The NIRS Brain AnalyzIR Toolbox
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-...
Uložené v:
| Vydané v: | Algorithms Ročník 11; číslo 5; s. 73 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.05.2018
|
| Predmet: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics. |
|---|---|
| AbstractList | Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics. Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics. |
| Author | Huppert, Theodore Santosa, Hendrik Fishburn, Frank Zhai, Xuetong |
| AuthorAffiliation | 4 Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA 1 Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA 2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA |
| AuthorAffiliation_xml | – name: 1 Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA – name: 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA – name: 4 Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA – name: 2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA |
| Author_xml | – sequence: 1 givenname: Hendrik surname: Santosa fullname: Santosa, Hendrik – sequence: 2 givenname: Xuetong surname: Zhai fullname: Zhai, Xuetong – sequence: 3 givenname: Frank orcidid: 0000-0002-1227-2834 surname: Fishburn fullname: Fishburn, Frank – sequence: 4 givenname: Theodore surname: Huppert fullname: Huppert, Theodore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38957522$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkUsvRDEYhhsh7gt_gElsWAy9X1aCuEwiJIx1801PSydnTmnPCH69wyAuqzbt8z1903cFzTep8QhtELzHmMH7QAgWGCs2h5aJMabPtWHzP_ZLaKWUMcZSGEkW0RLTRihB6TLaGt773uXg-qZ3lCE2vcMG6pfXwXVvmFI9Ss9raCFAXfz657qKbk9Phsfn_Yurs8Hx4UXfCSbbfhDc4-CAKy0rkKLyKgRQzAfqnJaCaEVB4mAwDTRw5iojHIwYOCFHmEm2igYzb5VgbB9ynEB-sQmi_ThI-c5CbqOrvQ3MG-V4cJxjrgUAEU6xyknePeuN6VwHM9fDdDTxlfNNm6H-Jf1908R7e5eeLCGUaM14Z9j5NOT0OPWltZNYnK9raHyaFsuwEkwZbXCHbv9Bx2mau18slmIhlTJE047a_BnpO8tXER2wPwNcTqVkH6yLLbQxvSeMtSXYvldtv6vuJnb_THxJ_7NvDU6lYg |
| CitedBy_id | crossref_primary_10_1007_s00221_019_05646_4 crossref_primary_10_1016_j_ynirp_2025_100282 crossref_primary_10_1371_journal_pone_0241695 crossref_primary_10_3389_fnins_2020_560878 crossref_primary_10_1088_1741_2552_abdb3a crossref_primary_10_1093_scan_nsad001 crossref_primary_10_1002_dev_22546 crossref_primary_10_1016_j_neuroimage_2022_119520 crossref_primary_10_3389_frobt_2025_1541963 crossref_primary_10_1111_desc_13229 crossref_primary_10_3389_fnagi_2021_550180 crossref_primary_10_1117_1_JBO_29_S3_S33310 crossref_primary_10_1080_09297049_2024_2386072 crossref_primary_10_1080_10253890_2025_2472067 crossref_primary_10_1111_ejn_16041 crossref_primary_10_2217_cnc_2020_0014 crossref_primary_10_1016_j_bandl_2022_105084 crossref_primary_10_3389_fnhum_2018_00439 crossref_primary_10_1097_MD_0000000000043707 crossref_primary_10_3389_fneur_2019_00476 crossref_primary_10_3390_healthcare12070734 crossref_primary_10_1371_journal_pone_0248533 crossref_primary_10_1523_JNEUROSCI_1401_22_2023 crossref_primary_10_1371_journal_pone_0265898 crossref_primary_10_1371_journal_pone_0289508 crossref_primary_10_1016_j_clinph_2023_12_008 crossref_primary_10_1016_j_neuroimage_2024_120987 crossref_primary_10_1017_S0954579421000468 crossref_primary_10_1038_s41746_025_01690_3 crossref_primary_10_1093_cercor_bhad032 crossref_primary_10_3389_fnmol_2022_859988 crossref_primary_10_1080_17483107_2022_2085334 crossref_primary_10_3389_fnhum_2025_1459653 crossref_primary_10_1111_jcpp_13165 crossref_primary_10_3389_fnins_2024_1406814 crossref_primary_10_1016_j_pediatrneurol_2021_06_003 crossref_primary_10_1016_j_ynirp_2025_100276 crossref_primary_10_1080_25742442_2025_2510182 crossref_primary_10_1016_j_bandl_2019_104640 crossref_primary_10_1016_j_jocn_2020_05_003 crossref_primary_10_1038_s41598_023_31264_w crossref_primary_10_1007_s11881_021_00239_9 crossref_primary_10_1016_j_gerinurse_2023_09_005 crossref_primary_10_1016_j_dcn_2022_101112 crossref_primary_10_1016_j_cortex_2022_05_009 crossref_primary_10_1007_s12671_021_01789_0 crossref_primary_10_1109_JSTQE_2024_3519572 crossref_primary_10_1002_hbm_26786 crossref_primary_10_1111_desc_13328 crossref_primary_10_1111_psyp_70098 crossref_primary_10_3389_fnhum_2022_1029784 crossref_primary_10_1016_j_isci_2024_111087 crossref_primary_10_3389_fpsyg_2022_873796 crossref_primary_10_1117_1_NPh_7_3_035008 crossref_primary_10_3390_app10103381 crossref_primary_10_3389_fpsyg_2022_984777 crossref_primary_10_3390_children10081287 crossref_primary_10_3389_fpsyt_2023_1180947 crossref_primary_10_1002_hbm_26419 crossref_primary_10_1016_j_isci_2022_104181 crossref_primary_10_1117_1_NPh_8_2_025008 crossref_primary_10_3390_a16050230 crossref_primary_10_1089_brain_2022_0065 crossref_primary_10_3389_fams_2020_00032 crossref_primary_10_1002_advs_202303516 crossref_primary_10_1016_j_infbeh_2020_101430 crossref_primary_10_1111_jon_12782 crossref_primary_10_1162_IMAG_a_61 crossref_primary_10_1088_1741_2552_ac4bfc crossref_primary_10_1007_s12671_021_01705_6 crossref_primary_10_1038_s41597_025_05654_w crossref_primary_10_1038_s41598_022_10044_y crossref_primary_10_1016_j_cogdev_2022_101293 crossref_primary_10_3389_fneur_2022_937231 crossref_primary_10_2196_48850 crossref_primary_10_1080_00222895_2019_1645639 crossref_primary_10_1038_s41598_022_06519_7 crossref_primary_10_1038_s41598_022_13966_9 crossref_primary_10_1016_j_neuroimage_2020_117672 crossref_primary_10_1038_s41598_023_39540_5 crossref_primary_10_1097_j_pain_0000000000002293 crossref_primary_10_1186_s13063_021_05972_5 crossref_primary_10_1016_j_bspc_2022_104110 crossref_primary_10_1093_cercor_bhaf084 crossref_primary_10_1044_2024_JSLHR_23_00476 crossref_primary_10_1177_00315125231213167 crossref_primary_10_1016_j_neuropsychologia_2020_107397 crossref_primary_10_1038_s41598_024_82112_4 crossref_primary_10_1088_1741_2552_ad731d crossref_primary_10_1162_imag_a_00168 crossref_primary_10_3390_brainsci11060742 crossref_primary_10_1038_s41597_022_01751_2 crossref_primary_10_3390_brainsci11080991 crossref_primary_10_1016_j_jpsychires_2021_10_020 crossref_primary_10_1080_17518423_2019_1689437 crossref_primary_10_1109_TNSRE_2023_3239913 crossref_primary_10_1186_s12984_020_00803_1 crossref_primary_10_1016_j_jpet_2025_103607 crossref_primary_10_1109_TBME_2020_2971679 crossref_primary_10_1098_rsob_230382 crossref_primary_10_1371_journal_pone_0285581 crossref_primary_10_1080_14992027_2023_2296866 crossref_primary_10_1111_desc_13251 crossref_primary_10_1016_j_compbiomed_2023_107658 crossref_primary_10_1109_TNSRE_2024_3487526 crossref_primary_10_1016_j_brainresbull_2023_110759 crossref_primary_10_1007_s11571_025_10242_0 crossref_primary_10_1093_gerona_glaf152 crossref_primary_10_1017_S1355617724000304 crossref_primary_10_1016_j_cortex_2021_06_010 crossref_primary_10_1177_17448069221074991 crossref_primary_10_3390_brainsci11010019 crossref_primary_10_1371_journal_pone_0290005 crossref_primary_10_1016_j_neuroimage_2023_120210 crossref_primary_10_3389_fnhum_2021_719509 crossref_primary_10_3390_jcm7120466 crossref_primary_10_3390_s23042089 crossref_primary_10_1177_23312165241258056 crossref_primary_10_1016_j_bandl_2024_105380 crossref_primary_10_3389_fnint_2023_1059679 crossref_primary_10_1016_j_dcn_2019_100651 crossref_primary_10_3389_fresc_2023_1156940 crossref_primary_10_1016_j_neuroimage_2023_120327 crossref_primary_10_1038_s41598_021_00188_8 crossref_primary_10_1093_cercor_bhac277 crossref_primary_10_1117_1_NPh_11_4_045006 crossref_primary_10_1159_000531860 crossref_primary_10_1177_10711813241260675 crossref_primary_10_3390_bioengineering11090933 crossref_primary_10_1016_j_jneuroling_2022_101063 crossref_primary_10_3390_biomedicines10051132 crossref_primary_10_1117_1_NPh_11_4_045008 crossref_primary_10_1016_j_jneumeth_2020_108790 crossref_primary_10_1038_s41598_023_30743_4 crossref_primary_10_3389_fnhum_2020_613254 crossref_primary_10_1007_s00221_023_06581_1 crossref_primary_10_1109_TITS_2022_3211089 crossref_primary_10_1117_1_NPh_10_2_023515 crossref_primary_10_1162_nol_a_00143 crossref_primary_10_1371_journal_pone_0250043 crossref_primary_10_2196_27298 crossref_primary_10_1038_s41598_023_46645_4 crossref_primary_10_1111_dmcn_14458 crossref_primary_10_3390_s21237943 crossref_primary_10_1093_scan_nsaf022 crossref_primary_10_1016_j_jecp_2023_105802 crossref_primary_10_1145_3534516 crossref_primary_10_1016_j_neuroimage_2024_120592 crossref_primary_10_1186_s12889_024_19306_y crossref_primary_10_3389_fninf_2020_00026 crossref_primary_10_3390_app12010316 crossref_primary_10_3389_fneur_2025_1499178 crossref_primary_10_1016_j_neuri_2021_100004 crossref_primary_10_1080_10447318_2025_2524490 crossref_primary_10_1080_17518423_2020_1825539 crossref_primary_10_3389_fnhum_2020_00273 crossref_primary_10_1016_j_bbr_2023_114343 crossref_primary_10_1016_j_heares_2021_108256 crossref_primary_10_3389_fnins_2023_1130050 crossref_primary_10_1002_aur_2513 crossref_primary_10_1002_alz_14072 crossref_primary_10_1016_j_dcn_2021_100917 crossref_primary_10_31083_j_jin2103098 crossref_primary_10_1038_s41398_025_03353_z crossref_primary_10_1016_j_jad_2019_08_006 crossref_primary_10_1038_s41598_024_69630_x crossref_primary_10_1371_journal_pone_0322036 crossref_primary_10_1016_j_neuroimage_2018_09_023 crossref_primary_10_1093_ptj_pzad159 crossref_primary_10_1016_j_neuroimage_2018_09_025 crossref_primary_10_1111_ejn_15241 crossref_primary_10_1007_s00221_023_06707_5 crossref_primary_10_1016_j_jneumeth_2023_109952 crossref_primary_10_1016_j_dcn_2025_101570 crossref_primary_10_1016_j_neuroimage_2021_118324 crossref_primary_10_1016_j_ijhcs_2023_103206 crossref_primary_10_3389_fped_2023_1072663 crossref_primary_10_3390_biom14121621 crossref_primary_10_1016_j_dcn_2021_100943 crossref_primary_10_1162_jocn_a_02071 crossref_primary_10_1117_1_NPh_10_1_013507 crossref_primary_10_3390_biomed5020014 crossref_primary_10_1080_10447318_2023_2266242 crossref_primary_10_2196_38407 crossref_primary_10_1016_j_ijpsycho_2023_112275 crossref_primary_10_1038_s41597_024_04136_9 crossref_primary_10_1097_WNR_0000000000001561 crossref_primary_10_1007_s10548_023_00942_3 crossref_primary_10_1097_NPT_0000000000000310 crossref_primary_10_1038_s41598_020_80477_w crossref_primary_10_1017_pds_2021_90 crossref_primary_10_1016_j_dcn_2021_100937 crossref_primary_10_1044_2023_JSLHR_22_00598 crossref_primary_10_1016_j_heares_2024_109155 crossref_primary_10_1088_1741_2552_acbb2d crossref_primary_10_1038_s41598_021_03595_z crossref_primary_10_1117_1_JBO_29_2_025004 crossref_primary_10_3389_fnagi_2025_1454068 crossref_primary_10_1098_rstb_2020_0224 crossref_primary_10_1117_1_NPh_12_1_015015 crossref_primary_10_3389_fnhum_2019_00393 crossref_primary_10_3390_ijms232314897 crossref_primary_10_3390_brainsci13071099 crossref_primary_10_3390_brainsci12060788 crossref_primary_10_1117_1_NPh_6_2_025009 crossref_primary_10_3389_fnins_2023_1187790 crossref_primary_10_1117_1_NPh_9_S2_S24001 crossref_primary_10_1152_japplphysiol_00219_2023 crossref_primary_10_1007_s00421_023_05151_1 crossref_primary_10_1016_j_neuropsychologia_2023_108520 crossref_primary_10_1016_j_jneumeth_2022_109487 crossref_primary_10_1038_s41598_023_33780_1 crossref_primary_10_1111_desc_13541 crossref_primary_10_1371_journal_pone_0247629 crossref_primary_10_2147_NDT_S486656 crossref_primary_10_3758_s13415_025_01318_9 crossref_primary_10_3389_fgwh_2021_744649 crossref_primary_10_1002_advs_202406631 crossref_primary_10_1177_23312165241311721 crossref_primary_10_1002_brb3_2948 crossref_primary_10_1038_s41598_023_43073_2 crossref_primary_10_1117_1_NPh_12_2_025011 crossref_primary_10_1038_s41598_022_23476_3 crossref_primary_10_1136_bmjopen_2021_053598 crossref_primary_10_1016_j_neuroimage_2021_117795 crossref_primary_10_1016_j_dcn_2019_100708 crossref_primary_10_1002_dev_22181 crossref_primary_10_1002_hbm_26305 crossref_primary_10_1002_brb3_70180 crossref_primary_10_1002_hbm_70021 crossref_primary_10_1117_1_NPh_9_3_030801 crossref_primary_10_1044_2024_JSLHR_23_00293 crossref_primary_10_1016_j_nutos_2025_04_004 crossref_primary_10_1016_j_ynirp_2025_100266 crossref_primary_10_3389_fneur_2023_1232436 crossref_primary_10_1016_j_bandc_2023_106063 crossref_primary_10_1038_s41598_021_02247_6 crossref_primary_10_1177_1071181319631088 crossref_primary_10_3390_bs10060104 crossref_primary_10_3389_fneur_2021_784821 crossref_primary_10_1162_nol_a_00092 crossref_primary_10_3389_fneur_2022_1028864 crossref_primary_10_1016_j_dcn_2025_101565 crossref_primary_10_1017_S0033291723002350 crossref_primary_10_1038_s41598_024_75427_9 crossref_primary_10_1371_journal_pone_0325903 crossref_primary_10_1016_j_jpsychires_2022_10_002 crossref_primary_10_1111_mbe_12410 crossref_primary_10_1111_mbe_12411 crossref_primary_10_1097_AUD_0000000000001564 crossref_primary_10_1038_s41538_024_00308_4 crossref_primary_10_1097_AUD_0000000000001325 crossref_primary_10_1192_j_eurpsy_2022_2325 crossref_primary_10_1177_00187208231185705 crossref_primary_10_1016_j_chb_2024_108168 crossref_primary_10_1109_TNSRE_2020_2992382 crossref_primary_10_3389_fpsyg_2019_00164 crossref_primary_10_1117_1_NPh_9_3_035003 crossref_primary_10_1016_j_bandc_2023_106074 crossref_primary_10_1038_s41598_022_05432_3 crossref_primary_10_1038_s41598_025_93678_y crossref_primary_10_1016_j_brainresbull_2023_110817 crossref_primary_10_1044_2022_JSLHR_22_00103 crossref_primary_10_1007_s13177_023_00371_3 crossref_primary_10_3389_fphys_2025_1425302 crossref_primary_10_1016_j_humov_2022_102982 crossref_primary_10_1109_TNSRE_2024_3378467 crossref_primary_10_3390_brainsci10110880 |
| Cites_doi | 10.1117/1.JBO.18.8.086007 10.1002/cnm.1162 10.1117/1.NPh.3.3.031410 10.1002/hbm.20628 10.1016/j.neuroimage.2013.02.010 10.1117/1.2710250 10.1186/1471-2105-12-372 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2014.08.052 10.1364/BOE.4.001366 10.1016/j.neuroimage.2013.05.004 10.1117/1.1852552 10.1117/1.NPh.3.1.010401 10.1117/1.2976432 10.1117/1.3127204 10.1117/1.NPh.2.2.020801 10.1016/j.cobme.2017.09.011 10.1016/j.neuroimage.2013.03.045 10.1016/j.socnet.2007.04.002 10.1097/00004728-199803000-00032 10.1117/1.NPh.3.3.031405 10.1117/1.NPh.4.1.015001 10.5194/npg-11-561-2004 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2004.07.011 10.1515/9781400830329 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.neuroimage.2011.05.012 10.1364/AO.48.00D280 10.1080/00401706.1974.10489171 10.1016/j.neuroimage.2007.12.061 10.1016/j.neuroimage.2013.02.061 10.1088/0031-9155/54/20/023 10.1117/1.JBO.22.5.055002 10.1364/OE.10.000159 10.1016/j.neuroimage.2012.03.049 10.1148/radiology.143.1.7063747 10.1006/nimg.2001.0905 10.1016/j.neuroimage.2008.08.036 10.1088/0031-9155/58/11/R37 10.1088/0967-3334/33/2/259 10.1016/j.neubiorev.2009.07.008 10.1038/sj.jcbfm.9600435 10.1016/j.neuroimage.2004.12.032 10.1117/1.2804899 10.1214/aos/1176344136 10.1364/BOE.1.000165 10.1016/j.neuroimage.2015.07.075 10.1016/j.brainres.2014.01.033 10.1080/0022250X.1972.9989806 10.1093/cercor/bhg087 10.1364/BOE.2.000001 10.1016/j.neuroimage.2009.10.003 10.1364/BOE.1.001084 10.1364/BOE.3.003223 10.1177/1094428116658959 10.1117/1.JBO.17.10.106009 10.1214/aoms/1177732979 10.1088/0266-5611/15/2/022 10.1016/j.neuroimage.2003.09.052 10.1371/journal.pone.0184918 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2018 |
| Copyright_xml | – notice: Copyright MDPI AG 2018 |
| DBID | AAYXX CITATION NPM 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM DOA |
| DOI | 10.3390/a11050073 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_f3e97c4fc440485aa15c73dc645dee99 PMC11218834 38957522 10_3390_a11050073 |
| Genre | Journal Article |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. C1A IPNFZ ITC M0N NPM RIG 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c536t-f54e0fca4786da65de7ffa73ef2cc8651872a60f902f2f43cd95cab3ac56b0363 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 334 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435189200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:26:15 EDT 2025 Tue Nov 04 02:05:40 EST 2025 Fri Sep 05 11:23:04 EDT 2025 Fri Jul 25 12:08:48 EDT 2025 Wed Feb 19 02:03:24 EST 2025 Tue Nov 18 22:18:51 EST 2025 Sat Nov 29 07:10:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | toolbox statistical analysis Functional near-infrared spectroscopy |
| Language | English |
| License | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-f54e0fca4786da65de7ffa73ef2cc8651872a60f902f2f43cd95cab3ac56b0363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions: H.S., X.Z., and F.F. made the figures, updated several modules in the AnalyzIR toolbox periodically, and contributed to the text file. Theodore Huppert supervised the toolbox, updated most of the modules, and corrected the entire manuscript. All the authors read and approved the final manuscript. |
| ORCID | 0000-0002-1227-2834 |
| OpenAccessLink | https://www.proquest.com/docview/2056779182?pq-origsite=%requestingapplication% |
| PMID | 38957522 |
| PQID | 2056779182 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f3e97c4fc440485aa15c73dc645dee99 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11218834 proquest_miscellaneous_3075379890 proquest_journals_2056779182 pubmed_primary_38957522 crossref_citationtrail_10_3390_a11050073 crossref_primary_10_3390_a11050073 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Algorithms |
| PublicationTitleAlternate | Algorithms |
| PublicationYear | 2018 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yucel (ref_10) 2017; 4 Huppert (ref_42) 2009; 30 ref_14 Fang (ref_24) 2012; 3 ref_58 Obrig (ref_8) 2014; 85 ref_13 Yucel (ref_32) 2014; 102 ref_12 ref_55 Boas (ref_26) 2002; 10 ref_53 Karim (ref_47) 2013; 74 Aasted (ref_61) 2015; 2 Ferrari (ref_2) 2012; 63 Landeau (ref_64) 2002; 15 Huppert (ref_15) 2016; 3 Karim (ref_49) 2014; 1555 Fischl (ref_66) 2004; 14 Hanley (ref_68) 1982; 143 Huppert (ref_9) 2017; 4 Jacques (ref_34) 2013; 58 Hotelling (ref_29) 1931; 2 Dale (ref_63) 1999; 9 Rolls (ref_65) 2015; 122 Santosa (ref_18) 2017; 22 Jermyn (ref_21) 2013; 18 Dehghani (ref_22) 2008; 25 ref_23 ref_67 Rubinov (ref_57) 2010; 52 Scholkmann (ref_3) 2014; 85 Benjamini (ref_27) 1995; 57 Miyai (ref_11) 2001; 14 ref_28 Abdelnour (ref_36) 2010; 2 Hoge (ref_40) 2005; 25 Schwarz (ref_54) 1978; 6 Beaton (ref_45) 1974; 16 Chen (ref_25) 2012; 17 Bonanich (ref_60) 2007; 29 Huppert (ref_44) 2007; 27 Wolf (ref_1) 2007; 12 Zhang (ref_38) 2005; 10 Barker (ref_17) 2016; 3 ref_30 Molavi (ref_35) 2012; 33 Karim (ref_48) 2013; 76 Takahashi (ref_6) 2011; 57 Themelis (ref_39) 2007; 12 Huppert (ref_31) 2008; 13 Barker (ref_16) 2013; 4 Riera (ref_41) 2004; 21 Boas (ref_43) 2008; 40 Holmes (ref_62) 1998; 22 Abdelnour (ref_37) 2009; 54 Fang (ref_51) 2010; 1 Huppert (ref_19) 2009; 48 Wilkinson (ref_50) 1973; 22 Abdelnour (ref_33) 2010; 1 Grinsted (ref_56) 2004; 11 Tachtsidis (ref_5) 2016; 3 Arridge (ref_52) 1999; 15 Blasi (ref_7) 2010; 34 Ye (ref_20) 2009; 44 Boas (ref_4) 2004; 23 Bonacich (ref_59) 1972; 2 Jang (ref_46) 2009; 14 |
| References_xml | – volume: 18 start-page: 086007 year: 2013 ident: ref_21 article-title: Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.18.8.086007 – volume: 25 start-page: 711 year: 2008 ident: ref_22 article-title: Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1162 – volume: 22 start-page: 3920399 year: 1973 ident: ref_50 article-title: Symbolic description of factorial models for analysis of variance publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) – ident: ref_55 – volume: 3 start-page: 031410 year: 2016 ident: ref_17 article-title: Correction of motion artifacts and serial correlations for real-time functional near-infrared spectroscopy publication-title: Neurophotonics doi: 10.1117/1.NPh.3.3.031410 – volume: 30 start-page: 1548 year: 2009 ident: ref_42 article-title: Estimating cerebral oxygen metabolism from fMRI with a dynamic multicompartment windkessel model publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20628 – volume: 74 start-page: 318 year: 2013 ident: ref_47 article-title: Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.010 – volume: 12 start-page: 014033 year: 2007 ident: ref_39 article-title: Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations publication-title: J. Biomed. Opt. doi: 10.1117/1.2710250 – ident: ref_53 doi: 10.1186/1471-2105-12-372 – volume: 9 start-page: 179 year: 1999 ident: ref_63 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 102 start-page: 729 year: 2014 ident: ref_32 article-title: Validation of the hypercapnic calibrated fMRI method using DOT-fMRI fusion imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.052 – ident: ref_23 – volume: 4 start-page: 1366 year: 2013 ident: ref_16 article-title: Autoregressive model based algorithm for correcting motion and serially correlated errors in fnirs publication-title: Biomed. Opt. Express doi: 10.1364/BOE.4.001366 – volume: 85 start-page: 6 year: 2014 ident: ref_3 article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.004 – volume: 10 start-page: 11014 year: 2005 ident: ref_38 article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.1852552 – volume: 3 start-page: 010401 year: 2016 ident: ref_15 article-title: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy publication-title: Neurophotonics doi: 10.1117/1.NPh.3.1.010401 – volume: 13 start-page: 054031 year: 2008 ident: ref_31 article-title: Direct estimation of evoked hemoglobin changes by multimodality fusion imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.2976432 – volume: 14 start-page: 034004 year: 2009 ident: ref_46 article-title: Wavelet minimum description length detrending for near-infrared spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.3127204 – volume: 2 start-page: 020801 year: 2015 ident: ref_61 article-title: Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial publication-title: Neurophotonics doi: 10.1117/1.NPh.2.2.020801 – volume: 4 start-page: 78 year: 2017 ident: ref_10 article-title: Functional near infrared spectroscopy: Enabling routine functional brain imaging publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.09.011 – volume: 85 start-page: 535 year: 2014 ident: ref_8 article-title: NIRS in clinical neurology—A ‘promising’ tool? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.045 – volume: 29 start-page: 555 year: 2007 ident: ref_60 article-title: Some unique properties of eigenvector centrality publication-title: Soc. Netw. doi: 10.1016/j.socnet.2007.04.002 – volume: 22 start-page: 324 year: 1998 ident: ref_62 article-title: Enhancement of mr images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00032 – volume: 3 start-page: 031405 year: 2016 ident: ref_5 article-title: False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward publication-title: Neurophotonics doi: 10.1117/1.NPh.3.3.031405 – volume: 4 start-page: 015001 year: 2017 ident: ref_9 article-title: Comparison of group-level, source localized activity for simultaneous functional near-infrared spectroscopy-magnetoencephalography and simultanous fNIRS-fMRI during parametric median nerve stimulation publication-title: Neurophotonics doi: 10.1117/1.NPh.4.1.015001 – ident: ref_13 – volume: 11 start-page: 561 year: 2004 ident: ref_56 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-11-561-2004 – volume: 15 start-page: 273 year: 2002 ident: ref_64 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 23 start-page: 275S year: 2004 ident: ref_4 article-title: Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.011 – ident: ref_58 doi: 10.1515/9781400830329 – volume: 57 start-page: 289 year: 1995 ident: ref_27 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: ref_28 – volume: 57 start-page: 991 year: 2011 ident: ref_6 article-title: Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.05.012 – volume: 48 start-page: D280 year: 2009 ident: ref_19 article-title: Homer: A review of time-series analysis methods for near-infrared spectroscopy of the brain publication-title: Appl. Opt. doi: 10.1364/AO.48.00D280 – ident: ref_30 – volume: 16 start-page: 147 year: 1974 ident: ref_45 article-title: The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data publication-title: Technometrics doi: 10.1080/00401706.1974.10489171 – volume: 40 start-page: 1116 year: 2008 ident: ref_43 article-title: A vascular anatomical network model of the spatio-temporal response to brain activation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.061 – volume: 76 start-page: 1 year: 2013 ident: ref_48 article-title: Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.061 – volume: 54 start-page: 6383 year: 2009 ident: ref_37 article-title: Topographic localization of brain activation in diffuse optical imaging using spherical wavelets publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/20/023 – volume: 22 start-page: 055002 year: 2017 ident: ref_18 article-title: Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.5.055002 – volume: 10 start-page: 159 year: 2002 ident: ref_26 article-title: Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head publication-title: Opt. Express doi: 10.1364/OE.10.000159 – volume: 63 start-page: 921 year: 2012 ident: ref_2 article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.049 – volume: 143 start-page: 29 year: 1982 ident: ref_68 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – ident: ref_14 – volume: 14 start-page: 1186 year: 2001 ident: ref_11 article-title: Cortical mapping of gait in humans: A near-infrared spectroscopic topography study publication-title: Neuroimage doi: 10.1006/nimg.2001.0905 – volume: 44 start-page: 428 year: 2009 ident: ref_20 article-title: NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.08.036 – volume: 58 start-page: R37 year: 2013 ident: ref_34 article-title: Optical properties of biological tissues: A review publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/11/R37 – volume: 33 start-page: 259 year: 2012 ident: ref_35 article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy publication-title: Physiol. Meas. doi: 10.1088/0967-3334/33/2/259 – volume: 34 start-page: 269 year: 2010 ident: ref_7 article-title: Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2009.07.008 – volume: 27 start-page: 1262 year: 2007 ident: ref_44 article-title: A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600435 – volume: 25 start-page: 701 year: 2005 ident: ref_40 article-title: Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.032 – volume: 12 start-page: 062104 year: 2007 ident: ref_1 article-title: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications publication-title: J. Biomed. Opt. doi: 10.1117/1.2804899 – volume: 6 start-page: 461 year: 1978 ident: ref_54 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 1 start-page: 165 year: 2010 ident: ref_51 article-title: Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates publication-title: Biomed. Opt. Express doi: 10.1364/BOE.1.000165 – volume: 122 start-page: 1 year: 2015 ident: ref_65 article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.075 – volume: 1555 start-page: 20 year: 2014 ident: ref_49 article-title: Functional MR imaging of a simulated balance task publication-title: Brain Res. doi: 10.1016/j.brainres.2014.01.033 – volume: 2 start-page: 113 year: 1972 ident: ref_59 article-title: Factoring and weighting approaches to status scores and clique identification publication-title: J. Math. Sociol. doi: 10.1080/0022250X.1972.9989806 – volume: 14 start-page: 11 year: 2004 ident: ref_66 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 2 start-page: 1 year: 2010 ident: ref_36 article-title: A random-effects model for group-level analysis of diffuse optical brain imaging publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.000001 – volume: 52 start-page: 1059 year: 2010 ident: ref_57 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 1 start-page: 1084 year: 2010 ident: ref_33 article-title: Hierarchical bayesian regularization of reconstructions for diffuse optical tomography using multiple priors publication-title: Biomed. Opt. Express doi: 10.1364/BOE.1.001084 – volume: 3 start-page: 3223 year: 2012 ident: ref_24 article-title: Accelerating mesh-based Monte Carlo method on modern CPU architectures publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.003223 – ident: ref_12 doi: 10.1177/1094428116658959 – volume: 17 start-page: 106009 year: 2012 ident: ref_25 article-title: Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.10.106009 – volume: 2 start-page: 360 year: 1931 ident: ref_29 article-title: The generalization of student’s ratio publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177732979 – volume: 15 start-page: R41 year: 1999 ident: ref_52 article-title: Optical tomography in medical imaging publication-title: Inverse Probl. doi: 10.1088/0266-5611/15/2/022 – volume: 21 start-page: 547 year: 2004 ident: ref_41 article-title: A state-space model of the hemodynamic approach: Nonlinear filtering of bold signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.09.052 – ident: ref_67 doi: 10.1371/journal.pone.0184918 |
| SSID | ssj0065961 |
| Score | 2.580319 |
| Snippet | Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral... Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 73 |
| SubjectTerms | Blood volume Brain Confining Data management Functional near-infrared spectroscopy Image reconstruction Infrared analysis Infrared spectra Light levels Magnetic resonance imaging Medical imaging Near infrared radiation Neurology Object oriented programming Oxygenation Source code Statistical analysis toolbox Uniqueness |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KyKGXPPpI3CStW3roxcTWW8dsaehCWUqaltzMWJbIQrBLdhNCfn1GttdkSyCXXi3ZSPNZmm888jcAnyX3NXluik6cwEwUgWXIVJ0ZrzXmhQuq-6D_54eezczFhf35qNRXPBPWywP3hjsO3FvtRHBRyM5IxEI6zWunhKy9t92ve8R6VsFUvwcraVXR6whxCuqPkZycjEmpNe_TifQ_xSz_PSD5yOOc7sDWQBXTk36Iu_DCN69ge1WGIR1W5Wv4QFCns-nZr3QS6z2knc7I_fQsPW_bq6q9ewO_T7-df_2eDXUPMie5WmZBCp8Hh0IbVaOieeoQUHMfmHNGycJohioPNmeBBcFdbaXDiqOTqoqJ2bew0bSN34c0MF94Sw8j1yyMMlhVUnlET2wVZY0JfFnZo3SDKHisTXFVUnAQTVeOpkvg09j1b6-E8VSnSTTq2CGKV3cXCNJygLR8DtIEDleQlMOKWpSMmJrWlsKhBD6OzbQWYoIDG9_eLEraryTX1tg8gb0ewXEkRMyImTK626xhuzbU9ZZmftnpbRMlLYzh4t3_mNwBvCTOZfozk4ewsby-8Uew6W6X88X1--4tfgB18Pb_ priority: 102 providerName: Directory of Open Access Journals |
| Title | The NIRS Brain AnalyzIR Toolbox |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38957522 https://www.proquest.com/docview/2056779182 https://www.proquest.com/docview/3075379890 https://pubmed.ncbi.nlm.nih.gov/PMC11218834 https://doaj.org/article/f3e97c4fc440485aa15c73dc645dee99 |
| Volume | 11 |
| WOSCitedRecordID | wos000435189200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgOXlncNxRjEgYuFvet9nSqCUhEBUZQWFE7Wer1LK1V2m6QIceC3d9YvCKq4cPEhu7HGu_Oe0TcArxi1JVpujE5MpuMsdSTWhJextELoJDWONwn9Lx_FdCoXCzXrEm6rrq2y14mNoi5r43PkGKQzLoRCd_jw4jL2U6N8dbUbobEFOykhqefzDyLuNTFniqctmhDF0P6NRlPHfGlqwwY1UP03-Zd_t0n-YXeO9v6X4ruw23mc0duWRe7BLVvdh71-mkPUCfcDeI4cE00n8-No5MdGRA1cyc_JPDqp6_Oi_vEQPh-NT969j7vxCbFhlK9jxzKbOKMzIXmpOSutcE4Lah0xRnKWSkE0T5xKiCMuo6ZUzOiCasN44eu7j2C7qiu7D5EjNrUKX4YWPpNc6qJg3Gpt0enVrNQBvO4PNDcdtrgfcXGeY4zhzz4fzj6Al8PWixZQ46ZNI38rwwaPgd38UC-_5Z1I5Y5aJUzmjIc4lEzrlBlBS8Mz_FSrVAAH_b3knWCu8t-XEsCLYRlFytdJdGXrq1WOao9RoaRKAnjcssBACfp36OAS_LfcYI4NUjdXqrPTBrYbPdtUSpo9-TddT-EOOmWybao8gO318so-g9vm-_pstQxhSyxkCDuj8XQ2D5sMQtgwfei7Vo_989cY12eTT7Ov18y5C6M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyptAoQGBxCUi8dsHhChQdbXLCpUF9ZY6jg2VqqTsbnn9KH4j47xgUcWtB66xE00y42--8TgzAI84dSV6boxOLDMJyzxJDBFlopyUJs2sF82G_oeJnE7V_r5-uwY_-39hwrHKHhMboC5rG_bIMUjnQkqNdPj58eckdI0K2dW-hUZrFmP3_SuGbItno1eo38eE7LyevdxNuq4CieVULBPPmUu9NUwqURrBSye9N5I6T6xVgmdKEiNSr1PiiWfUlppbU1BjuShC2hOfew7OM6pkqNU_lkmP_IJrkbXViyjV6VODrpWHVNiKz2taA5zGZ_8-lvmHn9vZ-N--0BW43DHq-EW7BK7CmquuwUbfrSLuwOs6bOGKiKejvXfxdmiLETflWH6M9uJZXR8V9bcb8P5MxLwJ61VdudsQe-Iyp_FhyGCYEsoUBRfOGIek3vDSRPCkV2Buu9rpoYXHUY4xVNB1Pug6gofD1OO2YMhpk7aDFQwTQo3v5kI9_5h3kJF76rS0zNtQwlFxYzJuJS2tYPiqTusINns7yDvgWeS_jSCCB8MwQkbIA5nK1SeLHGGdU6mVTiO41ZrcIAnyVyTwBO9WK8a4IurqSHX4qSlLjsw9U4qyO_-Wawsu7s7eTPLJaDq-C5eQgKr2AOkmrC_nJ-4eXLBfloeL-f1mccVwcNa2-gsN5WNT |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXyptAoQGBxCVq4rcPFaKUFautVlUpqLfgODZUqpKyu-X10_rrGOcFiypuPXCNnWiSeX3jmcwAPOPUlei5MTqxzCQs8yQxRJSJclKaNLNeNAf6H3bldKoOD_XeCpz1_8KEssreJjaGuqxtOCPHIJ0LKTXC4U3flUXs7YxennxJwgSpkGntx2m0IjJxP75h-DbfGu8gr58TMnpz8Ppt0k0YSCynYpF4zlzqrWFSidIIXjrpvZHUeWKtEjxTkhiRep0STzyjttTcmoIay0URUqD43EtwGb0wDzo2kUnvBQTXIms7GVGq002DbpaHtNiS_2vGBJyHbf8u0fzD543W_uevdQOud0g7ftWqxk1YcdUtWOunWMSdUbsNG6gp8XS8_y7eDuMy4qZNy8_xfnxQ18dF_f0OvL8QMu_CalVX7j7EnrjMaXwYIhumhDJFwYUzxiHYN7w0EbzomZnbrqd6GO1xnGNsFfieD3yP4Omw9aRtJHLepu0gEcOG0Pu7uVDPPuWdKck9dVpa5m1o7ai4MRm3kpZWMHxVp3UE671M5J1Bmue_BSKCJ8MympKQHzKVq0_nOZp7TqVWOo3gXit-AyWIaxHYE7xbLQnmEqnLK9XR56ZdOSL6TCnKHvybrg24iiKa746nk4dwDXGpautK12F1MTt1j-CK_bo4ms8eN3oWw8eLFtVfg65sDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+NIRS+Brain+AnalyzIR+Toolbox&rft.jtitle=Algorithms&rft.au=Santosa%2C+Hendrik&rft.au=Zhai%2C+Xuetong&rft.au=Fishburn%2C+Frank&rft.au=Huppert%2C+Theodore&rft.date=2018-05-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=11&rft.issue=5&rft.spage=73&rft_id=info:doi/10.3390%2Fa11050073&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a11050073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |