The NIRS Brain AnalyzIR Toolbox

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms Jg. 11; H. 5; S. 73
Hauptverfasser: Santosa, Hendrik, Zhai, Xuetong, Fishburn, Frank, Huppert, Theodore
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.05.2018
Schlagworte:
ISSN:1999-4893, 1999-4893
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.
AbstractList Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.
Author Huppert, Theodore
Santosa, Hendrik
Fishburn, Frank
Zhai, Xuetong
AuthorAffiliation 4 Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA
1 Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
AuthorAffiliation_xml – name: 1 Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
– name: 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
– name: 4 Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA
– name: 2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
Author_xml – sequence: 1
  givenname: Hendrik
  surname: Santosa
  fullname: Santosa, Hendrik
– sequence: 2
  givenname: Xuetong
  surname: Zhai
  fullname: Zhai, Xuetong
– sequence: 3
  givenname: Frank
  orcidid: 0000-0002-1227-2834
  surname: Fishburn
  fullname: Fishburn, Frank
– sequence: 4
  givenname: Theodore
  surname: Huppert
  fullname: Huppert, Theodore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38957522$$D View this record in MEDLINE/PubMed
BookMark eNplkUsvRDEYhhsh7gt_gElsWAy9X1aCuEwiJIx1801PSydnTmnPCH69wyAuqzbt8z1903cFzTep8QhtELzHmMH7QAgWGCs2h5aJMabPtWHzP_ZLaKWUMcZSGEkW0RLTRihB6TLaGt773uXg-qZ3lCE2vcMG6pfXwXVvmFI9Ss9raCFAXfz657qKbk9Phsfn_Yurs8Hx4UXfCSbbfhDc4-CAKy0rkKLyKgRQzAfqnJaCaEVB4mAwDTRw5iojHIwYOCFHmEm2igYzb5VgbB9ynEB-sQmi_ThI-c5CbqOrvQ3MG-V4cJxjrgUAEU6xyknePeuN6VwHM9fDdDTxlfNNm6H-Jf1908R7e5eeLCGUaM14Z9j5NOT0OPWltZNYnK9raHyaFsuwEkwZbXCHbv9Bx2mau18slmIhlTJE047a_BnpO8tXER2wPwNcTqVkH6yLLbQxvSeMtSXYvldtv6vuJnb_THxJ_7NvDU6lYg
CitedBy_id crossref_primary_10_1007_s00221_019_05646_4
crossref_primary_10_1016_j_ynirp_2025_100282
crossref_primary_10_1371_journal_pone_0241695
crossref_primary_10_3389_fnins_2020_560878
crossref_primary_10_1088_1741_2552_abdb3a
crossref_primary_10_1093_scan_nsad001
crossref_primary_10_1002_dev_22546
crossref_primary_10_1016_j_neuroimage_2022_119520
crossref_primary_10_3389_frobt_2025_1541963
crossref_primary_10_1111_desc_13229
crossref_primary_10_3389_fnagi_2021_550180
crossref_primary_10_1117_1_JBO_29_S3_S33310
crossref_primary_10_1080_09297049_2024_2386072
crossref_primary_10_1080_10253890_2025_2472067
crossref_primary_10_1111_ejn_16041
crossref_primary_10_2217_cnc_2020_0014
crossref_primary_10_1016_j_bandl_2022_105084
crossref_primary_10_3389_fnhum_2018_00439
crossref_primary_10_1097_MD_0000000000043707
crossref_primary_10_3389_fneur_2019_00476
crossref_primary_10_3390_healthcare12070734
crossref_primary_10_1371_journal_pone_0248533
crossref_primary_10_1523_JNEUROSCI_1401_22_2023
crossref_primary_10_1371_journal_pone_0265898
crossref_primary_10_1371_journal_pone_0289508
crossref_primary_10_1016_j_clinph_2023_12_008
crossref_primary_10_1016_j_neuroimage_2024_120987
crossref_primary_10_1017_S0954579421000468
crossref_primary_10_1038_s41746_025_01690_3
crossref_primary_10_1093_cercor_bhad032
crossref_primary_10_3389_fnmol_2022_859988
crossref_primary_10_1080_17483107_2022_2085334
crossref_primary_10_3389_fnhum_2025_1459653
crossref_primary_10_1111_jcpp_13165
crossref_primary_10_3389_fnins_2024_1406814
crossref_primary_10_1016_j_pediatrneurol_2021_06_003
crossref_primary_10_1016_j_ynirp_2025_100276
crossref_primary_10_1080_25742442_2025_2510182
crossref_primary_10_1016_j_bandl_2019_104640
crossref_primary_10_1016_j_jocn_2020_05_003
crossref_primary_10_1038_s41598_023_31264_w
crossref_primary_10_1007_s11881_021_00239_9
crossref_primary_10_1016_j_gerinurse_2023_09_005
crossref_primary_10_1016_j_dcn_2022_101112
crossref_primary_10_1016_j_cortex_2022_05_009
crossref_primary_10_1007_s12671_021_01789_0
crossref_primary_10_1109_JSTQE_2024_3519572
crossref_primary_10_1002_hbm_26786
crossref_primary_10_1111_desc_13328
crossref_primary_10_1111_psyp_70098
crossref_primary_10_3389_fnhum_2022_1029784
crossref_primary_10_1016_j_isci_2024_111087
crossref_primary_10_3389_fpsyg_2022_873796
crossref_primary_10_1117_1_NPh_7_3_035008
crossref_primary_10_3390_app10103381
crossref_primary_10_3389_fpsyg_2022_984777
crossref_primary_10_3390_children10081287
crossref_primary_10_3389_fpsyt_2023_1180947
crossref_primary_10_1002_hbm_26419
crossref_primary_10_1016_j_isci_2022_104181
crossref_primary_10_1117_1_NPh_8_2_025008
crossref_primary_10_3390_a16050230
crossref_primary_10_1089_brain_2022_0065
crossref_primary_10_3389_fams_2020_00032
crossref_primary_10_1002_advs_202303516
crossref_primary_10_1016_j_infbeh_2020_101430
crossref_primary_10_1111_jon_12782
crossref_primary_10_1162_IMAG_a_61
crossref_primary_10_1088_1741_2552_ac4bfc
crossref_primary_10_1007_s12671_021_01705_6
crossref_primary_10_1038_s41597_025_05654_w
crossref_primary_10_1038_s41598_022_10044_y
crossref_primary_10_1016_j_cogdev_2022_101293
crossref_primary_10_3389_fneur_2022_937231
crossref_primary_10_2196_48850
crossref_primary_10_1080_00222895_2019_1645639
crossref_primary_10_1038_s41598_022_06519_7
crossref_primary_10_1038_s41598_022_13966_9
crossref_primary_10_1016_j_neuroimage_2020_117672
crossref_primary_10_1038_s41598_023_39540_5
crossref_primary_10_1097_j_pain_0000000000002293
crossref_primary_10_1186_s13063_021_05972_5
crossref_primary_10_1016_j_bspc_2022_104110
crossref_primary_10_1093_cercor_bhaf084
crossref_primary_10_1044_2024_JSLHR_23_00476
crossref_primary_10_1177_00315125231213167
crossref_primary_10_1016_j_neuropsychologia_2020_107397
crossref_primary_10_1038_s41598_024_82112_4
crossref_primary_10_1088_1741_2552_ad731d
crossref_primary_10_1162_imag_a_00168
crossref_primary_10_3390_brainsci11060742
crossref_primary_10_1038_s41597_022_01751_2
crossref_primary_10_3390_brainsci11080991
crossref_primary_10_1016_j_jpsychires_2021_10_020
crossref_primary_10_1080_17518423_2019_1689437
crossref_primary_10_1109_TNSRE_2023_3239913
crossref_primary_10_1186_s12984_020_00803_1
crossref_primary_10_1016_j_jpet_2025_103607
crossref_primary_10_1109_TBME_2020_2971679
crossref_primary_10_1098_rsob_230382
crossref_primary_10_1371_journal_pone_0285581
crossref_primary_10_1080_14992027_2023_2296866
crossref_primary_10_1111_desc_13251
crossref_primary_10_1016_j_compbiomed_2023_107658
crossref_primary_10_1109_TNSRE_2024_3487526
crossref_primary_10_1016_j_brainresbull_2023_110759
crossref_primary_10_1007_s11571_025_10242_0
crossref_primary_10_1093_gerona_glaf152
crossref_primary_10_1017_S1355617724000304
crossref_primary_10_1016_j_cortex_2021_06_010
crossref_primary_10_1177_17448069221074991
crossref_primary_10_3390_brainsci11010019
crossref_primary_10_1371_journal_pone_0290005
crossref_primary_10_1016_j_neuroimage_2023_120210
crossref_primary_10_3389_fnhum_2021_719509
crossref_primary_10_3390_jcm7120466
crossref_primary_10_3390_s23042089
crossref_primary_10_1177_23312165241258056
crossref_primary_10_1016_j_bandl_2024_105380
crossref_primary_10_3389_fnint_2023_1059679
crossref_primary_10_1016_j_dcn_2019_100651
crossref_primary_10_3389_fresc_2023_1156940
crossref_primary_10_1016_j_neuroimage_2023_120327
crossref_primary_10_1038_s41598_021_00188_8
crossref_primary_10_1093_cercor_bhac277
crossref_primary_10_1117_1_NPh_11_4_045006
crossref_primary_10_1159_000531860
crossref_primary_10_1177_10711813241260675
crossref_primary_10_3390_bioengineering11090933
crossref_primary_10_1016_j_jneuroling_2022_101063
crossref_primary_10_3390_biomedicines10051132
crossref_primary_10_1117_1_NPh_11_4_045008
crossref_primary_10_1016_j_jneumeth_2020_108790
crossref_primary_10_1038_s41598_023_30743_4
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_1007_s00221_023_06581_1
crossref_primary_10_1109_TITS_2022_3211089
crossref_primary_10_1117_1_NPh_10_2_023515
crossref_primary_10_1162_nol_a_00143
crossref_primary_10_1371_journal_pone_0250043
crossref_primary_10_2196_27298
crossref_primary_10_1038_s41598_023_46645_4
crossref_primary_10_1111_dmcn_14458
crossref_primary_10_3390_s21237943
crossref_primary_10_1093_scan_nsaf022
crossref_primary_10_1016_j_jecp_2023_105802
crossref_primary_10_1145_3534516
crossref_primary_10_1016_j_neuroimage_2024_120592
crossref_primary_10_1186_s12889_024_19306_y
crossref_primary_10_3389_fninf_2020_00026
crossref_primary_10_3390_app12010316
crossref_primary_10_3389_fneur_2025_1499178
crossref_primary_10_1016_j_neuri_2021_100004
crossref_primary_10_1080_10447318_2025_2524490
crossref_primary_10_1080_17518423_2020_1825539
crossref_primary_10_3389_fnhum_2020_00273
crossref_primary_10_1016_j_bbr_2023_114343
crossref_primary_10_1016_j_heares_2021_108256
crossref_primary_10_3389_fnins_2023_1130050
crossref_primary_10_1002_aur_2513
crossref_primary_10_1002_alz_14072
crossref_primary_10_1016_j_dcn_2021_100917
crossref_primary_10_31083_j_jin2103098
crossref_primary_10_1038_s41398_025_03353_z
crossref_primary_10_1016_j_jad_2019_08_006
crossref_primary_10_1038_s41598_024_69630_x
crossref_primary_10_1371_journal_pone_0322036
crossref_primary_10_1016_j_neuroimage_2018_09_023
crossref_primary_10_1093_ptj_pzad159
crossref_primary_10_1016_j_neuroimage_2018_09_025
crossref_primary_10_1111_ejn_15241
crossref_primary_10_1007_s00221_023_06707_5
crossref_primary_10_1016_j_jneumeth_2023_109952
crossref_primary_10_1016_j_dcn_2025_101570
crossref_primary_10_1016_j_neuroimage_2021_118324
crossref_primary_10_1016_j_ijhcs_2023_103206
crossref_primary_10_3389_fped_2023_1072663
crossref_primary_10_3390_biom14121621
crossref_primary_10_1016_j_dcn_2021_100943
crossref_primary_10_1162_jocn_a_02071
crossref_primary_10_1117_1_NPh_10_1_013507
crossref_primary_10_3390_biomed5020014
crossref_primary_10_1080_10447318_2023_2266242
crossref_primary_10_2196_38407
crossref_primary_10_1016_j_ijpsycho_2023_112275
crossref_primary_10_1038_s41597_024_04136_9
crossref_primary_10_1097_WNR_0000000000001561
crossref_primary_10_1007_s10548_023_00942_3
crossref_primary_10_1097_NPT_0000000000000310
crossref_primary_10_1038_s41598_020_80477_w
crossref_primary_10_1017_pds_2021_90
crossref_primary_10_1016_j_dcn_2021_100937
crossref_primary_10_1044_2023_JSLHR_22_00598
crossref_primary_10_1016_j_heares_2024_109155
crossref_primary_10_1088_1741_2552_acbb2d
crossref_primary_10_1038_s41598_021_03595_z
crossref_primary_10_1117_1_JBO_29_2_025004
crossref_primary_10_3389_fnagi_2025_1454068
crossref_primary_10_1098_rstb_2020_0224
crossref_primary_10_1117_1_NPh_12_1_015015
crossref_primary_10_3389_fnhum_2019_00393
crossref_primary_10_3390_ijms232314897
crossref_primary_10_3390_brainsci13071099
crossref_primary_10_3390_brainsci12060788
crossref_primary_10_1117_1_NPh_6_2_025009
crossref_primary_10_3389_fnins_2023_1187790
crossref_primary_10_1117_1_NPh_9_S2_S24001
crossref_primary_10_1152_japplphysiol_00219_2023
crossref_primary_10_1007_s00421_023_05151_1
crossref_primary_10_1016_j_neuropsychologia_2023_108520
crossref_primary_10_1016_j_jneumeth_2022_109487
crossref_primary_10_1038_s41598_023_33780_1
crossref_primary_10_1111_desc_13541
crossref_primary_10_1371_journal_pone_0247629
crossref_primary_10_2147_NDT_S486656
crossref_primary_10_3758_s13415_025_01318_9
crossref_primary_10_3389_fgwh_2021_744649
crossref_primary_10_1002_advs_202406631
crossref_primary_10_1177_23312165241311721
crossref_primary_10_1002_brb3_2948
crossref_primary_10_1038_s41598_023_43073_2
crossref_primary_10_1117_1_NPh_12_2_025011
crossref_primary_10_1038_s41598_022_23476_3
crossref_primary_10_1136_bmjopen_2021_053598
crossref_primary_10_1016_j_neuroimage_2021_117795
crossref_primary_10_1016_j_dcn_2019_100708
crossref_primary_10_1002_dev_22181
crossref_primary_10_1002_hbm_26305
crossref_primary_10_1002_brb3_70180
crossref_primary_10_1002_hbm_70021
crossref_primary_10_1117_1_NPh_9_3_030801
crossref_primary_10_1044_2024_JSLHR_23_00293
crossref_primary_10_1016_j_nutos_2025_04_004
crossref_primary_10_1016_j_ynirp_2025_100266
crossref_primary_10_3389_fneur_2023_1232436
crossref_primary_10_1016_j_bandc_2023_106063
crossref_primary_10_1038_s41598_021_02247_6
crossref_primary_10_1177_1071181319631088
crossref_primary_10_3390_bs10060104
crossref_primary_10_3389_fneur_2021_784821
crossref_primary_10_1162_nol_a_00092
crossref_primary_10_3389_fneur_2022_1028864
crossref_primary_10_1016_j_dcn_2025_101565
crossref_primary_10_1017_S0033291723002350
crossref_primary_10_1038_s41598_024_75427_9
crossref_primary_10_1371_journal_pone_0325903
crossref_primary_10_1016_j_jpsychires_2022_10_002
crossref_primary_10_1111_mbe_12410
crossref_primary_10_1111_mbe_12411
crossref_primary_10_1097_AUD_0000000000001564
crossref_primary_10_1038_s41538_024_00308_4
crossref_primary_10_1097_AUD_0000000000001325
crossref_primary_10_1192_j_eurpsy_2022_2325
crossref_primary_10_1177_00187208231185705
crossref_primary_10_1016_j_chb_2024_108168
crossref_primary_10_1109_TNSRE_2020_2992382
crossref_primary_10_3389_fpsyg_2019_00164
crossref_primary_10_1117_1_NPh_9_3_035003
crossref_primary_10_1016_j_bandc_2023_106074
crossref_primary_10_1038_s41598_022_05432_3
crossref_primary_10_1038_s41598_025_93678_y
crossref_primary_10_1016_j_brainresbull_2023_110817
crossref_primary_10_1044_2022_JSLHR_22_00103
crossref_primary_10_1007_s13177_023_00371_3
crossref_primary_10_3389_fphys_2025_1425302
crossref_primary_10_1016_j_humov_2022_102982
crossref_primary_10_1109_TNSRE_2024_3378467
crossref_primary_10_3390_brainsci10110880
Cites_doi 10.1117/1.JBO.18.8.086007
10.1002/cnm.1162
10.1117/1.NPh.3.3.031410
10.1002/hbm.20628
10.1016/j.neuroimage.2013.02.010
10.1117/1.2710250
10.1186/1471-2105-12-372
10.1006/nimg.1998.0395
10.1016/j.neuroimage.2014.08.052
10.1364/BOE.4.001366
10.1016/j.neuroimage.2013.05.004
10.1117/1.1852552
10.1117/1.NPh.3.1.010401
10.1117/1.2976432
10.1117/1.3127204
10.1117/1.NPh.2.2.020801
10.1016/j.cobme.2017.09.011
10.1016/j.neuroimage.2013.03.045
10.1016/j.socnet.2007.04.002
10.1097/00004728-199803000-00032
10.1117/1.NPh.3.3.031405
10.1117/1.NPh.4.1.015001
10.5194/npg-11-561-2004
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2004.07.011
10.1515/9781400830329
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.neuroimage.2011.05.012
10.1364/AO.48.00D280
10.1080/00401706.1974.10489171
10.1016/j.neuroimage.2007.12.061
10.1016/j.neuroimage.2013.02.061
10.1088/0031-9155/54/20/023
10.1117/1.JBO.22.5.055002
10.1364/OE.10.000159
10.1016/j.neuroimage.2012.03.049
10.1148/radiology.143.1.7063747
10.1006/nimg.2001.0905
10.1016/j.neuroimage.2008.08.036
10.1088/0031-9155/58/11/R37
10.1088/0967-3334/33/2/259
10.1016/j.neubiorev.2009.07.008
10.1038/sj.jcbfm.9600435
10.1016/j.neuroimage.2004.12.032
10.1117/1.2804899
10.1214/aos/1176344136
10.1364/BOE.1.000165
10.1016/j.neuroimage.2015.07.075
10.1016/j.brainres.2014.01.033
10.1080/0022250X.1972.9989806
10.1093/cercor/bhg087
10.1364/BOE.2.000001
10.1016/j.neuroimage.2009.10.003
10.1364/BOE.1.001084
10.1364/BOE.3.003223
10.1177/1094428116658959
10.1117/1.JBO.17.10.106009
10.1214/aoms/1177732979
10.1088/0266-5611/15/2/022
10.1016/j.neuroimage.2003.09.052
10.1371/journal.pone.0184918
ContentType Journal Article
Copyright Copyright MDPI AG 2018
Copyright_xml – notice: Copyright MDPI AG 2018
DBID AAYXX
CITATION
NPM
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOA
DOI 10.3390/a11050073
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_f3e97c4fc440485aa15c73dc645dee99
PMC11218834
38957522
10_3390_a11050073
Genre Journal Article
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
C1A
IPNFZ
ITC
M0N
NPM
RIG
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-f54e0fca4786da65de7ffa73ef2cc8651872a60f902f2f43cd95cab3ac56b0363
IEDL.DBID DOA
ISICitedReferencesCount 334
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435189200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:26:15 EDT 2025
Tue Nov 04 02:05:40 EST 2025
Fri Sep 05 11:23:04 EDT 2025
Fri Jul 25 12:08:48 EDT 2025
Wed Feb 19 02:03:24 EST 2025
Tue Nov 18 22:18:51 EST 2025
Sat Nov 29 07:10:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords toolbox
statistical analysis
Functional near-infrared spectroscopy
Language English
License This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-f54e0fca4786da65de7ffa73ef2cc8651872a60f902f2f43cd95cab3ac56b0363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions: H.S., X.Z., and F.F. made the figures, updated several modules in the AnalyzIR toolbox periodically, and contributed to the text file. Theodore Huppert supervised the toolbox, updated most of the modules, and corrected the entire manuscript. All the authors read and approved the final manuscript.
ORCID 0000-0002-1227-2834
OpenAccessLink https://doaj.org/article/f3e97c4fc440485aa15c73dc645dee99
PMID 38957522
PQID 2056779182
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_f3e97c4fc440485aa15c73dc645dee99
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11218834
proquest_miscellaneous_3075379890
proquest_journals_2056779182
pubmed_primary_38957522
crossref_citationtrail_10_3390_a11050073
crossref_primary_10_3390_a11050073
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Algorithms
PublicationTitleAlternate Algorithms
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yucel (ref_10) 2017; 4
Huppert (ref_42) 2009; 30
ref_14
Fang (ref_24) 2012; 3
ref_58
Obrig (ref_8) 2014; 85
ref_13
Yucel (ref_32) 2014; 102
ref_12
ref_55
Boas (ref_26) 2002; 10
ref_53
Karim (ref_47) 2013; 74
Aasted (ref_61) 2015; 2
Ferrari (ref_2) 2012; 63
Landeau (ref_64) 2002; 15
Huppert (ref_15) 2016; 3
Karim (ref_49) 2014; 1555
Fischl (ref_66) 2004; 14
Hanley (ref_68) 1982; 143
Huppert (ref_9) 2017; 4
Jacques (ref_34) 2013; 58
Hotelling (ref_29) 1931; 2
Dale (ref_63) 1999; 9
Rolls (ref_65) 2015; 122
Santosa (ref_18) 2017; 22
Jermyn (ref_21) 2013; 18
Dehghani (ref_22) 2008; 25
ref_23
ref_67
Rubinov (ref_57) 2010; 52
Scholkmann (ref_3) 2014; 85
Benjamini (ref_27) 1995; 57
Miyai (ref_11) 2001; 14
ref_28
Abdelnour (ref_36) 2010; 2
Hoge (ref_40) 2005; 25
Schwarz (ref_54) 1978; 6
Beaton (ref_45) 1974; 16
Chen (ref_25) 2012; 17
Bonanich (ref_60) 2007; 29
Huppert (ref_44) 2007; 27
Wolf (ref_1) 2007; 12
Zhang (ref_38) 2005; 10
Barker (ref_17) 2016; 3
ref_30
Molavi (ref_35) 2012; 33
Karim (ref_48) 2013; 76
Takahashi (ref_6) 2011; 57
Themelis (ref_39) 2007; 12
Huppert (ref_31) 2008; 13
Barker (ref_16) 2013; 4
Riera (ref_41) 2004; 21
Boas (ref_43) 2008; 40
Holmes (ref_62) 1998; 22
Abdelnour (ref_37) 2009; 54
Fang (ref_51) 2010; 1
Huppert (ref_19) 2009; 48
Wilkinson (ref_50) 1973; 22
Abdelnour (ref_33) 2010; 1
Grinsted (ref_56) 2004; 11
Tachtsidis (ref_5) 2016; 3
Arridge (ref_52) 1999; 15
Blasi (ref_7) 2010; 34
Ye (ref_20) 2009; 44
Boas (ref_4) 2004; 23
Bonacich (ref_59) 1972; 2
Jang (ref_46) 2009; 14
References_xml – volume: 18
  start-page: 086007
  year: 2013
  ident: ref_21
  article-title: Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.18.8.086007
– volume: 25
  start-page: 711
  year: 2008
  ident: ref_22
  article-title: Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1162
– volume: 22
  start-page: 3920399
  year: 1973
  ident: ref_50
  article-title: Symbolic description of factorial models for analysis of variance
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
– ident: ref_55
– volume: 3
  start-page: 031410
  year: 2016
  ident: ref_17
  article-title: Correction of motion artifacts and serial correlations for real-time functional near-infrared spectroscopy
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.3.3.031410
– volume: 30
  start-page: 1548
  year: 2009
  ident: ref_42
  article-title: Estimating cerebral oxygen metabolism from fMRI with a dynamic multicompartment windkessel model
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20628
– volume: 74
  start-page: 318
  year: 2013
  ident: ref_47
  article-title: Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.010
– volume: 12
  start-page: 014033
  year: 2007
  ident: ref_39
  article-title: Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2710250
– ident: ref_53
  doi: 10.1186/1471-2105-12-372
– volume: 9
  start-page: 179
  year: 1999
  ident: ref_63
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 102
  start-page: 729
  year: 2014
  ident: ref_32
  article-title: Validation of the hypercapnic calibrated fMRI method using DOT-fMRI fusion imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.052
– ident: ref_23
– volume: 4
  start-page: 1366
  year: 2013
  ident: ref_16
  article-title: Autoregressive model based algorithm for correcting motion and serially correlated errors in fnirs
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.4.001366
– volume: 85
  start-page: 6
  year: 2014
  ident: ref_3
  article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.004
– volume: 10
  start-page: 11014
  year: 2005
  ident: ref_38
  article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1852552
– volume: 3
  start-page: 010401
  year: 2016
  ident: ref_15
  article-title: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.3.1.010401
– volume: 13
  start-page: 054031
  year: 2008
  ident: ref_31
  article-title: Direct estimation of evoked hemoglobin changes by multimodality fusion imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2976432
– volume: 14
  start-page: 034004
  year: 2009
  ident: ref_46
  article-title: Wavelet minimum description length detrending for near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3127204
– volume: 2
  start-page: 020801
  year: 2015
  ident: ref_61
  article-title: Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.2.2.020801
– volume: 4
  start-page: 78
  year: 2017
  ident: ref_10
  article-title: Functional near infrared spectroscopy: Enabling routine functional brain imaging
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.09.011
– volume: 85
  start-page: 535
  year: 2014
  ident: ref_8
  article-title: NIRS in clinical neurology—A ‘promising’ tool?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.045
– volume: 29
  start-page: 555
  year: 2007
  ident: ref_60
  article-title: Some unique properties of eigenvector centrality
  publication-title: Soc. Netw.
  doi: 10.1016/j.socnet.2007.04.002
– volume: 22
  start-page: 324
  year: 1998
  ident: ref_62
  article-title: Enhancement of mr images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– volume: 3
  start-page: 031405
  year: 2016
  ident: ref_5
  article-title: False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.3.3.031405
– volume: 4
  start-page: 015001
  year: 2017
  ident: ref_9
  article-title: Comparison of group-level, source localized activity for simultaneous functional near-infrared spectroscopy-magnetoencephalography and simultanous fNIRS-fMRI during parametric median nerve stimulation
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.4.1.015001
– ident: ref_13
– volume: 11
  start-page: 561
  year: 2004
  ident: ref_56
  article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-11-561-2004
– volume: 15
  start-page: 273
  year: 2002
  ident: ref_64
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 23
  start-page: 275S
  year: 2004
  ident: ref_4
  article-title: Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.011
– ident: ref_58
  doi: 10.1515/9781400830329
– volume: 57
  start-page: 289
  year: 1995
  ident: ref_27
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref_28
– volume: 57
  start-page: 991
  year: 2011
  ident: ref_6
  article-title: Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.05.012
– volume: 48
  start-page: D280
  year: 2009
  ident: ref_19
  article-title: Homer: A review of time-series analysis methods for near-infrared spectroscopy of the brain
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.00D280
– ident: ref_30
– volume: 16
  start-page: 147
  year: 1974
  ident: ref_45
  article-title: The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489171
– volume: 40
  start-page: 1116
  year: 2008
  ident: ref_43
  article-title: A vascular anatomical network model of the spatio-temporal response to brain activation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.061
– volume: 76
  start-page: 1
  year: 2013
  ident: ref_48
  article-title: Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.061
– volume: 54
  start-page: 6383
  year: 2009
  ident: ref_37
  article-title: Topographic localization of brain activation in diffuse optical imaging using spherical wavelets
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/20/023
– volume: 22
  start-page: 055002
  year: 2017
  ident: ref_18
  article-title: Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.5.055002
– volume: 10
  start-page: 159
  year: 2002
  ident: ref_26
  article-title: Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head
  publication-title: Opt. Express
  doi: 10.1364/OE.10.000159
– volume: 63
  start-page: 921
  year: 2012
  ident: ref_2
  article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.049
– volume: 143
  start-page: 29
  year: 1982
  ident: ref_68
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– ident: ref_14
– volume: 14
  start-page: 1186
  year: 2001
  ident: ref_11
  article-title: Cortical mapping of gait in humans: A near-infrared spectroscopic topography study
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0905
– volume: 44
  start-page: 428
  year: 2009
  ident: ref_20
  article-title: NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.08.036
– volume: 58
  start-page: R37
  year: 2013
  ident: ref_34
  article-title: Optical properties of biological tissues: A review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/11/R37
– volume: 33
  start-page: 259
  year: 2012
  ident: ref_35
  article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/33/2/259
– volume: 34
  start-page: 269
  year: 2010
  ident: ref_7
  article-title: Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2009.07.008
– volume: 27
  start-page: 1262
  year: 2007
  ident: ref_44
  article-title: A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600435
– volume: 25
  start-page: 701
  year: 2005
  ident: ref_40
  article-title: Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.032
– volume: 12
  start-page: 062104
  year: 2007
  ident: ref_1
  article-title: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2804899
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_54
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 1
  start-page: 165
  year: 2010
  ident: ref_51
  article-title: Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.1.000165
– volume: 122
  start-page: 1
  year: 2015
  ident: ref_65
  article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.075
– volume: 1555
  start-page: 20
  year: 2014
  ident: ref_49
  article-title: Functional MR imaging of a simulated balance task
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2014.01.033
– volume: 2
  start-page: 113
  year: 1972
  ident: ref_59
  article-title: Factoring and weighting approaches to status scores and clique identification
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.1972.9989806
– volume: 14
  start-page: 11
  year: 2004
  ident: ref_66
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 2
  start-page: 1
  year: 2010
  ident: ref_36
  article-title: A random-effects model for group-level analysis of diffuse optical brain imaging
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.000001
– volume: 52
  start-page: 1059
  year: 2010
  ident: ref_57
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 1
  start-page: 1084
  year: 2010
  ident: ref_33
  article-title: Hierarchical bayesian regularization of reconstructions for diffuse optical tomography using multiple priors
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.1.001084
– volume: 3
  start-page: 3223
  year: 2012
  ident: ref_24
  article-title: Accelerating mesh-based Monte Carlo method on modern CPU architectures
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.003223
– ident: ref_12
  doi: 10.1177/1094428116658959
– volume: 17
  start-page: 106009
  year: 2012
  ident: ref_25
  article-title: Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.10.106009
– volume: 2
  start-page: 360
  year: 1931
  ident: ref_29
  article-title: The generalization of student’s ratio
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177732979
– volume: 15
  start-page: R41
  year: 1999
  ident: ref_52
  article-title: Optical tomography in medical imaging
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/15/2/022
– volume: 21
  start-page: 547
  year: 2004
  ident: ref_41
  article-title: A state-space model of the hemodynamic approach: Nonlinear filtering of bold signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.09.052
– ident: ref_67
  doi: 10.1371/journal.pone.0184918
SSID ssj0065961
Score 2.580319
Snippet Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral...
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 73
SubjectTerms Blood volume
Brain
Confining
Data management
Functional near-infrared spectroscopy
Image reconstruction
Infrared analysis
Infrared spectra
Light levels
Magnetic resonance imaging
Medical imaging
Near infrared radiation
Neurology
Object oriented programming
Oxygenation
Source code
Statistical analysis
toolbox
Uniqueness
SummonAdditionalLinks – databaseName: Computer Science Database (ProQuest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCF8iZQICAOXCzi-H1CFFFRgVaoFKm3yJ7YUKlKyu62qvj12IkTWFRx4Ro70sTz8GfP5BuAlxFza25REk2lIzxUgjhPHWExEDJb2xpx-FH4k1os9NGR-Zwv3Fa5rHKKiUOgbntMd-TxkC6kUibC4TenP0jqGpWyq7mFxlW4RuuaJjv_qMgUiaUwko5sQiwe7V_buNWJlJra2IMGqv7L8OXfZZJ_7Dt72_8r8S24mRFn-XY0kdtwxXd3YHvq5lBm574Lz6LFlIv9gy_lbmobUQ50JT_3D8rDvj9x_cU9-Lr3_vDdB5LbJxAUTK5JENxXAS1XWrZWitarEKxiPkQFaCmoVrWVVTBVHerAGbZGoHXMopAu5Xfvw1bXd_4hlC5oG5wMUvmK28BNhap1wXDZolOeFvBqWtAGM7d4anFx0sQzRlr7Zl77Al7MU09HQo3LJu0mrcwTEgf28KBffmuySzWBeaOQB0wUh1pYSwUq1qLk8VO9MQXsTHppsmOumt9KKeD5PBxdKuVJbOf7s1UTw55gymhTFfBgNIFZkojvIsCt49t6wzg2RN0c6Y6_D7TdEdlSrRl_9G-5HsONCMr0WFS5A1vr5Zl_AtfxfH28Wj4dDPwXlYMExg
  priority: 102
  providerName: ProQuest
Title The NIRS Brain AnalyzIR Toolbox
URI https://www.ncbi.nlm.nih.gov/pubmed/38957522
https://www.proquest.com/docview/2056779182
https://www.proquest.com/docview/3075379890
https://pubmed.ncbi.nlm.nih.gov/PMC11218834
https://doaj.org/article/f3e97c4fc440485aa15c73dc645dee99
Volume 11
WOSCitedRecordID wos000435189200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61lEMvpYU-QmGbVj30EpHE72MXLeqqZbVaqLQ9RbZjCySUVOyCEAd-e8dJNmIREpdefIgdyZ7Pj2_k8TcAX5FzS6otT2TGTUJ9yhLjMpMQ3AiJznVubfNQ-JeYTOR8rqb3Un2FmLBWHrg13IEnTglLvQ1CdpJpnTErSGk5ZaVzqnm6h6xn5Uy1ezBnimetjhBBp_5A4yHHwqXU2unTiPQ_xiwfBkjeO3GOXsOrjirG39suvoFnrtqGrVUahrhblTvwCaGOJ-PZSTwM-R7iRmfkdjyLT-v6wtQ3b-H30ej08EfS5T1ILCN8mXhGXeqtpkLyUnMcp_BeC-I8Wk5ylkmRa556leY-95TYUjGrDdGWcRMuZt_BRlVX7gPExkvtDfdcuJRqT1VqRWm8ory0Rrgsgm8rexS2EwUPuSkuCnQOgumK3nQRfOmb_m2VMB5rNAxG7RsE8ermA0JadJAWT0Eawd4KkqJbUYsiR6YmhEJ3KILPfTWuhXDBoStXXy0K3K8YEUqqNIL3LYJ9T5CYITPN8W-5hu1aV9drqvOzRm8bKWkmJaG7_2NwH-Elci7Zxkzuwcby8srtw6a9Xp4vLgfwXMzlAF4MR5PpbNDMaSx_imQQglJPQnk3wvrp-Hj65x-vHv6h
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyptAoQGBxCUiid8HhChQddVlhdpF6i21HbutVCVld8vrR_EbGecFiypuPXCNnWiSmfn8OTOeAXiGnFtSbXkiM24S6lOWGJeZhCAQEp3r3NrmoPBYTCZyf199XIGf_VmYkFbZY2ID1GVtwz9y3KQzLoRCOvz69HMSukaF6GrfQqM1ix33_Stu2eavRu9Qv8_zfOv99O120nUVSCwjfJF4Rl3qraZC8lJzVjrhvRbEeZRLcpZJkWueepXmPveU2FIxqw3RlnETwp743EtwmQb0b1IF93rk50zxrK1eRIhKX2pcWlkIhS2teU1rgPP47N9pmX-sc1tr_9sXugHXO0Ydv2ld4CasuOoWrPXdKuIOvG7DBnpEPBnt7sWboS1G3JRj-THajad1fWLqb3fg04WIeRdWq7py9yE2XmpvuOfCpVR7qlIrSuMV5aU1wmURvOgVWNiudnpo4XFS4B4q6LoYdB3B02HqaVsw5LxJm8EKhgmhxndzoZ4dFh1kFJ44JSz1NpRwlEzrjFlBSsspvqpTKoL13g6KDnjmxW8jiODJMIyQEeJAunL12bxAWGdEKKnSCO61JjdIgvwVCXyOd8slY1wSdXmkOj5qypIjc8-kJPTBv-XagKvb0w_jYjya7DyEa0hAZZtAug6ri9mZewRX7JfF8Xz2uHGuGA4u2lZ_AdqMZAo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiEulDeBQgMCiUvUJH4fEGJpV6xaRaulSL2ljmNDpSopu1teP41fxzgvWFRx64Fr7ESTzDfjz5nxDMBz5NySasMjmfAioi5mUWGTIiLoCIlOdWpMc1D4QGSZPDpS0zX42Z-F8WmVvU9sHHVZG_-PHDfpjAuhkA7vuC4tYro7fn32OfIdpHyktW-n0UJk337_itu3xavJLur6RZqO9w7fvou6DgORYYQvI8eojZ3RVEheas5KK5zTgliHMkrOEilSzWOn4tSljhJTKmZ0QbRhvPAhUHzuFdgQSDLQujZGe9l01q8DnCmetLWMCFHxjsaFlvnA2MoK2DQKuIjd_p2k-ceqN978n7_XTbjRce3wTWsct2DNVrdhs-9jEXZu7Q5so62E2WT2Phz5hhlhU6jlx2QWHtb1aVF_uwsfLkXMe7Be1ZV9AGHhpHYFd1zYmGpHVWxEWThFeWkKYZMAXvbKzE1XVd039zjNcXfl9Z4Peg_g2TD1rC0lctGkkUfEMMFX_24u1POPeedMckesEoY644s7SqZ1wowgpeEUX9UqFcBWj4m8c0mL_DcgAng6DKMz8REiXdn6fJGjw2dEKKniAO638BskQWaL1D7Fu-UKMFdEXR2pTj41BcuR0ydSEvrw33JtwzWEaH4wyfYfwXVkprLNLN2C9eX83D6Gq-bL8mQxf9JZWgjHlw3WX39Mbhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+NIRS+Brain+AnalyzIR+Toolbox&rft.jtitle=Algorithms&rft.au=Hendrik+Santosa&rft.au=Xuetong+Zhai&rft.au=Frank+Fishburn&rft.au=Theodore+Huppert&rft.date=2018-05-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=11&rft.issue=5&rft.spage=73&rft_id=info:doi/10.3390%2Fa11050073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f3e97c4fc440485aa15c73dc645dee99
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon