials--early lessons. J Mammary Gland Biol Neoplasia. 2008;13(4):471–83. doi:10.1007/s10911-008-9104-6. – reference: Flashner-Abramson E, Klein S, Mullin G, Shoshan E, Song R, Shir A, et al. Targeting melanoma with NT157 by blocking Stat3 and IGF1R signaling. Oncogene. 2016;35(20):2675–80. doi:10.1038/onc.2015.229. – reference: Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med. 2014;6(11):1423–35. doi:10.15252/emmm.201303376. – reference: Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, et al. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res. 2011;71(3):1029–40. doi:10.1158/0008-5472.CAN-10-2274. – reference: Tolcher AW, Sarantopoulos J, Patnaik A, Papadopoulos K, Lin CC, Rodon J, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol. 2009;27(34):5800–7. doi:10.1200/JCO.2009.23.6745. – reference: Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J, et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal. 2010;3(108):ra10. doi:10.1126/scisignal.2000628. – reference: Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD, et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010;70(16):6412–9. doi:10.1158/0008-5472.CAN-10-0052. – reference: Di Cosimo S, Sathyanarayanan S, Bendell JC, Cervantes A, Stein MN, Brana I, et al. Combination of the mTOR inhibitor ridaforolimus and the anti-IGF1R monoclonal antibody dalotuzumab: preclinical characterization and phase I clinical trial. Clin Cancer Res. 2015;21(1):49–59. doi:10.1158/1078-0432.CCR-14-0940. – reference: Becerra CR, Salazar R, Garcia-Carbonero R, Thomas AL, Vazquez-Mazon FJ, Cassidy J, et al. Figitumumab in patients with refractory metastatic colorectal cancer previously treated with standard therapies: a nonrandomized, open-label, phase II trial. Cancer Chemother Pharmacol. 2014;73(4):695–702. doi:10.1007/s00280-014-2391-2. – reference: Dziadziuszko R, Merrick DT, Witta SE, Mendoza AD, Szostakiewicz B, Szymanowska A, et al. Insulin-like growth factor receptor 1 (IGF1R) gene copy number is associated with survival in operable non-small-cell lung cancer: a comparison between IGF1R fluorescent in situ hybridization, protein expression, and mRNA expression. J Clin Oncol. 2010;28(13):2174–80. doi:10.1200/JCO.2009.24.6611. – reference: Quek R, Wang Q, Morgan JA, Shapiro GI, Butrynski JE, Ramaiya N, et al. Combination mTOR and IGF-1R inhibition: phase I trial of everolimus and figitumumab in patients with advanced sarcomas and other solid tumors. Clin Cancer Res. 2011;17(4):871–9. doi:10.1158/1078-0432.CCR-10-2621. – reference: Chiappori AA, Otterson GA, Dowlati A, Traynor AM, Horn L, Owonikoko TK, et al. A randomized phase II study of Linsitinib (OSI-906) versus Topotecan in patients with relapsed small-cell lung cancer. Oncologist. 2016;21(10):1163–4. doi:10.1634/theoncologist.2016-0220. – reference: Lugovskoy AA, Curley M, Baum J, Adams S, Iadevaia S, Rimkunas V, et al. Preclinical characterization and first-in-human study of MM-141, a dual antibody inhibitor of IGF-1R and ErbB3. Cancer Res. 2015;75(15 suppl): abstr CT237-CT. doi:10.1158/1538-7445.am2015-ct237. – reference: Wargo JA, Cooper ZA, Flaherty KT. Universes collide: combining immunotherapy with targeted therapy for cancer. Cancer Discov. 2014;4(12):1377–86. doi:10.1158/2159-8290.CD-14-0477. – reference: Haluska P, Menefee M, Plimack ER, Rosenberg J, Northfelt D, LaVallee T, et al. Phase I dose-escalation study of MEDI-573, a bispecific, antiligand monoclonal antibody against IGFI and IGFII, in patients with advanced solid tumors. Clin Cancer Res. 2014;20(18):4747–57. doi:10.1158/1078-0432.CCR-14-0114. – reference: Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. doi:10.1126/scitranslmed.3001845. – reference: Ioannou N, Seddon AM, Dalgleish A, Mackintosh D, Modjtahedi H. Treatment with a combination of the ErbB (HER) family blocker afatinib and the IGF-IR inhibitor, NVP-AEW541 induces synergistic growth inhibition of human pancreatic cancer cells. BMC Cancer. 2013;13(1):1–12. doi:10.1186/1471-2407-13-41. – reference: O’Flanagan CH, O’Shea S, Lyons A, Fogarty FM, McCabe N, Kennedy RD, et al. IGF-1R inhibition sensitizes breast cancer cells to ATM-related kinase (ATR) inhibitor and cisplatin. Oncotarget. 2016;7(35):56826–56841. doi:10.18632/oncotarget.10862. – reference: Brana I, Berger R, Golan T, Haluska P, Edenfield J, Fiorica J, et al. A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br J Cancer. 2014;111(10):1932–44. doi:10.1038/bjc.2014.497. – reference: Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50. doi:10.1016/S0140-6736(15)01281-7. – reference: Iguchi H, Nishina T, Nogami N, Kozuki T, Yamagiwa Y, Yagawa K. Phase I dose-escalation study evaluating safety, tolerability and pharmacokinetics of MEDI-573, a dual IGF-I/II neutralizing antibody, in Japanese patients with advanced solid tumours. Investig New Drugs. 2015;33(1):194–200. doi:10.1007/s10637-014-0170-x. – reference: Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466. – reference: Molina-Arcas M, Hancock DC, Sheridan C, Kumar MS, Downward J. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Cancer Discov. 2013;3(5):548–63. doi:10.1158/2159-8290.CD-12-0446. – reference: Chitnis MM, Lodhia KA, Aleksic T, Gao S, Protheroe AS, Macaulay VM. IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination. Oncogene. 2014;33(45):5262–73. doi:10.1038/onc.2013.460. – reference: Lee Y, Wang Y, James M, Jeong JH, You M. Inhibition of IGF1R signaling abrogates resistance to afatinib (BIBW2992) in EGFR T790M mutant lung cancer cells. Mol Carcinog. 2016;55(5):991–1001. doi:10.1002/mc.22342. – reference: Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther. 2009;8(12):3341–9. doi:10.1158/1535-7163.MCT-09-0499. – reference: Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8(10):1145–52. doi:10.1038/nm759. – reference: Schmitz S, Kaminsky-Forrett MC, Henry S, Zanetta S, Geoffrois L, Bompas E, et al. Phase II study of figitumumab in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck: clinical activity and molecular response (GORTEC 2008-02). Ann Oncol. 2012;23(8):2153–61. doi:10.1093/annonc/mdr574. – reference: Rihawi K, Ong M, Michalarea V, Bent L, Buschke S, Bogenrieder T et al. Phase I dose escalation study of 3-weekly BI 836845, a fully human, affinity optimized, insulin-like growth factor (IGF) ligand neutralizing antibody, in patients with advanced solid tumors. J Clin Oncol. 2014;32(5 suppl):abstr 2622. – reference: Davaadelger B, Duan L, Perez RE, Gitelis S, Maki CG. Crosstalk between the IGF-1R/AKT/mTORC1 pathway and the tumor suppressors p53 and p27 determines cisplatin sensitivity and limits the effectiveness of an IGF-1R pathway inhibitor. Oncotarget. 2016;7(19):27511–26. doi:10.18632/oncotarget.8484. – reference: Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487(7408):505–9. doi:10.1038/nature11249. – reference: ResnicoffMSellCRubiniMCoppolaDAmbroseDBasergaRRat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumorsCancer Res1994548221822221:CAS:528:DyaK2cXis1ahsro%3D8174129 – reference: Basch E, Loblaw DA, Oliver TK, Carducci M, Chen RC, Frame JN, et al. Systemic therapy in men with metastatic castration-resistant prostate cancer: American Society of Clinical Oncology and Cancer Care Ontario clinical practice guideline. J Clin Oncol. 2014;32(30):3436–48. doi:10.1200/JCO.2013.54.8404. – reference: Ferte C, Loriot Y, Clemenson C, Commo F, Gombos A, Bibault JE, et al. IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy. Mol Cancer Ther. 2013;12(7):1213–22. doi:10.1158/1535-7163.MCT-12-1067. – reference: Schwartz GK, Dickson MA, LoRusso PM, Sausville EA, Maekawa Y, Watanabe Y, et al. Preclinical and first-in-human phase I studies of KW-2450, an oral tyrosine kinase inhibitor with insulin-like growth factor receptor-1/insulin receptor selectivity. Cancer Sci. 2016;107(4):499–506. doi:10.1111/cas.12906. – reference: Sprinzl MF, Puschnik A, Schlitter AM, Schad A, Ackermann K, Esposito I, et al. Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J Hepatol. 2015;62(4):863–70. doi:10.1016/j.jhep.2014.11.011. – reference: Haluska P, Shaw HM, Batzel GN, Yin D, Molina JR, Molife LR, et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res. 2007;13(19):5834–40. doi:10.1158/1078-0432.CCR-07-1118. – reference: OhtaniKDeGregoriJNevinsJRRegulation of the cyclin E gene by transcription factor E2F1Proc Natl Acad Sci U S A1995922612146121501:CAS:528:DyaK28Xhtl2itA%3D%3D10.1073/pnas.92.26.12146861886140313 – reference: Shen K, Cui D, Sun L, Lu Y, Han M, Liu J. Inhibition of IGF-IR increases chemosensitivity in human colorectal cancer cells through MRP-2 promoter suppression. J Cell Biochem. 2012;113(6):2086–97. doi:10.1002/jcb.24080. – reference: Ko AH, Murray J, Horgan KE, Dauer J, Curley M, Baum J et al. A multicenter phase II study of istiratumab (MM-141) plus nab-paclitaxel (A) and gemcitabine (G) in metastatic pancreatic cancer (MPC). J Clin Oncol. 2016;34(4S suppl): abstr TPS481. – reference: StellerMADelgadoCHBartelsCJWoodworthCDZouZOverexpression of the insulin-like growth factor-1 receptor and autocrine stimulation in human cervical cancer cellsCancer Res1996568176117651:CAS:528:DyaK28Xitlyksrs%3D8620490 – reference: Lu MC, Yu CL, Chen HC, Yu HC, Huang HB, Lai NS. Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production. Clin Exp Immunol. 2014;177(3):641–51. doi:10.1111/cei.12374. – reference: Becker MA, Hou X, Tienchaianada P, Haines BB, Harrington SC, Weroha SJ, et al. Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer. BMC Cancer. 2016;16(1):814. doi:10.1186/s12885-016-2847-3. – reference: Awasthi N, Zhang C, Ruan W, Schwarz MA, Schwarz RE. BMS-754807, a small-molecule inhibitor of insulin-like growth factor-1 receptor/insulin receptor, enhances gemcitabine response in pancreatic cancer. Mol Cancer Ther. 2012;11(12):2644–53. doi:10.1158/1535-7163.MCT-12-0447. – reference: Rota LM, Albanito L, Shin ME, Goyeneche CL, Shushanov S, Gallagher EJ, et al. IGF1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors. Cancer Res. 2014;74(19):5668–79. doi:10.1158/0008-5472.CAN-14-0970. – reference: Cardillo TM, Trisal P, Arrojo R, Goldenberg DM, Chang CH. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro. BMC Cancer. 2013;13:170. doi:10.1186/1471-2407-13-170. – reference: Juergens H, Daw NC, Geoerger B, Ferrari S, Villarroel M, Aerts I, et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol. 2011;29(34):4534–40. doi:10.1200/JCO.2010.33.0670. – reference: Dean JP, Sprenger CC, Wan J, Haugk K, Ellis WJ, Lin DW, et al. Response of the insulin-like growth factor (IGF) system to IGF-IR inhibition and androgen deprivation in a neoadjuvant prostate cancer trial: effects of obesity and androgen deprivation. J Clin Endocrinol Metab. 2013;98(5):E820–8. doi:10.1210/jc.2012-3856. – reference: McCaffery I, Tudor Y, Deng H, Tang R, Suzuki S, Badola S, et al. Putative predictive biomarkers of survival in patients with metastatic pancreatic adenocarcinoma treated with gemcitabine and ganitumab, an IGF1R inhibitor. Clin Cancer Res. 2013;19(15):4282–9. doi:10.1158/1078-0432.CCR-12-1840. – reference: Beltran PJ, Mitchell P, Chung YA, Cajulis E, Lu J, Belmontes B, et al. AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Mol Cancer Ther. 2009;8(5):1095–1105. doi:10.1158/1535-7163.MCT-08-1171. – reference: Zhang M, Hu Z, Huang J, Shu Y, Dai J, Jin G, et al. A 3′-untranslated region polymorphism in IGF1 predicts survival of non-small cell lung cancer in a Chinese population. Clin Cancer Res. 2010;16(4):1236–44. doi:10.1158/1078-0432.CCR-09-2719. – reference: KatoJMatsushimeHHiebertSWEwenMESherrCJDirect binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4Genes Dev1993733313421:CAS:528:DyaK3sXltFertL4%3D10.1101/gad.7.3.3318449399 – reference: HabbenKDelmarPBrownsteinCMKoehlerWKuenkeleKSplesisOInvestigation of predictive biomarkers for R1507, an anti-IGF1R antibody, in patients with advanced non-small cell lung cancer with progression after first-line chemotherapyJ Clin Oncol201129supplabstr 758410.1200/jco.2011.29.15_suppl.7584 – reference: Tap WD, Demetri G, Barnette P, Desai J, Kavan P, Tozer R, et al. Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol. 2012;30(15):1849–56. doi:10.1200/JCO.2011.37.2359. – reference: Wang Y, Hailey J, Williams D, Wang Y, Lipari P, Malkowski M, et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther. 2005;4(8):1214–21. doi:10.1158/1535-7163.MCT-05-0048. – reference: Osuka S, Sampetrean O, Shimizu T, Saga I, Onishi N, Sugihara E, et al. IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells. 2013;31(4):627–40. doi:10.1002/stem.1328. – reference: Oh SY, Shin A, Kim SG, Hwang JA, Hong SH, Lee YS, et al. Relationship between insulin-like growth factor axis gene polymorphisms and clinical outcome in advanced gastric cancer patients treated with FOLFOX. Oncotarget. 2016;7(21):31204–14. doi:10.18632/oncotarget.9100. – reference: Pollak M. Insulin, insulin-like growth factors and neoplasia. Best Pract Res Clin Endocrinol Metab. 2008;22(4):625–38. doi:10.1016/j.beem.2008.08.004. – reference: Kooijman R, Coppens A. Insulin-like growth factor-I stimulates IL-10 production in human T cells. J Leukoc Biol. 2004;76(4):862–7. – reference: Langer CJ, Novello S, Park K, Krzakowski M, Karp DD, Mok T, et al. Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2014;32(19):2059–66. doi:10.1200/JCO.2013.54.4932. – reference: Pandini G, Wurch T, Akla B, Corvaia N, Belfiore A, Goetsch L. Functional responses and in vivo anti-tumour activity of h7C10: a humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. Eur J Cancer. 2007;43(8):1318–27. doi:10.1016/j.ejca.2007.03.009. – reference: Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20(6):R321–39. doi:10.1530/ERC-13-0231. – reference: LinCCChangKYHuangDCMarriottVBeijsterveldtLVChenLTA phase I dose escalation study of weekly BI 836845, a fully human, affinity-optimized, insulin-like growth factor (IGF) ligand neutralizing antibody, in patients with advanced solid cancersJ Clin Oncol2014325 supplabstr 2617 – reference: Ray-CoquardIHaluskaPO’ReillySCottuPHElitLProvencherDMA multicenter open-label phase II study of the efficacy and safety of ganitumab (AMG 479), a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R) as second-line therapy in patients with recurrent platinum-sensitive ovarian cancerJ Clin Oncol201331supplabstr 5515 – reference: Jones RL, Kim ES, Nava-Parada P, Alam S, Johnson FM, Stephens AW, et al. Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors. Clin Cancer Res. 2015;21(4):693–700. doi:10.1158/1078-0432.CCR-14-0265. – reference: ChakravartiALoefflerJSDysonNJInsulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signalingCancer Res20026212002071:CAS:528:DC%2BD38XntV2hsA%3D%3D11782378 – reference: Overholser J, Ambegaokar KH, Eze SM, Sanabria-Figueroa E, Nahta R, Bekaii-Saab T, et al. Anti-tumor effects of peptide therapeutic and peptide vaccine antibody co-targeting HER-1 and HER-2 in esophageal cancer (EC) and HER-1 and IGF-1R in triple-negative breast cancer (TNBC). Vaccines (Basel). 2015;3(3):519–43. doi:10.3390/vaccines3030519. – reference: Wan X, Yeung C, Heske C, Mendoza A, Helman LJ. IGF-1R inhibition activates a YES/SFK bypass resistance pathway: rational basis for co-targeting IGF-1R and yes/SFK kinase in rhabdomyosarcoma. Neoplasia. 2015;17(4):358–66. doi:10.1016/j.neo.2015.03.001. – reference: Anguela XM, Tafuro S, Roca C, Callejas D, Agudo J, Obach M, et al. Nonviral-mediated hepatic expression of IGF-I increases Treg levels and suppresses autoimmune diabetes in mice. Diabetes. 2013;62(2):551–60. doi:10.2337/db11-1776. – reference: Park JH, Choi YJ, Kim SY, Lee JE, Sung KJ, Park S, et al. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016;7(16):22005–15. doi:10.18632/oncotarget.8013. – reference: Ma Y, Tang N, Thompson RC, Mobley BC, Clark SW, Sarkaria JN, et al. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma. Clin Cancer Res. 2016;22(7):1767–76. doi:10.1158/1078-0432.CCR-15-1677. – reference: Li R, Pourpak A, Morris SW. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem. 2009;52(16):4981–5004. doi:10.1021/jm9002395. – reference: Glisson BS, Tseng J, Marur S, Shin DM, Murphy BA, Cohen EEW et al. Randomized phase II trial of cixutumumab (CIX) alone or with cetuximab (CET) for refractory recurrent/metastatic squamous cancer of head and neck (R/M-SCCHN). J Clin Oncol. 2013;31(suppl):abstr 6030. – reference: Zhong H, Fazenbaker C, Chen C, Breen S, Huang J, Yao X, et al. Overproduction of IGF-2 drives a subset of colorectal cancer cells, which specifically respond to an anti-IGF therapeutic antibody and combination therapies. Oncogene. 2017;36(6):797–806. doi:10.1038/onc.2016.248. – reference: Corcoran C, Rani S, Breslin S, Gogarty M, Ghobrial IM, Crown J, et al. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Mol Cancer. 2014;13:71. doi:10.1186/1476-4598-13-71. – reference: van de Luijtgaarden AC, Versleijen-Jonkers YM, Roeffen MH, Schreuder HW, Flucke UE, van der Graaf WT. Prognostic and therapeutic relevance of the IGF pathway in Ewing’s sarcoma patients. Target Oncol. 2013;8(4):253–60. doi:10.1007/s11523-012-0248-3. – reference: Amin O, Beauchamp MC, Nader PA, Laskov I, Iqbal S, Philip CA, et al. Suppression of homologous recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors. BMC Cancer. 2015;15:817. doi:10.1186/s12885-015-1803-y. – reference: Goto Y, Sekine I, Tanioka M, Shibata T, Tanai C, Asahina H, et al. Figitumumab combined with carboplatin and paclitaxel in treatment-naive Japanese patients with advanced non-small cell lung cancer. Investig New Drugs. 2012;30(4):1548–56. doi:10.1007/s10637-011-9715-4. – reference: Craddock BP, Miller WT. Effects of somatic mutations in the C-terminus of insulin-like growth factor 1 receptor on activity and signaling. J Signal Transduct. 2012;2012:804801. doi:10.1155/2012/804801. – reference: Haluska P, Hou X, Huang F, Harrington S, Greer A, Macedo L, et al. Complete IGF signaling blockade by the dual-kinase inhibitor, BMS-754807, is sufficient to overcome tamoxifen and Letrozole resistance in vitro and in vivo. Cancer Res. 2009;69(24 suppl):402. doi:10.1158/0008-5472.sabcs-09-402. – reference: Robertson JF, Ferrero JM, Bourgeois H, Kennecke H, de Boer RH, Jacot W, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013;14(3):228–35. doi:10.1016/S1470-2045(13)70026-3. – reference: Sclafani F, Kim TY, Cunningham D, Kim TW, Tabernero J, Schmoll HJ, et al. A randomized phase II/III study of Dalotuzumab in combination with Cetuximab and irinotecan in Chemorefractory, KRAS wild-type, metastatic colorectal cancer. J Natl Cancer Inst. 2015;107(12):djv258. doi:10.1093/jnci/djv258. – reference: Averous J, Fonseca BD, Proud CG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene. 2008;14(27(8)):1106–13. doi: 10.1038/sj.onc.1210715. – reference: UllrichAGrayATamAWYang-FengTTsubokawaMCollinsCInsulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificityEMBO J1986510250325121:CAS:528:DyaL2sXhtl2isw%3D%3D28778711167146 – reference: Martinez-Quetglas I, Pinyol R, Dauch D, Torrecilla S, Tovar V, Moeini A, et al. IGF2 is upregulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology. 2016;151(6):1192–1205 doi:10.1053/j.gastro.2016.09.001. – reference: Feng Y, Dimitrov DS. Antibody-based therapeutics against components of the IGF system. Oncoimmunology. 2012;1(8):1390–1. doi:10.4161/onci.20925. – reference: Zhong H, Fazenbaker C, Breen S, Chen C, Huang J, Morehouse C, et al. MEDI-573, alone or in combination with mammalian target of rapamycin inhibitors, targets the insulin-like growth factor pathway in sarcomas. Mol Cancer Ther. 2014;13(11):2662–73. doi:10.1158/1535-7163.MCT-14-0144. – reference: Baserga R. The decline and fall of the IGF-I receptor. J Cell Physiol. 2013;228(4):675–9. doi:10.1002/jcp.24217. – reference: Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. doi:10.1126/science.1235122. – reference: Gradishar WJ, Yardley DA, Layman R, Sparano JA, Chuang E, Northfelt DW, et al. Clinical and translational results of a phase II, randomized trial of an Anti-IGF-1R (Cixutumumab) in women with breast cancer that progressed on endocrine therapy. Clin Cancer Res. 2016;22(2):301–9. doi:10.1158/1078-0432.CCR-15-0588. – reference: Maris C, D’Haene N, Trepant AL, Le MM, Sauvage S, Allard J, et al. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer. 2015;113(5):729–37. doi:10.1038/bjc.2015.242. – reference: LiuCZhangZTangHJiangZYouLLiaoYCrosstalk between IGF-1R and other tumor promoting pathwaysCurr Pharm Des20142017291229211:CAS:528:DC%2BC2cXpt1Whurk%3D10.2174/1381612811319999059623944361 – reference: Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science. 2016;352(6288) doi:10.1126/science.aad3018. – reference: Sarfstein R, Werner H. Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology. 2013;154(5):1672–9. doi:10.1210/en.2012-2165. – reference: Heilmann AM, Perera RM, Ecker V, Nicolay BN, Bardeesy N, Benes CH, et al. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Res. 2014;74(14):3947–58. doi:10.1158/0008-5472.CAN-13-2923. – reference: Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3(3):245–52. doi:10.1038/35060032. – reference: Sarfstein R, Belfiore A, Werner H. Identification of insulin-like growth factor-I receptor (IGF-IR) Gene promoter-binding proteins in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. Cancers (Basel). 2010;2(2):233–61. doi:10.3390/cancers2020233. – reference: Macaulay VM, Middleton MR, Eckhardt SG, Rudin CM, Juergens RA, Gedrich R, et al. Phase I dose-escalation study of Linsitinib (OSI-906) and Erlotinib in patients with advanced solid tumors. Clin Cancer Res. 2016;22(12):2897-907. doi:10.1158/1078-0432.CCR-15-2218. – reference: Chan JY, LaPara K, Yee D. Disruption of insulin receptor function inhibits proliferation in endocrine-resistant breast cancer cells. Oncogene. 2016;35(32):4235–43. doi:10.1038/onc.2015.488. – reference: Isakoff SJ, Saleh MN, Lugovskoy AA, Mathews S, Czibere AG, Shields AF et al. First-in-human study of MM-141: a novel tetravalent monoclonal antibody targeting IGF-1R and ErbB3. J Clin Oncol. 2015;33(suppl 3):abstr 384. – reference: Somasundaram R, Zhang G, Wagner SN, Fukunaga-Kalabis M, Herlyn M. The role of tumor microenvironment in therapy resistance and melanoma progression. Cancer Res. 2015;75 (15 suppl):abstr 420. – reference: Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal. 2012;5(255):ra92. doi:10.1126/scisignal.2003184. – reference: Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V, et al. Feedback suppression of PI3Kalpha signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kbeta. Cancer Cell. 2015;27(1):109–22. doi:10.1016/j.ccell.2014.11.008. – reference: SellCDumenilGDeveaudCMiuraMCoppolaDDeAngelisTEffect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblastsMol Cell Biol1994146360436121:CAS:528:DyaK2cXktlaiurY%3D10.1128/MCB.14.6.36048196606358728 – reference: Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol. 2011;164(4):485–9. doi:10.1530/EJE-10-0859. – reference: Dayyani F, Parikh NU, Varkaris AS, Song JH, Moorthy S, Chatterji T, et al. Combined inhibition of IGF-1R/IR and Src family kinases enhances antitumor effects in prostate cancer by decreasing activated survival pathways. PLoS One. 2012;7(12):e51189. doi:10.1371/journal.pone.0051189. – reference: Schoffski P, Adkins D, Blay JY, Gil T, Elias AD, Rutkowski P, et al. An open-label, phase 2 study evaluating the efficacy and safety of the anti-IGF-1R antibody cixutumumab in patients with previously treated advanced or metastatic soft-tissue sarcoma or Ewing family of tumours. Eur J Cancer. 2013;49(15):3219–28. doi:10.1016/j.ejca.2013.06.010. – reference: Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905. doi:10.1038/nature08822. – reference: BurrowSAndrulisILPollakMBellRSExpression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteosarcomaJ Surg Oncol199869121271:CAS:528:DyaK1cXmsF2ltrk%3D10.1002/(SICI)1096-9098(199809)69:1<21::AID-JSO5>3.0.CO;2-M9762887 – reference: Zhang T, Shen H, Dong W, Qu X, Liu Q, Du J. Antitumor effects and molecular mechanisms of figitumumab, a humanized monoclonal antibody to IGF-1 receptor, in esophageal carcinoma. Sci Rep. 2014;4:6855. doi:10.1038/srep06855. – reference: WernerHRobertsCTJrRauscherFJ3rdLeRoithDRegulation of insulin-like growth factor I receptor gene expression by the Wilms’ tumor suppressor WT1J Mol Neurosci1996721111231:CAS:528:DyaK28Xlt1Wmsbg%3D10.1007/BF027367918873895 – reference: Sharon SM, Pozniak Y, Geiger T, Werner H. TMPRSS2-ERG fusion protein regulates insulin-like growth factor-1 receptor (IGF1R) gene expression in prostate cancer: involvement of transcription factor Sp1. Oncotarget. 2016;7(32):51375–92. doi:10.18632/oncotarget.9837. – reference: Reidy-Lagunes DL, Vakiani E, Segal MF, Hollywood EM, Tang LH, Solit DB, et al. A phase 2 study of the insulin-like growth factor-1 receptor inhibitor MK-0646 in patients with metastatic, well-differentiated neuroendocrine tumors. Cancer. 2012;118(19):4795–800. doi:10.1002/cncr.27459. – reference: Malempati S, Weigel B, Ingle AM, Ahern CH, Carroll JM, Roberts CT, et al. Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children’s Oncology group. J Clin Oncol. 2012;30(3):256–62. doi:10.1200/JCO.2011.37.4355. – reference: LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 2016;34(31):3803–15. doi:10.1200/JCO.2014.59.0018. – reference: Lovly CM, McDonald NT, Chen H, Ortiz-Cuaran S, Heukamp LC, Yan Y, et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat Med. 2014;20(9):1027–34. doi:10.1038/nm.3667. – reference: Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C, et al. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther. 2014;13(2):399–409. doi:10.1158/1535-7163.MCT-13-0598. – reference: Min HY, Yun HJ, Lee JS, Lee HJ, Cho J, Jang HJ, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113. doi:10.1186/s12943-015-0392-3. – reference: Naing A, Kurzrock R, Burger A, Gupta S, Lei X, Busaidy N, et al. Phase I trial of cixutumumab combined with temsirolimus in patients with advanced cancer. Clin Cancer Res. 2011;17(18):6052–60. doi:10.1158/1078-0432.CCR-10-2979. – reference: Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem. 2009;1(6):1153–71. doi:10.4155/fmc.09.89. – reference: Ireland L, Santos A, Ahmed MS, Rainer C, Nielsen SR, Quaranta V, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors. Cancer Res. 2016;76(23):6851–6863. doi:10.1158/0008-5472.CAN-16-1201. – reference: Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology group. Pediatr Blood Cancer. 2015;62(3):440–4. doi:10.1002/pbc.25334. – reference: Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Vishwamitra D, Wang Y, Maywald RL et al. IGF-1R and mTOR blockade: Novel resistance mechanisms and synergistic drug combinations for Ewing Sarcoma. J Natl Cancer Inst. 2016;108(12). doi:10.1093/jnci/djw182. – reference: Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6. doi:10.1186/s40169-015-0048-3. – reference: Anderson PM, Bielack SS, Gorlick RG, Skubitz K, Daw NC, Herzog CE, et al. A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer. 2016;63(10):1761–70. doi:10.1002/pbc.26087. – reference: Cao H, Dong W, Shen H, Xu J, Zhu L, Liu Q, et al. Combinational therapy enhances the effects of Anti-IGF-1R mAb Figitumumab to target small cell lung cancer. PLoS One. 2015;10(8):e0135844. doi:10.1371/journal.pone.0135844. – reference: Sachdev D, Singh R, Fujita-Yamaguchi Y, Yee D. Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res. 2006;66(4):2391–402. doi:10.1158/0008-5472.CAN-05-3126. – reference: Zhang H, Pelzer AM, Kiang DT, Yee D. Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Res. 2007;67(1):391–7. doi:10.1158/0008-5472.CAN-06-1712. – reference: Weickhardt A, Doebele R, Oton A, Lettieri J, Maxson D, Reynolds M, et al. A phase I/II study of erlotinib in combination with the anti-insulin-like growth factor-1 receptor monoclonal antibody IMC-A12 (cixutumumab) in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2012;7(2):419–26. doi:10.1097/JTO.0b013e31823c5b11. – reference: Zanella ER, Galimi F, Sassi F, Migliardi G, Cottino F, Leto SM, et al. IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci Transl Med. 2015;7(272):272ra12. doi:10.1126/scitranslmed.3010445. – reference: Suda K, Mizuuchi H, Sato K, Takemoto T, Iwasaki T, Mitsudomi T. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int J Cancer. 2014;135(4):1002–6. doi:10.1002/ijc.28737. – reference: Buck E, Gokhale PC, Koujak S, Brown E, Eyzaguirre A, Tao N, et al. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer. Mol Cancer Ther. 2010;9(10):2652–64. doi:10.1158/1535-7163.MCT-10-0318. – reference: TrojanJJohnsonTRRudinSDIlanJTykocinskiMLIlanJTreatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNAScience1993259509194971:CAS:528:DyaK3sXptl2itw%3D%3D10.1126/science.84185028418502 – reference: Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A, et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene. 2016;35(20):2634–44. doi:10.1038/onc.2015.326. – reference: Baselga J, Morales S, Awada A, Blum J, Tan A, Ewertz M, et al. A phase 2 study of ridaforolimus (RIDA) and dalotuzumab (DALO) in estrogen receptor positive (ER+) breast cancer. Cancer Res. 2013;73(24 suppl)abstr: P2-16-04. doi:10.1158/0008-5472.sabcs13-p2-16-04. – reference: Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12(4):487–502. doi: 10.1016/j.devcel.2007.03.020. – reference: Riedemann J, Macaulay VM. IGF1R signalling and its inhibition. Endocr Relat Cancer. 2006;13(suppl 1):S33–43. doi:10.1677/erc.1.01280. – reference: Rochester MA, Riedemann J, Hellawell GO, Brewster SF, Macaulay VM. Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther. 2005;12(1):90–100. doi:10.1038/sj.cgt.7700775. – ident: 514_CR181 doi: 10.1038/nature08768 – ident: 514_CR2 doi: 10.1016/j.gendis.2014.10.004 – ident: 514_CR129 doi: 10.1158/1535-7163.MCT-12-0618 – ident: 514_CR29 doi: 10.3389/fendo.2014.00010 – ident: 514_CR98 doi: 10.1093/annonc/mdq349 – volume: 32 start-page: abstr 2617 issue: 5 suppl year: 2014 ident: 514_CR78 publication-title: J Clin Oncol doi: 10.1200/jco.2014.32.15_suppl.2617 – volume: 69 start-page: 21 issue: 1 year: 1998 ident: 514_CR19 publication-title: J Surg Oncol doi: 10.1002/(SICI)1096-9098(199809)69:1<21::AID-JSO5>3.0.CO;2-M – ident: 514_CR104 doi: 10.1038/nm.3667 – ident: 514_CR86 doi: 10.1634/theoncologist.2016-0220 – ident: 514_CR215 doi: 10.15252/emmm.201303376 – ident: 514_CR122 doi: 10.1158/1078-0432.CCR-12-1840 – ident: 514_CR12 doi: 10.1007/s11523-012-0248-3 – ident: 514_CR85 doi: 10.1002/cncr.28728 – ident: 514_CR128 doi: 10.1038/onc.2016.248 – ident: 514_CR218 doi: 10.1111/cei.12374 – ident: 514_CR174 doi: 10.1016/j.ccell.2014.11.008 – ident: 514_CR80 doi: 10.1002/jcp.24217 – ident: 514_CR126 doi: 10.1158/1535-7163.MCT-13-0442-T – ident: 514_CR156 doi: 10.1158/1078-0432.CCR-14-0940 – ident: 514_CR205 doi: 10.1056/NEJMoa1501824 – ident: 514_CR183 doi: 10.1038/onc.2015.488 – volume: 92 start-page: 12146 issue: 26 year: 1995 ident: 514_CR37 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.26.12146 – ident: 514_CR166 doi: 10.1126/science.aad3018 – ident: 514_CR167 doi: 10.1038/bjc.2015.242 – ident: 514_CR198 doi: 10.1172/JCI41824 – ident: 514_CR54 doi: 10.1038/srep06855 – ident: 514_CR72 doi: 10.1016/j.beem.2008.08.004 – ident: 514_CR102 doi: 10.1186/1471-2407-13-41 – ident: 514_CR56 doi: 10.1158/1535-7163.MCT-05-0048 – ident: 514_CR193 doi: 10.1530/ERC-15-0002 – volume: 7 start-page: 331 issue: 3 year: 1993 ident: 514_CR36 publication-title: Genes Dev doi: 10.1101/gad.7.3.331 – ident: 514_CR192 doi: 10.1002/pbc.25334 – ident: 514_CR105 doi: 10.1158/1078-0432.CCR-15-1677 – ident: 514_CR33 doi: 10.1016/j.radonc.2012.03.009 – ident: 514_CR68 doi: 10.1158/0008-5472.CAN-05-3126 – volume: 56 start-page: 1761 issue: 8 year: 1996 ident: 514_CR20 publication-title: Cancer Res – ident: 514_CR3 doi: 10.1038/nrc3215 – ident: 514_CR81 doi: 10.1200/JCO.2011.37.4355 – ident: 514_CR143 doi: 10.1002/stem.1328 – ident: 514_CR160 doi: 10.1158/0008-5472.CAN-13-2923 – ident: 514_CR58 doi: 10.1002/cncr.27459 – ident: 514_CR27 doi: 10.1053/j.gastro.2016.09.001 – ident: 514_CR48 doi: 10.1007/s00018-013-1514-y – ident: 514_CR118 doi: 10.1200/JCO.2011.37.2359 – ident: 514_CR189 doi: 10.1016/j.cllc.2016.07.007 – ident: 514_CR53 doi: 10.1158/1535-7163.MCT-08-1171 – ident: 514_CR169 doi: 10.1093/jnci/djv258 – volume: 259 start-page: 94 issue: 5091 year: 1993 ident: 514_CR213 publication-title: Science doi: 10.1126/science.8418502 – ident: 514_CR5 doi: 10.1158/1078-0432.CCR-07-4879 – volume: 28 start-page: abstr 3104 issue: suppl 15 year: 2010 ident: 514_CR94 publication-title: J Clin Oncol doi: 10.1200/jco.2010.28.15_suppl.3104 – ident: 514_CR46 doi: 10.1126/scisignal.2000628 – ident: 514_CR210 doi: 10.1158/2159-8290.CD-14-0477 – ident: 514_CR132 doi: 10.1038/sj.cgt.7700775 – ident: 514_CR141 doi: 10.18632/oncotarget.5631 – ident: 514_CR130 doi: 10.1016/j.ejca.2012.05.009 – ident: 514_CR92 doi: 10.1158/1078-0432.CCR-15-0588 – ident: 514_CR168 doi: 10.1200/JCO.2013.54.4932 – ident: 514_CR24 doi: 10.1016/j.ccell.2014.11.013 – ident: 514_CR60 doi: 10.1158/1535-7163.MCT-09-0499 – ident: 514_CR123 doi: 10.1093/annonc/mdv027 – ident: 514_CR219 doi: 10.1016/j.yexcr.2015.05.015 – ident: 514_CR41 doi: 10.1016/j.devcel.2007.03.020 – ident: 514_CR146 doi: 10.3390/vaccines3030519 – ident: 514_CR114 doi: 10.1038/nature08822 – volume: 62 start-page: 200 issue: 1 year: 2002 ident: 514_CR145 publication-title: Cancer Res – ident: 514_CR127 doi: 10.1158/1535-7163.MCT-09-0381 – ident: 514_CR178 doi: 10.1158/1078-0432.CCR-11-2381 – ident: 514_CR187 doi: 10.1158/1078-0432.CCR-10-2621 – ident: 514_CR9 doi: 10.1038/onc.2012.538 – ident: 514_CR51 doi: 10.3389/fphar.2013.00030 – ident: 514_CR175 doi: 10.1186/s12885-016-2847-3 – ident: 514_CR222 – ident: 514_CR59 doi: 10.1016/j.jhep.2013.09.008 – ident: 514_CR45 doi: 10.1210/en.2012-2165 – ident: 514_CR148 doi: 10.1371/journal.pone.0051189 – ident: 514_CR119 doi: 10.1007/s10637-011-9715-4 – ident: 514_CR170 doi: 10.1200/jco.2016.34.4_suppl.tps481 – ident: 514_CR101 doi: 10.3892/ijo.2016.3401 – ident: 514_CR155 doi: 10.1200/jco.2005.23.16_suppl.3112 – ident: 514_CR153 doi: 10.1158/2159-8290.CD-12-0446 – ident: 514_CR52 doi: 10.1155/2012/804801 – ident: 514_CR162 doi: 10.1186/s12885-015-1803-y – ident: 514_CR163 doi: 10.1038/srep31072 – ident: 514_CR106 doi: 10.1002/ijc.28737 – ident: 514_CR75 doi: 10.1158/1078-0432.CCR-14-0114 – ident: 514_CR124 doi: 10.1158/1538-7445.am2015-ct237 – ident: 514_CR157 doi: 10.1158/0008-5472.CAN-14-3358 – ident: 514_CR25 doi: 10.1158/1535-7163.MCT-10-0318 – ident: 514_CR199 doi: 10.18632/oncotarget.9837 – ident: 514_CR62 doi: 10.1111/cas.12906 – ident: 514_CR116 doi: 10.1200/JCO.2010.33.0670 – ident: 514_CR31 doi: 10.1038/onc.2013.460 – ident: 514_CR67 doi: 10.1016/j.ejca.2007.03.009 – ident: 514_CR203 doi: 10.1093/annonc/mdv222 – volume: 32 start-page: 3029 issue: 8 year: 2012 ident: 514_CR142 publication-title: Anticancer Res – volume: 31 start-page: abstr 5515 issue: suppl year: 2013 ident: 514_CR93 publication-title: J Clin Oncol doi: 10.1200/jco.2013.31.15_suppl.5515 – ident: 514_CR71 doi: 10.1158/1078-0432.CCR-10-3336 – ident: 514_CR176 doi: 10.1093/jnci/djw182 – volume: 29 start-page: abstr 7584 issue: suppl year: 2011 ident: 514_CR125 publication-title: J Clin Oncol doi: 10.1200/jco.2011.29.15_suppl.7584 – ident: 514_CR185 doi: 10.1200/jco.2010.28.15_suppl.3026 – ident: 514_CR65 doi: 10.1158/0008-5472.CAN-10-2274 – ident: 514_CR1 doi: 10.1155/2015/538019 – ident: 514_CR107 doi: 10.1126/scitranslmed.3010445 – ident: 514_CR15 doi: 10.1002/gcc.10157 – ident: 514_CR96 doi: 10.1158/1078-0432.CCR-14-0265 – ident: 514_CR120 doi: 10.1097/JTO.0b013e31823c5b11 – ident: 514_CR201 doi: 10.1200/JCO.2016.34.15_suppl.530 – ident: 514_CR138 doi: 10.1158/1535-7163.MCT-12-0447 – ident: 514_CR43 doi: 10.1158/0008-5472.CAN-10-0052 – ident: 514_CR139 doi: 10.1158/0008-5472.CAN-16-1201 – volume: 30 start-page: abstr 4054 issue: suppl year: 2012 ident: 514_CR121 publication-title: J Clin Oncol – ident: 514_CR40 doi: 10.1038/35060032 – ident: 514_CR73 doi: 10.1007/s10911-008-9104-6 – ident: 514_CR10 doi: 10.4081/oncol.2013.e3 – ident: 514_CR133 doi: 10.1158/0008-5472.sabcs-09-402 – ident: 514_CR44 doi: 10.1016/j.bbrc.2010.12.038 – ident: 514_CR112 doi: 10.18632/oncotarget.9100 – ident: 514_CR110 doi: 10.1126/science.1235122 – ident: 514_CR217 doi: 10.1189/jlb.0404248 – ident: 514_CR152 doi: 10.1158/1078-0432.CCR-13-0145 – ident: 514_CR195 doi: 10.1210/jc.2012-3856 – ident: 514_CR11 doi: 10.1158/1535-7163.MCT-06-0080 – ident: 514_CR191 doi: 10.1007/s10637-014-0177-3 – ident: 514_CR39 doi: 10.1038/nm759 – ident: 514_CR23 doi: 10.1530/ERC-13-0231 – ident: 514_CR30 doi: 10.1186/s40169-015-0048-3 – ident: 514_CR214 doi: 10.2337/db11-1776 – volume: 14 start-page: 3604 issue: 6 year: 1994 ident: 514_CR13 publication-title: Mol Cell Biol doi: 10.1128/MCB.14.6.3604 – volume: 5 start-page: 2503 issue: 10 year: 1986 ident: 514_CR6 publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04528.x – ident: 514_CR182 doi: 10.3389/fendo.2012.00021 – ident: 514_CR208 doi: 10.1056/NEJMc1509660 – ident: 514_CR18 doi: 10.1530/EJE-10-0859 – ident: 514_CR173 – ident: 514_CR196 doi: 10.1158/0008-5472.CAN-04-1837 – ident: 514_CR84 doi: 10.1200/JCO.2009.23.6745 – ident: 514_CR204 doi: 10.1056/NEJMoa1507643 – ident: 514_CR42 doi: 10.1038/sj.onc.1210715 – ident: 514_CR57 doi: 10.1158/1535-7163.MCT-13-0255 – volume: 54 start-page: 2218 issue: 8 year: 1994 ident: 514_CR212 publication-title: Cancer Res – ident: 514_CR180 doi: 10.1038/364308a0 – ident: 514_CR206 doi: 10.1016/S0140-6736(15)01281-7 – ident: 514_CR186 doi: 10.1158/1078-0432.CCR-10-2979 – ident: 514_CR172 doi: 10.18632/oncotarget.8484 – ident: 514_CR202 doi: 10.1200/JCO.2013.54.8404 – ident: 514_CR137 doi: 10.1158/0008-5472.CAN-12-2066 – ident: 514_CR91 doi: 10.1007/s00280-009-1083-9 – ident: 514_CR216 doi: 10.1242/dmm.015362 – ident: 514_CR8 doi: 10.1038/nrc3720 – ident: 514_CR136 doi: 10.1172/JCI34588 – ident: 514_CR76 doi: 10.1007/s10637-014-0170-x – ident: 514_CR207 doi: 10.1056/NEJMoa1003466 – ident: 514_CR220 doi: 10.1016/j.jhep.2014.11.011 – ident: 514_CR177 doi: 10.1200/JCO.2014.59.0018 – ident: 514_CR74 doi: 10.1158/1535-7163.MCT-14-0144 – ident: 514_CR22 doi: 10.1371/journal.pone.0135844 – ident: 514_CR115 doi: 10.1200/JCO.2009.24.6611 – ident: 514_CR221 doi: 10.1158/1538-7445.AM2015-420 – ident: 514_CR103 doi: 10.1002/mc.22342 – volume: 20 start-page: 2912 issue: 17 year: 2014 ident: 514_CR49 publication-title: Curr Pharm Des doi: 10.2174/13816128113199990596 – ident: 514_CR95 doi: 10.1158/1078-0432.CCR-07-1118 – volume: 5 start-page: 231 issue: 3 year: 2004 ident: 514_CR64 publication-title: Cancer Cell doi: 10.1016/S1535-6108(04)00051-0 – ident: 514_CR32 doi: 10.1158/1535-7163.MCT-12-1067 – ident: 514_CR134 doi: 10.1158/1078-0432.CCR-07-0648 – ident: 514_CR21 doi: 10.1016/j.ctrv.2014.07.004 – ident: 514_CR70 – ident: 514_CR190 doi: 10.1158/1078-0432.CCR-13-2752 – ident: 514_CR14 doi: 10.1677/erc.1.01280 – ident: 514_CR144 doi: 10.1080/15384101.2016.1160982 – ident: 514_CR188 doi: 10.1158/1078-0432.CCR-15-2218 – ident: 514_CR194 doi: 10.1158/0008-5472.sabcs13-p2-16-04 – ident: 514_CR69 doi: 10.4161/onci.20925 – ident: 514_CR50 doi: 10.1038/nature11249 – ident: 514_CR111 doi: 10.1002/ijc.24623 – ident: 514_CR154 doi: 10.1186/1471-2407-13-170 – ident: 514_CR66 doi: 10.1158/1535-7163.MCT-13-0598 – ident: 514_CR100 doi: 10.1186/1476-4598-13-71 – ident: 514_CR63 doi: 10.18632/oncotarget.8013 – ident: 514_CR158 doi: 10.1038/onc.2015.229 – ident: 514_CR147 doi: 10.1158/1535-7163.MCT-11-0205 – ident: 514_CR117 doi: 10.1200/JCO.2010.34.0000 – ident: 514_CR97 doi: 10.1002/pbc.26087 – ident: 514_CR209 doi: 10.1016/S1470-2045(15)00083-2 – ident: 514_CR82 doi: 10.1016/j.ejca.2013.06.010 – ident: 514_CR61 doi: 10.4155/fmc.09.89 – ident: 514_CR135 doi: 10.2174/1574362409666140206221931 – ident: 514_CR55 doi: 10.1158/1078-0432.CCR-09-3220 – ident: 514_CR109 doi: 10.1158/0008-5472.CAN-14-0970 – ident: 514_CR89 doi: 10.1200/jco.2015.33.3_suppl.384 – ident: 514_CR161 doi: 10.1126/scisignal.2004014 – ident: 514_CR7 doi: 10.1021/jm9002395 – ident: 514_CR159 doi: 10.1038/onc.2015.326 – ident: 514_CR179 doi: 10.1038/370527a0 – ident: 514_CR171 doi: 10.1158/1535-7163.MCT-16-0313 – ident: 514_CR34 doi: 10.3389/fendo.2015.00077 – ident: 514_CR47 doi: 10.3390/cancers2020233 – ident: 514_CR99 doi: 10.1016/j.ccr.2010.10.031 – ident: 514_CR140 doi: 10.1158/1078-0432.CCR-08-1401 – ident: 514_CR17 doi: 10.1126/scitranslmed.3001845 – ident: 514_CR108 doi: 10.3389/fendo.2015.00092 – ident: 514_CR151 doi: 10.1172/JCI57909 – ident: 514_CR4 doi: 10.1126/scisignal.2003184 – ident: 514_CR88 doi: 10.1200/jco.2013.31.15_suppl.6030 – ident: 514_CR77 doi: 10.1200/jco.2014.32.15_suppl.2622 – ident: 514_CR131 doi: 10.1002/jcb.24080 – ident: 514_CR197 doi: 10.1016/S1470-2045(13)70026-3 – ident: 514_CR26 doi: 10.1158/0008-5472.CAN-06-1712 – ident: 514_CR87 doi: 10.1093/annonc/mdr574 – ident: 514_CR200 doi: 10.1016/S1470-2045(13)70019-6 – volume: 65 start-page: 1053 issue: 6 year: 1991 ident: 514_CR35 publication-title: Cell doi: 10.1016/0092-8674(91)90557-F – ident: 514_CR164 doi: 10.18632/oncotarget.10862 – ident: 514_CR28 doi: 10.1016/j.cell.2011.02.013 – volume: 27 start-page: abstr 2790 issue: suppl year: 2016 ident: 514_CR79 publication-title: Ann Oncol – ident: 514_CR90 doi: 10.1007/s00280-014-2391-2 – ident: 514_CR113 doi: 10.1158/1078-0432.CCR-09-2719 – ident: 514_CR38 doi: 10.1038/378785a0 – volume: 7 start-page: 111 issue: 2 year: 1996 ident: 514_CR16 publication-title: J Mol Neurosci doi: 10.1007/BF02736791 – ident: 514_CR150 doi: 10.1016/j.neo.2015.03.001 – ident: 514_CR83 doi: 10.1016/S1470-2045(09)70354-7 – ident: 514_CR165 doi: 10.18632/oncotarget.3425 – ident: 514_CR184 doi: 10.1038/bjc.2014.497 – ident: 514_CR211 doi: 10.1200/jco.2001.19.8.2189 – ident: 514_CR149 doi: 10.1186/s12943-015-0392-3 |
| SSID | ssj0047250 |
| Score | 2.4907935 |
| SecondaryResourceType | review_article |
| Snippet | Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 571 |
| SubjectTerms | Antineoplastic Agents - pharmacology Biomedicine Cancer Drug Resistance, Neoplasm - physiology Humans Insulin Insulin-like growth factors Ligands Medicine Medicine & Public Health Metabolism Neoplasms - drug therapy Oncology Receptor, IGF Type 1 - antagonists & inhibitors Review Review Article Targeted cancer therapy Treatment resistance |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB5BQYhLWQsPChokDiyylM0bt6oipRKUqhTUW-Tn2GpElVe9pcCZP87YSV55FJDgGGWcxZ7ls2b8DcBTq40ks7HMFbxgBSFYpnJrWeosLXgtEi-6ZhNyb08dHen9_hz3bKh2H1KS0VOfH3ajUBNqfyQLnN2MX4YrFO1UsMaDD58G91vIjHenIKVghO3FkMr83SNWg9EFhHmxUPKXbGkMQuWN__r8m7DeY07c6pTkFlxy7W249q7Pqt-B77tdQTp723x2uEMb8_kxlrERDz7b3Smf4z7hxC_mGx7GunF6LTYtbgeFmb7Cg8mJw4lHgpJI0rj1tZmhaWt8fxrA_aKNpK1I6BjLyGCC5IRoQx51AvtCxrvwsXx9uP2G9c0ZmOW5mDOvcs81zbXIA-vcWI2lSb2Uee2ddDwzSts6L3wqx4nw0nDpM2dDxNRpXRRFvgFr7aR19wGF417pWhmZmJCmNWGPldKFd2NyMXYEybBKle2Zy0MDjZPqnHM5TG5Fk1uFya34CF4sh5x2tB1_E94clr7qLXhWpZoUV0tyUCN4srxNthcSKqZ1k0WQyWMTL04y9zpNWb4tU4rQaaJHIFd0aCkQeL1X77TNceT3DpBWCBr5ctCknz7rTz_x4J-kH8L1LKhirErchLX5dOEewVV7Nm9m08fRoH4Azm0ZSw priority: 102 providerName: Springer Nature |
| Title | Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies |
| URI | https://link.springer.com/article/10.1007/s11523-017-0514-5 https://www.ncbi.nlm.nih.gov/pubmed/28815409 https://www.proquest.com/docview/1941897196 https://www.proquest.com/docview/1930486056 https://pubmed.ncbi.nlm.nih.gov/PMC5610669 |
| Volume | 12 |
| WOSCitedRecordID | wos000411741500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Consumer Health Database customDbUrl: eissn: 1776-260X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0047250 issn: 1776-2596 databaseCode: M0R dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/familyhealth providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1776-260X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0047250 issn: 1776-2596 databaseCode: 7RV dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1776-260X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0047250 issn: 1776-2596 databaseCode: BENPR dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1776-260X dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0047250 issn: 1776-2596 databaseCode: 7X7 dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1776-260X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047250 issn: 1776-2596 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboFiEuvKELpTISBx6yyMuxwwWVqimV6LJaSrW3yOvYatQqWfbB48wfZ8ZxtiwVvXCxFGWixJmHP2cm3xDyXGdKgNtoZhKesAQQLJOx1iw0GhRepoFN22YTYjCQ43E29B_c5r6ssouJLlCXjcZv5G9gsx3KTIDBvJt-Zdg1CrOrvoXGBtlEprKkRzbf7w-Goy4WJyLi7S-RImUA9NMur-l-noOlC2uJBEMOcMbXV6ZLcPNy1eRfqVO3IuW3_3cud8gtj0Xpbms8d8k1U98jN458tv0--XXYFqqzj9WZoQewYV-c0tw16KEvDg_yl3QI-PG7-kmPXT05PCWtarqHhjR7S0fNuaGNpQAxKUjT3R_VnKq6pJ-mCPqXtSNzpYCaae6YTSgEJ9ioO1uhvsDxAfmS7x_vfWC-aQPTPE4XzMrY8gxeexojG91EToQKrRBxaY0wPFIy02Wc2FBMgtQKxYWNjMaVNAvLJEnih6RXN7XZIjQ13MqslEoECtO3CvdeIRxYM4HQo_sk6BRWaM9ojo01zosLLmbUcQE6LlDHBe-TV6tLpi2dx1XC2536Cu_Z8-JCd33ybHUafBITLao2zRJlYtfci4PMo9ZoVneLpATUGmR9ItbMaSWAfN_rZ-rq1PF-I9RNU7jydWd4fzzWvybx-OpJPCE3I3QBV564TXqL2dI8Jdf1t0U1n-2QDTE6wXEs3Ch3vIPB0VGA4-jzyW8K0ipP |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhwCCBREEWedtBQqgqbLvqdqmqBfUWEsdWI6pk2QdLz_wffiMzTrJlqeitB45RJi_nm88znvEMY89UnApUG8V1EAY8QAuWS18p7mqFPzyPHBPVzSbEYCAPDuK9Ffar3QtDaZUtJ1qizitFa-Sv0dl2ZSwQMO9G3zh1jaLoattCo4bFjj6eo8s2edt7j__3ued1Pww3t3nTVYCr0I-m3EjfhDHO_JFP5dIymYnUNUL4udFCh14qY5X7gXFF5kRGpKEwnlZE9bGbB0Hg430vsIvI4y6lkIn9zy3zB8IL6w2YIuLoVkRtFNVu1cOJkjKXBKeK4zxcngdPGbenczT_CtTa-a97_X8buRvsWmNpw0atGjfZii5vscu7TS7BbfazV6fh837xVcPWuJpPD6Fr2w_Bi95Wdx320Dqep8cwtNnyOCpQlLBJajJ-A_vVkYbKABrQgNKw8aOYQFrm8HFELs2stKVqAX0C6Nq6LYDUmxX14is06Zt32KdzGYK7bLWsSn2fQaRDI-NcpsJJKTidkmfp4oHRGRKr6jCnBUiimnrt1DbkKDmpNE2YShBTCWEqCTvs5eKSUV2s5CzhtRYuScNbk-QEKx32dHEaGYfCSGmpqxnJ-LZ1WYgy92qQLp7mSYk2uRN3mFiC70KAqpkvnymLQ1vVnAz5KMIrX7VA_-O1_vURD87-iCfsyvZwt5_0e4Odh-yqR-pnEzHX2Op0PNOP2CX1fVpMxo-tIgP7ct74_w0Gan85 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwELZKQRUv3MdCgUECiUNWc9oJEkJVS8qqZVlVRepbSBxbjaiSZQ-WPvOv-HXMOMmWpaJvfeAxyuRyvhnPeD7PMPZMxZlEtVFcB2HAA_RgeeQrxV2t8IcXwjGiaTYhB4Po8DAerrBf3V4YolV2NtEa6qJWtEa-gcG2G8USAbNhWlrEcDt5N_rGqYMUZVq7dhoNRHb1yRzDt8nb_jb-6-eel7w_2PrA2w4DXIW-mHIT-SaM0QsQPpVOy6NcZq6R0i-Mljr0sihWhR8YV-aOMDILpfG0IrMfu0UQBD7e9xK7LCk5SLRBZ7-bBQLphc1mTCk4hhiiy6jabXs4aRKLSXKqPs7D5TnxjKN7lq_5V9LWzoXJ9f95FG-wa60HDpuNytxkK7q6xdY-thyD2-xnv6Hn873yq4adcT2fHkFi2xLBi_5O8hKG6DXPsxM4sCx6HCEoK9gi9Rm_gf36WENtAB1rQGnY_FFOIKsK-DSiUGdW2RK2gLECJLaeC6BJzstmURZaWucd9vlChuAuW63qSt9nIHRooriIMulklLTOKOJ08cDoHA2u6jGnA0uq2jru1E7kOD2tQE34ShFfKeErDXvs1eKSUVPE5Dzh9Q46aWvPJukpbnrs6eI0WiJKL2WVrmck49uWZiHK3GsAu3iaF0Xoqztxj8klKC8EqMr58pmqPLLVzsnBFwKvfN2B_o_X-tdHPDj_I56wNYR9utcf7D5kVz3SRMvPXGer0_FMP2JX1PdpORk_tjoN7MtFw_83xuKH1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin-Like+Growth+Factor+%28IGF%29+Pathway+Targeting+in+Cancer%3A+Role+of+the+IGF+Axis+and+Opportunities+for+Future+Combination+Studies&rft.jtitle=Targeted+oncology&rft.au=Simpson%2C+Aaron&rft.au=Petnga%2C+Wilfride&rft.au=Macaulay%2C+Valentine+M&rft.au=Weyer-Czernilofsky%2C+Ulrike&rft.date=2017-10-01&rft.eissn=1776-260X&rft.volume=12&rft.issue=5&rft.spage=571&rft_id=info:doi/10.1007%2Fs11523-017-0514-5&rft_id=info%3Apmid%2F28815409&rft.externalDocID=28815409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1776-2596&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1776-2596&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1776-2596&client=summon |