A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions

Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain’s requirements for anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 22; S. 8615
Hauptverfasser: Mavrogiorgou, Argyro, Kiourtis, Athanasios, Kleftakis, Spyridon, Mavrogiorgos, Konstantinos, Zafeiropoulos, Nikolaos, Kyriazis, Dimosthenis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.11.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain’s requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario’s requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios’ nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism’s efficiency.
AbstractList Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios' nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism's efficiency.Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios' nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism's efficiency.
Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios' nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism's efficiency.
Audience Academic
Author Zafeiropoulos, Nikolaos
Mavrogiorgou, Argyro
Kleftakis, Spyridon
Kyriazis, Dimosthenis
Kiourtis, Athanasios
Mavrogiorgos, Konstantinos
AuthorAffiliation Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece
AuthorAffiliation_xml – name: Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece
Author_xml – sequence: 1
  givenname: Argyro
  orcidid: 0000-0002-1543-5627
  surname: Mavrogiorgou
  fullname: Mavrogiorgou, Argyro
– sequence: 2
  givenname: Athanasios
  orcidid: 0000-0002-1681-3626
  surname: Kiourtis
  fullname: Kiourtis, Athanasios
– sequence: 3
  givenname: Spyridon
  orcidid: 0000-0002-6237-488X
  surname: Kleftakis
  fullname: Kleftakis, Spyridon
– sequence: 4
  givenname: Konstantinos
  surname: Mavrogiorgos
  fullname: Mavrogiorgos, Konstantinos
– sequence: 5
  givenname: Nikolaos
  surname: Zafeiropoulos
  fullname: Zafeiropoulos, Nikolaos
– sequence: 6
  givenname: Dimosthenis
  orcidid: 0000-0001-7019-7214
  surname: Kyriazis
  fullname: Kyriazis, Dimosthenis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36433212$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEUhUeoiD5gwR9AI7GBRVq_Z7xBiiKgRUEgBGvrjud64jCxW3uCxL_HJSU0Ve2FrevvHvtY57Q6CjFgVb2k5JxzTS4yK6NVVD6pTqhgYtYyRo7u7Y-r05zXhDDOefusOuZKcM4oO6k-zesFTDDGYYt1dPVnsCsfsF4ipODDUM_HISY_rTa5djHVlwjjtLKQsP7m88_6a8Le28nHkJ9XTx2MGV_crWfVjw_vvy8uZ8svH68W8-XMSq6mWU9pQ5V1KHUvOy6gYU4IEFLJrrUdKiWlI9aB7qkDVE5rULrlTQe0Vdbys-pqp9tHWJvr5DeQfpsI3vwtxDQYSJO3Ixohul5bhkRKKzRpOsS-YR3jWjuHrCla73Za19tug73FMCUYD0QPT4JfmSH-MlppWR5VBN7cCaR4s8U8mY3PFscRAsZtNqwRRFJSnBf09QN0HbcplK8qFNdCNkzr_9QAxYAPLpZ77a2omTdCSc5lIwp1_ghVZo8bb0s6nC_1g4ZX943uHf5LQgHe7gCbYs4J3R6hxNymzOxTVtiLB6z1E9yGoLzCj490_AFnT9Dh
CitedBy_id crossref_primary_10_1016_j_sna_2025_116309
crossref_primary_10_3390_diagnostics13233548
crossref_primary_10_1186_s12880_025_01834_7
crossref_primary_10_1213_ANE_0000000000006761
crossref_primary_10_1038_s41598_025_11929_4
crossref_primary_10_1007_s42979_024_03492_y
crossref_primary_10_1016_j_smhl_2025_100601
crossref_primary_10_3390_app15094639
crossref_primary_10_1007_s44163_025_00444_0
crossref_primary_10_1016_j_anl_2024_04_003
crossref_primary_10_3390_biomedicines11061749
crossref_primary_10_3390_app14198860
crossref_primary_10_3390_mca30020022
crossref_primary_10_1016_j_imu_2025_101664
crossref_primary_10_1080_00450618_2025_2561625
crossref_primary_10_3390_s23187993
crossref_primary_10_1016_j_compbiomed_2025_110276
crossref_primary_10_3390_diagnostics13091648
crossref_primary_10_1007_s43926_024_00063_8
crossref_primary_10_1016_j_heliyon_2023_e20645
crossref_primary_10_1038_s41598_025_13720_x
crossref_primary_10_1016_j_tube_2024_102570
crossref_primary_10_1016_j_jceh_2024_101456
crossref_primary_10_1016_j_heliyon_2024_e27411
crossref_primary_10_3390_a17080360
crossref_primary_10_1016_j_compbiomed_2023_107876
crossref_primary_10_3390_app142210523
crossref_primary_10_1016_j_neuri_2025_100215
crossref_primary_10_3390_app13116504
crossref_primary_10_1080_22221751_2024_2361791
Cites_doi 10.11591/ijece.v12i6.pp6461-6471
10.1109/ACCESS.2021.3053763
10.3390/jcm8030360
10.1007/s11739-020-02475-0
10.1183/09031936.00189010
10.1109/ICEEICT53079.2022.9768579
10.1109/TENCON.2019.8929578
10.1007/978-981-13-1498-8_67
10.3390/bioengineering5020035
10.1109/AIM.2015.7222674
10.1007/978-981-16-2164-2_19
10.1007/978-981-16-5747-4_66
10.1016/j.knosys.2020.106270
10.1038/s41598-017-07408-0
10.1101/2021.01.20.21250146
10.3390/ijerph17030897
10.1016/j.prevetmed.2022.105664
10.5152/akd.2014.5731
10.1017/CBO9780511815867
10.1016/j.jiph.2022.06.008
10.1016/j.health.2022.100116
10.1007/s11042-020-10043-z
10.1139/apnm-2021-0502
10.1007/s12530-019-09286-5
10.1109/ICoIA.2013.6650227
10.1016/j.jbi.2007.07.003
10.3390/diagnostics11050864
10.1109/ICICT50816.2021.9358491
10.1016/j.health.2022.100032
10.1080/10255842.2020.1821192
10.1109/ICICT50816.2021.9358605
10.1038/s41598-021-89434-7
10.1007/978-1-4842-4470-8
10.1016/j.imu.2021.100631
10.2196/22796
10.1109/EIConCIT50028.2021.9431845
10.1016/j.cmpb.2018.06.010
10.1515/jaiscr-2017-0019
10.3390/ijerph18126429
10.1016/j.icte.2021.02.004
10.1016/j.csbj.2014.11.005
10.1007/978-3-319-60801-3_27
10.1016/j.aap.2015.06.014
10.3390/diagnostics12010116
10.1145/3175684.3175703
10.1109/RBME.2020.3013489
10.1109/TITB.2009.2039485
10.1016/j.future.2021.11.003
10.3390/fi11040094
10.1007/978-981-19-2177-3_79
10.1109/ACCESS.2021.3083516
10.1371/journal.pone.0269135
10.1007/978-981-16-9113-3_30
10.1109/IC4ME253898.2021.9768524
10.1155/2021/5525271
10.1109/ICACCS51430.2021.9441935
10.1109/ACCESS.2021.3064084
10.1109/ICCMC.2019.8819654
10.1016/j.eswa.2021.116221
10.1038/s41598-022-10358-x
10.1016/j.comcom.2020.02.069
10.1016/j.neunet.2005.10.007
10.35940/ijeat.A2213.109119
10.3390/healthcare8030247
10.3389/fmed.2020.00427
10.3389/fcvm.2022.854287
10.1109/ACCESS.2022.3174599
10.1109/ICCIT.2007.4420369
10.2196/23099
10.1109/ICCCNT49239.2020.9225642
10.1016/j.parco.2022.102955
10.23919/FRUCT56874.2022.9953810
10.1016/j.asoc.2022.108766
10.5455/aim.2019.27.341-347
10.3390/sym13122439
10.1155/2021/1004767
10.1136/svn-2017-000101
10.3390/brainsci11091147
10.1002/wics.2
10.1002/9781118785317.weom070211
10.1007/978-3-030-41068-1
10.1109/ICE/ITMC52061.2021.9570120
10.1109/JBHI.2015.2407157
10.1007/s11042-021-11114-5
10.1097/SLA.0000000000004862
10.3390/s22103728
10.3390/ijerph19063211
10.33545/26633582.2022.v4.i1a.68
10.3390/app10196791
10.3923/itj.2012.1166.1174
10.1007/978-1-4842-2766-4
10.1145/3233547.3233667
10.1109/CBMS52027.2021.00078
10.1007/s40012-016-0100-5
10.1017/S026988890200019X
10.1016/j.bspc.2021.103279
10.1016/j.procs.2021.07.062
10.1007/s11063-021-10495-w
10.1007/s44174-022-00027-y
10.1016/j.jstrokecerebrovasdis.2021.105856
10.3390/nu14142832
10.1007/s42979-021-00617-5
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22228615
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_44bd9c2e055c4907beed72b2399ffe27
PMC9695983
A746533574
36433212
10_3390_s22228615
Genre Journal Article
GrantInformation_xml – fundername: Operational Program Competitiveness, Entrepreneurship and Innovation
  grantid: T2EDK-04207
– fundername: Operational Program Competitiveness, Entrepreneurship and Innovation
  grantid: BeHEALTHIER—T2EDK-04207
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-d11716cfe59d5b34a72f44a4565b8cbe6655f0cfa9d1fae6f99a69837ba186cc3
IEDL.DBID BENPR
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887754200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:38 EDT 2025
Tue Nov 04 02:08:53 EST 2025
Fri Sep 05 08:35:22 EDT 2025
Tue Oct 07 07:25:30 EDT 2025
Tue Nov 11 10:46:33 EST 2025
Tue Nov 04 18:17:22 EST 2025
Thu Apr 03 07:06:35 EDT 2025
Tue Nov 18 19:58:34 EST 2025
Sat Nov 29 07:18:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords prediction
data analysis
machine learning
supervised learning
catalogue
healthcare
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-d11716cfe59d5b34a72f44a4565b8cbe6655f0cfa9d1fae6f99a69837ba186cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This manuscript is an extended version of conference paper A Comparative Study of ML Algorithms for Scenario-Agnostic Predictions in Healthcare. In Proceedings of the ICTS4eHealth 2022, Rhodes Island, Greece, 30 June–3 July 2022.
ORCID 0000-0001-7019-7214
0000-0002-6237-488X
0000-0002-1681-3626
0000-0002-1543-5627
OpenAccessLink https://www.proquest.com/docview/2739457299?pq-origsite=%requestingapplication%
PMID 36433212
PQID 2739457299
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_44bd9c2e055c4907beed72b2399ffe27
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9695983
proquest_miscellaneous_2740510536
proquest_journals_2739457299
gale_infotracmisc_A746533574
gale_infotracacademiconefile_A746533574
pubmed_primary_36433212
crossref_primary_10_3390_s22228615
crossref_citationtrail_10_3390_s22228615
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_93
ref_92
Chittora (ref_61) 2021; 9
ref_91
ref_138
Naji (ref_45) 2021; 191
Pedregosa (ref_22) 2011; 12
Sinha (ref_128) 2015; 4
ref_131
Rustam (ref_57) 2021; 10
ref_99
ref_130
ref_98
ref_133
ref_132
ref_96
ref_135
Liu (ref_27) 2015; 20
ref_95
ref_134
Vaghela (ref_41) 2015; 116
Xie (ref_67) 2021; 80
ref_19
Naseem (ref_136) 2022; 10
ref_17
ref_16
ref_15
Selim (ref_58) 2022; 203
Kourou (ref_2) 2015; 13
Singh (ref_90) 2022; 24
Qayyum (ref_101) 2020; 14
Lin (ref_40) 2015; 39
Raad (ref_64) 2012; 7
Biswas (ref_42) 2022; 2
ref_126
Mavrogiorgou (ref_81) 2020; 11
Morgenstern (ref_118) 2022; 47
ref_125
Senan (ref_46) 2021; 2021
Morgenthaler (ref_87) 2009; 1
ref_25
Mutlu (ref_76) 2022; 113
ref_20
ref_124
Perakis (ref_80) 2019; 27
Ormerod (ref_84) 2021; 9
Tuncer (ref_120) 2021; 24
Oyelade (ref_112) 2021; 9
Barakat (ref_13) 2010; 14
Ravi (ref_23) 2012; 43
ref_29
Tong (ref_18) 2021; 23
Kiourtis (ref_141) 2022; 295
Ishaq (ref_54) 2021; 9
ref_72
Williamson (ref_52) 2022; 81
Ahmad (ref_39) 2015; 120
ref_79
ref_78
ref_75
ref_74
Hervella (ref_49) 2021; 11
Lisboa (ref_10) 2006; 19
Bukhari (ref_69) 2021; 2021
Bottou (ref_71) 2007; 20
Shaban (ref_114) 2020; 205
Esteban (ref_11) 2011; 38
Wu (ref_105) 2022; 129
Nanglia (ref_77) 2022; 72
Cupertino (ref_121) 2019; 60
ref_89
ref_88
Ullah (ref_7) 2020; 154
ref_85
Jiang (ref_14) 2017; 2
Vembandasamy (ref_24) 2015; 2
ref_50
Elhazmi (ref_43) 2022; 15
ref_56
ref_55
ref_53
Alibraheemi (ref_113) 2022; 20
ref_51
Chandel (ref_38) 2016; 4
Pan (ref_3) 2017; 7
Almustafa (ref_129) 2021; 24
Santos (ref_122) 2022; 191
Dev (ref_123) 2022; 2
Garg (ref_21) 2021; 9
ref_68
Singh (ref_44) 2021; 17
ref_65
ref_63
ref_62
Bologna (ref_139) 2017; 7
Lehto (ref_26) 2015; 84
Desai (ref_70) 2021; 4
Assaf (ref_8) 2020; 15
Khanam (ref_60) 2021; 7
Elhassan (ref_86) 2022; 34
ref_117
Li (ref_66) 2022; 121
Yoo (ref_115) 2020; 7
Uddin (ref_30) 2022; 12
Revathy (ref_127) 2019; 9
Luan (ref_6) 2021; 24
ref_36
ref_34
ref_33
ref_32
ref_111
ref_31
ref_110
Karthik (ref_103) 2022; 72
Langer (ref_73) 2009; 30
ref_37
Akbulut (ref_116) 2018; 163
ref_104
ref_106
ref_108
ref_107
Verduijn (ref_12) 2007; 40
ref_109
ref_47
Bajraktari (ref_97) 2015; 15
Qian (ref_119) 2022; 9
ref_100
Kim (ref_59) 2021; 30
ref_102
Allugunti (ref_137) 2022; 4
ref_1
Lacave (ref_140) 2002; 17
ref_48
ref_9
Jalal (ref_82) 2022; 12
Bakar (ref_28) 2012; 11
ref_5
ref_4
Assegie (ref_35) 2021; 2
Henderi (ref_83) 2021; 2
References_xml – ident: ref_117
– volume: 12
  start-page: 6461
  year: 2022
  ident: ref_82
  article-title: A web content mining application for detecting relevant pages using Jaccard similarity
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
  doi: 10.11591/ijece.v12i6.pp6461-6471
– volume: 9
  start-page: 17312
  year: 2021
  ident: ref_61
  article-title: Prediction of chronic kidney disease-a machine learning perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053763
– ident: ref_15
  doi: 10.3390/jcm8030360
– volume: 15
  start-page: 1435
  year: 2020
  ident: ref_8
  article-title: Utilization of machine-learning models to accurately predict the risk for critical COVID-19
  publication-title: Intern. Emerg. Med.
  doi: 10.1007/s11739-020-02475-0
– volume: 38
  start-page: 1294
  year: 2011
  ident: ref_11
  article-title: Development of a decision tree to assess the severity and prognosis of stable COPD
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00189010
– ident: ref_74
  doi: 10.1109/ICEEICT53079.2022.9768579
– ident: ref_17
  doi: 10.1109/TENCON.2019.8929578
– ident: ref_109
  doi: 10.1007/978-981-13-1498-8_67
– ident: ref_65
  doi: 10.3390/bioengineering5020035
– ident: ref_88
– ident: ref_132
  doi: 10.1109/AIM.2015.7222674
– volume: 30
  start-page: 327
  year: 2009
  ident: ref_73
  article-title: Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI
  publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med.
– volume: 7
  start-page: 105
  year: 2012
  ident: ref_64
  article-title: Breast cancer classification using neural network approach: MLP and RBF
  publication-title: Ali Mohsen Kabalan
– ident: ref_94
– ident: ref_108
  doi: 10.1007/978-981-16-2164-2_19
– ident: ref_124
  doi: 10.1007/978-981-16-5747-4_66
– volume: 205
  start-page: 106270
  year: 2020
  ident: ref_114
  article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106270
– volume: 295
  start-page: 376
  year: 2022
  ident: ref_141
  article-title: An Autoscaling Platform Supporting Graph Data Modelling Big Data Analytics
  publication-title: Stud. Health Technol. Inform.
– volume: 34
  start-page: 4284
  year: 2022
  ident: ref_86
  article-title: ILA4: Overcoming missing values in machine learning datasets–An inductive learning approach
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– ident: ref_48
– volume: 7
  start-page: 7402
  year: 2017
  ident: ref_3
  article-title: Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07408-0
– ident: ref_20
  doi: 10.1101/2021.01.20.21250146
– ident: ref_56
  doi: 10.3390/ijerph17030897
– volume: 203
  start-page: 105664
  year: 2022
  ident: ref_58
  article-title: A Comparison of logistic regression and classification tree to assess brucellosis associated risk factors in dairy cattle
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2022.105664
– ident: ref_62
– volume: 2
  start-page: 441
  year: 2015
  ident: ref_24
  article-title: Heart diseases detection using Naive Bayes algorithm
  publication-title: Int. J. Innov. Sci. Eng. Technol.
– volume: 15
  start-page: 63
  year: 2015
  ident: ref_97
  article-title: Mortality in heart failure patients
  publication-title: Anatol. J. Cardiol.
  doi: 10.5152/akd.2014.5731
– ident: ref_55
  doi: 10.1017/CBO9780511815867
– volume: 15
  start-page: 826
  year: 2022
  ident: ref_43
  article-title: Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2022.06.008
– volume: 116
  start-page: 11
  year: 2015
  ident: ref_41
  article-title: A Survey on Various Classification Techniques for Clinical Decision Support System
  publication-title: Int. J. Comput. Appl.
– volume: 2
  start-page: 100116
  year: 2022
  ident: ref_42
  article-title: A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2022.100116
– volume: 80
  start-page: 17291
  year: 2021
  ident: ref_67
  article-title: Stroke prediction from electrocardiograms by deep neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10043-z
– volume: 47
  start-page: 529
  year: 2022
  ident: ref_118
  article-title: Development of machine learning prediction models to explore nutrients predictive of cardiovascular disease using Canadian linked population-based data
  publication-title: Appl. Physiol. Nutr. Metab.
  doi: 10.1139/apnm-2021-0502
– ident: ref_47
– volume: 11
  start-page: 269
  year: 2020
  ident: ref_81
  article-title: A plug ‘n’play approach for dynamic data acquisition from heterogeneous IoT medical devices of unknown nature
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-019-09286-5
– ident: ref_25
  doi: 10.1109/ICoIA.2013.6650227
– volume: 120
  start-page: 38
  year: 2015
  ident: ref_39
  article-title: Techniques of data mining in healthcare: A review
  publication-title: Int. J. Comput. Appl.
– volume: 40
  start-page: 609
  year: 2007
  ident: ref_12
  article-title: Prognostic Bayesian networks I: Rationale, learning procedure, and clinical use
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2007.07.003
– ident: ref_131
  doi: 10.3390/diagnostics11050864
– ident: ref_78
  doi: 10.1109/ICICT50816.2021.9358491
– volume: 2
  start-page: 100032
  year: 2022
  ident: ref_123
  article-title: A predictive analytics approach for stroke prediction using machine learning and neural networks
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2022.100032
– ident: ref_92
– volume: 24
  start-page: 203
  year: 2021
  ident: ref_120
  article-title: Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2020.1821192
– ident: ref_104
  doi: 10.1109/ICICT50816.2021.9358605
– volume: 43
  start-page: 12
  year: 2012
  ident: ref_23
  article-title: Malware detection using windows api sequence and machine learning
  publication-title: Int. J. Comput. Appl.
– volume: 11
  start-page: 10071
  year: 2021
  ident: ref_49
  article-title: Random forest-based prediction of stroke outcome
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89434-7
– ident: ref_100
  doi: 10.1007/978-1-4842-4470-8
– volume: 24
  start-page: 100631
  year: 2021
  ident: ref_129
  article-title: Prediction of chronic kidney disease using different classification algorithms
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2021.100631
– volume: 23
  start-page: e22796
  year: 2021
  ident: ref_18
  article-title: Forecasting future asthma hospital encounters of patients with asthma in an academic health care system: Predictive model development and secondary analysis study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/22796
– ident: ref_75
– volume: 9
  start-page: 330
  year: 2021
  ident: ref_21
  article-title: A Review on Parkinson’s Disease Prediction using Machine Learning
  publication-title: Int. J. Eng. Res. Technol.
– ident: ref_32
  doi: 10.1109/EIConCIT50028.2021.9431845
– volume: 163
  start-page: 87
  year: 2018
  ident: ref_116
  article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.06.010
– volume: 7
  start-page: 265
  year: 2017
  ident: ref_139
  article-title: Characterization of symbolic rules embedded in deep DIMLP networks: A challenge to transparency of deep learning
  publication-title: J. Artif. Intell. Soft Comput. Res.
  doi: 10.1515/jaiscr-2017-0019
– ident: ref_50
  doi: 10.3390/ijerph18126429
– volume: 7
  start-page: 432
  year: 2021
  ident: ref_60
  article-title: A comparison of machine learning algorithms for diabetes prediction
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.02.004
– volume: 13
  start-page: 8
  year: 2015
  ident: ref_2
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– ident: ref_63
  doi: 10.1007/978-3-319-60801-3_27
– volume: 84
  start-page: 165
  year: 2015
  ident: ref_26
  article-title: A practical tool for public health surveillance: Semi-automated coding of short injury narratives from large administrative databases using Naïve Bayes algorithms
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.06.014
– ident: ref_130
  doi: 10.3390/diagnostics12010116
– ident: ref_89
– ident: ref_37
  doi: 10.1145/3175684.3175703
– volume: 14
  start-page: 156
  year: 2020
  ident: ref_101
  article-title: Secure and robust machine learning for healthcare: A survey
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.3013489
– volume: 14
  start-page: 1114
  year: 2010
  ident: ref_13
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2039485
– ident: ref_36
– volume: 129
  start-page: 1
  year: 2022
  ident: ref_105
  article-title: Novel binary logistic regression model based on feature transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.11.003
– ident: ref_4
  doi: 10.3390/fi11040094
– ident: ref_95
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_70
  article-title: An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN)
  publication-title: Clin. e-Health
– volume: 24
  start-page: 250
  year: 2021
  ident: ref_6
  article-title: A review of using machine learning approaches for precision education
  publication-title: Educ. Technol. Soc.
– ident: ref_29
  doi: 10.1007/978-981-19-2177-3_79
– volume: 9
  start-page: 77905
  year: 2021
  ident: ref_112
  article-title: CovFrameNet: An enhanced deep learning framework for COVID-19 detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083516
– volume: 4
  start-page: 608
  year: 2015
  ident: ref_128
  article-title: Comparative study of chronic kidney disease prediction using KNN and SVM
  publication-title: Int. J. Eng. Res. Technol.
– ident: ref_133
  doi: 10.1371/journal.pone.0269135
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_22
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_107
  doi: 10.1007/978-981-16-9113-3_30
– ident: ref_31
  doi: 10.1109/IC4ME253898.2021.9768524
– volume: 2021
  start-page: 5525271
  year: 2021
  ident: ref_69
  article-title: An improved artificial neural network model for effective diabetes prediction
  publication-title: Complexity
  doi: 10.1155/2021/5525271
– ident: ref_51
  doi: 10.1109/ICACCS51430.2021.9441935
– volume: 9
  start-page: 39707
  year: 2021
  ident: ref_54
  article-title: Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064084
– ident: ref_34
  doi: 10.1109/ICCMC.2019.8819654
– volume: 191
  start-page: 116221
  year: 2022
  ident: ref_122
  article-title: Decision tree and artificial immune systems for stroke prediction in imbalanced data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116221
– volume: 12
  start-page: 6256
  year: 2022
  ident: ref_30
  article-title: Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-10358-x
– volume: 154
  start-page: 313
  year: 2020
  ident: ref_7
  article-title: Applications of artificial intelligence and machine learning in smart cities
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.02.069
– volume: 19
  start-page: 408
  year: 2006
  ident: ref_10
  article-title: The use of artificial neural networks in decision support in cancer: A systematic review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.10.007
– ident: ref_98
– volume: 9
  start-page: 6364
  year: 2019
  ident: ref_127
  article-title: Chronic kidney disease prediction using machine learning models
  publication-title: Int. J. Eng. Adv. Technol.
  doi: 10.35940/ijeat.A2213.109119
– ident: ref_19
  doi: 10.3390/healthcare8030247
– volume: 7
  start-page: 427
  year: 2020
  ident: ref_115
  article-title: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.00427
– volume: 9
  start-page: 854287
  year: 2022
  ident: ref_119
  article-title: A Cardiovascular Disease Prediction Model Based on Routine Physical Examination Indicators Using Machine Learning Methods: A Cohort Study
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.854287
– volume: 10
  start-page: 78242
  year: 2022
  ident: ref_136
  article-title: An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3174599
– ident: ref_106
  doi: 10.1109/ICCIT.2007.4420369
– volume: 20
  start-page: 8039
  year: 2022
  ident: ref_113
  article-title: Classification Covid-19 disease based on CNN and Hybrid Models
  publication-title: NeuroQuantology
– volume: 60
  start-page: 549
  year: 2019
  ident: ref_121
  article-title: Enhancing smoking cessation in Mexico using an e-Health tool in primary healthcare
  publication-title: Salud Pública México
– volume: 9
  start-page: e23099
  year: 2021
  ident: ref_84
  article-title: Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis
  publication-title: JMIR Med. Inform.
  doi: 10.2196/23099
– volume: 72
  start-page: 243
  year: 2022
  ident: ref_103
  article-title: Prognostic Kalman Filter Based Bayesian Learning Model for Data Accuracy Prediction
  publication-title: Comput. Mater. Contin.
– ident: ref_16
  doi: 10.1109/ICCCNT49239.2020.9225642
– volume: 113
  start-page: 102955
  year: 2022
  ident: ref_76
  article-title: SVM-SMO-SGD: A hybrid-parallel support vector machine algorithm using sequential minimal optimization with stochastic gradient descent
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2022.102955
– ident: ref_85
  doi: 10.23919/FRUCT56874.2022.9953810
– volume: 121
  start-page: 108766
  year: 2022
  ident: ref_66
  article-title: Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108766
– volume: 17
  start-page: 1
  year: 2021
  ident: ref_44
  article-title: eDiaPredict: An Ensemble-based framework for diabetes prediction
  publication-title: ACM Trans. Multimid. Comput. Commun. Appl.
– volume: 27
  start-page: 341
  year: 2019
  ident: ref_80
  article-title: Data Sources and Gateways: Design and Open Specification
  publication-title: Acta Inform. Med.
  doi: 10.5455/aim.2019.27.341-347
– ident: ref_93
– volume: 10
  start-page: 476
  year: 2021
  ident: ref_57
  article-title: Pancreatic cancer classification using logistic regression and random forest
  publication-title: IAES Int. J. Artif. Intell.
– ident: ref_102
  doi: 10.3390/sym13122439
– volume: 2021
  start-page: 1004767
  year: 2021
  ident: ref_46
  article-title: Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2021/1004767
– volume: 2
  start-page: 230
  year: 2017
  ident: ref_14
  article-title: Artificial intelligence in healthcare: Past, present and future
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 2
  start-page: 45
  year: 2021
  ident: ref_83
  article-title: Text Mining an Automatic Short Answer Grading (ASAG), Comparison of Three Methods of Cosine Similarity, Jaccard Similarity and Dice’s Coefficient
  publication-title: J. Appl. Data Sci.
– ident: ref_125
  doi: 10.3390/brainsci11091147
– volume: 1
  start-page: 33
  year: 2009
  ident: ref_87
  article-title: Exploratory data analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.2
– ident: ref_1
  doi: 10.1002/9781118785317.weom070211
– ident: ref_138
– ident: ref_5
  doi: 10.1007/978-3-030-41068-1
– ident: ref_33
  doi: 10.1109/ICE/ITMC52061.2021.9570120
– volume: 20
  start-page: 655
  year: 2015
  ident: ref_27
  article-title: Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2407157
– volume: 81
  start-page: 36869
  year: 2022
  ident: ref_52
  article-title: Predicting breast cancer biopsy outcomes from BI-RADS findings using random forests with chi-square and MI features
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11114-5
– ident: ref_134
  doi: 10.1097/SLA.0000000000004862
– ident: ref_111
  doi: 10.3390/s22103728
– ident: ref_135
  doi: 10.3390/ijerph19063211
– ident: ref_96
– volume: 4
  start-page: 49
  year: 2022
  ident: ref_137
  article-title: Breast cancer detection based on thermographic images using machine learning and deep learning algorithms
  publication-title: Int. J. Eng. Comput. Sci.
  doi: 10.33545/26633582.2022.v4.i1a.68
– ident: ref_9
  doi: 10.3390/app10196791
– volume: 11
  start-page: 1166
  year: 2012
  ident: ref_28
  article-title: Medical data classification with Naive Bayes approach
  publication-title: Inf. Technol. J.
  doi: 10.3923/itj.2012.1166.1174
– volume: 39
  start-page: 71
  year: 2015
  ident: ref_40
  article-title: Experimental Comparisons of Multi-class Classifiers
  publication-title: Informatica
– ident: ref_72
  doi: 10.1007/978-1-4842-2766-4
– ident: ref_110
  doi: 10.1145/3233547.3233667
– ident: ref_79
  doi: 10.1109/CBMS52027.2021.00078
– volume: 20
  start-page: 1
  year: 2007
  ident: ref_71
  article-title: The tradeoffs of large scale learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 313
  year: 2016
  ident: ref_38
  article-title: A comparative study on thyroid disease detection using K-nearest neighbor and Naive Bayes classification techniques
  publication-title: CSI Trans. ICT
  doi: 10.1007/s40012-016-0100-5
– volume: 17
  start-page: 107
  year: 2002
  ident: ref_140
  article-title: A review of explanation methods for Bayesian networks
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988890200019X
– volume: 72
  start-page: 103279
  year: 2022
  ident: ref_77
  article-title: An enhanced Predictive heterogeneous ensemble model for breast cancer prediction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103279
– volume: 191
  start-page: 487
  year: 2021
  ident: ref_45
  article-title: Machine learning algorithms for breast cancer prediction and diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.07.062
– ident: ref_68
  doi: 10.1007/s11063-021-10495-w
– ident: ref_91
– ident: ref_126
  doi: 10.1007/s44174-022-00027-y
– volume: 30
  start-page: 105856
  year: 2021
  ident: ref_59
  article-title: Prediction of motor function in stroke patients using machine learning algorithm: Development of practical models
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2021.105856
– ident: ref_53
  doi: 10.3390/nu14142832
– volume: 24
  start-page: 75
  year: 2022
  ident: ref_90
  article-title: Automated Machine Learning (AutoML): An overview of opportunities for application and research
  publication-title: J. Inf. Technol. Case Appl. Res.
– volume: 2
  start-page: 213
  year: 2021
  ident: ref_35
  article-title: Correlation analysis for determining effective data in machine learning: Detection of heart failure
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00617-5
– ident: ref_99
SSID ssj0023338
Score 2.5192676
Snippet Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8615
SubjectTerms Accident prevention
Algorithms
Artificial intelligence
Bayes Theorem
Breast cancer
Cardiovascular disease
catalogue
Computational linguistics
COVID-19
Data analysis
Data mining
Datasets
Decision making
Decision trees
Delivery of Health Care
Development and progression
healthcare
Heart
Humans
Information management
Kidney diseases
Language processing
Machine Learning
Medical research
Medicine, Experimental
Natural language interfaces
Neural networks
Patients
prediction
Route optimization
Smart cities
Stroke
supervised learning
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5k8aAH8W10lVYEvYTNox_p47i4LILLIgp7C_3cHVwzMpn191vVyYQEBS9e0xXorkdXVVL1FcDbUKDTjRXPrfc-574u8sYbkQtPWCwodlOYNGxCnZ01Fxf6fDbqi2rCBnjggXFHnFuvXRUKIRzHTM7ipa4qSy2ZMYYq9ZEXSu-TqTHVqjHzGnCEakzqj_qKPnRImn078z4JpP_Pq3jmi5Z1kjPHc3If7o0RI1sNO30At0L3EO7OcAQfwacVO95_hmGbyD6nCsnARvDUS7a6vtxs17urHz3DIJWdTkVf7Mu6_87Ot_S7JmngY_h28vHr8Wk-DknInajlLvclAd64GIT2wtbcqCpybihQs42zQUohYuGi0b6MJsiotZEa01JrykY6Vz-Bg27ThWfAdBQuWGcVdchH6U1QpuGltxgyNI7LDN7vmde6EUGcBllct5hJEJ_bic8ZvJlIfw6wGX8j-kASmAgI6To9QPm3o_zbf8k_g3ckv5bsETfjzNhWgEciZKt2pQhBrhaKZ3C4oEQ7csvlvQa0ox33LQZ3mgtMQHQGr6dlepNq07qwuSEaTjcbSiODp4PCTEeqJeHDlVUGaqFKizMvV7r1VUL5RlMRKKfn_4NJL-BORW0bqYfyEA5225vwEm67X7t1v32VTOc3WHofBQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions
URI https://www.ncbi.nlm.nih.gov/pubmed/36433212
https://www.proquest.com/docview/2739457299
https://www.proquest.com/docview/2740510536
https://pubmed.ncbi.nlm.nih.gov/PMC9695983
https://doaj.org/article/44bd9c2e055c4907beed72b2399ffe27
Volume 22
WOSCitedRecordID wos000887754200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iHQd24HsQGJVBSHCJliZ2HJ9QN3UaSK2qCaRyivzZVWzpaDqO_O34pW5oBOLCJYfYiey87xe_3wN4axNvdF1KY2WMianJkrgwksXMIBaLJ7tMZNNsgk8mxWwmpiHhVodjlVud2Chqs9SYIz_2ZlZQ5l1B8eHme4xdo_DvamihsQf7iFSW9mD_ZDSZXrQhV-YjsA2eUOaD--M6xYRHjj1wd6xQA9b_p0resUnd85I7Bujswf8u_SHcD64nGW545RHcsdVjONgBJHwCn4bkdJvPIUtHxs1RS0sCCuucDK_m_s3ry-uaeG-XnLenx8jFov5Gpiv879Ow8lP4cjb6fHoeh24LsWZZvo7NAJFztLNMGKYyKnnqKJXo8alCK5vnjLlEOynMwEmbOyFkLnx8q-SgyLXODqFXLSv7HIhwTFulFcdSe5cbabks6MAo73sUmuYRvN9-_VIHKHLsiHFV-pAECVW2hIrgTTv1ZoO_8bdJJ0jCdgJCZjc3lqt5GSSwpFQZoVObMKapSLjy3gFPFdb2OmdTHsE7ZIASBdsvRstQn-C3hBBZ5ZAjFF3GOI3gqDPTC6TuDm_ZoAwKoS5_80AEr9thfBIPuVV2eYtzKKpIT40Inm04rt1SliPQ3CCNgHd4sbPn7ki1uGzgwr3MMU-nF_9e1ku4l2JlR1NmeQS99erWvoK7-sd6Ua_6sMdnvLkW_SBj_SZ94a_jnyN_b_pxPP36Czd0M6c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4F0wFFgQCC5W_di1vQeE0tIqpW0UVa3Um9lnGlGcEqcg_hS_kR3HNrFA3Hrg6h1bHs_sPNYz3wC8MoFzujaivtRa-1THgZ9pwXymEYvFiV0Eoho2kQ6H2ekpH63Az6YXBssqG5tYGWo9VXhGvuncLKfMhYL8_cVXH6dG4d_VZoTGQi32zY_vLmUr3-19cPJ9HUW7O8fbA7-eKuArFidzX4eIEKOsYVwzGVORRpZSgZGNzJQ0ScKYDZQVXIdWmMRyLhLu8jgpwixRKnbPvQarNKaM9mB1a2c4OmpTvNhlfAv8ojjmwWYZ4QFLgjN3l7xeNRzgTxew5AO79ZlLDm_39v_2qe7ArTq0Jv3FXrgLK6a4BzeXABfvw8c-2W7Oq8jUksOqlNSQGmV2TPrnY8fJ_OxLSVw0TwZtdRw5mpSfyWiG_7WqrfoATq6EmXXoFdPCPALCLVNGKpkilIBNtDCpyGiopYutMkUTD9420s5VDbWOEz_Oc5dyoWLkrWJ48LIlvVjgi_yNaAtVpiVASPDqwnQ2zmsLk1MqNVeRCRhTlAepdNFPGknsXbbWRKkHb1DhcjRc7mWUqPsvHEsIAZb3U4Tai1lKPdjoUDqDo7rLjdrltcEr898658GLdhnvxCK-wkwvkYaiC3DS8ODhQsNbluIEgfTCyIO0o_sdnrsrxeSsgkN3NoU5OT3-92s9hxuD48OD_GBvuP8E1iLsYqlaSjegN59dmqdwXX2bT8rZs3pPE_h01XvjF3GHjJY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48H4YCiwIBBcrjr3rxwGh9BG1FKKoolJvZp9pRIlLnIL4a_w6ZhzbxAJx64Grd2LtZt7rmW8AXtgAna4Lua-MMT43UeCnRgpfGMJiQbbLQFbDJpLRKD0-zsZr8LPphaGyysYmVobaFJruyHvoZjMuMBTMeq4uixjvDN-effVpghR9aW3GaSxF5MD--I7pW_lmfwd5_TIMh7sft_f8esKAr0UUL3zTJ7QY7azIjFARl0noOJcU5ahUKxvHQrhAO5mZvpM2dlkm4wxzOiX7aax1hO-9BBu4tQC1a2NrdzQ-bNO9CLO_JZZRhOu9MqTLlpjm7654wGpQwJ_uYMUfdms1V5zf8Mb__LfdhOt1yM0GSx25BWt2dhuurQAx3oF3A7bd3GOxwrEPVYmpZTX67IQNTid4ksXJl5JhlM_22qo5djgtP7PxnL53VSp8F44u5DD3YH1WzOwDYJkT2iqtEoIYcLGRNpEp7xuFMVeqeezB64bzua4h2GkSyGmOqRgJSd4KiQfPW9KzJe7I34i2SHxaAoIKrx4U80leW56cc2UyHdpACM2zIFEYFSWhop5m52yYePCKhC8ng4ab0bLuy8AjETRYPkgIgi8SCfdgs0OJhkh3lxsRzGtDWOa_5c-DZ-0y_ZKK-2a2OCcaTq4BueHB_aW0t0eKYgLY64ceJB096Jy5uzKbnlQw6WhrBPLp4b-39RSuoELk7_dHB4_gakjNLVWn6SasL-bn9jFc1t8W03L-pFZvBp8uWjV-ASlglVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Catalogue+of+Machine+Learning+Algorithms+for+Healthcare+Risk+Predictions&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mavrogiorgou%2C+Argyro&rft.au=Kiourtis%2C+Athanasios&rft.au=Kleftakis%2C+Spyridon&rft.au=Mavrogiorgos%2C+Konstantinos&rft.date=2022-11-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft_id=info:doi/10.3390%2Fs22228615&rft.externalDocID=PMC9695983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon