Applying Machine Learning to Finger Movements Using Electromyography and Visualization in Opensim

Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human–computer interface that controls interaction through hand gestures. Although there is a gap between academic public...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 10; p. 3737
Main Authors: Amezquita-Garcia, Jose, Bravo-Zanoguera, Miguel, Gonzalez-Navarro, Felix F., Lopez-Avitia, Roberto, Reyna, M. A.
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.05.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human–computer interface that controls interaction through hand gestures. Although there is a gap between academic publications on the control of an upper-limb prosthesis developed in laboratories and its service in the natural environment, there are attempts to achieve easier control using multiple muscle signals. This work contributes to this, using a database and biomechanical simulation software, both open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers and their execution in real time. Fifteen predefined finger movements of the hand were identified using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized movements of the database were modeled with Opensim for visualization. Combinations of two preprocessing methods—the forward sequential selection method and the feature normalization method—were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore, the classifier with the best recognition result was redesigned into a new feature space using the sparse matrix algorithm to improve it, and to determine which features can be eliminated without degrading the classification. The classifiers yielded promising results—the quadratic discriminant being the best, achieving an average recognition rate for each individual considered of 96.16%, and with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study ends with the visual analysis under Opensim of the classified movements, in which the usefulness of this simulation tool is appreciated by revealing the muscular participation, which can be useful during the design of a multifunctional prosthesis.
AbstractList Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human-computer interface that controls interaction through hand gestures. Although there is a gap between academic publications on the control of an upper-limb prosthesis developed in laboratories and its service in the natural environment, there are attempts to achieve easier control using multiple muscle signals. This work contributes to this, using a database and biomechanical simulation software, both open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers and their execution in real time. Fifteen predefined finger movements of the hand were identified using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized movements of the database were modeled with Opensim for visualization. Combinations of two preprocessing methods-the forward sequential selection method and the feature normalization method-were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore, the classifier with the best recognition result was redesigned into a new feature space using the sparse matrix algorithm to improve it, and to determine which features can be eliminated without degrading the classification. The classifiers yielded promising results-the quadratic discriminant being the best, achieving an average recognition rate for each individual considered of 96.16%, and with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study ends with the visual analysis under Opensim of the classified movements, in which the usefulness of this simulation tool is appreciated by revealing the muscular participation, which can be useful during the design of a multifunctional prosthesis.
Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human-computer interface that controls interaction through hand gestures. Although there is a gap between academic publications on the control of an upper-limb prosthesis developed in laboratories and its service in the natural environment, there are attempts to achieve easier control using multiple muscle signals. This work contributes to this, using a database and biomechanical simulation software, both open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers and their execution in real time. Fifteen predefined finger movements of the hand were identified using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized movements of the database were modeled with Opensim for visualization. Combinations of two preprocessing methods-the forward sequential selection method and the feature normalization method-were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore, the classifier with the best recognition result was redesigned into a new feature space using the sparse matrix algorithm to improve it, and to determine which features can be eliminated without degrading the classification. The classifiers yielded promising results-the quadratic discriminant being the best, achieving an average recognition rate for each individual considered of 96.16%, and with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study ends with the visual analysis under Opensim of the classified movements, in which the usefulness of this simulation tool is appreciated by revealing the muscular participation, which can be useful during the design of a multifunctional prosthesis.Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human-computer interface that controls interaction through hand gestures. Although there is a gap between academic publications on the control of an upper-limb prosthesis developed in laboratories and its service in the natural environment, there are attempts to achieve easier control using multiple muscle signals. This work contributes to this, using a database and biomechanical simulation software, both open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers and their execution in real time. Fifteen predefined finger movements of the hand were identified using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized movements of the database were modeled with Opensim for visualization. Combinations of two preprocessing methods-the forward sequential selection method and the feature normalization method-were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore, the classifier with the best recognition result was redesigned into a new feature space using the sparse matrix algorithm to improve it, and to determine which features can be eliminated without degrading the classification. The classifiers yielded promising results-the quadratic discriminant being the best, achieving an average recognition rate for each individual considered of 96.16%, and with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study ends with the visual analysis under Opensim of the classified movements, in which the usefulness of this simulation tool is appreciated by revealing the muscular participation, which can be useful during the design of a multifunctional prosthesis.
Audience Academic
Author Gonzalez-Navarro, Felix F.
Lopez-Avitia, Roberto
Bravo-Zanoguera, Miguel
Reyna, M. A.
Amezquita-Garcia, Jose
AuthorAffiliation 3 Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico; fernando.gonzalez@uabc.edu.mx (F.F.G.-N.); mreyna@uabc.edu.mx (M.A.R.)
1 Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico; jose.amezquita@uabc.edu.mx (J.A.-G.); ravitia@uabc.edu.mx (R.L.-A.)
2 Ingeniería en Mecatrónica, Universidad Politécnica de Baja California, Mexicali 21376, Mexico
AuthorAffiliation_xml – name: 2 Ingeniería en Mecatrónica, Universidad Politécnica de Baja California, Mexicali 21376, Mexico
– name: 3 Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico; fernando.gonzalez@uabc.edu.mx (F.F.G.-N.); mreyna@uabc.edu.mx (M.A.R.)
– name: 1 Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico; jose.amezquita@uabc.edu.mx (J.A.-G.); ravitia@uabc.edu.mx (R.L.-A.)
Author_xml – sequence: 1
  givenname: Jose
  orcidid: 0000-0002-8472-115X
  surname: Amezquita-Garcia
  fullname: Amezquita-Garcia, Jose
– sequence: 2
  givenname: Miguel
  orcidid: 0000-0003-1227-9726
  surname: Bravo-Zanoguera
  fullname: Bravo-Zanoguera, Miguel
– sequence: 3
  givenname: Felix F.
  orcidid: 0000-0002-9627-676X
  surname: Gonzalez-Navarro
  fullname: Gonzalez-Navarro, Felix F.
– sequence: 4
  givenname: Roberto
  orcidid: 0000-0003-3615-6560
  surname: Lopez-Avitia
  fullname: Lopez-Avitia, Roberto
– sequence: 5
  givenname: M. A.
  surname: Reyna
  fullname: Reyna, M. A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35632146$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v3CAQhq0qVfPRHvoHKku9pIdN-DLgS6VVlLSRNsql6RWNMeyyssEFb6Ttry_OJmk2rTgMmnnngRfmuDjwwZui-IjRGaU1Ok-EYEQFFW-KI8wIm0lC0MGL_WFxnNIaIUIple-KQ1pxSjDjRwXMh6HbOr8sb0CvnDflwkD0U2IM5VWOJpY34d70xo-pvEtT5bIzeoyh34ZlhGG1LcG35U-XNtC53zC64Evny9vB-OT698VbC10yHx7jSXF3dfnj4vtscfvt-mK-mOmK8nHWaiTqpuUA1iCNK-CM07q1DQjJWyJ0U1PgHFspiZXYCOC1tpKiCoE2BNGT4nrHbQOs1RBdD3GrAjj1kAhxqSCOTndGIS2spczyimOWoY0WjdWV4BQaa4TMrK871rBpetPq7D1Ctwfdr3i3Ustwr2rMGOM4A04fATH82pg0qt4lbboOvAmbpAgXmAhC2XTvz6-k67CJPj_VpEKMUCSqv6olZAPO25DP1RNUzYXEHCMpaVad_UeVV2t6p_PQWJfzew2fXhp9dvg0IFlwvhPoGFKKxirtxocvzmTXKYzUNILqeQRzx5dXHU_Qf7V_ABM92mE
CitedBy_id crossref_primary_10_3389_fnbot_2022_856797
crossref_primary_10_1109_JSEN_2023_3344700
crossref_primary_10_3390_s22207966
crossref_primary_10_1080_10447318_2025_2531277
Cites_doi 10.3103/S0735272719010047
10.1016/j.bspc.2020.101872
10.1109/ACCESS.2021.3129454
10.1155/2021/9194578
10.1109/EMBC.2015.7319780
10.1016/j.eswa.2020.113281
10.1016/j.eswa.2012.01.102
10.1002/mus.24631
10.1186/1743-0003-7-21
10.1016/j.jelekin.2019.07.008
10.1109/TBME.2007.912673
10.1016/j.medengphy.2018.04.007
10.1016/j.sna.2011.09.039
10.3389/fnbot.2019.00043
10.1016/j.patrec.2008.05.021
10.1016/j.procs.2018.07.012
10.1186/1743-0003-7-53
10.3390/ecsa-8-11262
10.1109/ISSBES.2015.7435877
10.1016/S1672-6529(16)60377-3
10.1016/0021-9290(93)90086-T
10.1016/j.neucom.2020.03.009
10.1109/TBME.1987.326033
10.1109/IEMBS.2007.4353640
10.1007/978-1-4615-5689-3
10.1109/ICARCV.2012.6485374
10.1016/j.neunet.2014.03.010
10.1002/9781119082934
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22103737
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0c7ff34f65614a66bc7bfc5763abfe78
PMC9144461
A781610883
35632146
10_3390_s22103737
Genre Journal Article
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-dc079bd6aafe0c15a64639dfba786d27cb93a661f882f81e7a69cf83050ace203
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801742700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:39:33 EDT 2025
Tue Nov 04 01:48:12 EST 2025
Sun Nov 09 12:50:10 EST 2025
Tue Oct 07 07:11:57 EDT 2025
Tue Nov 11 11:12:10 EST 2025
Tue Nov 04 18:29:24 EST 2025
Mon Jul 21 06:03:23 EDT 2025
Sat Nov 29 07:12:36 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords electromyography
biomechanical simulation
classification model
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-dc079bd6aafe0c15a64639dfba786d27cb93a661f882f81e7a69cf83050ace203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8472-115X
0000-0003-3615-6560
0000-0002-9627-676X
0000-0003-1227-9726
OpenAccessLink https://doaj.org/article/0c7ff34f65614a66bc7bfc5763abfe78
PMID 35632146
PQID 2670423075
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0c7ff34f65614a66bc7bfc5763abfe78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9144461
proquest_miscellaneous_2671272340
proquest_journals_2670423075
gale_infotracmisc_A781610883
gale_infotracacademiconefile_A781610883
pubmed_primary_35632146
crossref_citationtrail_10_3390_s22103737
crossref_primary_10_3390_s22103737
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Neyroud (ref_7) 2014; 115
Wang (ref_15) 2017; 14
ref_35
ref_34
Khalaj (ref_21) 2021; 9
Koh (ref_8) 1993; 26
ref_32
(ref_16) 2014; 32
ref_30
Nishihara (ref_3) 2008; 55
Saikia (ref_10) 2018; 133
Shafiei (ref_22) 2021; 2021
ref_39
Rabin (ref_19) 2020; 149
Lei (ref_36) 2001; 290
Atkinson (ref_38) 2011; 172
Tuncer (ref_20) 2020; 58
Khushaba (ref_33) 2014; 55
Besomi (ref_31) 2019; 48
Dennis (ref_12) 2010; 7
Vonsevych (ref_13) 2019; 62
Hary (ref_9) 1987; BME-34
ref_25
Arjunan (ref_11) 2010; 7
ref_24
ref_23
Lisboa (ref_40) 2008; 29
ref_43
ref_42
ref_41
Phinyomark (ref_37) 2012; 6
ref_1
Green (ref_6) 2015; 52
ref_2
ref_29
ref_28
ref_27
ref_26
Christov (ref_5) 2018; 57
ref_4
Shahzad (ref_14) 2019; 13
(ref_17) 2020; Volume 75
Jia (ref_18) 2020; 401
References_xml – ident: ref_28
– ident: ref_30
– volume: 62
  start-page: 23
  year: 2019
  ident: ref_13
  article-title: Fingers Movements Control System Based on Artificial Neural Network Model
  publication-title: Radioelectron. Commun. Syst.
  doi: 10.3103/S0735272719010047
– volume: 58
  start-page: 101872
  year: 2020
  ident: ref_20
  article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101872
– volume: 9
  start-page: 156930
  year: 2021
  ident: ref_21
  article-title: Hybrid Machine Learning Techniques and Computational Mechanics: Estimating the Dynamic Behavior of Oxide Precipitation Hardened Steel
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3129454
– ident: ref_24
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_22
  article-title: A Hybrid Technique Based on a Genetic Algorithm for Fuzzy Multiobjective Problems in 5G, Internet of Things, and Mobile Edge Computing
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/9194578
– ident: ref_26
– ident: ref_34
– ident: ref_2
  doi: 10.1109/EMBC.2015.7319780
– volume: 149
  start-page: 113281
  year: 2020
  ident: ref_19
  article-title: Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113281
– volume: 6
  start-page: 7420
  year: 2012
  ident: ref_37
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
– ident: ref_35
– ident: ref_23
– volume: 52
  start-page: 818
  year: 2015
  ident: ref_6
  article-title: Flexor carpi radialis surface electromyography electrode placement for evoked and voluntary measures
  publication-title: Muscle Nerve
  doi: 10.1002/mus.24631
– volume: 7
  start-page: 21
  year: 2010
  ident: ref_12
  article-title: Study of stability of time-domain features for electromyographic pattern recognition
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-7-21
– volume: 48
  start-page: 128
  year: 2019
  ident: ref_31
  article-title: Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2019.07.008
– volume: 55
  start-page: 636
  year: 2008
  ident: ref_3
  article-title: Investigation of Optimum Electrode Locations by Using an Automatized Surface Electromyography Analysis Technique
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.912673
– volume: 57
  start-page: 110
  year: 2018
  ident: ref_5
  article-title: Separation of electrocardiographic from electromyographic signals using dynamic ltration
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2018.04.007
– volume: 172
  start-page: 570
  year: 2011
  ident: ref_38
  article-title: A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2011.09.039
– volume: 13
  start-page: 43
  year: 2019
  ident: ref_14
  article-title: Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU–sEMG Interface
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2019.00043
– ident: ref_25
– volume: 29
  start-page: 1814
  year: 2008
  ident: ref_40
  article-title: Cluster-based visualisation with scatter matrices
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.05.021
– ident: ref_29
– ident: ref_27
– volume: 133
  start-page: 92
  year: 2018
  ident: ref_10
  article-title: Combination of EMG Features and Stability Index for Finger Movements Recognition
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.012
– volume: 7
  start-page: 110
  year: 2010
  ident: ref_11
  article-title: Decoding subtle forearm exions using fractal features of surface electromyogram from single and multiple sensors
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-7-53
– ident: ref_42
  doi: 10.3390/ecsa-8-11262
– volume: 290
  start-page: 297
  year: 2001
  ident: ref_36
  article-title: Detecting nonlinearity of action surface EMG signal
  publication-title: Phys. Lett. Sect. A Gener. Atom. Solid State Phys.
– ident: ref_41
– ident: ref_1
  doi: 10.1109/ISSBES.2015.7435877
– volume: 14
  start-page: 47
  year: 2017
  ident: ref_15
  article-title: Design and Myoelectric Control of an Anthropomorphic Prosthetic Hand
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(16)60377-3
– volume: 32
  start-page: 279
  year: 2014
  ident: ref_16
  article-title: Anthropomorphic Robotic Hands: A Review
  publication-title: Ing. Desarro.
– volume: 115
  start-page: 627
  year: 2014
  ident: ref_7
  article-title: Influence of inter-electrode distance, contraction type, and muscle on the relationship between the sEMG power spectrum and contraction force
  publication-title: Eur. J. Appl. Physiol.
– volume: 26
  start-page: 151
  year: 1993
  ident: ref_8
  article-title: Evaluation of methods to minimize cross talk in surface electromyography
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90086-T
– volume: 401
  start-page: 236
  year: 2020
  ident: ref_18
  article-title: Classification of electromyographic hand gesture signals using machine learning techniques
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.009
– volume: BME-34
  start-page: 91
  year: 1987
  ident: ref_9
  article-title: Circuit Models and Simulation Analysis of Electromyographic Signal Sources—I: The Impedance of EMG Electrodes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1987.326033
– ident: ref_4
  doi: 10.1109/IEMBS.2007.4353640
– ident: ref_39
  doi: 10.1007/978-1-4615-5689-3
– volume: Volume 75
  start-page: 218
  year: 2020
  ident: ref_17
  article-title: Hand Movement Detection from Surface Electromyography Signals by Machine Learning Techniques
  publication-title: CLAIB 2019
– ident: ref_32
  doi: 10.1109/ICARCV.2012.6485374
– volume: 55
  start-page: 42
  year: 2014
  ident: ref_33
  article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.03.010
– ident: ref_43
  doi: 10.1002/9781119082934
SSID ssj0023338
Score 2.412777
Snippet Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3737
SubjectTerms Analysis
Artificial Limbs
Bayes Theorem
biomechanical simulation
Classification
classification model
Electrodes
Electromyography
Electromyography - methods
Humans
Implants, Artificial
Machine Learning
Pattern Recognition, Automated - methods
Prostheses
Prosthesis
Sensors
Signal Processing, Computer-Assisted
Technology application
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3o9AQQYhwSVqYmft5IQK6opLKw6A9hY5frSRaFI2KRL_nhnHu90IxIXbaj0r2fI8vTPfB_DGa4yJuSsI365JC8GrFMsIg4anhC1sXtjSBLIJdXJSrlbV5_jgNsS2yo1PDI7a9obeyA-4VNTCgRHu_cWPlFij6N_VSKFxHW4QbTbpuVpdFVwC668JTUhgaX8wcE5TcUR5vhODAlT_nw55JyLNuyV3ws_y7v9u_B7ciYknO5w05T5cc90DuL0DR_gQNKWkNPbEjkOLpWMRffWUjT1bhgdAdtwHhPFxYKHbgB1NPDrnvyL2NdOdZd_agYY1pxFP1naM-laG9vwRfF0effn4KY0UDKlZCDmm1mSqaqzU2rvM5AstC0xprG-0KqXlyjSV0BjiPSbqvsyd0rIyvkQnkmnjeCYew17Xd-4pMCzEDbce85mFK6QzlXIyE_hJaN1YZxJ4t7mU2kR8cqLJ-F5jnUL3V2_vL4HXW9GLCZTjb0If6Ga3AoSjHb7o16d1NMs6M8p7UXhJgKh4kMaoxhuswYRuvFNlAm9JL2qydtyM0XFoAY9EuFn1oSoxZUZPLRLYn0milZr58kY76uglhvpKNRJ4tV2mX1LnW-f6yyCTc8VFkSXwZFLE7ZHEQhLPlExAzVR0dub5SteeBQzxCgvpQubP_r2t53CL07hHaPDch71xfelewE3zc2yH9ctgbL8Bumg1XQ
  priority: 102
  providerName: ProQuest
Title Applying Machine Learning to Finger Movements Using Electromyography and Visualization in Opensim
URI https://www.ncbi.nlm.nih.gov/pubmed/35632146
https://www.proquest.com/docview/2670423075
https://www.proquest.com/docview/2671272340
https://pubmed.ncbi.nlm.nih.gov/PMC9144461
https://doaj.org/article/0c7ff34f65614a66bc7bfc5763abfe78
Volume 22
WOSCitedRecordID wos000801742700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEB_06UEP4rfV5xJF0Mvy2qSbtMf3ZBc97LKIynoqaT6eBV9XXvsEL_7tzqTd0qLgxUspyRSSyUxmpsz8BuCV12gTE5cSvl05TwXP5xhGGFQ8JWxqk9RmJjSbUJtNttvl21GrL8oJ6-CBO8adxEZ5L1IvCbJSS1kaVXqDXrLQpXcqlPnGKj8EU32oJTDy6nCEBAb1Jw3nVA9Hzc5H1ieA9P95FY9s0TRPcmR4VnfhTu8xstNupffgmqvvw-0RjuAD0ORLUr0SW4fcSMd62NRz1u7ZKvy5Y-t9gAZvGxbSBNiya4Bz8bMHrWa6tuxz1VCVZVebyaqaUcJJU108hE-r5ce37-Z974S5WQjZzq1BppRWau1dbJKFlin6ItaXWmXScmXKXCA3E48ets8Sp7TMjc9Q-2NtHI_FIziq97V7AgwjaMOtR0dk4VLpTK6cjAW-Ca1L60wEbw48LUwPLE79Lb4VGGAQ-4uB_RG8HEi_d2gafyM6o4MZCAgAOwygWBS9WBT_EosIXtOxFqSmuBij-2oD3BIBXhWnKkNfF69YEcHxhBLVy0ynD4JR9OrdFFwqyidCdyuCF8M0fUkpa7XbXwWahCsu0jiCx50cDVsSC0kNomQEaiJhkz1PZ-rqawD_zjECTmXy9H8w6Rnc4lTNEfI3j-Govbxyz-Gm-dFWzeUMrqudCs9sBjfOlpvth1nQMnyufy1xbPt-vf3yG9d8LrA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBRYEKher9u5m1z4gVKBRqzYRh4JyM-t9lEjULnEK6p_iN7KzdtJYIG49cLOyE8uTzMy3s575BuClUx4TU8uR366MOaN57NMI7R1PMsNNyk2mw7AJOR5nk0n-cQ1-LXphsKxyERNDoDa1xjPyLSoklnB4hHt78j3GqVH4dnUxQqM1i3179tOnbM2bvQ_-_31F6XDn8P1u3E0ViPWAiXlsdCLz0gilnE10OlCCe5Q2rlQyE4ZKXeZMedRyfu_pstRKJXLtMu8XidKWJszf9xJc9nFcYrInJ-cJHvP5XstexFiebDWUYhcejlhfwbwwGuBPAFhBwH515grcDW_-bz_ULbjRbazJdusJt2HNVnfg-grd4l1QuOXGti4yCiWklnTsskdkXpNhOOAkozowqM8bEqopyE47J-j4rOP2Jqoy5PO0wWbUtoWVTCuCdTnN9PgefLoQHe_DelVX9iGQhAtNjfP7tYHlwupcWpEwf8WUKo3VEbxeGEGhO_51HAPyrfB5GNpLsbSXCF4sRU9a0pG_Cb1DS1oKIE94-KCeHRVd2CkSLZ1j3AkkfPWKlFqWTvsck6nSWZlFsIl2WGA08w-jVdeU4VVCXrBiW2Y-JfBIxCLY6En6KKT7ywtrLLoo2BTnphjB8-UyfhMr-ypbnwaZlErKeBLBg9bwlyqxgcA5WiIC2XOJns79lWr6NXCk5ynnXKSP_v1Yz-Dq7uHooDjYG-8_hmsUW1tCMesGrM9np_YJXNE_5tNm9jQ4OoEvF-0wvwFPJpPH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIBJco9u5m1z4gVGgjopIqB0DtyazXuyUSdUqcgvrX-HXM2I6JBeLWA7coO4k8yTztme8DeOYN5sTIScK3y_pS8KSPbYRFx9Mil3kk89hWZBN6fz8-OEimG_BztQtDY5WrmFgF6nxu6R75gCtNIxyY4Qa-GYuY7oxen3zrE4MUPWld0WnUJrLnzn5g-1a-Gu_gf_2c89Huh7fv-g3DQN8OhVr2cxvqJMuVMd6FNhoaJTFj5z4zOlY51zZLhMEM5rEO9XHktFGJ9TH6SGis46HA770Am1iSS96Dzel4Mj1s2z2B3V-NZSREEg5KzmknjwjX1zJgRRTwZzpYy4fdWc215De69j__bNfhalNys-3aR27AhituwpU1IMZbYKgYp4UvNqmGSx1rcGeP2HLORtWtTzaZV9jqy5JVcxZst2YQOj5rUL-ZKXL2aVbSmmq93MpmBaOJnXJ2fBs-nouOd6BXzAt3D1goleW5x0pu6KRyNtFOhQJfCWOy3NkAXq4MIrUNMjsRhHxNsUMj20lb2wngaSt6UsOR_E3oDVlVK0AI4tUb88VR2gSkNLTaeyG9IihYVCSzOvMWu09hMu90HMALssmU4hxejDXNugaqRIhh6baOsVnAHCUC2OpIYnyy3eOVZaZNfCzT32YZwJP2mD5JM3-Fm59WMhHXXMgwgLu1E7QqiaEihi0VgO64R0fn7kkx-1KhpyeRlFJF9_99WY_hEvpJ-n68v_cALnPaeammXLegt1ycuodw0X5fzsrFo8brGXw-b4_5Bc4-nhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+Machine+Learning+to+Finger+Movements+Using+Electromyography+and+Visualization+in+Opensim&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Amezquita-Garcia%2C+Jose&rft.au=Bravo-Zanoguera%2C+Miguel&rft.au=Gonzalez-Navarro%2C+Felix+F.&rft.au=Lopez-Avitia%2C+Roberto&rft.date=2022-05-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft.spage=3737&rft_id=info:doi/10.3390%2Fs22103737&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22103737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon