A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions
Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain’s requirements for anal...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 22; H. 22; S. 8615 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.11.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain’s requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario’s requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios’ nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism’s efficiency. |
|---|---|
| AbstractList | Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios' nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism's efficiency.Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios' nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism's efficiency. Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a plethora of machine learning (ML) algorithms, while, especially in healthcare, this complexity increases due to the domain's requirements for analytics-based risk predictions. This manuscript proposes a data analysis mechanism experimented in diverse healthcare scenarios, towards constructing a catalogue of the most efficient ML algorithms to be used depending on the healthcare scenario's requirements and datasets, for efficiently predicting the onset of a disease. To this context, seven (7) different ML algorithms (Naïve Bayes, K-Nearest Neighbors, Decision Tree, Logistic Regression, Random Forest, Neural Networks, Stochastic Gradient Descent) have been executed on top of diverse healthcare scenarios (stroke, COVID-19, diabetes, breast cancer, kidney disease, heart failure). Based on a variety of performance metrics (accuracy, recall, precision, F1-score, specificity, confusion matrix), it has been identified that a sub-set of ML algorithms are more efficient for timely predictions under specific healthcare scenarios, and that is why the envisioned ML catalogue prioritizes the ML algorithms to be used, depending on the scenarios' nature and needed metrics. Further evaluation must be performed considering additional scenarios, involving state-of-the-art techniques (e.g., cloud deployment, federated ML) for improving the mechanism's efficiency. |
| Audience | Academic |
| Author | Zafeiropoulos, Nikolaos Mavrogiorgou, Argyro Kleftakis, Spyridon Kyriazis, Dimosthenis Kiourtis, Athanasios Mavrogiorgos, Konstantinos |
| AuthorAffiliation | Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece |
| AuthorAffiliation_xml | – name: Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece |
| Author_xml | – sequence: 1 givenname: Argyro orcidid: 0000-0002-1543-5627 surname: Mavrogiorgou fullname: Mavrogiorgou, Argyro – sequence: 2 givenname: Athanasios orcidid: 0000-0002-1681-3626 surname: Kiourtis fullname: Kiourtis, Athanasios – sequence: 3 givenname: Spyridon orcidid: 0000-0002-6237-488X surname: Kleftakis fullname: Kleftakis, Spyridon – sequence: 4 givenname: Konstantinos surname: Mavrogiorgos fullname: Mavrogiorgos, Konstantinos – sequence: 5 givenname: Nikolaos surname: Zafeiropoulos fullname: Zafeiropoulos, Nikolaos – sequence: 6 givenname: Dimosthenis orcidid: 0000-0001-7019-7214 surname: Kyriazis fullname: Kyriazis, Dimosthenis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36433212$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktvEzEUhUeoiD5gwR9AI7GBRVq_Z7xBiiKgRUEgBGvrjud64jCxW3uCxL_HJSU0Ve2FrevvHvtY57Q6CjFgVb2k5JxzTS4yK6NVVD6pTqhgYtYyRo7u7Y-r05zXhDDOefusOuZKcM4oO6k-zesFTDDGYYt1dPVnsCsfsF4ipODDUM_HISY_rTa5djHVlwjjtLKQsP7m88_6a8Le28nHkJ9XTx2MGV_crWfVjw_vvy8uZ8svH68W8-XMSq6mWU9pQ5V1KHUvOy6gYU4IEFLJrrUdKiWlI9aB7qkDVE5rULrlTQe0Vdbys-pqp9tHWJvr5DeQfpsI3vwtxDQYSJO3Ixohul5bhkRKKzRpOsS-YR3jWjuHrCla73Za19tug73FMCUYD0QPT4JfmSH-MlppWR5VBN7cCaR4s8U8mY3PFscRAsZtNqwRRFJSnBf09QN0HbcplK8qFNdCNkzr_9QAxYAPLpZ77a2omTdCSc5lIwp1_ghVZo8bb0s6nC_1g4ZX943uHf5LQgHe7gCbYs4J3R6hxNymzOxTVtiLB6z1E9yGoLzCj490_AFnT9Dh |
| CitedBy_id | crossref_primary_10_1016_j_sna_2025_116309 crossref_primary_10_3390_diagnostics13233548 crossref_primary_10_1186_s12880_025_01834_7 crossref_primary_10_1213_ANE_0000000000006761 crossref_primary_10_1038_s41598_025_11929_4 crossref_primary_10_1007_s42979_024_03492_y crossref_primary_10_1016_j_smhl_2025_100601 crossref_primary_10_3390_app15094639 crossref_primary_10_1007_s44163_025_00444_0 crossref_primary_10_1016_j_anl_2024_04_003 crossref_primary_10_3390_biomedicines11061749 crossref_primary_10_3390_app14198860 crossref_primary_10_3390_mca30020022 crossref_primary_10_1016_j_imu_2025_101664 crossref_primary_10_1080_00450618_2025_2561625 crossref_primary_10_3390_s23187993 crossref_primary_10_1016_j_compbiomed_2025_110276 crossref_primary_10_3390_diagnostics13091648 crossref_primary_10_1007_s43926_024_00063_8 crossref_primary_10_1016_j_heliyon_2023_e20645 crossref_primary_10_1038_s41598_025_13720_x crossref_primary_10_1016_j_tube_2024_102570 crossref_primary_10_1016_j_jceh_2024_101456 crossref_primary_10_1016_j_heliyon_2024_e27411 crossref_primary_10_3390_a17080360 crossref_primary_10_1016_j_compbiomed_2023_107876 crossref_primary_10_3390_app142210523 crossref_primary_10_1016_j_neuri_2025_100215 crossref_primary_10_3390_app13116504 crossref_primary_10_1080_22221751_2024_2361791 |
| Cites_doi | 10.11591/ijece.v12i6.pp6461-6471 10.1109/ACCESS.2021.3053763 10.3390/jcm8030360 10.1007/s11739-020-02475-0 10.1183/09031936.00189010 10.1109/ICEEICT53079.2022.9768579 10.1109/TENCON.2019.8929578 10.1007/978-981-13-1498-8_67 10.3390/bioengineering5020035 10.1109/AIM.2015.7222674 10.1007/978-981-16-2164-2_19 10.1007/978-981-16-5747-4_66 10.1016/j.knosys.2020.106270 10.1038/s41598-017-07408-0 10.1101/2021.01.20.21250146 10.3390/ijerph17030897 10.1016/j.prevetmed.2022.105664 10.5152/akd.2014.5731 10.1017/CBO9780511815867 10.1016/j.jiph.2022.06.008 10.1016/j.health.2022.100116 10.1007/s11042-020-10043-z 10.1139/apnm-2021-0502 10.1007/s12530-019-09286-5 10.1109/ICoIA.2013.6650227 10.1016/j.jbi.2007.07.003 10.3390/diagnostics11050864 10.1109/ICICT50816.2021.9358491 10.1016/j.health.2022.100032 10.1080/10255842.2020.1821192 10.1109/ICICT50816.2021.9358605 10.1038/s41598-021-89434-7 10.1007/978-1-4842-4470-8 10.1016/j.imu.2021.100631 10.2196/22796 10.1109/EIConCIT50028.2021.9431845 10.1016/j.cmpb.2018.06.010 10.1515/jaiscr-2017-0019 10.3390/ijerph18126429 10.1016/j.icte.2021.02.004 10.1016/j.csbj.2014.11.005 10.1007/978-3-319-60801-3_27 10.1016/j.aap.2015.06.014 10.3390/diagnostics12010116 10.1145/3175684.3175703 10.1109/RBME.2020.3013489 10.1109/TITB.2009.2039485 10.1016/j.future.2021.11.003 10.3390/fi11040094 10.1007/978-981-19-2177-3_79 10.1109/ACCESS.2021.3083516 10.1371/journal.pone.0269135 10.1007/978-981-16-9113-3_30 10.1109/IC4ME253898.2021.9768524 10.1155/2021/5525271 10.1109/ICACCS51430.2021.9441935 10.1109/ACCESS.2021.3064084 10.1109/ICCMC.2019.8819654 10.1016/j.eswa.2021.116221 10.1038/s41598-022-10358-x 10.1016/j.comcom.2020.02.069 10.1016/j.neunet.2005.10.007 10.35940/ijeat.A2213.109119 10.3390/healthcare8030247 10.3389/fmed.2020.00427 10.3389/fcvm.2022.854287 10.1109/ACCESS.2022.3174599 10.1109/ICCIT.2007.4420369 10.2196/23099 10.1109/ICCCNT49239.2020.9225642 10.1016/j.parco.2022.102955 10.23919/FRUCT56874.2022.9953810 10.1016/j.asoc.2022.108766 10.5455/aim.2019.27.341-347 10.3390/sym13122439 10.1155/2021/1004767 10.1136/svn-2017-000101 10.3390/brainsci11091147 10.1002/wics.2 10.1002/9781118785317.weom070211 10.1007/978-3-030-41068-1 10.1109/ICE/ITMC52061.2021.9570120 10.1109/JBHI.2015.2407157 10.1007/s11042-021-11114-5 10.1097/SLA.0000000000004862 10.3390/s22103728 10.3390/ijerph19063211 10.33545/26633582.2022.v4.i1a.68 10.3390/app10196791 10.3923/itj.2012.1166.1174 10.1007/978-1-4842-2766-4 10.1145/3233547.3233667 10.1109/CBMS52027.2021.00078 10.1007/s40012-016-0100-5 10.1017/S026988890200019X 10.1016/j.bspc.2021.103279 10.1016/j.procs.2021.07.062 10.1007/s11063-021-10495-w 10.1007/s44174-022-00027-y 10.1016/j.jstrokecerebrovasdis.2021.105856 10.3390/nu14142832 10.1007/s42979-021-00617-5 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22228615 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_44bd9c2e055c4907beed72b2399ffe27 PMC9695983 A746533574 36433212 10_3390_s22228615 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Operational Program Competitiveness, Entrepreneurship and Innovation grantid: T2EDK-04207 – fundername: Operational Program Competitiveness, Entrepreneurship and Innovation grantid: BeHEALTHIER—T2EDK-04207 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c536t-d11716cfe59d5b34a72f44a4565b8cbe6655f0cfa9d1fae6f99a69837ba186cc3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887754200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:46:38 EDT 2025 Tue Nov 04 02:08:53 EST 2025 Fri Sep 05 08:35:22 EDT 2025 Tue Oct 07 07:25:30 EDT 2025 Tue Nov 11 10:46:33 EST 2025 Tue Nov 04 18:17:22 EST 2025 Thu Apr 03 07:06:35 EDT 2025 Tue Nov 18 19:58:34 EST 2025 Sat Nov 29 07:18:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | prediction data analysis machine learning supervised learning catalogue healthcare |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-d11716cfe59d5b34a72f44a4565b8cbe6655f0cfa9d1fae6f99a69837ba186cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This manuscript is an extended version of conference paper A Comparative Study of ML Algorithms for Scenario-Agnostic Predictions in Healthcare. In Proceedings of the ICTS4eHealth 2022, Rhodes Island, Greece, 30 June–3 July 2022. |
| ORCID | 0000-0001-7019-7214 0000-0002-6237-488X 0000-0002-1681-3626 0000-0002-1543-5627 |
| OpenAccessLink | https://www.proquest.com/docview/2739457299?pq-origsite=%requestingapplication% |
| PMID | 36433212 |
| PQID | 2739457299 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_44bd9c2e055c4907beed72b2399ffe27 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9695983 proquest_miscellaneous_2740510536 proquest_journals_2739457299 gale_infotracmisc_A746533574 gale_infotracacademiconefile_A746533574 pubmed_primary_36433212 crossref_primary_10_3390_s22228615 crossref_citationtrail_10_3390_s22228615 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_93 ref_92 Chittora (ref_61) 2021; 9 ref_91 ref_138 Naji (ref_45) 2021; 191 Pedregosa (ref_22) 2011; 12 Sinha (ref_128) 2015; 4 ref_131 Rustam (ref_57) 2021; 10 ref_99 ref_130 ref_98 ref_133 ref_132 ref_96 ref_135 Liu (ref_27) 2015; 20 ref_95 ref_134 Vaghela (ref_41) 2015; 116 Xie (ref_67) 2021; 80 ref_19 Naseem (ref_136) 2022; 10 ref_17 ref_16 ref_15 Selim (ref_58) 2022; 203 Kourou (ref_2) 2015; 13 Singh (ref_90) 2022; 24 Qayyum (ref_101) 2020; 14 Lin (ref_40) 2015; 39 Raad (ref_64) 2012; 7 Biswas (ref_42) 2022; 2 ref_126 Mavrogiorgou (ref_81) 2020; 11 Morgenstern (ref_118) 2022; 47 ref_125 Senan (ref_46) 2021; 2021 Morgenthaler (ref_87) 2009; 1 ref_25 Mutlu (ref_76) 2022; 113 ref_20 ref_124 Perakis (ref_80) 2019; 27 Ormerod (ref_84) 2021; 9 Tuncer (ref_120) 2021; 24 Oyelade (ref_112) 2021; 9 Barakat (ref_13) 2010; 14 Ravi (ref_23) 2012; 43 ref_29 Tong (ref_18) 2021; 23 Kiourtis (ref_141) 2022; 295 Ishaq (ref_54) 2021; 9 ref_72 Williamson (ref_52) 2022; 81 Ahmad (ref_39) 2015; 120 ref_79 ref_78 ref_75 ref_74 Hervella (ref_49) 2021; 11 Lisboa (ref_10) 2006; 19 Bukhari (ref_69) 2021; 2021 Bottou (ref_71) 2007; 20 Shaban (ref_114) 2020; 205 Esteban (ref_11) 2011; 38 Wu (ref_105) 2022; 129 Nanglia (ref_77) 2022; 72 Cupertino (ref_121) 2019; 60 ref_89 ref_88 Ullah (ref_7) 2020; 154 ref_85 Jiang (ref_14) 2017; 2 Vembandasamy (ref_24) 2015; 2 ref_50 Elhazmi (ref_43) 2022; 15 ref_56 ref_55 ref_53 Alibraheemi (ref_113) 2022; 20 ref_51 Chandel (ref_38) 2016; 4 Pan (ref_3) 2017; 7 Almustafa (ref_129) 2021; 24 Santos (ref_122) 2022; 191 Dev (ref_123) 2022; 2 Garg (ref_21) 2021; 9 ref_68 Singh (ref_44) 2021; 17 ref_65 ref_63 ref_62 Bologna (ref_139) 2017; 7 Lehto (ref_26) 2015; 84 Desai (ref_70) 2021; 4 Assaf (ref_8) 2020; 15 Khanam (ref_60) 2021; 7 Elhassan (ref_86) 2022; 34 ref_117 Li (ref_66) 2022; 121 Yoo (ref_115) 2020; 7 Uddin (ref_30) 2022; 12 Revathy (ref_127) 2019; 9 Luan (ref_6) 2021; 24 ref_36 ref_34 ref_33 ref_32 ref_111 ref_31 ref_110 Karthik (ref_103) 2022; 72 Langer (ref_73) 2009; 30 ref_37 Akbulut (ref_116) 2018; 163 ref_104 ref_106 ref_108 ref_107 Verduijn (ref_12) 2007; 40 ref_109 ref_47 Bajraktari (ref_97) 2015; 15 Qian (ref_119) 2022; 9 ref_100 Kim (ref_59) 2021; 30 ref_102 Allugunti (ref_137) 2022; 4 ref_1 Lacave (ref_140) 2002; 17 ref_48 ref_9 Jalal (ref_82) 2022; 12 Bakar (ref_28) 2012; 11 ref_5 ref_4 Assegie (ref_35) 2021; 2 Henderi (ref_83) 2021; 2 |
| References_xml | – ident: ref_117 – volume: 12 start-page: 6461 year: 2022 ident: ref_82 article-title: A web content mining application for detecting relevant pages using Jaccard similarity publication-title: Int. J. Electr. Comput. Eng. (IJECE) doi: 10.11591/ijece.v12i6.pp6461-6471 – volume: 9 start-page: 17312 year: 2021 ident: ref_61 article-title: Prediction of chronic kidney disease-a machine learning perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053763 – ident: ref_15 doi: 10.3390/jcm8030360 – volume: 15 start-page: 1435 year: 2020 ident: ref_8 article-title: Utilization of machine-learning models to accurately predict the risk for critical COVID-19 publication-title: Intern. Emerg. Med. doi: 10.1007/s11739-020-02475-0 – volume: 38 start-page: 1294 year: 2011 ident: ref_11 article-title: Development of a decision tree to assess the severity and prognosis of stable COPD publication-title: Eur. Respir. J. doi: 10.1183/09031936.00189010 – ident: ref_74 doi: 10.1109/ICEEICT53079.2022.9768579 – ident: ref_17 doi: 10.1109/TENCON.2019.8929578 – ident: ref_109 doi: 10.1007/978-981-13-1498-8_67 – ident: ref_65 doi: 10.3390/bioengineering5020035 – ident: ref_88 – ident: ref_132 doi: 10.1109/AIM.2015.7222674 – volume: 30 start-page: 327 year: 2009 ident: ref_73 article-title: Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. – volume: 7 start-page: 105 year: 2012 ident: ref_64 article-title: Breast cancer classification using neural network approach: MLP and RBF publication-title: Ali Mohsen Kabalan – ident: ref_94 – ident: ref_108 doi: 10.1007/978-981-16-2164-2_19 – ident: ref_124 doi: 10.1007/978-981-16-5747-4_66 – volume: 205 start-page: 106270 year: 2020 ident: ref_114 article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106270 – volume: 295 start-page: 376 year: 2022 ident: ref_141 article-title: An Autoscaling Platform Supporting Graph Data Modelling Big Data Analytics publication-title: Stud. Health Technol. Inform. – volume: 34 start-page: 4284 year: 2022 ident: ref_86 article-title: ILA4: Overcoming missing values in machine learning datasets–An inductive learning approach publication-title: J. King Saud Univ. Comput. Inf. Sci. – ident: ref_48 – volume: 7 start-page: 7402 year: 2017 ident: ref_3 article-title: Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia publication-title: Sci. Rep. doi: 10.1038/s41598-017-07408-0 – ident: ref_20 doi: 10.1101/2021.01.20.21250146 – ident: ref_56 doi: 10.3390/ijerph17030897 – volume: 203 start-page: 105664 year: 2022 ident: ref_58 article-title: A Comparison of logistic regression and classification tree to assess brucellosis associated risk factors in dairy cattle publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2022.105664 – ident: ref_62 – volume: 2 start-page: 441 year: 2015 ident: ref_24 article-title: Heart diseases detection using Naive Bayes algorithm publication-title: Int. J. Innov. Sci. Eng. Technol. – volume: 15 start-page: 63 year: 2015 ident: ref_97 article-title: Mortality in heart failure patients publication-title: Anatol. J. Cardiol. doi: 10.5152/akd.2014.5731 – ident: ref_55 doi: 10.1017/CBO9780511815867 – volume: 15 start-page: 826 year: 2022 ident: ref_43 article-title: Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2022.06.008 – volume: 116 start-page: 11 year: 2015 ident: ref_41 article-title: A Survey on Various Classification Techniques for Clinical Decision Support System publication-title: Int. J. Comput. Appl. – volume: 2 start-page: 100116 year: 2022 ident: ref_42 article-title: A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach publication-title: Healthc. Anal. doi: 10.1016/j.health.2022.100116 – volume: 80 start-page: 17291 year: 2021 ident: ref_67 article-title: Stroke prediction from electrocardiograms by deep neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10043-z – volume: 47 start-page: 529 year: 2022 ident: ref_118 article-title: Development of machine learning prediction models to explore nutrients predictive of cardiovascular disease using Canadian linked population-based data publication-title: Appl. Physiol. Nutr. Metab. doi: 10.1139/apnm-2021-0502 – ident: ref_47 – volume: 11 start-page: 269 year: 2020 ident: ref_81 article-title: A plug ‘n’play approach for dynamic data acquisition from heterogeneous IoT medical devices of unknown nature publication-title: Evol. Syst. doi: 10.1007/s12530-019-09286-5 – ident: ref_25 doi: 10.1109/ICoIA.2013.6650227 – volume: 120 start-page: 38 year: 2015 ident: ref_39 article-title: Techniques of data mining in healthcare: A review publication-title: Int. J. Comput. Appl. – volume: 40 start-page: 609 year: 2007 ident: ref_12 article-title: Prognostic Bayesian networks I: Rationale, learning procedure, and clinical use publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2007.07.003 – ident: ref_131 doi: 10.3390/diagnostics11050864 – ident: ref_78 doi: 10.1109/ICICT50816.2021.9358491 – volume: 2 start-page: 100032 year: 2022 ident: ref_123 article-title: A predictive analytics approach for stroke prediction using machine learning and neural networks publication-title: Healthc. Anal. doi: 10.1016/j.health.2022.100032 – ident: ref_92 – volume: 24 start-page: 203 year: 2021 ident: ref_120 article-title: Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2020.1821192 – ident: ref_104 doi: 10.1109/ICICT50816.2021.9358605 – volume: 43 start-page: 12 year: 2012 ident: ref_23 article-title: Malware detection using windows api sequence and machine learning publication-title: Int. J. Comput. Appl. – volume: 11 start-page: 10071 year: 2021 ident: ref_49 article-title: Random forest-based prediction of stroke outcome publication-title: Sci. Rep. doi: 10.1038/s41598-021-89434-7 – ident: ref_100 doi: 10.1007/978-1-4842-4470-8 – volume: 24 start-page: 100631 year: 2021 ident: ref_129 article-title: Prediction of chronic kidney disease using different classification algorithms publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2021.100631 – volume: 23 start-page: e22796 year: 2021 ident: ref_18 article-title: Forecasting future asthma hospital encounters of patients with asthma in an academic health care system: Predictive model development and secondary analysis study publication-title: J. Med. Internet Res. doi: 10.2196/22796 – ident: ref_75 – volume: 9 start-page: 330 year: 2021 ident: ref_21 article-title: A Review on Parkinson’s Disease Prediction using Machine Learning publication-title: Int. J. Eng. Res. Technol. – ident: ref_32 doi: 10.1109/EIConCIT50028.2021.9431845 – volume: 163 start-page: 87 year: 2018 ident: ref_116 article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.06.010 – volume: 7 start-page: 265 year: 2017 ident: ref_139 article-title: Characterization of symbolic rules embedded in deep DIMLP networks: A challenge to transparency of deep learning publication-title: J. Artif. Intell. Soft Comput. Res. doi: 10.1515/jaiscr-2017-0019 – ident: ref_50 doi: 10.3390/ijerph18126429 – volume: 7 start-page: 432 year: 2021 ident: ref_60 article-title: A comparison of machine learning algorithms for diabetes prediction publication-title: ICT Express doi: 10.1016/j.icte.2021.02.004 – volume: 13 start-page: 8 year: 2015 ident: ref_2 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – ident: ref_63 doi: 10.1007/978-3-319-60801-3_27 – volume: 84 start-page: 165 year: 2015 ident: ref_26 article-title: A practical tool for public health surveillance: Semi-automated coding of short injury narratives from large administrative databases using Naïve Bayes algorithms publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.06.014 – ident: ref_130 doi: 10.3390/diagnostics12010116 – ident: ref_89 – ident: ref_37 doi: 10.1145/3175684.3175703 – volume: 14 start-page: 156 year: 2020 ident: ref_101 article-title: Secure and robust machine learning for healthcare: A survey publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.3013489 – volume: 14 start-page: 1114 year: 2010 ident: ref_13 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2039485 – ident: ref_36 – volume: 129 start-page: 1 year: 2022 ident: ref_105 article-title: Novel binary logistic regression model based on feature transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.11.003 – ident: ref_4 doi: 10.3390/fi11040094 – ident: ref_95 – volume: 4 start-page: 1 year: 2021 ident: ref_70 article-title: An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN) publication-title: Clin. e-Health – volume: 24 start-page: 250 year: 2021 ident: ref_6 article-title: A review of using machine learning approaches for precision education publication-title: Educ. Technol. Soc. – ident: ref_29 doi: 10.1007/978-981-19-2177-3_79 – volume: 9 start-page: 77905 year: 2021 ident: ref_112 article-title: CovFrameNet: An enhanced deep learning framework for COVID-19 detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083516 – volume: 4 start-page: 608 year: 2015 ident: ref_128 article-title: Comparative study of chronic kidney disease prediction using KNN and SVM publication-title: Int. J. Eng. Res. Technol. – ident: ref_133 doi: 10.1371/journal.pone.0269135 – volume: 12 start-page: 2825 year: 2011 ident: ref_22 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_107 doi: 10.1007/978-981-16-9113-3_30 – ident: ref_31 doi: 10.1109/IC4ME253898.2021.9768524 – volume: 2021 start-page: 5525271 year: 2021 ident: ref_69 article-title: An improved artificial neural network model for effective diabetes prediction publication-title: Complexity doi: 10.1155/2021/5525271 – ident: ref_51 doi: 10.1109/ICACCS51430.2021.9441935 – volume: 9 start-page: 39707 year: 2021 ident: ref_54 article-title: Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064084 – ident: ref_34 doi: 10.1109/ICCMC.2019.8819654 – volume: 191 start-page: 116221 year: 2022 ident: ref_122 article-title: Decision tree and artificial immune systems for stroke prediction in imbalanced data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116221 – volume: 12 start-page: 6256 year: 2022 ident: ref_30 article-title: Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction publication-title: Sci. Rep. doi: 10.1038/s41598-022-10358-x – volume: 154 start-page: 313 year: 2020 ident: ref_7 article-title: Applications of artificial intelligence and machine learning in smart cities publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.02.069 – volume: 19 start-page: 408 year: 2006 ident: ref_10 article-title: The use of artificial neural networks in decision support in cancer: A systematic review publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.10.007 – ident: ref_98 – volume: 9 start-page: 6364 year: 2019 ident: ref_127 article-title: Chronic kidney disease prediction using machine learning models publication-title: Int. J. Eng. Adv. Technol. doi: 10.35940/ijeat.A2213.109119 – ident: ref_19 doi: 10.3390/healthcare8030247 – volume: 7 start-page: 427 year: 2020 ident: ref_115 article-title: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging publication-title: Front. Med. doi: 10.3389/fmed.2020.00427 – volume: 9 start-page: 854287 year: 2022 ident: ref_119 article-title: A Cardiovascular Disease Prediction Model Based on Routine Physical Examination Indicators Using Machine Learning Methods: A Cohort Study publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.854287 – volume: 10 start-page: 78242 year: 2022 ident: ref_136 article-title: An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3174599 – ident: ref_106 doi: 10.1109/ICCIT.2007.4420369 – volume: 20 start-page: 8039 year: 2022 ident: ref_113 article-title: Classification Covid-19 disease based on CNN and Hybrid Models publication-title: NeuroQuantology – volume: 60 start-page: 549 year: 2019 ident: ref_121 article-title: Enhancing smoking cessation in Mexico using an e-Health tool in primary healthcare publication-title: Salud Pública México – volume: 9 start-page: e23099 year: 2021 ident: ref_84 article-title: Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis publication-title: JMIR Med. Inform. doi: 10.2196/23099 – volume: 72 start-page: 243 year: 2022 ident: ref_103 article-title: Prognostic Kalman Filter Based Bayesian Learning Model for Data Accuracy Prediction publication-title: Comput. Mater. Contin. – ident: ref_16 doi: 10.1109/ICCCNT49239.2020.9225642 – volume: 113 start-page: 102955 year: 2022 ident: ref_76 article-title: SVM-SMO-SGD: A hybrid-parallel support vector machine algorithm using sequential minimal optimization with stochastic gradient descent publication-title: Parallel Comput. doi: 10.1016/j.parco.2022.102955 – ident: ref_85 doi: 10.23919/FRUCT56874.2022.9953810 – volume: 121 start-page: 108766 year: 2022 ident: ref_66 article-title: Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108766 – volume: 17 start-page: 1 year: 2021 ident: ref_44 article-title: eDiaPredict: An Ensemble-based framework for diabetes prediction publication-title: ACM Trans. Multimid. Comput. Commun. Appl. – volume: 27 start-page: 341 year: 2019 ident: ref_80 article-title: Data Sources and Gateways: Design and Open Specification publication-title: Acta Inform. Med. doi: 10.5455/aim.2019.27.341-347 – ident: ref_93 – volume: 10 start-page: 476 year: 2021 ident: ref_57 article-title: Pancreatic cancer classification using logistic regression and random forest publication-title: IAES Int. J. Artif. Intell. – ident: ref_102 doi: 10.3390/sym13122439 – volume: 2021 start-page: 1004767 year: 2021 ident: ref_46 article-title: Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques publication-title: J. Healthc. Eng. doi: 10.1155/2021/1004767 – volume: 2 start-page: 230 year: 2017 ident: ref_14 article-title: Artificial intelligence in healthcare: Past, present and future publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2017-000101 – volume: 2 start-page: 45 year: 2021 ident: ref_83 article-title: Text Mining an Automatic Short Answer Grading (ASAG), Comparison of Three Methods of Cosine Similarity, Jaccard Similarity and Dice’s Coefficient publication-title: J. Appl. Data Sci. – ident: ref_125 doi: 10.3390/brainsci11091147 – volume: 1 start-page: 33 year: 2009 ident: ref_87 article-title: Exploratory data analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.2 – ident: ref_1 doi: 10.1002/9781118785317.weom070211 – ident: ref_138 – ident: ref_5 doi: 10.1007/978-3-030-41068-1 – ident: ref_33 doi: 10.1109/ICE/ITMC52061.2021.9570120 – volume: 20 start-page: 655 year: 2015 ident: ref_27 article-title: Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2407157 – volume: 81 start-page: 36869 year: 2022 ident: ref_52 article-title: Predicting breast cancer biopsy outcomes from BI-RADS findings using random forests with chi-square and MI features publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11114-5 – ident: ref_134 doi: 10.1097/SLA.0000000000004862 – ident: ref_111 doi: 10.3390/s22103728 – ident: ref_135 doi: 10.3390/ijerph19063211 – ident: ref_96 – volume: 4 start-page: 49 year: 2022 ident: ref_137 article-title: Breast cancer detection based on thermographic images using machine learning and deep learning algorithms publication-title: Int. J. Eng. Comput. Sci. doi: 10.33545/26633582.2022.v4.i1a.68 – ident: ref_9 doi: 10.3390/app10196791 – volume: 11 start-page: 1166 year: 2012 ident: ref_28 article-title: Medical data classification with Naive Bayes approach publication-title: Inf. Technol. J. doi: 10.3923/itj.2012.1166.1174 – volume: 39 start-page: 71 year: 2015 ident: ref_40 article-title: Experimental Comparisons of Multi-class Classifiers publication-title: Informatica – ident: ref_72 doi: 10.1007/978-1-4842-2766-4 – ident: ref_110 doi: 10.1145/3233547.3233667 – ident: ref_79 doi: 10.1109/CBMS52027.2021.00078 – volume: 20 start-page: 1 year: 2007 ident: ref_71 article-title: The tradeoffs of large scale learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 313 year: 2016 ident: ref_38 article-title: A comparative study on thyroid disease detection using K-nearest neighbor and Naive Bayes classification techniques publication-title: CSI Trans. ICT doi: 10.1007/s40012-016-0100-5 – volume: 17 start-page: 107 year: 2002 ident: ref_140 article-title: A review of explanation methods for Bayesian networks publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988890200019X – volume: 72 start-page: 103279 year: 2022 ident: ref_77 article-title: An enhanced Predictive heterogeneous ensemble model for breast cancer prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103279 – volume: 191 start-page: 487 year: 2021 ident: ref_45 article-title: Machine learning algorithms for breast cancer prediction and diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.07.062 – ident: ref_68 doi: 10.1007/s11063-021-10495-w – ident: ref_91 – ident: ref_126 doi: 10.1007/s44174-022-00027-y – volume: 30 start-page: 105856 year: 2021 ident: ref_59 article-title: Prediction of motor function in stroke patients using machine learning algorithm: Development of practical models publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2021.105856 – ident: ref_53 doi: 10.3390/nu14142832 – volume: 24 start-page: 75 year: 2022 ident: ref_90 article-title: Automated Machine Learning (AutoML): An overview of opportunities for application and research publication-title: J. Inf. Technol. Case Appl. Res. – volume: 2 start-page: 213 year: 2021 ident: ref_35 article-title: Correlation analysis for determining effective data in machine learning: Detection of heart failure publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00617-5 – ident: ref_99 |
| SSID | ssj0023338 |
| Score | 2.5192676 |
| Snippet | Extracting useful knowledge from proper data analysis is a very challenging task for efficient and timely decision-making. To achieve this, there exist a... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 8615 |
| SubjectTerms | Accident prevention Algorithms Artificial intelligence Bayes Theorem Breast cancer Cardiovascular disease catalogue Computational linguistics COVID-19 Data analysis Data mining Datasets Decision making Decision trees Delivery of Health Care Development and progression healthcare Heart Humans Information management Kidney diseases Language processing Machine Learning Medical research Medicine, Experimental Natural language interfaces Neural networks Patients prediction Route optimization Smart cities Stroke supervised learning Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5k8aAH8W10lVYEvYTNox_p47i4LILLIgp7C_3cHVwzMpn191vVyYQEBS9e0xXorkdXVVL1FcDbUKDTjRXPrfc-574u8sYbkQtPWCwodlOYNGxCnZ01Fxf6fDbqi2rCBnjggXFHnFuvXRUKIRzHTM7ipa4qSy2ZMYYq9ZEXSu-TqTHVqjHzGnCEakzqj_qKPnRImn078z4JpP_Pq3jmi5Z1kjPHc3If7o0RI1sNO30At0L3EO7OcAQfwacVO95_hmGbyD6nCsnARvDUS7a6vtxs17urHz3DIJWdTkVf7Mu6_87Ot_S7JmngY_h28vHr8Wk-DknInajlLvclAd64GIT2wtbcqCpybihQs42zQUohYuGi0b6MJsiotZEa01JrykY6Vz-Bg27ThWfAdBQuWGcVdchH6U1QpuGltxgyNI7LDN7vmde6EUGcBllct5hJEJ_bic8ZvJlIfw6wGX8j-kASmAgI6To9QPm3o_zbf8k_g3ckv5bsETfjzNhWgEciZKt2pQhBrhaKZ3C4oEQ7csvlvQa0ox33LQZ3mgtMQHQGr6dlepNq07qwuSEaTjcbSiODp4PCTEeqJeHDlVUGaqFKizMvV7r1VUL5RlMRKKfn_4NJL-BORW0bqYfyEA5225vwEm67X7t1v32VTOc3WHofBQ priority: 102 providerName: Directory of Open Access Journals |
| Title | A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36433212 https://www.proquest.com/docview/2739457299 https://www.proquest.com/docview/2740510536 https://pubmed.ncbi.nlm.nih.gov/PMC9695983 https://doaj.org/article/44bd9c2e055c4907beed72b2399ffe27 |
| Volume | 22 |
| WOSCitedRecordID | wos000887754200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iHQd24HsQGJVBSHCJliZ2HJ9QN3UaSK2qCaRyivzZVWzpaDqO_O34pW5oBOLCJYfYiey87xe_3wN4axNvdF1KY2WMianJkrgwksXMIBaLJ7tMZNNsgk8mxWwmpiHhVodjlVud2Chqs9SYIz_2ZlZQ5l1B8eHme4xdo_DvamihsQf7iFSW9mD_ZDSZXrQhV-YjsA2eUOaD--M6xYRHjj1wd6xQA9b_p0resUnd85I7Bujswf8u_SHcD64nGW545RHcsdVjONgBJHwCn4bkdJvPIUtHxs1RS0sCCuucDK_m_s3ry-uaeG-XnLenx8jFov5Gpiv879Ow8lP4cjb6fHoeh24LsWZZvo7NAJFztLNMGKYyKnnqKJXo8alCK5vnjLlEOynMwEmbOyFkLnx8q-SgyLXODqFXLSv7HIhwTFulFcdSe5cbabks6MAo73sUmuYRvN9-_VIHKHLsiHFV-pAECVW2hIrgTTv1ZoO_8bdJJ0jCdgJCZjc3lqt5GSSwpFQZoVObMKapSLjy3gFPFdb2OmdTHsE7ZIASBdsvRstQn-C3hBBZ5ZAjFF3GOI3gqDPTC6TuDm_ZoAwKoS5_80AEr9thfBIPuVV2eYtzKKpIT40Inm04rt1SliPQ3CCNgHd4sbPn7ki1uGzgwr3MMU-nF_9e1ku4l2JlR1NmeQS99erWvoK7-sd6Ua_6sMdnvLkW_SBj_SZ94a_jnyN_b_pxPP36Czd0M6c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4F0wFFgQCC5W_di1vQeE0tIqpW0UVa3Um9lnGlGcEqcg_hS_kR3HNrFA3Hrg6h1bHs_sPNYz3wC8MoFzujaivtRa-1THgZ9pwXymEYvFiV0Eoho2kQ6H2ekpH63Az6YXBssqG5tYGWo9VXhGvuncLKfMhYL8_cVXH6dG4d_VZoTGQi32zY_vLmUr3-19cPJ9HUW7O8fbA7-eKuArFidzX4eIEKOsYVwzGVORRpZSgZGNzJQ0ScKYDZQVXIdWmMRyLhLu8jgpwixRKnbPvQarNKaM9mB1a2c4OmpTvNhlfAv8ojjmwWYZ4QFLgjN3l7xeNRzgTxew5AO79ZlLDm_39v_2qe7ArTq0Jv3FXrgLK6a4BzeXABfvw8c-2W7Oq8jUksOqlNSQGmV2TPrnY8fJ_OxLSVw0TwZtdRw5mpSfyWiG_7WqrfoATq6EmXXoFdPCPALCLVNGKpkilIBNtDCpyGiopYutMkUTD9420s5VDbWOEz_Oc5dyoWLkrWJ48LIlvVjgi_yNaAtVpiVASPDqwnQ2zmsLk1MqNVeRCRhTlAepdNFPGknsXbbWRKkHb1DhcjRc7mWUqPsvHEsIAZb3U4Tai1lKPdjoUDqDo7rLjdrltcEr898658GLdhnvxCK-wkwvkYaiC3DS8ODhQsNbluIEgfTCyIO0o_sdnrsrxeSsgkN3NoU5OT3-92s9hxuD48OD_GBvuP8E1iLsYqlaSjegN59dmqdwXX2bT8rZs3pPE_h01XvjF3GHjJY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48H4YCiwIBBcrjr3rxwGh9BG1FKKoolJvZp9pRIlLnIL4a_w6ZhzbxAJx64Grd2LtZt7rmW8AXtgAna4Lua-MMT43UeCnRgpfGMJiQbbLQFbDJpLRKD0-zsZr8LPphaGyysYmVobaFJruyHvoZjMuMBTMeq4uixjvDN-effVpghR9aW3GaSxF5MD--I7pW_lmfwd5_TIMh7sft_f8esKAr0UUL3zTJ7QY7azIjFARl0noOJcU5ahUKxvHQrhAO5mZvpM2dlkm4wxzOiX7aax1hO-9BBu4tQC1a2NrdzQ-bNO9CLO_JZZRhOu9MqTLlpjm7654wGpQwJ_uYMUfdms1V5zf8Mb__LfdhOt1yM0GSx25BWt2dhuurQAx3oF3A7bd3GOxwrEPVYmpZTX67IQNTid4ksXJl5JhlM_22qo5djgtP7PxnL53VSp8F44u5DD3YH1WzOwDYJkT2iqtEoIYcLGRNpEp7xuFMVeqeezB64bzua4h2GkSyGmOqRgJSd4KiQfPW9KzJe7I34i2SHxaAoIKrx4U80leW56cc2UyHdpACM2zIFEYFSWhop5m52yYePCKhC8ng4ab0bLuy8AjETRYPkgIgi8SCfdgs0OJhkh3lxsRzGtDWOa_5c-DZ-0y_ZKK-2a2OCcaTq4BueHB_aW0t0eKYgLY64ceJB096Jy5uzKbnlQw6WhrBPLp4b-39RSuoELk7_dHB4_gakjNLVWn6SasL-bn9jFc1t8W03L-pFZvBp8uWjV-ASlglVk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Catalogue+of+Machine+Learning+Algorithms+for+Healthcare+Risk+Predictions&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mavrogiorgou%2C+Argyro&rft.au=Kiourtis%2C+Athanasios&rft.au=Kleftakis%2C+Spyridon&rft.au=Mavrogiorgos%2C+Konstantinos&rft.date=2022-11-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft_id=info:doi/10.3390%2Fs22228615&rft.externalDocID=PMC9695983 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |